1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/ADT/APFloat.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/None.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/Analysis/ScalarEvolutionExpander.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/ConstantRange.h" 50 #include "llvm/IR/Constants.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/IR/ValueHandle.h" 70 #include "llvm/Pass.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/MathExtras.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/LoopPassManager.h" 80 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 81 #include "llvm/Transforms/Utils/LoopUtils.h" 82 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 83 #include <cassert> 84 #include <cstdint> 85 #include <utility> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "indvars" 90 91 STATISTIC(NumWidened , "Number of indvars widened"); 92 STATISTIC(NumReplaced , "Number of exit values replaced"); 93 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 94 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 95 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 96 97 // Trip count verification can be enabled by default under NDEBUG if we 98 // implement a strong expression equivalence checker in SCEV. Until then, we 99 // use the verify-indvars flag, which may assert in some cases. 100 static cl::opt<bool> VerifyIndvars( 101 "verify-indvars", cl::Hidden, 102 cl::desc("Verify the ScalarEvolution result after running indvars")); 103 104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 105 106 static cl::opt<ReplaceExitVal> ReplaceExitValue( 107 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 108 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 109 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 110 clEnumValN(OnlyCheapRepl, "cheap", 111 "only replace exit value when the cost is cheap"), 112 clEnumValN(AlwaysRepl, "always", 113 "always replace exit value whenever possible"))); 114 115 static cl::opt<bool> UsePostIncrementRanges( 116 "indvars-post-increment-ranges", cl::Hidden, 117 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 118 cl::init(true)); 119 120 static cl::opt<bool> 121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 122 cl::desc("Disable Linear Function Test Replace optimization")); 123 124 namespace { 125 126 struct RewritePhi; 127 128 class IndVarSimplify { 129 LoopInfo *LI; 130 ScalarEvolution *SE; 131 DominatorTree *DT; 132 const DataLayout &DL; 133 TargetLibraryInfo *TLI; 134 const TargetTransformInfo *TTI; 135 136 SmallVector<WeakTrackingVH, 16> DeadInsts; 137 bool Changed = false; 138 139 bool isValidRewrite(Value *FromVal, Value *ToVal); 140 141 void handleFloatingPointIV(Loop *L, PHINode *PH); 142 void rewriteNonIntegerIVs(Loop *L); 143 144 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 145 146 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 147 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 148 void rewriteFirstIterationLoopExitValues(Loop *L); 149 150 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 151 PHINode *IndVar, SCEVExpander &Rewriter); 152 153 void sinkUnusedInvariants(Loop *L); 154 155 public: 156 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 157 const DataLayout &DL, TargetLibraryInfo *TLI, 158 TargetTransformInfo *TTI) 159 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 160 161 bool run(Loop *L); 162 }; 163 164 } // end anonymous namespace 165 166 /// Return true if the SCEV expansion generated by the rewriter can replace the 167 /// original value. SCEV guarantees that it produces the same value, but the way 168 /// it is produced may be illegal IR. Ideally, this function will only be 169 /// called for verification. 170 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 171 // If an SCEV expression subsumed multiple pointers, its expansion could 172 // reassociate the GEP changing the base pointer. This is illegal because the 173 // final address produced by a GEP chain must be inbounds relative to its 174 // underlying object. Otherwise basic alias analysis, among other things, 175 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 176 // producing an expression involving multiple pointers. Until then, we must 177 // bail out here. 178 // 179 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 180 // because it understands lcssa phis while SCEV does not. 181 Value *FromPtr = FromVal; 182 Value *ToPtr = ToVal; 183 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 184 FromPtr = GEP->getPointerOperand(); 185 } 186 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 187 ToPtr = GEP->getPointerOperand(); 188 } 189 if (FromPtr != FromVal || ToPtr != ToVal) { 190 // Quickly check the common case 191 if (FromPtr == ToPtr) 192 return true; 193 194 // SCEV may have rewritten an expression that produces the GEP's pointer 195 // operand. That's ok as long as the pointer operand has the same base 196 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 197 // base of a recurrence. This handles the case in which SCEV expansion 198 // converts a pointer type recurrence into a nonrecurrent pointer base 199 // indexed by an integer recurrence. 200 201 // If the GEP base pointer is a vector of pointers, abort. 202 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 203 return false; 204 205 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 206 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 207 if (FromBase == ToBase) 208 return true; 209 210 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 211 << " != " << *ToBase << "\n"); 212 213 return false; 214 } 215 return true; 216 } 217 218 /// Determine the insertion point for this user. By default, insert immediately 219 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 220 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 221 /// common dominator for the incoming blocks. 222 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 223 DominatorTree *DT, LoopInfo *LI) { 224 PHINode *PHI = dyn_cast<PHINode>(User); 225 if (!PHI) 226 return User; 227 228 Instruction *InsertPt = nullptr; 229 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 230 if (PHI->getIncomingValue(i) != Def) 231 continue; 232 233 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 234 if (!InsertPt) { 235 InsertPt = InsertBB->getTerminator(); 236 continue; 237 } 238 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 239 InsertPt = InsertBB->getTerminator(); 240 } 241 assert(InsertPt && "Missing phi operand"); 242 243 auto *DefI = dyn_cast<Instruction>(Def); 244 if (!DefI) 245 return InsertPt; 246 247 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 248 249 auto *L = LI->getLoopFor(DefI->getParent()); 250 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 251 252 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 253 if (LI->getLoopFor(DTN->getBlock()) == L) 254 return DTN->getBlock()->getTerminator(); 255 256 llvm_unreachable("DefI dominates InsertPt!"); 257 } 258 259 //===----------------------------------------------------------------------===// 260 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 261 //===----------------------------------------------------------------------===// 262 263 /// Convert APF to an integer, if possible. 264 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 265 bool isExact = false; 266 // See if we can convert this to an int64_t 267 uint64_t UIntVal; 268 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 269 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 270 !isExact) 271 return false; 272 IntVal = UIntVal; 273 return true; 274 } 275 276 /// If the loop has floating induction variable then insert corresponding 277 /// integer induction variable if possible. 278 /// For example, 279 /// for(double i = 0; i < 10000; ++i) 280 /// bar(i) 281 /// is converted into 282 /// for(int i = 0; i < 10000; ++i) 283 /// bar((double)i); 284 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 285 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 286 unsigned BackEdge = IncomingEdge^1; 287 288 // Check incoming value. 289 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 290 291 int64_t InitValue; 292 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 293 return; 294 295 // Check IV increment. Reject this PN if increment operation is not 296 // an add or increment value can not be represented by an integer. 297 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 298 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 299 300 // If this is not an add of the PHI with a constantfp, or if the constant fp 301 // is not an integer, bail out. 302 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 303 int64_t IncValue; 304 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 305 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 306 return; 307 308 // Check Incr uses. One user is PN and the other user is an exit condition 309 // used by the conditional terminator. 310 Value::user_iterator IncrUse = Incr->user_begin(); 311 Instruction *U1 = cast<Instruction>(*IncrUse++); 312 if (IncrUse == Incr->user_end()) return; 313 Instruction *U2 = cast<Instruction>(*IncrUse++); 314 if (IncrUse != Incr->user_end()) return; 315 316 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 317 // only used by a branch, we can't transform it. 318 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 319 if (!Compare) 320 Compare = dyn_cast<FCmpInst>(U2); 321 if (!Compare || !Compare->hasOneUse() || 322 !isa<BranchInst>(Compare->user_back())) 323 return; 324 325 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 326 327 // We need to verify that the branch actually controls the iteration count 328 // of the loop. If not, the new IV can overflow and no one will notice. 329 // The branch block must be in the loop and one of the successors must be out 330 // of the loop. 331 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 332 if (!L->contains(TheBr->getParent()) || 333 (L->contains(TheBr->getSuccessor(0)) && 334 L->contains(TheBr->getSuccessor(1)))) 335 return; 336 337 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 338 // transform it. 339 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 340 int64_t ExitValue; 341 if (ExitValueVal == nullptr || 342 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 343 return; 344 345 // Find new predicate for integer comparison. 346 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 347 switch (Compare->getPredicate()) { 348 default: return; // Unknown comparison. 349 case CmpInst::FCMP_OEQ: 350 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 351 case CmpInst::FCMP_ONE: 352 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 353 case CmpInst::FCMP_OGT: 354 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 355 case CmpInst::FCMP_OGE: 356 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 357 case CmpInst::FCMP_OLT: 358 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 359 case CmpInst::FCMP_OLE: 360 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 361 } 362 363 // We convert the floating point induction variable to a signed i32 value if 364 // we can. This is only safe if the comparison will not overflow in a way 365 // that won't be trapped by the integer equivalent operations. Check for this 366 // now. 367 // TODO: We could use i64 if it is native and the range requires it. 368 369 // The start/stride/exit values must all fit in signed i32. 370 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 371 return; 372 373 // If not actually striding (add x, 0.0), avoid touching the code. 374 if (IncValue == 0) 375 return; 376 377 // Positive and negative strides have different safety conditions. 378 if (IncValue > 0) { 379 // If we have a positive stride, we require the init to be less than the 380 // exit value. 381 if (InitValue >= ExitValue) 382 return; 383 384 uint32_t Range = uint32_t(ExitValue-InitValue); 385 // Check for infinite loop, either: 386 // while (i <= Exit) or until (i > Exit) 387 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 388 if (++Range == 0) return; // Range overflows. 389 } 390 391 unsigned Leftover = Range % uint32_t(IncValue); 392 393 // If this is an equality comparison, we require that the strided value 394 // exactly land on the exit value, otherwise the IV condition will wrap 395 // around and do things the fp IV wouldn't. 396 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 397 Leftover != 0) 398 return; 399 400 // If the stride would wrap around the i32 before exiting, we can't 401 // transform the IV. 402 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 403 return; 404 } else { 405 // If we have a negative stride, we require the init to be greater than the 406 // exit value. 407 if (InitValue <= ExitValue) 408 return; 409 410 uint32_t Range = uint32_t(InitValue-ExitValue); 411 // Check for infinite loop, either: 412 // while (i >= Exit) or until (i < Exit) 413 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 414 if (++Range == 0) return; // Range overflows. 415 } 416 417 unsigned Leftover = Range % uint32_t(-IncValue); 418 419 // If this is an equality comparison, we require that the strided value 420 // exactly land on the exit value, otherwise the IV condition will wrap 421 // around and do things the fp IV wouldn't. 422 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 423 Leftover != 0) 424 return; 425 426 // If the stride would wrap around the i32 before exiting, we can't 427 // transform the IV. 428 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 429 return; 430 } 431 432 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 433 434 // Insert new integer induction variable. 435 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 436 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 437 PN->getIncomingBlock(IncomingEdge)); 438 439 Value *NewAdd = 440 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 441 Incr->getName()+".int", Incr); 442 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 443 444 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 445 ConstantInt::get(Int32Ty, ExitValue), 446 Compare->getName()); 447 448 // In the following deletions, PN may become dead and may be deleted. 449 // Use a WeakTrackingVH to observe whether this happens. 450 WeakTrackingVH WeakPH = PN; 451 452 // Delete the old floating point exit comparison. The branch starts using the 453 // new comparison. 454 NewCompare->takeName(Compare); 455 Compare->replaceAllUsesWith(NewCompare); 456 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 457 458 // Delete the old floating point increment. 459 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 460 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 461 462 // If the FP induction variable still has uses, this is because something else 463 // in the loop uses its value. In order to canonicalize the induction 464 // variable, we chose to eliminate the IV and rewrite it in terms of an 465 // int->fp cast. 466 // 467 // We give preference to sitofp over uitofp because it is faster on most 468 // platforms. 469 if (WeakPH) { 470 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 471 &*PN->getParent()->getFirstInsertionPt()); 472 PN->replaceAllUsesWith(Conv); 473 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 474 } 475 Changed = true; 476 } 477 478 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 479 // First step. Check to see if there are any floating-point recurrences. 480 // If there are, change them into integer recurrences, permitting analysis by 481 // the SCEV routines. 482 BasicBlock *Header = L->getHeader(); 483 484 SmallVector<WeakTrackingVH, 8> PHIs; 485 for (PHINode &PN : Header->phis()) 486 PHIs.push_back(&PN); 487 488 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 489 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 490 handleFloatingPointIV(L, PN); 491 492 // If the loop previously had floating-point IV, ScalarEvolution 493 // may not have been able to compute a trip count. Now that we've done some 494 // re-writing, the trip count may be computable. 495 if (Changed) 496 SE->forgetLoop(L); 497 } 498 499 namespace { 500 501 // Collect information about PHI nodes which can be transformed in 502 // rewriteLoopExitValues. 503 struct RewritePhi { 504 PHINode *PN; 505 506 // Ith incoming value. 507 unsigned Ith; 508 509 // Exit value after expansion. 510 Value *Val; 511 512 // High Cost when expansion. 513 bool HighCost; 514 515 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 516 : PN(P), Ith(I), Val(V), HighCost(H) {} 517 }; 518 519 } // end anonymous namespace 520 521 //===----------------------------------------------------------------------===// 522 // rewriteLoopExitValues - Optimize IV users outside the loop. 523 // As a side effect, reduces the amount of IV processing within the loop. 524 //===----------------------------------------------------------------------===// 525 526 /// Check to see if this loop has a computable loop-invariant execution count. 527 /// If so, this means that we can compute the final value of any expressions 528 /// that are recurrent in the loop, and substitute the exit values from the loop 529 /// into any instructions outside of the loop that use the final values of the 530 /// current expressions. 531 /// 532 /// This is mostly redundant with the regular IndVarSimplify activities that 533 /// happen later, except that it's more powerful in some cases, because it's 534 /// able to brute-force evaluate arbitrary instructions as long as they have 535 /// constant operands at the beginning of the loop. 536 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 537 // Check a pre-condition. 538 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 539 "Indvars did not preserve LCSSA!"); 540 541 SmallVector<BasicBlock*, 8> ExitBlocks; 542 L->getUniqueExitBlocks(ExitBlocks); 543 544 SmallVector<RewritePhi, 8> RewritePhiSet; 545 // Find all values that are computed inside the loop, but used outside of it. 546 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 547 // the exit blocks of the loop to find them. 548 for (BasicBlock *ExitBB : ExitBlocks) { 549 // If there are no PHI nodes in this exit block, then no values defined 550 // inside the loop are used on this path, skip it. 551 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 552 if (!PN) continue; 553 554 unsigned NumPreds = PN->getNumIncomingValues(); 555 556 // Iterate over all of the PHI nodes. 557 BasicBlock::iterator BBI = ExitBB->begin(); 558 while ((PN = dyn_cast<PHINode>(BBI++))) { 559 if (PN->use_empty()) 560 continue; // dead use, don't replace it 561 562 if (!SE->isSCEVable(PN->getType())) 563 continue; 564 565 // It's necessary to tell ScalarEvolution about this explicitly so that 566 // it can walk the def-use list and forget all SCEVs, as it may not be 567 // watching the PHI itself. Once the new exit value is in place, there 568 // may not be a def-use connection between the loop and every instruction 569 // which got a SCEVAddRecExpr for that loop. 570 SE->forgetValue(PN); 571 572 // Iterate over all of the values in all the PHI nodes. 573 for (unsigned i = 0; i != NumPreds; ++i) { 574 // If the value being merged in is not integer or is not defined 575 // in the loop, skip it. 576 Value *InVal = PN->getIncomingValue(i); 577 if (!isa<Instruction>(InVal)) 578 continue; 579 580 // If this pred is for a subloop, not L itself, skip it. 581 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 582 continue; // The Block is in a subloop, skip it. 583 584 // Check that InVal is defined in the loop. 585 Instruction *Inst = cast<Instruction>(InVal); 586 if (!L->contains(Inst)) 587 continue; 588 589 // Okay, this instruction has a user outside of the current loop 590 // and varies predictably *inside* the loop. Evaluate the value it 591 // contains when the loop exits, if possible. 592 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 593 if (!SE->isLoopInvariant(ExitValue, L) || 594 !isSafeToExpand(ExitValue, *SE)) 595 continue; 596 597 // Computing the value outside of the loop brings no benefit if : 598 // - it is definitely used inside the loop in a way which can not be 599 // optimized away. 600 // - no use outside of the loop can take advantage of hoisting the 601 // computation out of the loop 602 if (ExitValue->getSCEVType()>=scMulExpr) { 603 unsigned NumHardInternalUses = 0; 604 unsigned NumSoftExternalUses = 0; 605 unsigned NumUses = 0; 606 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 607 IB != IE && NumUses <= 6; ++IB) { 608 Instruction *UseInstr = cast<Instruction>(*IB); 609 unsigned Opc = UseInstr->getOpcode(); 610 NumUses++; 611 if (L->contains(UseInstr)) { 612 if (Opc == Instruction::Call) 613 NumHardInternalUses++; 614 } else { 615 if (Opc == Instruction::PHI) { 616 // Do not count the Phi as a use. LCSSA may have inserted 617 // plenty of trivial ones. 618 NumUses--; 619 for (auto PB = UseInstr->user_begin(), 620 PE = UseInstr->user_end(); 621 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 622 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 623 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 624 NumSoftExternalUses++; 625 } 626 continue; 627 } 628 if (Opc != Instruction::Call && Opc != Instruction::Ret) 629 NumSoftExternalUses++; 630 } 631 } 632 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 633 continue; 634 } 635 636 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 637 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 638 639 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 640 << '\n' 641 << " LoopVal = " << *Inst << "\n"); 642 643 if (!isValidRewrite(Inst, ExitVal)) { 644 DeadInsts.push_back(ExitVal); 645 continue; 646 } 647 648 #ifndef NDEBUG 649 // If we reuse an instruction from a loop which is neither L nor one of 650 // its containing loops, we end up breaking LCSSA form for this loop by 651 // creating a new use of its instruction. 652 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 653 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 654 if (EVL != L) 655 assert(EVL->contains(L) && "LCSSA breach detected!"); 656 #endif 657 658 // Collect all the candidate PHINodes to be rewritten. 659 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 660 } 661 } 662 } 663 664 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 665 666 // Transformation. 667 for (const RewritePhi &Phi : RewritePhiSet) { 668 PHINode *PN = Phi.PN; 669 Value *ExitVal = Phi.Val; 670 671 // Only do the rewrite when the ExitValue can be expanded cheaply. 672 // If LoopCanBeDel is true, rewrite exit value aggressively. 673 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 674 DeadInsts.push_back(ExitVal); 675 continue; 676 } 677 678 Changed = true; 679 ++NumReplaced; 680 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 681 PN->setIncomingValue(Phi.Ith, ExitVal); 682 683 // If this instruction is dead now, delete it. Don't do it now to avoid 684 // invalidating iterators. 685 if (isInstructionTriviallyDead(Inst, TLI)) 686 DeadInsts.push_back(Inst); 687 688 // Replace PN with ExitVal if that is legal and does not break LCSSA. 689 if (PN->getNumIncomingValues() == 1 && 690 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 691 PN->replaceAllUsesWith(ExitVal); 692 PN->eraseFromParent(); 693 } 694 } 695 696 // The insertion point instruction may have been deleted; clear it out 697 // so that the rewriter doesn't trip over it later. 698 Rewriter.clearInsertPoint(); 699 } 700 701 //===---------------------------------------------------------------------===// 702 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 703 // they will exit at the first iteration. 704 //===---------------------------------------------------------------------===// 705 706 /// Check to see if this loop has loop invariant conditions which lead to loop 707 /// exits. If so, we know that if the exit path is taken, it is at the first 708 /// loop iteration. This lets us predict exit values of PHI nodes that live in 709 /// loop header. 710 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 711 // Verify the input to the pass is already in LCSSA form. 712 assert(L->isLCSSAForm(*DT)); 713 714 SmallVector<BasicBlock *, 8> ExitBlocks; 715 L->getUniqueExitBlocks(ExitBlocks); 716 auto *LoopHeader = L->getHeader(); 717 assert(LoopHeader && "Invalid loop"); 718 719 for (auto *ExitBB : ExitBlocks) { 720 // If there are no more PHI nodes in this exit block, then no more 721 // values defined inside the loop are used on this path. 722 for (PHINode &PN : ExitBB->phis()) { 723 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 724 IncomingValIdx != E; ++IncomingValIdx) { 725 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 726 727 // We currently only support loop exits from loop header. If the 728 // incoming block is not loop header, we need to recursively check 729 // all conditions starting from loop header are loop invariants. 730 // Additional support might be added in the future. 731 if (IncomingBB != LoopHeader) 732 continue; 733 734 // Get condition that leads to the exit path. 735 auto *TermInst = IncomingBB->getTerminator(); 736 737 Value *Cond = nullptr; 738 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 739 // Must be a conditional branch, otherwise the block 740 // should not be in the loop. 741 Cond = BI->getCondition(); 742 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 743 Cond = SI->getCondition(); 744 else 745 continue; 746 747 if (!L->isLoopInvariant(Cond)) 748 continue; 749 750 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 751 752 // Only deal with PHIs. 753 if (!ExitVal) 754 continue; 755 756 // If ExitVal is a PHI on the loop header, then we know its 757 // value along this exit because the exit can only be taken 758 // on the first iteration. 759 auto *LoopPreheader = L->getLoopPreheader(); 760 assert(LoopPreheader && "Invalid loop"); 761 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 762 if (PreheaderIdx != -1) { 763 assert(ExitVal->getParent() == LoopHeader && 764 "ExitVal must be in loop header"); 765 PN.setIncomingValue(IncomingValIdx, 766 ExitVal->getIncomingValue(PreheaderIdx)); 767 } 768 } 769 } 770 } 771 } 772 773 /// Check whether it is possible to delete the loop after rewriting exit 774 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 775 /// aggressively. 776 bool IndVarSimplify::canLoopBeDeleted( 777 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 778 BasicBlock *Preheader = L->getLoopPreheader(); 779 // If there is no preheader, the loop will not be deleted. 780 if (!Preheader) 781 return false; 782 783 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 784 // We obviate multiple ExitingBlocks case for simplicity. 785 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 786 // after exit value rewriting, we can enhance the logic here. 787 SmallVector<BasicBlock *, 4> ExitingBlocks; 788 L->getExitingBlocks(ExitingBlocks); 789 SmallVector<BasicBlock *, 8> ExitBlocks; 790 L->getUniqueExitBlocks(ExitBlocks); 791 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 792 return false; 793 794 BasicBlock *ExitBlock = ExitBlocks[0]; 795 BasicBlock::iterator BI = ExitBlock->begin(); 796 while (PHINode *P = dyn_cast<PHINode>(BI)) { 797 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 798 799 // If the Incoming value of P is found in RewritePhiSet, we know it 800 // could be rewritten to use a loop invariant value in transformation 801 // phase later. Skip it in the loop invariant check below. 802 bool found = false; 803 for (const RewritePhi &Phi : RewritePhiSet) { 804 unsigned i = Phi.Ith; 805 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 806 found = true; 807 break; 808 } 809 } 810 811 Instruction *I; 812 if (!found && (I = dyn_cast<Instruction>(Incoming))) 813 if (!L->hasLoopInvariantOperands(I)) 814 return false; 815 816 ++BI; 817 } 818 819 for (auto *BB : L->blocks()) 820 if (llvm::any_of(*BB, [](Instruction &I) { 821 return I.mayHaveSideEffects(); 822 })) 823 return false; 824 825 return true; 826 } 827 828 //===----------------------------------------------------------------------===// 829 // IV Widening - Extend the width of an IV to cover its widest uses. 830 //===----------------------------------------------------------------------===// 831 832 namespace { 833 834 // Collect information about induction variables that are used by sign/zero 835 // extend operations. This information is recorded by CollectExtend and provides 836 // the input to WidenIV. 837 struct WideIVInfo { 838 PHINode *NarrowIV = nullptr; 839 840 // Widest integer type created [sz]ext 841 Type *WidestNativeType = nullptr; 842 843 // Was a sext user seen before a zext? 844 bool IsSigned = false; 845 }; 846 847 } // end anonymous namespace 848 849 /// Update information about the induction variable that is extended by this 850 /// sign or zero extend operation. This is used to determine the final width of 851 /// the IV before actually widening it. 852 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 853 const TargetTransformInfo *TTI) { 854 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 855 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 856 return; 857 858 Type *Ty = Cast->getType(); 859 uint64_t Width = SE->getTypeSizeInBits(Ty); 860 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 861 return; 862 863 // Check that `Cast` actually extends the induction variable (we rely on this 864 // later). This takes care of cases where `Cast` is extending a truncation of 865 // the narrow induction variable, and thus can end up being narrower than the 866 // "narrow" induction variable. 867 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 868 if (NarrowIVWidth >= Width) 869 return; 870 871 // Cast is either an sext or zext up to this point. 872 // We should not widen an indvar if arithmetics on the wider indvar are more 873 // expensive than those on the narrower indvar. We check only the cost of ADD 874 // because at least an ADD is required to increment the induction variable. We 875 // could compute more comprehensively the cost of all instructions on the 876 // induction variable when necessary. 877 if (TTI && 878 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 879 TTI->getArithmeticInstrCost(Instruction::Add, 880 Cast->getOperand(0)->getType())) { 881 return; 882 } 883 884 if (!WI.WidestNativeType) { 885 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 886 WI.IsSigned = IsSigned; 887 return; 888 } 889 890 // We extend the IV to satisfy the sign of its first user, arbitrarily. 891 if (WI.IsSigned != IsSigned) 892 return; 893 894 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 895 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 896 } 897 898 namespace { 899 900 /// Record a link in the Narrow IV def-use chain along with the WideIV that 901 /// computes the same value as the Narrow IV def. This avoids caching Use* 902 /// pointers. 903 struct NarrowIVDefUse { 904 Instruction *NarrowDef = nullptr; 905 Instruction *NarrowUse = nullptr; 906 Instruction *WideDef = nullptr; 907 908 // True if the narrow def is never negative. Tracking this information lets 909 // us use a sign extension instead of a zero extension or vice versa, when 910 // profitable and legal. 911 bool NeverNegative = false; 912 913 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 914 bool NeverNegative) 915 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 916 NeverNegative(NeverNegative) {} 917 }; 918 919 /// The goal of this transform is to remove sign and zero extends without 920 /// creating any new induction variables. To do this, it creates a new phi of 921 /// the wider type and redirects all users, either removing extends or inserting 922 /// truncs whenever we stop propagating the type. 923 class WidenIV { 924 // Parameters 925 PHINode *OrigPhi; 926 Type *WideType; 927 928 // Context 929 LoopInfo *LI; 930 Loop *L; 931 ScalarEvolution *SE; 932 DominatorTree *DT; 933 934 // Does the module have any calls to the llvm.experimental.guard intrinsic 935 // at all? If not we can avoid scanning instructions looking for guards. 936 bool HasGuards; 937 938 // Result 939 PHINode *WidePhi = nullptr; 940 Instruction *WideInc = nullptr; 941 const SCEV *WideIncExpr = nullptr; 942 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 943 944 SmallPtrSet<Instruction *,16> Widened; 945 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 946 947 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 948 949 // A map tracking the kind of extension used to widen each narrow IV 950 // and narrow IV user. 951 // Key: pointer to a narrow IV or IV user. 952 // Value: the kind of extension used to widen this Instruction. 953 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 954 955 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 956 957 // A map with control-dependent ranges for post increment IV uses. The key is 958 // a pair of IV def and a use of this def denoting the context. The value is 959 // a ConstantRange representing possible values of the def at the given 960 // context. 961 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 962 963 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 964 Instruction *UseI) { 965 DefUserPair Key(Def, UseI); 966 auto It = PostIncRangeInfos.find(Key); 967 return It == PostIncRangeInfos.end() 968 ? Optional<ConstantRange>(None) 969 : Optional<ConstantRange>(It->second); 970 } 971 972 void calculatePostIncRanges(PHINode *OrigPhi); 973 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 974 975 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 976 DefUserPair Key(Def, UseI); 977 auto It = PostIncRangeInfos.find(Key); 978 if (It == PostIncRangeInfos.end()) 979 PostIncRangeInfos.insert({Key, R}); 980 else 981 It->second = R.intersectWith(It->second); 982 } 983 984 public: 985 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 986 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 987 bool HasGuards) 988 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 989 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 990 HasGuards(HasGuards), DeadInsts(DI) { 991 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 992 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 993 } 994 995 PHINode *createWideIV(SCEVExpander &Rewriter); 996 997 protected: 998 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 999 Instruction *Use); 1000 1001 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1002 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1003 const SCEVAddRecExpr *WideAR); 1004 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1005 1006 ExtendKind getExtendKind(Instruction *I); 1007 1008 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1009 1010 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1011 1012 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1013 1014 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1015 unsigned OpCode) const; 1016 1017 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1018 1019 bool widenLoopCompare(NarrowIVDefUse DU); 1020 1021 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1022 }; 1023 1024 } // end anonymous namespace 1025 1026 /// Perform a quick domtree based check for loop invariance assuming that V is 1027 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 1028 /// purpose. 1029 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 1030 Instruction *Inst = dyn_cast<Instruction>(V); 1031 if (!Inst) 1032 return true; 1033 1034 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1035 } 1036 1037 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1038 bool IsSigned, Instruction *Use) { 1039 // Set the debug location and conservative insertion point. 1040 IRBuilder<> Builder(Use); 1041 // Hoist the insertion point into loop preheaders as far as possible. 1042 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1043 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1044 L = L->getParentLoop()) 1045 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1046 1047 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1048 Builder.CreateZExt(NarrowOper, WideType); 1049 } 1050 1051 /// Instantiate a wide operation to replace a narrow operation. This only needs 1052 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1053 /// 0 for any operation we decide not to clone. 1054 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1055 const SCEVAddRecExpr *WideAR) { 1056 unsigned Opcode = DU.NarrowUse->getOpcode(); 1057 switch (Opcode) { 1058 default: 1059 return nullptr; 1060 case Instruction::Add: 1061 case Instruction::Mul: 1062 case Instruction::UDiv: 1063 case Instruction::Sub: 1064 return cloneArithmeticIVUser(DU, WideAR); 1065 1066 case Instruction::And: 1067 case Instruction::Or: 1068 case Instruction::Xor: 1069 case Instruction::Shl: 1070 case Instruction::LShr: 1071 case Instruction::AShr: 1072 return cloneBitwiseIVUser(DU); 1073 } 1074 } 1075 1076 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1077 Instruction *NarrowUse = DU.NarrowUse; 1078 Instruction *NarrowDef = DU.NarrowDef; 1079 Instruction *WideDef = DU.WideDef; 1080 1081 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1082 1083 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1084 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1085 // invariant and will be folded or hoisted. If it actually comes from a 1086 // widened IV, it should be removed during a future call to widenIVUse. 1087 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1088 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1089 ? WideDef 1090 : createExtendInst(NarrowUse->getOperand(0), WideType, 1091 IsSigned, NarrowUse); 1092 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1093 ? WideDef 1094 : createExtendInst(NarrowUse->getOperand(1), WideType, 1095 IsSigned, NarrowUse); 1096 1097 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1098 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1099 NarrowBO->getName()); 1100 IRBuilder<> Builder(NarrowUse); 1101 Builder.Insert(WideBO); 1102 WideBO->copyIRFlags(NarrowBO); 1103 return WideBO; 1104 } 1105 1106 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1107 const SCEVAddRecExpr *WideAR) { 1108 Instruction *NarrowUse = DU.NarrowUse; 1109 Instruction *NarrowDef = DU.NarrowDef; 1110 Instruction *WideDef = DU.WideDef; 1111 1112 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1113 1114 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1115 1116 // We're trying to find X such that 1117 // 1118 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1119 // 1120 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1121 // and check using SCEV if any of them are correct. 1122 1123 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1124 // correct solution to X. 1125 auto GuessNonIVOperand = [&](bool SignExt) { 1126 const SCEV *WideLHS; 1127 const SCEV *WideRHS; 1128 1129 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1130 if (SignExt) 1131 return SE->getSignExtendExpr(S, Ty); 1132 return SE->getZeroExtendExpr(S, Ty); 1133 }; 1134 1135 if (IVOpIdx == 0) { 1136 WideLHS = SE->getSCEV(WideDef); 1137 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1138 WideRHS = GetExtend(NarrowRHS, WideType); 1139 } else { 1140 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1141 WideLHS = GetExtend(NarrowLHS, WideType); 1142 WideRHS = SE->getSCEV(WideDef); 1143 } 1144 1145 // WideUse is "WideDef `op.wide` X" as described in the comment. 1146 const SCEV *WideUse = nullptr; 1147 1148 switch (NarrowUse->getOpcode()) { 1149 default: 1150 llvm_unreachable("No other possibility!"); 1151 1152 case Instruction::Add: 1153 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1154 break; 1155 1156 case Instruction::Mul: 1157 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1158 break; 1159 1160 case Instruction::UDiv: 1161 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1162 break; 1163 1164 case Instruction::Sub: 1165 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1166 break; 1167 } 1168 1169 return WideUse == WideAR; 1170 }; 1171 1172 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1173 if (!GuessNonIVOperand(SignExtend)) { 1174 SignExtend = !SignExtend; 1175 if (!GuessNonIVOperand(SignExtend)) 1176 return nullptr; 1177 } 1178 1179 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1180 ? WideDef 1181 : createExtendInst(NarrowUse->getOperand(0), WideType, 1182 SignExtend, NarrowUse); 1183 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1184 ? WideDef 1185 : createExtendInst(NarrowUse->getOperand(1), WideType, 1186 SignExtend, NarrowUse); 1187 1188 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1189 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1190 NarrowBO->getName()); 1191 1192 IRBuilder<> Builder(NarrowUse); 1193 Builder.Insert(WideBO); 1194 WideBO->copyIRFlags(NarrowBO); 1195 return WideBO; 1196 } 1197 1198 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1199 auto It = ExtendKindMap.find(I); 1200 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1201 return It->second; 1202 } 1203 1204 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1205 unsigned OpCode) const { 1206 if (OpCode == Instruction::Add) 1207 return SE->getAddExpr(LHS, RHS); 1208 if (OpCode == Instruction::Sub) 1209 return SE->getMinusSCEV(LHS, RHS); 1210 if (OpCode == Instruction::Mul) 1211 return SE->getMulExpr(LHS, RHS); 1212 1213 llvm_unreachable("Unsupported opcode."); 1214 } 1215 1216 /// No-wrap operations can transfer sign extension of their result to their 1217 /// operands. Generate the SCEV value for the widened operation without 1218 /// actually modifying the IR yet. If the expression after extending the 1219 /// operands is an AddRec for this loop, return the AddRec and the kind of 1220 /// extension used. 1221 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1222 // Handle the common case of add<nsw/nuw> 1223 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1224 // Only Add/Sub/Mul instructions supported yet. 1225 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1226 OpCode != Instruction::Mul) 1227 return {nullptr, Unknown}; 1228 1229 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1230 // if extending the other will lead to a recurrence. 1231 const unsigned ExtendOperIdx = 1232 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1233 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1234 1235 const SCEV *ExtendOperExpr = nullptr; 1236 const OverflowingBinaryOperator *OBO = 1237 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1238 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1239 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1240 ExtendOperExpr = SE->getSignExtendExpr( 1241 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1242 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1243 ExtendOperExpr = SE->getZeroExtendExpr( 1244 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1245 else 1246 return {nullptr, Unknown}; 1247 1248 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1249 // flags. This instruction may be guarded by control flow that the no-wrap 1250 // behavior depends on. Non-control-equivalent instructions can be mapped to 1251 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1252 // semantics to those operations. 1253 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1254 const SCEV *rhs = ExtendOperExpr; 1255 1256 // Let's swap operands to the initial order for the case of non-commutative 1257 // operations, like SUB. See PR21014. 1258 if (ExtendOperIdx == 0) 1259 std::swap(lhs, rhs); 1260 const SCEVAddRecExpr *AddRec = 1261 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1262 1263 if (!AddRec || AddRec->getLoop() != L) 1264 return {nullptr, Unknown}; 1265 1266 return {AddRec, ExtKind}; 1267 } 1268 1269 /// Is this instruction potentially interesting for further simplification after 1270 /// widening it's type? In other words, can the extend be safely hoisted out of 1271 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1272 /// so, return the extended recurrence and the kind of extension used. Otherwise 1273 /// return {nullptr, Unknown}. 1274 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1275 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1276 return {nullptr, Unknown}; 1277 1278 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1279 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1280 SE->getTypeSizeInBits(WideType)) { 1281 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1282 // index. So don't follow this use. 1283 return {nullptr, Unknown}; 1284 } 1285 1286 const SCEV *WideExpr; 1287 ExtendKind ExtKind; 1288 if (DU.NeverNegative) { 1289 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1290 if (isa<SCEVAddRecExpr>(WideExpr)) 1291 ExtKind = SignExtended; 1292 else { 1293 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1294 ExtKind = ZeroExtended; 1295 } 1296 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1297 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1298 ExtKind = SignExtended; 1299 } else { 1300 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1301 ExtKind = ZeroExtended; 1302 } 1303 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1304 if (!AddRec || AddRec->getLoop() != L) 1305 return {nullptr, Unknown}; 1306 return {AddRec, ExtKind}; 1307 } 1308 1309 /// This IV user cannot be widen. Replace this use of the original narrow IV 1310 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1311 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1312 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1313 << *DU.NarrowUse << "\n"); 1314 IRBuilder<> Builder( 1315 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1316 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1317 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1318 } 1319 1320 /// If the narrow use is a compare instruction, then widen the compare 1321 // (and possibly the other operand). The extend operation is hoisted into the 1322 // loop preheader as far as possible. 1323 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1324 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1325 if (!Cmp) 1326 return false; 1327 1328 // We can legally widen the comparison in the following two cases: 1329 // 1330 // - The signedness of the IV extension and comparison match 1331 // 1332 // - The narrow IV is always positive (and thus its sign extension is equal 1333 // to its zero extension). For instance, let's say we're zero extending 1334 // %narrow for the following use 1335 // 1336 // icmp slt i32 %narrow, %val ... (A) 1337 // 1338 // and %narrow is always positive. Then 1339 // 1340 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1341 // == icmp slt i32 zext(%narrow), sext(%val) 1342 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1343 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1344 return false; 1345 1346 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1347 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1348 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1349 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1350 1351 // Widen the compare instruction. 1352 IRBuilder<> Builder( 1353 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1354 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1355 1356 // Widen the other operand of the compare, if necessary. 1357 if (CastWidth < IVWidth) { 1358 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1359 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1360 } 1361 return true; 1362 } 1363 1364 /// Determine whether an individual user of the narrow IV can be widened. If so, 1365 /// return the wide clone of the user. 1366 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1367 assert(ExtendKindMap.count(DU.NarrowDef) && 1368 "Should already know the kind of extension used to widen NarrowDef"); 1369 1370 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1371 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1372 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1373 // For LCSSA phis, sink the truncate outside the loop. 1374 // After SimplifyCFG most loop exit targets have a single predecessor. 1375 // Otherwise fall back to a truncate within the loop. 1376 if (UsePhi->getNumOperands() != 1) 1377 truncateIVUse(DU, DT, LI); 1378 else { 1379 // Widening the PHI requires us to insert a trunc. The logical place 1380 // for this trunc is in the same BB as the PHI. This is not possible if 1381 // the BB is terminated by a catchswitch. 1382 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1383 return nullptr; 1384 1385 PHINode *WidePhi = 1386 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1387 UsePhi); 1388 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1389 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1390 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1391 UsePhi->replaceAllUsesWith(Trunc); 1392 DeadInsts.emplace_back(UsePhi); 1393 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1394 << *WidePhi << "\n"); 1395 } 1396 return nullptr; 1397 } 1398 } 1399 1400 // This narrow use can be widened by a sext if it's non-negative or its narrow 1401 // def was widended by a sext. Same for zext. 1402 auto canWidenBySExt = [&]() { 1403 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1404 }; 1405 auto canWidenByZExt = [&]() { 1406 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1407 }; 1408 1409 // Our raison d'etre! Eliminate sign and zero extension. 1410 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1411 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1412 Value *NewDef = DU.WideDef; 1413 if (DU.NarrowUse->getType() != WideType) { 1414 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1415 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1416 if (CastWidth < IVWidth) { 1417 // The cast isn't as wide as the IV, so insert a Trunc. 1418 IRBuilder<> Builder(DU.NarrowUse); 1419 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1420 } 1421 else { 1422 // A wider extend was hidden behind a narrower one. This may induce 1423 // another round of IV widening in which the intermediate IV becomes 1424 // dead. It should be very rare. 1425 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1426 << " not wide enough to subsume " << *DU.NarrowUse 1427 << "\n"); 1428 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1429 NewDef = DU.NarrowUse; 1430 } 1431 } 1432 if (NewDef != DU.NarrowUse) { 1433 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1434 << " replaced by " << *DU.WideDef << "\n"); 1435 ++NumElimExt; 1436 DU.NarrowUse->replaceAllUsesWith(NewDef); 1437 DeadInsts.emplace_back(DU.NarrowUse); 1438 } 1439 // Now that the extend is gone, we want to expose it's uses for potential 1440 // further simplification. We don't need to directly inform SimplifyIVUsers 1441 // of the new users, because their parent IV will be processed later as a 1442 // new loop phi. If we preserved IVUsers analysis, we would also want to 1443 // push the uses of WideDef here. 1444 1445 // No further widening is needed. The deceased [sz]ext had done it for us. 1446 return nullptr; 1447 } 1448 1449 // Does this user itself evaluate to a recurrence after widening? 1450 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1451 if (!WideAddRec.first) 1452 WideAddRec = getWideRecurrence(DU); 1453 1454 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1455 if (!WideAddRec.first) { 1456 // If use is a loop condition, try to promote the condition instead of 1457 // truncating the IV first. 1458 if (widenLoopCompare(DU)) 1459 return nullptr; 1460 1461 // This user does not evaluate to a recurrence after widening, so don't 1462 // follow it. Instead insert a Trunc to kill off the original use, 1463 // eventually isolating the original narrow IV so it can be removed. 1464 truncateIVUse(DU, DT, LI); 1465 return nullptr; 1466 } 1467 // Assume block terminators cannot evaluate to a recurrence. We can't to 1468 // insert a Trunc after a terminator if there happens to be a critical edge. 1469 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1470 "SCEV is not expected to evaluate a block terminator"); 1471 1472 // Reuse the IV increment that SCEVExpander created as long as it dominates 1473 // NarrowUse. 1474 Instruction *WideUse = nullptr; 1475 if (WideAddRec.first == WideIncExpr && 1476 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1477 WideUse = WideInc; 1478 else { 1479 WideUse = cloneIVUser(DU, WideAddRec.first); 1480 if (!WideUse) 1481 return nullptr; 1482 } 1483 // Evaluation of WideAddRec ensured that the narrow expression could be 1484 // extended outside the loop without overflow. This suggests that the wide use 1485 // evaluates to the same expression as the extended narrow use, but doesn't 1486 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1487 // where it fails, we simply throw away the newly created wide use. 1488 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1489 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1490 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1491 << "\n"); 1492 DeadInsts.emplace_back(WideUse); 1493 return nullptr; 1494 } 1495 1496 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1497 // Returning WideUse pushes it on the worklist. 1498 return WideUse; 1499 } 1500 1501 /// Add eligible users of NarrowDef to NarrowIVUsers. 1502 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1503 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1504 bool NonNegativeDef = 1505 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1506 SE->getConstant(NarrowSCEV->getType(), 0)); 1507 for (User *U : NarrowDef->users()) { 1508 Instruction *NarrowUser = cast<Instruction>(U); 1509 1510 // Handle data flow merges and bizarre phi cycles. 1511 if (!Widened.insert(NarrowUser).second) 1512 continue; 1513 1514 bool NonNegativeUse = false; 1515 if (!NonNegativeDef) { 1516 // We might have a control-dependent range information for this context. 1517 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1518 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1519 } 1520 1521 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1522 NonNegativeDef || NonNegativeUse); 1523 } 1524 } 1525 1526 /// Process a single induction variable. First use the SCEVExpander to create a 1527 /// wide induction variable that evaluates to the same recurrence as the 1528 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1529 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1530 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1531 /// 1532 /// It would be simpler to delete uses as they are processed, but we must avoid 1533 /// invalidating SCEV expressions. 1534 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1535 // Is this phi an induction variable? 1536 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1537 if (!AddRec) 1538 return nullptr; 1539 1540 // Widen the induction variable expression. 1541 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1542 ? SE->getSignExtendExpr(AddRec, WideType) 1543 : SE->getZeroExtendExpr(AddRec, WideType); 1544 1545 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1546 "Expect the new IV expression to preserve its type"); 1547 1548 // Can the IV be extended outside the loop without overflow? 1549 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1550 if (!AddRec || AddRec->getLoop() != L) 1551 return nullptr; 1552 1553 // An AddRec must have loop-invariant operands. Since this AddRec is 1554 // materialized by a loop header phi, the expression cannot have any post-loop 1555 // operands, so they must dominate the loop header. 1556 assert( 1557 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1558 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1559 "Loop header phi recurrence inputs do not dominate the loop"); 1560 1561 // Iterate over IV uses (including transitive ones) looking for IV increments 1562 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1563 // the increment calculate control-dependent range information basing on 1564 // dominating conditions inside of the loop (e.g. a range check inside of the 1565 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1566 // 1567 // Control-dependent range information is later used to prove that a narrow 1568 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1569 // this on demand because when pushNarrowIVUsers needs this information some 1570 // of the dominating conditions might be already widened. 1571 if (UsePostIncrementRanges) 1572 calculatePostIncRanges(OrigPhi); 1573 1574 // The rewriter provides a value for the desired IV expression. This may 1575 // either find an existing phi or materialize a new one. Either way, we 1576 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1577 // of the phi-SCC dominates the loop entry. 1578 Instruction *InsertPt = &L->getHeader()->front(); 1579 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1580 1581 // Remembering the WideIV increment generated by SCEVExpander allows 1582 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1583 // employ a general reuse mechanism because the call above is the only call to 1584 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1585 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1586 WideInc = 1587 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1588 WideIncExpr = SE->getSCEV(WideInc); 1589 // Propagate the debug location associated with the original loop increment 1590 // to the new (widened) increment. 1591 auto *OrigInc = 1592 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1593 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1594 } 1595 1596 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1597 ++NumWidened; 1598 1599 // Traverse the def-use chain using a worklist starting at the original IV. 1600 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1601 1602 Widened.insert(OrigPhi); 1603 pushNarrowIVUsers(OrigPhi, WidePhi); 1604 1605 while (!NarrowIVUsers.empty()) { 1606 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1607 1608 // Process a def-use edge. This may replace the use, so don't hold a 1609 // use_iterator across it. 1610 Instruction *WideUse = widenIVUse(DU, Rewriter); 1611 1612 // Follow all def-use edges from the previous narrow use. 1613 if (WideUse) 1614 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1615 1616 // widenIVUse may have removed the def-use edge. 1617 if (DU.NarrowDef->use_empty()) 1618 DeadInsts.emplace_back(DU.NarrowDef); 1619 } 1620 1621 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1622 // evaluate the same recurrence, we can just copy the debug info over. 1623 SmallVector<DbgValueInst *, 1> DbgValues; 1624 llvm::findDbgValues(DbgValues, OrigPhi); 1625 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1626 ValueAsMetadata::get(WidePhi)); 1627 for (auto &DbgValue : DbgValues) 1628 DbgValue->setOperand(0, MDPhi); 1629 return WidePhi; 1630 } 1631 1632 /// Calculates control-dependent range for the given def at the given context 1633 /// by looking at dominating conditions inside of the loop 1634 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1635 Instruction *NarrowUser) { 1636 using namespace llvm::PatternMatch; 1637 1638 Value *NarrowDefLHS; 1639 const APInt *NarrowDefRHS; 1640 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1641 m_APInt(NarrowDefRHS))) || 1642 !NarrowDefRHS->isNonNegative()) 1643 return; 1644 1645 auto UpdateRangeFromCondition = [&] (Value *Condition, 1646 bool TrueDest) { 1647 CmpInst::Predicate Pred; 1648 Value *CmpRHS; 1649 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1650 m_Value(CmpRHS)))) 1651 return; 1652 1653 CmpInst::Predicate P = 1654 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1655 1656 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1657 auto CmpConstrainedLHSRange = 1658 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1659 auto NarrowDefRange = 1660 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1661 1662 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1663 }; 1664 1665 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1666 if (!HasGuards) 1667 return; 1668 1669 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1670 Ctx->getParent()->rend())) { 1671 Value *C = nullptr; 1672 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1673 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1674 } 1675 }; 1676 1677 UpdateRangeFromGuards(NarrowUser); 1678 1679 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1680 // If NarrowUserBB is statically unreachable asking dominator queries may 1681 // yield surprising results. (e.g. the block may not have a dom tree node) 1682 if (!DT->isReachableFromEntry(NarrowUserBB)) 1683 return; 1684 1685 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1686 L->contains(DTB->getBlock()); 1687 DTB = DTB->getIDom()) { 1688 auto *BB = DTB->getBlock(); 1689 auto *TI = BB->getTerminator(); 1690 UpdateRangeFromGuards(TI); 1691 1692 auto *BI = dyn_cast<BranchInst>(TI); 1693 if (!BI || !BI->isConditional()) 1694 continue; 1695 1696 auto *TrueSuccessor = BI->getSuccessor(0); 1697 auto *FalseSuccessor = BI->getSuccessor(1); 1698 1699 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1700 return BBE.isSingleEdge() && 1701 DT->dominates(BBE, NarrowUser->getParent()); 1702 }; 1703 1704 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1705 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1706 1707 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1708 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1709 } 1710 } 1711 1712 /// Calculates PostIncRangeInfos map for the given IV 1713 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1714 SmallPtrSet<Instruction *, 16> Visited; 1715 SmallVector<Instruction *, 6> Worklist; 1716 Worklist.push_back(OrigPhi); 1717 Visited.insert(OrigPhi); 1718 1719 while (!Worklist.empty()) { 1720 Instruction *NarrowDef = Worklist.pop_back_val(); 1721 1722 for (Use &U : NarrowDef->uses()) { 1723 auto *NarrowUser = cast<Instruction>(U.getUser()); 1724 1725 // Don't go looking outside the current loop. 1726 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1727 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1728 continue; 1729 1730 if (!Visited.insert(NarrowUser).second) 1731 continue; 1732 1733 Worklist.push_back(NarrowUser); 1734 1735 calculatePostIncRange(NarrowDef, NarrowUser); 1736 } 1737 } 1738 } 1739 1740 //===----------------------------------------------------------------------===// 1741 // Live IV Reduction - Minimize IVs live across the loop. 1742 //===----------------------------------------------------------------------===// 1743 1744 //===----------------------------------------------------------------------===// 1745 // Simplification of IV users based on SCEV evaluation. 1746 //===----------------------------------------------------------------------===// 1747 1748 namespace { 1749 1750 class IndVarSimplifyVisitor : public IVVisitor { 1751 ScalarEvolution *SE; 1752 const TargetTransformInfo *TTI; 1753 PHINode *IVPhi; 1754 1755 public: 1756 WideIVInfo WI; 1757 1758 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1759 const TargetTransformInfo *TTI, 1760 const DominatorTree *DTree) 1761 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1762 DT = DTree; 1763 WI.NarrowIV = IVPhi; 1764 } 1765 1766 // Implement the interface used by simplifyUsersOfIV. 1767 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1768 }; 1769 1770 } // end anonymous namespace 1771 1772 /// Iteratively perform simplification on a worklist of IV users. Each 1773 /// successive simplification may push more users which may themselves be 1774 /// candidates for simplification. 1775 /// 1776 /// Sign/Zero extend elimination is interleaved with IV simplification. 1777 void IndVarSimplify::simplifyAndExtend(Loop *L, 1778 SCEVExpander &Rewriter, 1779 LoopInfo *LI) { 1780 SmallVector<WideIVInfo, 8> WideIVs; 1781 1782 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1783 Intrinsic::getName(Intrinsic::experimental_guard)); 1784 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1785 1786 SmallVector<PHINode*, 8> LoopPhis; 1787 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1788 LoopPhis.push_back(cast<PHINode>(I)); 1789 } 1790 // Each round of simplification iterates through the SimplifyIVUsers worklist 1791 // for all current phis, then determines whether any IVs can be 1792 // widened. Widening adds new phis to LoopPhis, inducing another round of 1793 // simplification on the wide IVs. 1794 while (!LoopPhis.empty()) { 1795 // Evaluate as many IV expressions as possible before widening any IVs. This 1796 // forces SCEV to set no-wrap flags before evaluating sign/zero 1797 // extension. The first time SCEV attempts to normalize sign/zero extension, 1798 // the result becomes final. So for the most predictable results, we delay 1799 // evaluation of sign/zero extend evaluation until needed, and avoid running 1800 // other SCEV based analysis prior to simplifyAndExtend. 1801 do { 1802 PHINode *CurrIV = LoopPhis.pop_back_val(); 1803 1804 // Information about sign/zero extensions of CurrIV. 1805 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1806 1807 Changed |= 1808 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1809 1810 if (Visitor.WI.WidestNativeType) { 1811 WideIVs.push_back(Visitor.WI); 1812 } 1813 } while(!LoopPhis.empty()); 1814 1815 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1816 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1817 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1818 Changed = true; 1819 LoopPhis.push_back(WidePhi); 1820 } 1821 } 1822 } 1823 } 1824 1825 //===----------------------------------------------------------------------===// 1826 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1827 //===----------------------------------------------------------------------===// 1828 1829 /// Return true if this loop's backedge taken count expression can be safely and 1830 /// cheaply expanded into an instruction sequence that can be used by 1831 /// linearFunctionTestReplace. 1832 /// 1833 /// TODO: This fails for pointer-type loop counters with greater than one byte 1834 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1835 /// we could skip this check in the case that the LFTR loop counter (chosen by 1836 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1837 /// the loop test to an inequality test by checking the target data's alignment 1838 /// of element types (given that the initial pointer value originates from or is 1839 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1840 /// However, we don't yet have a strong motivation for converting loop tests 1841 /// into inequality tests. 1842 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1843 SCEVExpander &Rewriter) { 1844 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1845 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1846 BackedgeTakenCount->isZero()) 1847 return false; 1848 1849 if (!L->getExitingBlock()) 1850 return false; 1851 1852 // Can't rewrite non-branch yet. 1853 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1854 return false; 1855 1856 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1857 return false; 1858 1859 return true; 1860 } 1861 1862 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1863 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1864 Instruction *IncI = dyn_cast<Instruction>(IncV); 1865 if (!IncI) 1866 return nullptr; 1867 1868 switch (IncI->getOpcode()) { 1869 case Instruction::Add: 1870 case Instruction::Sub: 1871 break; 1872 case Instruction::GetElementPtr: 1873 // An IV counter must preserve its type. 1874 if (IncI->getNumOperands() == 2) 1875 break; 1876 LLVM_FALLTHROUGH; 1877 default: 1878 return nullptr; 1879 } 1880 1881 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1882 if (Phi && Phi->getParent() == L->getHeader()) { 1883 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1884 return Phi; 1885 return nullptr; 1886 } 1887 if (IncI->getOpcode() == Instruction::GetElementPtr) 1888 return nullptr; 1889 1890 // Allow add/sub to be commuted. 1891 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1892 if (Phi && Phi->getParent() == L->getHeader()) { 1893 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1894 return Phi; 1895 } 1896 return nullptr; 1897 } 1898 1899 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1900 static ICmpInst *getLoopTest(Loop *L) { 1901 assert(L->getExitingBlock() && "expected loop exit"); 1902 1903 BasicBlock *LatchBlock = L->getLoopLatch(); 1904 // Don't bother with LFTR if the loop is not properly simplified. 1905 if (!LatchBlock) 1906 return nullptr; 1907 1908 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1909 assert(BI && "expected exit branch"); 1910 1911 return dyn_cast<ICmpInst>(BI->getCondition()); 1912 } 1913 1914 /// linearFunctionTestReplace policy. Return true unless we can show that the 1915 /// current exit test is already sufficiently canonical. 1916 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1917 // Do LFTR to simplify the exit condition to an ICMP. 1918 ICmpInst *Cond = getLoopTest(L); 1919 if (!Cond) 1920 return true; 1921 1922 // Do LFTR to simplify the exit ICMP to EQ/NE 1923 ICmpInst::Predicate Pred = Cond->getPredicate(); 1924 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1925 return true; 1926 1927 // Look for a loop invariant RHS 1928 Value *LHS = Cond->getOperand(0); 1929 Value *RHS = Cond->getOperand(1); 1930 if (!isLoopInvariant(RHS, L, DT)) { 1931 if (!isLoopInvariant(LHS, L, DT)) 1932 return true; 1933 std::swap(LHS, RHS); 1934 } 1935 // Look for a simple IV counter LHS 1936 PHINode *Phi = dyn_cast<PHINode>(LHS); 1937 if (!Phi) 1938 Phi = getLoopPhiForCounter(LHS, L, DT); 1939 1940 if (!Phi) 1941 return true; 1942 1943 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1944 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1945 if (Idx < 0) 1946 return true; 1947 1948 // Do LFTR if the exit condition's IV is *not* a simple counter. 1949 Value *IncV = Phi->getIncomingValue(Idx); 1950 return Phi != getLoopPhiForCounter(IncV, L, DT); 1951 } 1952 1953 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1954 /// down to checking that all operands are constant and listing instructions 1955 /// that may hide undef. 1956 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1957 unsigned Depth) { 1958 if (isa<Constant>(V)) 1959 return !isa<UndefValue>(V); 1960 1961 if (Depth >= 6) 1962 return false; 1963 1964 // Conservatively handle non-constant non-instructions. For example, Arguments 1965 // may be undef. 1966 Instruction *I = dyn_cast<Instruction>(V); 1967 if (!I) 1968 return false; 1969 1970 // Load and return values may be undef. 1971 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1972 return false; 1973 1974 // Optimistically handle other instructions. 1975 for (Value *Op : I->operands()) { 1976 if (!Visited.insert(Op).second) 1977 continue; 1978 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 1979 return false; 1980 } 1981 return true; 1982 } 1983 1984 /// Return true if the given value is concrete. We must prove that undef can 1985 /// never reach it. 1986 /// 1987 /// TODO: If we decide that this is a good approach to checking for undef, we 1988 /// may factor it into a common location. 1989 static bool hasConcreteDef(Value *V) { 1990 SmallPtrSet<Value*, 8> Visited; 1991 Visited.insert(V); 1992 return hasConcreteDefImpl(V, Visited, 0); 1993 } 1994 1995 /// Return true if this IV has any uses other than the (soon to be rewritten) 1996 /// loop exit test. 1997 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1998 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1999 Value *IncV = Phi->getIncomingValue(LatchIdx); 2000 2001 for (User *U : Phi->users()) 2002 if (U != Cond && U != IncV) return false; 2003 2004 for (User *U : IncV->users()) 2005 if (U != Cond && U != Phi) return false; 2006 return true; 2007 } 2008 2009 /// Find an affine IV in canonical form. 2010 /// 2011 /// BECount may be an i8* pointer type. The pointer difference is already 2012 /// valid count without scaling the address stride, so it remains a pointer 2013 /// expression as far as SCEV is concerned. 2014 /// 2015 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 2016 /// 2017 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 2018 /// 2019 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 2020 /// This is difficult in general for SCEV because of potential overflow. But we 2021 /// could at least handle constant BECounts. 2022 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2023 ScalarEvolution *SE, DominatorTree *DT) { 2024 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2025 2026 Value *Cond = 2027 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2028 2029 // Loop over all of the PHI nodes, looking for a simple counter. 2030 PHINode *BestPhi = nullptr; 2031 const SCEV *BestInit = nullptr; 2032 BasicBlock *LatchBlock = L->getLoopLatch(); 2033 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2034 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2035 2036 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2037 PHINode *Phi = cast<PHINode>(I); 2038 if (!SE->isSCEVable(Phi->getType())) 2039 continue; 2040 2041 // Avoid comparing an integer IV against a pointer Limit. 2042 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2043 continue; 2044 2045 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2046 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2047 continue; 2048 2049 // AR may be a pointer type, while BECount is an integer type. 2050 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2051 // AR may not be a narrower type, or we may never exit. 2052 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2053 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2054 continue; 2055 2056 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2057 if (!Step || !Step->isOne()) 2058 continue; 2059 2060 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2061 Value *IncV = Phi->getIncomingValue(LatchIdx); 2062 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2063 continue; 2064 2065 // Avoid reusing a potentially undef value to compute other values that may 2066 // have originally had a concrete definition. 2067 if (!hasConcreteDef(Phi)) { 2068 // We explicitly allow unknown phis as long as they are already used by 2069 // the loop test. In this case we assume that performing LFTR could not 2070 // increase the number of undef users. 2071 if (ICmpInst *Cond = getLoopTest(L)) { 2072 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2073 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2074 continue; 2075 } 2076 } 2077 } 2078 const SCEV *Init = AR->getStart(); 2079 2080 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2081 // Don't force a live loop counter if another IV can be used. 2082 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2083 continue; 2084 2085 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2086 // also prefers integer to pointer IVs. 2087 if (BestInit->isZero() != Init->isZero()) { 2088 if (BestInit->isZero()) 2089 continue; 2090 } 2091 // If two IVs both count from zero or both count from nonzero then the 2092 // narrower is likely a dead phi that has been widened. Use the wider phi 2093 // to allow the other to be eliminated. 2094 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2095 continue; 2096 } 2097 BestPhi = Phi; 2098 BestInit = Init; 2099 } 2100 return BestPhi; 2101 } 2102 2103 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2104 /// the new loop test. 2105 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2106 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2107 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2108 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2109 const SCEV *IVInit = AR->getStart(); 2110 2111 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2112 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2113 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2114 // the existing GEPs whenever possible. 2115 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2116 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2117 // signed value. IVCount on the other hand represents the loop trip count, 2118 // which is an unsigned value. FindLoopCounter only allows induction 2119 // variables that have a positive unit stride of one. This means we don't 2120 // have to handle the case of negative offsets (yet) and just need to zero 2121 // extend IVCount. 2122 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2123 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2124 2125 // Expand the code for the iteration count. 2126 assert(SE->isLoopInvariant(IVOffset, L) && 2127 "Computed iteration count is not loop invariant!"); 2128 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2129 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2130 2131 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2132 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2133 // We could handle pointer IVs other than i8*, but we need to compensate for 2134 // gep index scaling. See canExpandBackedgeTakenCount comments. 2135 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2136 cast<PointerType>(GEPBase->getType()) 2137 ->getElementType())->isOne() && 2138 "unit stride pointer IV must be i8*"); 2139 2140 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2141 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 2142 } else { 2143 // In any other case, convert both IVInit and IVCount to integers before 2144 // comparing. This may result in SCEV expansion of pointers, but in practice 2145 // SCEV will fold the pointer arithmetic away as such: 2146 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2147 // 2148 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2149 // for simple memset-style loops. 2150 // 2151 // IVInit integer and IVCount pointer would only occur if a canonical IV 2152 // were generated on top of case #2, which is not expected. 2153 2154 const SCEV *IVLimit = nullptr; 2155 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2156 // For non-zero Start, compute IVCount here. 2157 if (AR->getStart()->isZero()) 2158 IVLimit = IVCount; 2159 else { 2160 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2161 const SCEV *IVInit = AR->getStart(); 2162 2163 // For integer IVs, truncate the IV before computing IVInit + BECount. 2164 if (SE->getTypeSizeInBits(IVInit->getType()) 2165 > SE->getTypeSizeInBits(IVCount->getType())) 2166 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2167 2168 IVLimit = SE->getAddExpr(IVInit, IVCount); 2169 } 2170 // Expand the code for the iteration count. 2171 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2172 IRBuilder<> Builder(BI); 2173 assert(SE->isLoopInvariant(IVLimit, L) && 2174 "Computed iteration count is not loop invariant!"); 2175 // Ensure that we generate the same type as IndVar, or a smaller integer 2176 // type. In the presence of null pointer values, we have an integer type 2177 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2178 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2179 IndVar->getType() : IVCount->getType(); 2180 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2181 } 2182 } 2183 2184 /// This method rewrites the exit condition of the loop to be a canonical != 2185 /// comparison against the incremented loop induction variable. This pass is 2186 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2187 /// determine a loop-invariant trip count of the loop, which is actually a much 2188 /// broader range than just linear tests. 2189 Value *IndVarSimplify:: 2190 linearFunctionTestReplace(Loop *L, 2191 const SCEV *BackedgeTakenCount, 2192 PHINode *IndVar, 2193 SCEVExpander &Rewriter) { 2194 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2195 2196 // Initialize CmpIndVar and IVCount to their preincremented values. 2197 Value *CmpIndVar = IndVar; 2198 const SCEV *IVCount = BackedgeTakenCount; 2199 2200 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2201 2202 // If the exiting block is the same as the backedge block, we prefer to 2203 // compare against the post-incremented value, otherwise we must compare 2204 // against the preincremented value. 2205 if (L->getExitingBlock() == L->getLoopLatch()) { 2206 // Add one to the "backedge-taken" count to get the trip count. 2207 // This addition may overflow, which is valid as long as the comparison is 2208 // truncated to BackedgeTakenCount->getType(). 2209 IVCount = SE->getAddExpr(BackedgeTakenCount, 2210 SE->getOne(BackedgeTakenCount->getType())); 2211 // The BackedgeTaken expression contains the number of times that the 2212 // backedge branches to the loop header. This is one less than the 2213 // number of times the loop executes, so use the incremented indvar. 2214 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2215 } 2216 2217 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2218 assert(ExitCnt->getType()->isPointerTy() == 2219 IndVar->getType()->isPointerTy() && 2220 "genLoopLimit missed a cast"); 2221 2222 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2223 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2224 ICmpInst::Predicate P; 2225 if (L->contains(BI->getSuccessor(0))) 2226 P = ICmpInst::ICMP_NE; 2227 else 2228 P = ICmpInst::ICMP_EQ; 2229 2230 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2231 << " LHS:" << *CmpIndVar << '\n' 2232 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2233 << "\n" 2234 << " RHS:\t" << *ExitCnt << "\n" 2235 << " IVCount:\t" << *IVCount << "\n"); 2236 2237 IRBuilder<> Builder(BI); 2238 2239 // The new loop exit condition should reuse the debug location of the 2240 // original loop exit condition. 2241 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2242 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2243 2244 // LFTR can ignore IV overflow and truncate to the width of 2245 // BECount. This avoids materializing the add(zext(add)) expression. 2246 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2247 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2248 if (CmpIndVarSize > ExitCntSize) { 2249 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2250 const SCEV *ARStart = AR->getStart(); 2251 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2252 // For constant IVCount, avoid truncation. 2253 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2254 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2255 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2256 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2257 // above such that IVCount is now zero. 2258 if (IVCount != BackedgeTakenCount && Count == 0) { 2259 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2260 ++Count; 2261 } 2262 else 2263 Count = Count.zext(CmpIndVarSize); 2264 APInt NewLimit; 2265 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2266 NewLimit = Start - Count; 2267 else 2268 NewLimit = Start + Count; 2269 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2270 2271 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2272 } else { 2273 // We try to extend trip count first. If that doesn't work we truncate IV. 2274 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2275 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2276 // one of the two holds, extend the trip count, otherwise we truncate IV. 2277 bool Extended = false; 2278 const SCEV *IV = SE->getSCEV(CmpIndVar); 2279 const SCEV *ZExtTrunc = 2280 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2281 ExitCnt->getType()), 2282 CmpIndVar->getType()); 2283 2284 if (ZExtTrunc == IV) { 2285 Extended = true; 2286 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2287 "wide.trip.count"); 2288 } else { 2289 const SCEV *SExtTrunc = 2290 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2291 ExitCnt->getType()), 2292 CmpIndVar->getType()); 2293 if (SExtTrunc == IV) { 2294 Extended = true; 2295 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2296 "wide.trip.count"); 2297 } 2298 } 2299 2300 if (!Extended) 2301 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2302 "lftr.wideiv"); 2303 } 2304 } 2305 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2306 Value *OrigCond = BI->getCondition(); 2307 // It's tempting to use replaceAllUsesWith here to fully replace the old 2308 // comparison, but that's not immediately safe, since users of the old 2309 // comparison may not be dominated by the new comparison. Instead, just 2310 // update the branch to use the new comparison; in the common case this 2311 // will make old comparison dead. 2312 BI->setCondition(Cond); 2313 DeadInsts.push_back(OrigCond); 2314 2315 ++NumLFTR; 2316 Changed = true; 2317 return Cond; 2318 } 2319 2320 //===----------------------------------------------------------------------===// 2321 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2322 //===----------------------------------------------------------------------===// 2323 2324 /// If there's a single exit block, sink any loop-invariant values that 2325 /// were defined in the preheader but not used inside the loop into the 2326 /// exit block to reduce register pressure in the loop. 2327 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2328 BasicBlock *ExitBlock = L->getExitBlock(); 2329 if (!ExitBlock) return; 2330 2331 BasicBlock *Preheader = L->getLoopPreheader(); 2332 if (!Preheader) return; 2333 2334 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2335 BasicBlock::iterator I(Preheader->getTerminator()); 2336 while (I != Preheader->begin()) { 2337 --I; 2338 // New instructions were inserted at the end of the preheader. 2339 if (isa<PHINode>(I)) 2340 break; 2341 2342 // Don't move instructions which might have side effects, since the side 2343 // effects need to complete before instructions inside the loop. Also don't 2344 // move instructions which might read memory, since the loop may modify 2345 // memory. Note that it's okay if the instruction might have undefined 2346 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2347 // block. 2348 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2349 continue; 2350 2351 // Skip debug info intrinsics. 2352 if (isa<DbgInfoIntrinsic>(I)) 2353 continue; 2354 2355 // Skip eh pad instructions. 2356 if (I->isEHPad()) 2357 continue; 2358 2359 // Don't sink alloca: we never want to sink static alloca's out of the 2360 // entry block, and correctly sinking dynamic alloca's requires 2361 // checks for stacksave/stackrestore intrinsics. 2362 // FIXME: Refactor this check somehow? 2363 if (isa<AllocaInst>(I)) 2364 continue; 2365 2366 // Determine if there is a use in or before the loop (direct or 2367 // otherwise). 2368 bool UsedInLoop = false; 2369 for (Use &U : I->uses()) { 2370 Instruction *User = cast<Instruction>(U.getUser()); 2371 BasicBlock *UseBB = User->getParent(); 2372 if (PHINode *P = dyn_cast<PHINode>(User)) { 2373 unsigned i = 2374 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2375 UseBB = P->getIncomingBlock(i); 2376 } 2377 if (UseBB == Preheader || L->contains(UseBB)) { 2378 UsedInLoop = true; 2379 break; 2380 } 2381 } 2382 2383 // If there is, the def must remain in the preheader. 2384 if (UsedInLoop) 2385 continue; 2386 2387 // Otherwise, sink it to the exit block. 2388 Instruction *ToMove = &*I; 2389 bool Done = false; 2390 2391 if (I != Preheader->begin()) { 2392 // Skip debug info intrinsics. 2393 do { 2394 --I; 2395 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2396 2397 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2398 Done = true; 2399 } else { 2400 Done = true; 2401 } 2402 2403 ToMove->moveBefore(*ExitBlock, InsertPt); 2404 if (Done) break; 2405 InsertPt = ToMove->getIterator(); 2406 } 2407 } 2408 2409 //===----------------------------------------------------------------------===// 2410 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2411 //===----------------------------------------------------------------------===// 2412 2413 bool IndVarSimplify::run(Loop *L) { 2414 // We need (and expect!) the incoming loop to be in LCSSA. 2415 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2416 "LCSSA required to run indvars!"); 2417 2418 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2419 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2420 // canonicalization can be a pessimization without LSR to "clean up" 2421 // afterwards. 2422 // - We depend on having a preheader; in particular, 2423 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2424 // and we're in trouble if we can't find the induction variable even when 2425 // we've manually inserted one. 2426 // - LFTR relies on having a single backedge. 2427 if (!L->isLoopSimplifyForm()) 2428 return false; 2429 2430 // If there are any floating-point recurrences, attempt to 2431 // transform them to use integer recurrences. 2432 rewriteNonIntegerIVs(L); 2433 2434 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2435 2436 // Create a rewriter object which we'll use to transform the code with. 2437 SCEVExpander Rewriter(*SE, DL, "indvars"); 2438 #ifndef NDEBUG 2439 Rewriter.setDebugType(DEBUG_TYPE); 2440 #endif 2441 2442 // Eliminate redundant IV users. 2443 // 2444 // Simplification works best when run before other consumers of SCEV. We 2445 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2446 // other expressions involving loop IVs have been evaluated. This helps SCEV 2447 // set no-wrap flags before normalizing sign/zero extension. 2448 Rewriter.disableCanonicalMode(); 2449 simplifyAndExtend(L, Rewriter, LI); 2450 2451 // Check to see if this loop has a computable loop-invariant execution count. 2452 // If so, this means that we can compute the final value of any expressions 2453 // that are recurrent in the loop, and substitute the exit values from the 2454 // loop into any instructions outside of the loop that use the final values of 2455 // the current expressions. 2456 // 2457 if (ReplaceExitValue != NeverRepl && 2458 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2459 rewriteLoopExitValues(L, Rewriter); 2460 2461 // Eliminate redundant IV cycles. 2462 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2463 2464 // If we have a trip count expression, rewrite the loop's exit condition 2465 // using it. We can currently only handle loops with a single exit. 2466 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2467 needsLFTR(L, DT)) { 2468 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2469 if (IndVar) { 2470 // Check preconditions for proper SCEVExpander operation. SCEV does not 2471 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2472 // pass that uses the SCEVExpander must do it. This does not work well for 2473 // loop passes because SCEVExpander makes assumptions about all loops, 2474 // while LoopPassManager only forces the current loop to be simplified. 2475 // 2476 // FIXME: SCEV expansion has no way to bail out, so the caller must 2477 // explicitly check any assumptions made by SCEV. Brittle. 2478 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2479 if (!AR || AR->getLoop()->getLoopPreheader()) 2480 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2481 Rewriter); 2482 } 2483 } 2484 // Clear the rewriter cache, because values that are in the rewriter's cache 2485 // can be deleted in the loop below, causing the AssertingVH in the cache to 2486 // trigger. 2487 Rewriter.clear(); 2488 2489 // Now that we're done iterating through lists, clean up any instructions 2490 // which are now dead. 2491 while (!DeadInsts.empty()) 2492 if (Instruction *Inst = 2493 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2494 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2495 2496 // The Rewriter may not be used from this point on. 2497 2498 // Loop-invariant instructions in the preheader that aren't used in the 2499 // loop may be sunk below the loop to reduce register pressure. 2500 sinkUnusedInvariants(L); 2501 2502 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2503 // trip count and therefore can further simplify exit values in addition to 2504 // rewriteLoopExitValues. 2505 rewriteFirstIterationLoopExitValues(L); 2506 2507 // Clean up dead instructions. 2508 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2509 2510 // Check a post-condition. 2511 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2512 "Indvars did not preserve LCSSA!"); 2513 2514 // Verify that LFTR, and any other change have not interfered with SCEV's 2515 // ability to compute trip count. 2516 #ifndef NDEBUG 2517 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2518 SE->forgetLoop(L); 2519 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2520 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2521 SE->getTypeSizeInBits(NewBECount->getType())) 2522 NewBECount = SE->getTruncateOrNoop(NewBECount, 2523 BackedgeTakenCount->getType()); 2524 else 2525 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2526 NewBECount->getType()); 2527 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2528 } 2529 #endif 2530 2531 return Changed; 2532 } 2533 2534 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2535 LoopStandardAnalysisResults &AR, 2536 LPMUpdater &) { 2537 Function *F = L.getHeader()->getParent(); 2538 const DataLayout &DL = F->getParent()->getDataLayout(); 2539 2540 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2541 if (!IVS.run(&L)) 2542 return PreservedAnalyses::all(); 2543 2544 auto PA = getLoopPassPreservedAnalyses(); 2545 PA.preserveSet<CFGAnalyses>(); 2546 return PA; 2547 } 2548 2549 namespace { 2550 2551 struct IndVarSimplifyLegacyPass : public LoopPass { 2552 static char ID; // Pass identification, replacement for typeid 2553 2554 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2555 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2556 } 2557 2558 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2559 if (skipLoop(L)) 2560 return false; 2561 2562 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2563 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2564 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2565 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2566 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2567 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2568 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2569 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2570 2571 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2572 return IVS.run(L); 2573 } 2574 2575 void getAnalysisUsage(AnalysisUsage &AU) const override { 2576 AU.setPreservesCFG(); 2577 getLoopAnalysisUsage(AU); 2578 } 2579 }; 2580 2581 } // end anonymous namespace 2582 2583 char IndVarSimplifyLegacyPass::ID = 0; 2584 2585 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2586 "Induction Variable Simplification", false, false) 2587 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2588 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2589 "Induction Variable Simplification", false, false) 2590 2591 Pass *llvm::createIndVarSimplifyPass() { 2592 return new IndVarSimplifyLegacyPass(); 2593 } 2594