1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into simpler forms suitable for subsequent 11 // analysis and transformation. 12 // 13 // If the trip count of a loop is computable, this pass also makes the following 14 // changes: 15 // 1. The exit condition for the loop is canonicalized to compare the 16 // induction value against the exit value. This turns loops like: 17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 18 // 2. Any use outside of the loop of an expression derived from the indvar 19 // is changed to compute the derived value outside of the loop, eliminating 20 // the dependence on the exit value of the induction variable. If the only 21 // purpose of the loop is to compute the exit value of some derived 22 // expression, this transformation will make the loop dead. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/None.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/MemorySSA.h" 42 #include "llvm/Analysis/MemorySSAUpdater.h" 43 #include "llvm/Analysis/ScalarEvolution.h" 44 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 45 #include "llvm/Analysis/TargetLibraryInfo.h" 46 #include "llvm/Analysis/TargetTransformInfo.h" 47 #include "llvm/Analysis/ValueTracking.h" 48 #include "llvm/IR/BasicBlock.h" 49 #include "llvm/IR/Constant.h" 50 #include "llvm/IR/ConstantRange.h" 51 #include "llvm/IR/Constants.h" 52 #include "llvm/IR/DataLayout.h" 53 #include "llvm/IR/DerivedTypes.h" 54 #include "llvm/IR/Dominators.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/IRBuilder.h" 57 #include "llvm/IR/InstrTypes.h" 58 #include "llvm/IR/Instruction.h" 59 #include "llvm/IR/Instructions.h" 60 #include "llvm/IR/IntrinsicInst.h" 61 #include "llvm/IR/Intrinsics.h" 62 #include "llvm/IR/Module.h" 63 #include "llvm/IR/Operator.h" 64 #include "llvm/IR/PassManager.h" 65 #include "llvm/IR/PatternMatch.h" 66 #include "llvm/IR/Type.h" 67 #include "llvm/IR/Use.h" 68 #include "llvm/IR/User.h" 69 #include "llvm/IR/Value.h" 70 #include "llvm/IR/ValueHandle.h" 71 #include "llvm/InitializePasses.h" 72 #include "llvm/Pass.h" 73 #include "llvm/Support/Casting.h" 74 #include "llvm/Support/CommandLine.h" 75 #include "llvm/Support/Compiler.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/ErrorHandling.h" 78 #include "llvm/Support/MathExtras.h" 79 #include "llvm/Support/raw_ostream.h" 80 #include "llvm/Transforms/Scalar.h" 81 #include "llvm/Transforms/Scalar/LoopPassManager.h" 82 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 83 #include "llvm/Transforms/Utils/Local.h" 84 #include "llvm/Transforms/Utils/LoopUtils.h" 85 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 86 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 87 #include <cassert> 88 #include <cstdint> 89 #include <utility> 90 91 using namespace llvm; 92 93 #define DEBUG_TYPE "indvars" 94 95 STATISTIC(NumWidened , "Number of indvars widened"); 96 STATISTIC(NumReplaced , "Number of exit values replaced"); 97 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 98 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 99 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 100 101 // Trip count verification can be enabled by default under NDEBUG if we 102 // implement a strong expression equivalence checker in SCEV. Until then, we 103 // use the verify-indvars flag, which may assert in some cases. 104 static cl::opt<bool> VerifyIndvars( 105 "verify-indvars", cl::Hidden, 106 cl::desc("Verify the ScalarEvolution result after running indvars. Has no " 107 "effect in release builds. (Note: this adds additional SCEV " 108 "queries potentially changing the analysis result)")); 109 110 static cl::opt<ReplaceExitVal> ReplaceExitValue( 111 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 112 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 113 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 114 clEnumValN(OnlyCheapRepl, "cheap", 115 "only replace exit value when the cost is cheap"), 116 clEnumValN(NoHardUse, "noharduse", 117 "only replace exit values when loop def likely dead"), 118 clEnumValN(AlwaysRepl, "always", 119 "always replace exit value whenever possible"))); 120 121 static cl::opt<bool> UsePostIncrementRanges( 122 "indvars-post-increment-ranges", cl::Hidden, 123 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 124 cl::init(true)); 125 126 static cl::opt<bool> 127 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 128 cl::desc("Disable Linear Function Test Replace optimization")); 129 130 static cl::opt<bool> 131 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), 132 cl::desc("Predicate conditions in read only loops")); 133 134 static cl::opt<bool> 135 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true), 136 cl::desc("Allow widening of indvars to eliminate s/zext")); 137 138 namespace { 139 140 struct RewritePhi; 141 142 class IndVarSimplify { 143 LoopInfo *LI; 144 ScalarEvolution *SE; 145 DominatorTree *DT; 146 const DataLayout &DL; 147 TargetLibraryInfo *TLI; 148 const TargetTransformInfo *TTI; 149 std::unique_ptr<MemorySSAUpdater> MSSAU; 150 151 SmallVector<WeakTrackingVH, 16> DeadInsts; 152 bool WidenIndVars; 153 154 bool handleFloatingPointIV(Loop *L, PHINode *PH); 155 bool rewriteNonIntegerIVs(Loop *L); 156 157 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 158 /// Try to eliminate loop exits based on analyzeable exit counts 159 bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter); 160 /// Try to form loop invariant tests for loop exits by changing how many 161 /// iterations of the loop run when that is unobservable. 162 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 163 164 bool rewriteFirstIterationLoopExitValues(Loop *L); 165 166 bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 167 const SCEV *ExitCount, 168 PHINode *IndVar, SCEVExpander &Rewriter); 169 170 bool sinkUnusedInvariants(Loop *L); 171 172 public: 173 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 174 const DataLayout &DL, TargetLibraryInfo *TLI, 175 TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars) 176 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI), 177 WidenIndVars(WidenIndVars) { 178 if (MSSA) 179 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 180 } 181 182 bool run(Loop *L); 183 }; 184 185 } // end anonymous namespace 186 187 //===----------------------------------------------------------------------===// 188 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 189 //===----------------------------------------------------------------------===// 190 191 /// Convert APF to an integer, if possible. 192 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 193 bool isExact = false; 194 // See if we can convert this to an int64_t 195 uint64_t UIntVal; 196 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 197 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 198 !isExact) 199 return false; 200 IntVal = UIntVal; 201 return true; 202 } 203 204 /// If the loop has floating induction variable then insert corresponding 205 /// integer induction variable if possible. 206 /// For example, 207 /// for(double i = 0; i < 10000; ++i) 208 /// bar(i) 209 /// is converted into 210 /// for(int i = 0; i < 10000; ++i) 211 /// bar((double)i); 212 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 213 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 214 unsigned BackEdge = IncomingEdge^1; 215 216 // Check incoming value. 217 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 218 219 int64_t InitValue; 220 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 221 return false; 222 223 // Check IV increment. Reject this PN if increment operation is not 224 // an add or increment value can not be represented by an integer. 225 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 226 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 227 228 // If this is not an add of the PHI with a constantfp, or if the constant fp 229 // is not an integer, bail out. 230 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 231 int64_t IncValue; 232 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 233 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 234 return false; 235 236 // Check Incr uses. One user is PN and the other user is an exit condition 237 // used by the conditional terminator. 238 Value::user_iterator IncrUse = Incr->user_begin(); 239 Instruction *U1 = cast<Instruction>(*IncrUse++); 240 if (IncrUse == Incr->user_end()) return false; 241 Instruction *U2 = cast<Instruction>(*IncrUse++); 242 if (IncrUse != Incr->user_end()) return false; 243 244 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 245 // only used by a branch, we can't transform it. 246 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 247 if (!Compare) 248 Compare = dyn_cast<FCmpInst>(U2); 249 if (!Compare || !Compare->hasOneUse() || 250 !isa<BranchInst>(Compare->user_back())) 251 return false; 252 253 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 254 255 // We need to verify that the branch actually controls the iteration count 256 // of the loop. If not, the new IV can overflow and no one will notice. 257 // The branch block must be in the loop and one of the successors must be out 258 // of the loop. 259 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 260 if (!L->contains(TheBr->getParent()) || 261 (L->contains(TheBr->getSuccessor(0)) && 262 L->contains(TheBr->getSuccessor(1)))) 263 return false; 264 265 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 266 // transform it. 267 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 268 int64_t ExitValue; 269 if (ExitValueVal == nullptr || 270 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 271 return false; 272 273 // Find new predicate for integer comparison. 274 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 275 switch (Compare->getPredicate()) { 276 default: return false; // Unknown comparison. 277 case CmpInst::FCMP_OEQ: 278 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 279 case CmpInst::FCMP_ONE: 280 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 281 case CmpInst::FCMP_OGT: 282 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 283 case CmpInst::FCMP_OGE: 284 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 285 case CmpInst::FCMP_OLT: 286 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 287 case CmpInst::FCMP_OLE: 288 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 289 } 290 291 // We convert the floating point induction variable to a signed i32 value if 292 // we can. This is only safe if the comparison will not overflow in a way 293 // that won't be trapped by the integer equivalent operations. Check for this 294 // now. 295 // TODO: We could use i64 if it is native and the range requires it. 296 297 // The start/stride/exit values must all fit in signed i32. 298 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 299 return false; 300 301 // If not actually striding (add x, 0.0), avoid touching the code. 302 if (IncValue == 0) 303 return false; 304 305 // Positive and negative strides have different safety conditions. 306 if (IncValue > 0) { 307 // If we have a positive stride, we require the init to be less than the 308 // exit value. 309 if (InitValue >= ExitValue) 310 return false; 311 312 uint32_t Range = uint32_t(ExitValue-InitValue); 313 // Check for infinite loop, either: 314 // while (i <= Exit) or until (i > Exit) 315 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 316 if (++Range == 0) return false; // Range overflows. 317 } 318 319 unsigned Leftover = Range % uint32_t(IncValue); 320 321 // If this is an equality comparison, we require that the strided value 322 // exactly land on the exit value, otherwise the IV condition will wrap 323 // around and do things the fp IV wouldn't. 324 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 325 Leftover != 0) 326 return false; 327 328 // If the stride would wrap around the i32 before exiting, we can't 329 // transform the IV. 330 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 331 return false; 332 } else { 333 // If we have a negative stride, we require the init to be greater than the 334 // exit value. 335 if (InitValue <= ExitValue) 336 return false; 337 338 uint32_t Range = uint32_t(InitValue-ExitValue); 339 // Check for infinite loop, either: 340 // while (i >= Exit) or until (i < Exit) 341 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 342 if (++Range == 0) return false; // Range overflows. 343 } 344 345 unsigned Leftover = Range % uint32_t(-IncValue); 346 347 // If this is an equality comparison, we require that the strided value 348 // exactly land on the exit value, otherwise the IV condition will wrap 349 // around and do things the fp IV wouldn't. 350 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 351 Leftover != 0) 352 return false; 353 354 // If the stride would wrap around the i32 before exiting, we can't 355 // transform the IV. 356 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 357 return false; 358 } 359 360 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 361 362 // Insert new integer induction variable. 363 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 364 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 365 PN->getIncomingBlock(IncomingEdge)); 366 367 Value *NewAdd = 368 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 369 Incr->getName()+".int", Incr); 370 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 371 372 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 373 ConstantInt::get(Int32Ty, ExitValue), 374 Compare->getName()); 375 376 // In the following deletions, PN may become dead and may be deleted. 377 // Use a WeakTrackingVH to observe whether this happens. 378 WeakTrackingVH WeakPH = PN; 379 380 // Delete the old floating point exit comparison. The branch starts using the 381 // new comparison. 382 NewCompare->takeName(Compare); 383 Compare->replaceAllUsesWith(NewCompare); 384 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get()); 385 386 // Delete the old floating point increment. 387 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 388 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get()); 389 390 // If the FP induction variable still has uses, this is because something else 391 // in the loop uses its value. In order to canonicalize the induction 392 // variable, we chose to eliminate the IV and rewrite it in terms of an 393 // int->fp cast. 394 // 395 // We give preference to sitofp over uitofp because it is faster on most 396 // platforms. 397 if (WeakPH) { 398 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 399 &*PN->getParent()->getFirstInsertionPt()); 400 PN->replaceAllUsesWith(Conv); 401 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get()); 402 } 403 return true; 404 } 405 406 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 407 // First step. Check to see if there are any floating-point recurrences. 408 // If there are, change them into integer recurrences, permitting analysis by 409 // the SCEV routines. 410 BasicBlock *Header = L->getHeader(); 411 412 SmallVector<WeakTrackingVH, 8> PHIs; 413 for (PHINode &PN : Header->phis()) 414 PHIs.push_back(&PN); 415 416 bool Changed = false; 417 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 418 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 419 Changed |= handleFloatingPointIV(L, PN); 420 421 // If the loop previously had floating-point IV, ScalarEvolution 422 // may not have been able to compute a trip count. Now that we've done some 423 // re-writing, the trip count may be computable. 424 if (Changed) 425 SE->forgetLoop(L); 426 return Changed; 427 } 428 429 //===---------------------------------------------------------------------===// 430 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 431 // they will exit at the first iteration. 432 //===---------------------------------------------------------------------===// 433 434 /// Check to see if this loop has loop invariant conditions which lead to loop 435 /// exits. If so, we know that if the exit path is taken, it is at the first 436 /// loop iteration. This lets us predict exit values of PHI nodes that live in 437 /// loop header. 438 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 439 // Verify the input to the pass is already in LCSSA form. 440 assert(L->isLCSSAForm(*DT)); 441 442 SmallVector<BasicBlock *, 8> ExitBlocks; 443 L->getUniqueExitBlocks(ExitBlocks); 444 445 bool MadeAnyChanges = false; 446 for (auto *ExitBB : ExitBlocks) { 447 // If there are no more PHI nodes in this exit block, then no more 448 // values defined inside the loop are used on this path. 449 for (PHINode &PN : ExitBB->phis()) { 450 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 451 IncomingValIdx != E; ++IncomingValIdx) { 452 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 453 454 // Can we prove that the exit must run on the first iteration if it 455 // runs at all? (i.e. early exits are fine for our purposes, but 456 // traces which lead to this exit being taken on the 2nd iteration 457 // aren't.) Note that this is about whether the exit branch is 458 // executed, not about whether it is taken. 459 if (!L->getLoopLatch() || 460 !DT->dominates(IncomingBB, L->getLoopLatch())) 461 continue; 462 463 // Get condition that leads to the exit path. 464 auto *TermInst = IncomingBB->getTerminator(); 465 466 Value *Cond = nullptr; 467 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 468 // Must be a conditional branch, otherwise the block 469 // should not be in the loop. 470 Cond = BI->getCondition(); 471 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 472 Cond = SI->getCondition(); 473 else 474 continue; 475 476 if (!L->isLoopInvariant(Cond)) 477 continue; 478 479 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 480 481 // Only deal with PHIs in the loop header. 482 if (!ExitVal || ExitVal->getParent() != L->getHeader()) 483 continue; 484 485 // If ExitVal is a PHI on the loop header, then we know its 486 // value along this exit because the exit can only be taken 487 // on the first iteration. 488 auto *LoopPreheader = L->getLoopPreheader(); 489 assert(LoopPreheader && "Invalid loop"); 490 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 491 if (PreheaderIdx != -1) { 492 assert(ExitVal->getParent() == L->getHeader() && 493 "ExitVal must be in loop header"); 494 MadeAnyChanges = true; 495 PN.setIncomingValue(IncomingValIdx, 496 ExitVal->getIncomingValue(PreheaderIdx)); 497 } 498 } 499 } 500 } 501 return MadeAnyChanges; 502 } 503 504 //===----------------------------------------------------------------------===// 505 // IV Widening - Extend the width of an IV to cover its widest uses. 506 //===----------------------------------------------------------------------===// 507 508 /// Update information about the induction variable that is extended by this 509 /// sign or zero extend operation. This is used to determine the final width of 510 /// the IV before actually widening it. 511 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, 512 ScalarEvolution *SE, 513 const TargetTransformInfo *TTI) { 514 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 515 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 516 return; 517 518 Type *Ty = Cast->getType(); 519 uint64_t Width = SE->getTypeSizeInBits(Ty); 520 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 521 return; 522 523 // Check that `Cast` actually extends the induction variable (we rely on this 524 // later). This takes care of cases where `Cast` is extending a truncation of 525 // the narrow induction variable, and thus can end up being narrower than the 526 // "narrow" induction variable. 527 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 528 if (NarrowIVWidth >= Width) 529 return; 530 531 // Cast is either an sext or zext up to this point. 532 // We should not widen an indvar if arithmetics on the wider indvar are more 533 // expensive than those on the narrower indvar. We check only the cost of ADD 534 // because at least an ADD is required to increment the induction variable. We 535 // could compute more comprehensively the cost of all instructions on the 536 // induction variable when necessary. 537 if (TTI && 538 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 539 TTI->getArithmeticInstrCost(Instruction::Add, 540 Cast->getOperand(0)->getType())) { 541 return; 542 } 543 544 if (!WI.WidestNativeType) { 545 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 546 WI.IsSigned = IsSigned; 547 return; 548 } 549 550 // We extend the IV to satisfy the sign of its first user, arbitrarily. 551 if (WI.IsSigned != IsSigned) 552 return; 553 554 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 555 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 556 } 557 558 //===----------------------------------------------------------------------===// 559 // Live IV Reduction - Minimize IVs live across the loop. 560 //===----------------------------------------------------------------------===// 561 562 //===----------------------------------------------------------------------===// 563 // Simplification of IV users based on SCEV evaluation. 564 //===----------------------------------------------------------------------===// 565 566 namespace { 567 568 class IndVarSimplifyVisitor : public IVVisitor { 569 ScalarEvolution *SE; 570 const TargetTransformInfo *TTI; 571 PHINode *IVPhi; 572 573 public: 574 WideIVInfo WI; 575 576 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 577 const TargetTransformInfo *TTI, 578 const DominatorTree *DTree) 579 : SE(SCEV), TTI(TTI), IVPhi(IV) { 580 DT = DTree; 581 WI.NarrowIV = IVPhi; 582 } 583 584 // Implement the interface used by simplifyUsersOfIV. 585 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 586 }; 587 588 } // end anonymous namespace 589 590 /// Iteratively perform simplification on a worklist of IV users. Each 591 /// successive simplification may push more users which may themselves be 592 /// candidates for simplification. 593 /// 594 /// Sign/Zero extend elimination is interleaved with IV simplification. 595 bool IndVarSimplify::simplifyAndExtend(Loop *L, 596 SCEVExpander &Rewriter, 597 LoopInfo *LI) { 598 SmallVector<WideIVInfo, 8> WideIVs; 599 600 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 601 Intrinsic::getName(Intrinsic::experimental_guard)); 602 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 603 604 SmallVector<PHINode*, 8> LoopPhis; 605 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 606 LoopPhis.push_back(cast<PHINode>(I)); 607 } 608 // Each round of simplification iterates through the SimplifyIVUsers worklist 609 // for all current phis, then determines whether any IVs can be 610 // widened. Widening adds new phis to LoopPhis, inducing another round of 611 // simplification on the wide IVs. 612 bool Changed = false; 613 while (!LoopPhis.empty()) { 614 // Evaluate as many IV expressions as possible before widening any IVs. This 615 // forces SCEV to set no-wrap flags before evaluating sign/zero 616 // extension. The first time SCEV attempts to normalize sign/zero extension, 617 // the result becomes final. So for the most predictable results, we delay 618 // evaluation of sign/zero extend evaluation until needed, and avoid running 619 // other SCEV based analysis prior to simplifyAndExtend. 620 do { 621 PHINode *CurrIV = LoopPhis.pop_back_val(); 622 623 // Information about sign/zero extensions of CurrIV. 624 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 625 626 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter, 627 &Visitor); 628 629 if (Visitor.WI.WidestNativeType) { 630 WideIVs.push_back(Visitor.WI); 631 } 632 } while(!LoopPhis.empty()); 633 634 // Continue if we disallowed widening. 635 if (!WidenIndVars) 636 continue; 637 638 for (; !WideIVs.empty(); WideIVs.pop_back()) { 639 unsigned ElimExt; 640 unsigned Widened; 641 if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter, 642 DT, DeadInsts, ElimExt, Widened, 643 HasGuards, UsePostIncrementRanges)) { 644 NumElimExt += ElimExt; 645 NumWidened += Widened; 646 Changed = true; 647 LoopPhis.push_back(WidePhi); 648 } 649 } 650 } 651 return Changed; 652 } 653 654 //===----------------------------------------------------------------------===// 655 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 656 //===----------------------------------------------------------------------===// 657 658 /// Given an Value which is hoped to be part of an add recurance in the given 659 /// loop, return the associated Phi node if so. Otherwise, return null. Note 660 /// that this is less general than SCEVs AddRec checking. 661 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { 662 Instruction *IncI = dyn_cast<Instruction>(IncV); 663 if (!IncI) 664 return nullptr; 665 666 switch (IncI->getOpcode()) { 667 case Instruction::Add: 668 case Instruction::Sub: 669 break; 670 case Instruction::GetElementPtr: 671 // An IV counter must preserve its type. 672 if (IncI->getNumOperands() == 2) 673 break; 674 LLVM_FALLTHROUGH; 675 default: 676 return nullptr; 677 } 678 679 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 680 if (Phi && Phi->getParent() == L->getHeader()) { 681 if (L->isLoopInvariant(IncI->getOperand(1))) 682 return Phi; 683 return nullptr; 684 } 685 if (IncI->getOpcode() == Instruction::GetElementPtr) 686 return nullptr; 687 688 // Allow add/sub to be commuted. 689 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 690 if (Phi && Phi->getParent() == L->getHeader()) { 691 if (L->isLoopInvariant(IncI->getOperand(0))) 692 return Phi; 693 } 694 return nullptr; 695 } 696 697 /// Whether the current loop exit test is based on this value. Currently this 698 /// is limited to a direct use in the loop condition. 699 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { 700 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 701 ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 702 // TODO: Allow non-icmp loop test. 703 if (!ICmp) 704 return false; 705 706 // TODO: Allow indirect use. 707 return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V; 708 } 709 710 /// linearFunctionTestReplace policy. Return true unless we can show that the 711 /// current exit test is already sufficiently canonical. 712 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { 713 assert(L->getLoopLatch() && "Must be in simplified form"); 714 715 // Avoid converting a constant or loop invariant test back to a runtime 716 // test. This is critical for when SCEV's cached ExitCount is less precise 717 // than the current IR (such as after we've proven a particular exit is 718 // actually dead and thus the BE count never reaches our ExitCount.) 719 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 720 if (L->isLoopInvariant(BI->getCondition())) 721 return false; 722 723 // Do LFTR to simplify the exit condition to an ICMP. 724 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 725 if (!Cond) 726 return true; 727 728 // Do LFTR to simplify the exit ICMP to EQ/NE 729 ICmpInst::Predicate Pred = Cond->getPredicate(); 730 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 731 return true; 732 733 // Look for a loop invariant RHS 734 Value *LHS = Cond->getOperand(0); 735 Value *RHS = Cond->getOperand(1); 736 if (!L->isLoopInvariant(RHS)) { 737 if (!L->isLoopInvariant(LHS)) 738 return true; 739 std::swap(LHS, RHS); 740 } 741 // Look for a simple IV counter LHS 742 PHINode *Phi = dyn_cast<PHINode>(LHS); 743 if (!Phi) 744 Phi = getLoopPhiForCounter(LHS, L); 745 746 if (!Phi) 747 return true; 748 749 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 750 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 751 if (Idx < 0) 752 return true; 753 754 // Do LFTR if the exit condition's IV is *not* a simple counter. 755 Value *IncV = Phi->getIncomingValue(Idx); 756 return Phi != getLoopPhiForCounter(IncV, L); 757 } 758 759 /// Return true if undefined behavior would provable be executed on the path to 760 /// OnPathTo if Root produced a posion result. Note that this doesn't say 761 /// anything about whether OnPathTo is actually executed or whether Root is 762 /// actually poison. This can be used to assess whether a new use of Root can 763 /// be added at a location which is control equivalent with OnPathTo (such as 764 /// immediately before it) without introducing UB which didn't previously 765 /// exist. Note that a false result conveys no information. 766 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, 767 Instruction *OnPathTo, 768 DominatorTree *DT) { 769 // Basic approach is to assume Root is poison, propagate poison forward 770 // through all users we can easily track, and then check whether any of those 771 // users are provable UB and must execute before out exiting block might 772 // exit. 773 774 // The set of all recursive users we've visited (which are assumed to all be 775 // poison because of said visit) 776 SmallSet<const Value *, 16> KnownPoison; 777 SmallVector<const Instruction*, 16> Worklist; 778 Worklist.push_back(Root); 779 while (!Worklist.empty()) { 780 const Instruction *I = Worklist.pop_back_val(); 781 782 // If we know this must trigger UB on a path leading our target. 783 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) 784 return true; 785 786 // If we can't analyze propagation through this instruction, just skip it 787 // and transitive users. Safe as false is a conservative result. 788 if (!propagatesPoison(cast<Operator>(I)) && I != Root) 789 continue; 790 791 if (KnownPoison.insert(I).second) 792 for (const User *User : I->users()) 793 Worklist.push_back(cast<Instruction>(User)); 794 } 795 796 // Might be non-UB, or might have a path we couldn't prove must execute on 797 // way to exiting bb. 798 return false; 799 } 800 801 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 802 /// down to checking that all operands are constant and listing instructions 803 /// that may hide undef. 804 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 805 unsigned Depth) { 806 if (isa<Constant>(V)) 807 return !isa<UndefValue>(V); 808 809 if (Depth >= 6) 810 return false; 811 812 // Conservatively handle non-constant non-instructions. For example, Arguments 813 // may be undef. 814 Instruction *I = dyn_cast<Instruction>(V); 815 if (!I) 816 return false; 817 818 // Load and return values may be undef. 819 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 820 return false; 821 822 // Optimistically handle other instructions. 823 for (Value *Op : I->operands()) { 824 if (!Visited.insert(Op).second) 825 continue; 826 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 827 return false; 828 } 829 return true; 830 } 831 832 /// Return true if the given value is concrete. We must prove that undef can 833 /// never reach it. 834 /// 835 /// TODO: If we decide that this is a good approach to checking for undef, we 836 /// may factor it into a common location. 837 static bool hasConcreteDef(Value *V) { 838 SmallPtrSet<Value*, 8> Visited; 839 Visited.insert(V); 840 return hasConcreteDefImpl(V, Visited, 0); 841 } 842 843 /// Return true if this IV has any uses other than the (soon to be rewritten) 844 /// loop exit test. 845 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 846 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 847 Value *IncV = Phi->getIncomingValue(LatchIdx); 848 849 for (User *U : Phi->users()) 850 if (U != Cond && U != IncV) return false; 851 852 for (User *U : IncV->users()) 853 if (U != Cond && U != Phi) return false; 854 return true; 855 } 856 857 /// Return true if the given phi is a "counter" in L. A counter is an 858 /// add recurance (of integer or pointer type) with an arbitrary start, and a 859 /// step of 1. Note that L must have exactly one latch. 860 static bool isLoopCounter(PHINode* Phi, Loop *L, 861 ScalarEvolution *SE) { 862 assert(Phi->getParent() == L->getHeader()); 863 assert(L->getLoopLatch()); 864 865 if (!SE->isSCEVable(Phi->getType())) 866 return false; 867 868 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 869 if (!AR || AR->getLoop() != L || !AR->isAffine()) 870 return false; 871 872 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 873 if (!Step || !Step->isOne()) 874 return false; 875 876 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); 877 Value *IncV = Phi->getIncomingValue(LatchIdx); 878 return (getLoopPhiForCounter(IncV, L) == Phi); 879 } 880 881 /// Search the loop header for a loop counter (anadd rec w/step of one) 882 /// suitable for use by LFTR. If multiple counters are available, select the 883 /// "best" one based profitable heuristics. 884 /// 885 /// BECount may be an i8* pointer type. The pointer difference is already 886 /// valid count without scaling the address stride, so it remains a pointer 887 /// expression as far as SCEV is concerned. 888 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, 889 const SCEV *BECount, 890 ScalarEvolution *SE, DominatorTree *DT) { 891 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 892 893 Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); 894 895 // Loop over all of the PHI nodes, looking for a simple counter. 896 PHINode *BestPhi = nullptr; 897 const SCEV *BestInit = nullptr; 898 BasicBlock *LatchBlock = L->getLoopLatch(); 899 assert(LatchBlock && "Must be in simplified form"); 900 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 901 902 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 903 PHINode *Phi = cast<PHINode>(I); 904 if (!isLoopCounter(Phi, L, SE)) 905 continue; 906 907 // Avoid comparing an integer IV against a pointer Limit. 908 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 909 continue; 910 911 const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 912 913 // AR may be a pointer type, while BECount is an integer type. 914 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 915 // AR may not be a narrower type, or we may never exit. 916 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 917 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 918 continue; 919 920 // Avoid reusing a potentially undef value to compute other values that may 921 // have originally had a concrete definition. 922 if (!hasConcreteDef(Phi)) { 923 // We explicitly allow unknown phis as long as they are already used by 924 // the loop exit test. This is legal since performing LFTR could not 925 // increase the number of undef users. 926 Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock); 927 if (!isLoopExitTestBasedOn(Phi, ExitingBB) && 928 !isLoopExitTestBasedOn(IncPhi, ExitingBB)) 929 continue; 930 } 931 932 // Avoid introducing undefined behavior due to poison which didn't exist in 933 // the original program. (Annoyingly, the rules for poison and undef 934 // propagation are distinct, so this does NOT cover the undef case above.) 935 // We have to ensure that we don't introduce UB by introducing a use on an 936 // iteration where said IV produces poison. Our strategy here differs for 937 // pointers and integer IVs. For integers, we strip and reinfer as needed, 938 // see code in linearFunctionTestReplace. For pointers, we restrict 939 // transforms as there is no good way to reinfer inbounds once lost. 940 if (!Phi->getType()->isIntegerTy() && 941 !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) 942 continue; 943 944 const SCEV *Init = AR->getStart(); 945 946 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 947 // Don't force a live loop counter if another IV can be used. 948 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 949 continue; 950 951 // Prefer to count-from-zero. This is a more "canonical" counter form. It 952 // also prefers integer to pointer IVs. 953 if (BestInit->isZero() != Init->isZero()) { 954 if (BestInit->isZero()) 955 continue; 956 } 957 // If two IVs both count from zero or both count from nonzero then the 958 // narrower is likely a dead phi that has been widened. Use the wider phi 959 // to allow the other to be eliminated. 960 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 961 continue; 962 } 963 BestPhi = Phi; 964 BestInit = Init; 965 } 966 return BestPhi; 967 } 968 969 /// Insert an IR expression which computes the value held by the IV IndVar 970 /// (which must be an loop counter w/unit stride) after the backedge of loop L 971 /// is taken ExitCount times. 972 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, 973 const SCEV *ExitCount, bool UsePostInc, Loop *L, 974 SCEVExpander &Rewriter, ScalarEvolution *SE) { 975 assert(isLoopCounter(IndVar, L, SE)); 976 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 977 const SCEV *IVInit = AR->getStart(); 978 979 // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter 980 // finds a valid pointer IV. Sign extend ExitCount in order to materialize a 981 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 982 // the existing GEPs whenever possible. 983 if (IndVar->getType()->isPointerTy() && 984 !ExitCount->getType()->isPointerTy()) { 985 // IVOffset will be the new GEP offset that is interpreted by GEP as a 986 // signed value. ExitCount on the other hand represents the loop trip count, 987 // which is an unsigned value. FindLoopCounter only allows induction 988 // variables that have a positive unit stride of one. This means we don't 989 // have to handle the case of negative offsets (yet) and just need to zero 990 // extend ExitCount. 991 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 992 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy); 993 if (UsePostInc) 994 IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy)); 995 996 // Expand the code for the iteration count. 997 assert(SE->isLoopInvariant(IVOffset, L) && 998 "Computed iteration count is not loop invariant!"); 999 1000 // We could handle pointer IVs other than i8*, but we need to compensate for 1001 // gep index scaling. 1002 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1003 cast<PointerType>(IndVar->getType()) 1004 ->getElementType())->isOne() && 1005 "unit stride pointer IV must be i8*"); 1006 1007 const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset); 1008 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1009 return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI); 1010 } else { 1011 // In any other case, convert both IVInit and ExitCount to integers before 1012 // comparing. This may result in SCEV expansion of pointers, but in practice 1013 // SCEV will fold the pointer arithmetic away as such: 1014 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1015 // 1016 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1017 // for simple memset-style loops. 1018 // 1019 // IVInit integer and ExitCount pointer would only occur if a canonical IV 1020 // were generated on top of case #2, which is not expected. 1021 1022 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1023 // For unit stride, IVCount = Start + ExitCount with 2's complement 1024 // overflow. 1025 1026 // For integer IVs, truncate the IV before computing IVInit + BECount, 1027 // unless we know apriori that the limit must be a constant when evaluated 1028 // in the bitwidth of the IV. We prefer (potentially) keeping a truncate 1029 // of the IV in the loop over a (potentially) expensive expansion of the 1030 // widened exit count add(zext(add)) expression. 1031 if (SE->getTypeSizeInBits(IVInit->getType()) 1032 > SE->getTypeSizeInBits(ExitCount->getType())) { 1033 if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount)) 1034 ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType()); 1035 else 1036 IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType()); 1037 } 1038 1039 const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount); 1040 1041 if (UsePostInc) 1042 IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType())); 1043 1044 // Expand the code for the iteration count. 1045 assert(SE->isLoopInvariant(IVLimit, L) && 1046 "Computed iteration count is not loop invariant!"); 1047 // Ensure that we generate the same type as IndVar, or a smaller integer 1048 // type. In the presence of null pointer values, we have an integer type 1049 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1050 Type *LimitTy = ExitCount->getType()->isPointerTy() ? 1051 IndVar->getType() : ExitCount->getType(); 1052 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1053 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1054 } 1055 } 1056 1057 /// This method rewrites the exit condition of the loop to be a canonical != 1058 /// comparison against the incremented loop induction variable. This pass is 1059 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1060 /// determine a loop-invariant trip count of the loop, which is actually a much 1061 /// broader range than just linear tests. 1062 bool IndVarSimplify:: 1063 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 1064 const SCEV *ExitCount, 1065 PHINode *IndVar, SCEVExpander &Rewriter) { 1066 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 1067 assert(isLoopCounter(IndVar, L, SE)); 1068 Instruction * const IncVar = 1069 cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch())); 1070 1071 // Initialize CmpIndVar to the preincremented IV. 1072 Value *CmpIndVar = IndVar; 1073 bool UsePostInc = false; 1074 1075 // If the exiting block is the same as the backedge block, we prefer to 1076 // compare against the post-incremented value, otherwise we must compare 1077 // against the preincremented value. 1078 if (ExitingBB == L->getLoopLatch()) { 1079 // For pointer IVs, we chose to not strip inbounds which requires us not 1080 // to add a potentially UB introducing use. We need to either a) show 1081 // the loop test we're modifying is already in post-inc form, or b) show 1082 // that adding a use must not introduce UB. 1083 bool SafeToPostInc = 1084 IndVar->getType()->isIntegerTy() || 1085 isLoopExitTestBasedOn(IncVar, ExitingBB) || 1086 mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); 1087 if (SafeToPostInc) { 1088 UsePostInc = true; 1089 CmpIndVar = IncVar; 1090 } 1091 } 1092 1093 // It may be necessary to drop nowrap flags on the incrementing instruction 1094 // if either LFTR moves from a pre-inc check to a post-inc check (in which 1095 // case the increment might have previously been poison on the last iteration 1096 // only) or if LFTR switches to a different IV that was previously dynamically 1097 // dead (and as such may be arbitrarily poison). We remove any nowrap flags 1098 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc 1099 // check), because the pre-inc addrec flags may be adopted from the original 1100 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. 1101 // TODO: This handling is inaccurate for one case: If we switch to a 1102 // dynamically dead IV that wraps on the first loop iteration only, which is 1103 // not covered by the post-inc addrec. (If the new IV was not dynamically 1104 // dead, it could not be poison on the first iteration in the first place.) 1105 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { 1106 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); 1107 if (BO->hasNoUnsignedWrap()) 1108 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); 1109 if (BO->hasNoSignedWrap()) 1110 BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); 1111 } 1112 1113 Value *ExitCnt = genLoopLimit( 1114 IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); 1115 assert(ExitCnt->getType()->isPointerTy() == 1116 IndVar->getType()->isPointerTy() && 1117 "genLoopLimit missed a cast"); 1118 1119 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1120 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1121 ICmpInst::Predicate P; 1122 if (L->contains(BI->getSuccessor(0))) 1123 P = ICmpInst::ICMP_NE; 1124 else 1125 P = ICmpInst::ICMP_EQ; 1126 1127 IRBuilder<> Builder(BI); 1128 1129 // The new loop exit condition should reuse the debug location of the 1130 // original loop exit condition. 1131 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 1132 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 1133 1134 // For integer IVs, if we evaluated the limit in the narrower bitwidth to 1135 // avoid the expensive expansion of the limit expression in the wider type, 1136 // emit a truncate to narrow the IV to the ExitCount type. This is safe 1137 // since we know (from the exit count bitwidth), that we can't self-wrap in 1138 // the narrower type. 1139 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1140 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1141 if (CmpIndVarSize > ExitCntSize) { 1142 assert(!CmpIndVar->getType()->isPointerTy() && 1143 !ExitCnt->getType()->isPointerTy()); 1144 1145 // Before resorting to actually inserting the truncate, use the same 1146 // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend 1147 // the other side of the comparison instead. We still evaluate the limit 1148 // in the narrower bitwidth, we just prefer a zext/sext outside the loop to 1149 // a truncate within in. 1150 bool Extended = false; 1151 const SCEV *IV = SE->getSCEV(CmpIndVar); 1152 const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 1153 ExitCnt->getType()); 1154 const SCEV *ZExtTrunc = 1155 SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType()); 1156 1157 if (ZExtTrunc == IV) { 1158 Extended = true; 1159 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 1160 "wide.trip.count"); 1161 } else { 1162 const SCEV *SExtTrunc = 1163 SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType()); 1164 if (SExtTrunc == IV) { 1165 Extended = true; 1166 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 1167 "wide.trip.count"); 1168 } 1169 } 1170 1171 if (Extended) { 1172 bool Discard; 1173 L->makeLoopInvariant(ExitCnt, Discard); 1174 } else 1175 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1176 "lftr.wideiv"); 1177 } 1178 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1179 << " LHS:" << *CmpIndVar << '\n' 1180 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 1181 << "\n" 1182 << " RHS:\t" << *ExitCnt << "\n" 1183 << "ExitCount:\t" << *ExitCount << "\n" 1184 << " was: " << *BI->getCondition() << "\n"); 1185 1186 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1187 Value *OrigCond = BI->getCondition(); 1188 // It's tempting to use replaceAllUsesWith here to fully replace the old 1189 // comparison, but that's not immediately safe, since users of the old 1190 // comparison may not be dominated by the new comparison. Instead, just 1191 // update the branch to use the new comparison; in the common case this 1192 // will make old comparison dead. 1193 BI->setCondition(Cond); 1194 DeadInsts.emplace_back(OrigCond); 1195 1196 ++NumLFTR; 1197 return true; 1198 } 1199 1200 //===----------------------------------------------------------------------===// 1201 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1202 //===----------------------------------------------------------------------===// 1203 1204 /// If there's a single exit block, sink any loop-invariant values that 1205 /// were defined in the preheader but not used inside the loop into the 1206 /// exit block to reduce register pressure in the loop. 1207 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 1208 BasicBlock *ExitBlock = L->getExitBlock(); 1209 if (!ExitBlock) return false; 1210 1211 BasicBlock *Preheader = L->getLoopPreheader(); 1212 if (!Preheader) return false; 1213 1214 bool MadeAnyChanges = false; 1215 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 1216 BasicBlock::iterator I(Preheader->getTerminator()); 1217 while (I != Preheader->begin()) { 1218 --I; 1219 // New instructions were inserted at the end of the preheader. 1220 if (isa<PHINode>(I)) 1221 break; 1222 1223 // Don't move instructions which might have side effects, since the side 1224 // effects need to complete before instructions inside the loop. Also don't 1225 // move instructions which might read memory, since the loop may modify 1226 // memory. Note that it's okay if the instruction might have undefined 1227 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1228 // block. 1229 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1230 continue; 1231 1232 // Skip debug info intrinsics. 1233 if (isa<DbgInfoIntrinsic>(I)) 1234 continue; 1235 1236 // Skip eh pad instructions. 1237 if (I->isEHPad()) 1238 continue; 1239 1240 // Don't sink alloca: we never want to sink static alloca's out of the 1241 // entry block, and correctly sinking dynamic alloca's requires 1242 // checks for stacksave/stackrestore intrinsics. 1243 // FIXME: Refactor this check somehow? 1244 if (isa<AllocaInst>(I)) 1245 continue; 1246 1247 // Determine if there is a use in or before the loop (direct or 1248 // otherwise). 1249 bool UsedInLoop = false; 1250 for (Use &U : I->uses()) { 1251 Instruction *User = cast<Instruction>(U.getUser()); 1252 BasicBlock *UseBB = User->getParent(); 1253 if (PHINode *P = dyn_cast<PHINode>(User)) { 1254 unsigned i = 1255 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1256 UseBB = P->getIncomingBlock(i); 1257 } 1258 if (UseBB == Preheader || L->contains(UseBB)) { 1259 UsedInLoop = true; 1260 break; 1261 } 1262 } 1263 1264 // If there is, the def must remain in the preheader. 1265 if (UsedInLoop) 1266 continue; 1267 1268 // Otherwise, sink it to the exit block. 1269 Instruction *ToMove = &*I; 1270 bool Done = false; 1271 1272 if (I != Preheader->begin()) { 1273 // Skip debug info intrinsics. 1274 do { 1275 --I; 1276 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1277 1278 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1279 Done = true; 1280 } else { 1281 Done = true; 1282 } 1283 1284 MadeAnyChanges = true; 1285 ToMove->moveBefore(*ExitBlock, InsertPt); 1286 if (Done) break; 1287 InsertPt = ToMove->getIterator(); 1288 } 1289 1290 return MadeAnyChanges; 1291 } 1292 1293 enum ExitCondAnalysisResult { 1294 CanBeRemoved, 1295 CanBeReplacedWithInvariant, 1296 CannotOptimize 1297 }; 1298 1299 /// If the condition of BI is trivially true during at least first MaxIter 1300 /// iterations, return CanBeRemoved. 1301 /// If the condition is equivalent to loop-invariant condition expressed as 1302 /// 'InvariantLHS `InvariantPred` InvariantRHS', fill them into respective 1303 /// output parameters and return CanBeReplacedWithInvariant. 1304 /// Otherwise, return CannotOptimize. 1305 static ExitCondAnalysisResult 1306 analyzeCond(const Loop *L, BranchInst *BI, ScalarEvolution *SE, 1307 bool ProvingLoopExit, const SCEV *MaxIter, 1308 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 1309 const SCEV *&InvariantRHS) { 1310 ICmpInst::Predicate Pred; 1311 Value *LHS, *RHS; 1312 using namespace PatternMatch; 1313 BasicBlock *TrueSucc, *FalseSucc; 1314 if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), 1315 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) 1316 return CannotOptimize; 1317 1318 assert((L->contains(TrueSucc) != L->contains(FalseSucc)) && 1319 "Not a loop exit!"); 1320 1321 // 'LHS pred RHS' should now mean that we stay in loop. 1322 if (L->contains(FalseSucc)) 1323 Pred = CmpInst::getInversePredicate(Pred); 1324 1325 // If we are proving loop exit, invert the predicate. 1326 if (ProvingLoopExit) 1327 Pred = CmpInst::getInversePredicate(Pred); 1328 1329 const SCEV *LHSS = SE->getSCEVAtScope(LHS, L); 1330 const SCEV *RHSS = SE->getSCEVAtScope(RHS, L); 1331 // Can we prove it to be trivially true? 1332 if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI)) 1333 return CanBeRemoved; 1334 1335 if (ProvingLoopExit) 1336 return CannotOptimize; 1337 1338 // Check if there is a loop-invariant predicate equivalent to our check. 1339 auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS, 1340 L, BI, MaxIter); 1341 if (!LIP) 1342 return CannotOptimize; 1343 InvariantPred = LIP->Pred; 1344 InvariantLHS = LIP->LHS; 1345 InvariantRHS = LIP->RHS; 1346 1347 // Can we prove it to be trivially true? 1348 if (SE->isKnownPredicateAt(InvariantPred, InvariantLHS, InvariantRHS, BI)) 1349 return CanBeRemoved; 1350 return CanBeReplacedWithInvariant; 1351 } 1352 1353 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) { 1354 SmallVector<BasicBlock*, 16> ExitingBlocks; 1355 L->getExitingBlocks(ExitingBlocks); 1356 1357 // Remove all exits which aren't both rewriteable and execute on every 1358 // iteration. 1359 auto NewEnd = llvm::remove_if(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1360 // If our exitting block exits multiple loops, we can only rewrite the 1361 // innermost one. Otherwise, we're changing how many times the innermost 1362 // loop runs before it exits. 1363 if (LI->getLoopFor(ExitingBB) != L) 1364 return true; 1365 1366 // Can't rewrite non-branch yet. 1367 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1368 if (!BI) 1369 return true; 1370 1371 // If already constant, nothing to do. 1372 if (isa<Constant>(BI->getCondition())) 1373 return true; 1374 1375 // Likewise, the loop latch must be dominated by the exiting BB. 1376 if (!DT->dominates(ExitingBB, L->getLoopLatch())) 1377 return true; 1378 1379 return false; 1380 }); 1381 ExitingBlocks.erase(NewEnd, ExitingBlocks.end()); 1382 1383 if (ExitingBlocks.empty()) 1384 return false; 1385 1386 // Get a symbolic upper bound on the loop backedge taken count. 1387 const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L); 1388 if (isa<SCEVCouldNotCompute>(MaxExitCount)) 1389 return false; 1390 1391 // Visit our exit blocks in order of dominance. We know from the fact that 1392 // all exits must dominate the latch, so there is a total dominance order 1393 // between them. 1394 llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) { 1395 // std::sort sorts in ascending order, so we want the inverse of 1396 // the normal dominance relation. 1397 if (A == B) return false; 1398 if (DT->properlyDominates(A, B)) 1399 return true; 1400 else { 1401 assert(DT->properlyDominates(B, A) && 1402 "expected total dominance order!"); 1403 return false; 1404 } 1405 }); 1406 #ifdef ASSERT 1407 for (unsigned i = 1; i < ExitingBlocks.size(); i++) { 1408 assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])); 1409 } 1410 #endif 1411 1412 auto ReplaceExitCond = [&](BranchInst *BI, Value *NewCond) { 1413 auto *OldCond = BI->getCondition(); 1414 BI->setCondition(NewCond); 1415 if (OldCond->use_empty()) 1416 DeadInsts.emplace_back(OldCond); 1417 }; 1418 1419 auto FoldExit = [&](BasicBlock *ExitingBB, bool IsTaken) { 1420 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1421 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1422 auto *OldCond = BI->getCondition(); 1423 auto *NewCond = ConstantInt::get(OldCond->getType(), 1424 IsTaken ? ExitIfTrue : !ExitIfTrue); 1425 ReplaceExitCond(BI, NewCond); 1426 }; 1427 1428 auto ReplaceWithInvariantCond = [&]( 1429 BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred, 1430 const SCEV *InvariantLHS, const SCEV *InvariantRHS) { 1431 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1432 Rewriter.setInsertPoint(BI); 1433 auto *LHSV = Rewriter.expandCodeFor(InvariantLHS); 1434 auto *RHSV = Rewriter.expandCodeFor(InvariantRHS); 1435 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1436 if (ExitIfTrue) 1437 InvariantPred = ICmpInst::getInversePredicate(InvariantPred); 1438 IRBuilder<> Builder(BI); 1439 auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV, 1440 BI->getCondition()->getName()); 1441 ReplaceExitCond(BI, NewCond); 1442 }; 1443 1444 bool Changed = false; 1445 bool SkipLastIter = false; 1446 SmallSet<const SCEV*, 8> DominatingExitCounts; 1447 for (BasicBlock *ExitingBB : ExitingBlocks) { 1448 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1449 if (isa<SCEVCouldNotCompute>(ExitCount)) { 1450 // Okay, we do not know the exit count here. Can we at least prove that it 1451 // will remain the same within iteration space? 1452 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1453 auto OptimizeCond = [this, L, BI, ExitingBB, MaxExitCount, &FoldExit, 1454 &ReplaceWithInvariantCond](bool Inverted, 1455 bool SkipLastIter) { 1456 const SCEV *MaxIter = MaxExitCount; 1457 if (SkipLastIter) { 1458 const SCEV *One = SE->getOne(MaxIter->getType()); 1459 MaxIter = SE->getMinusSCEV(MaxIter, One); 1460 } 1461 ICmpInst::Predicate InvariantPred; 1462 const SCEV *InvariantLHS, *InvariantRHS; 1463 switch (analyzeCond(L, BI, SE, Inverted, MaxIter, InvariantPred, 1464 InvariantLHS, InvariantRHS)) { 1465 case CanBeRemoved: 1466 FoldExit(ExitingBB, Inverted); 1467 return true; 1468 case CanBeReplacedWithInvariant: { 1469 ReplaceWithInvariantCond(ExitingBB, InvariantPred, InvariantLHS, 1470 InvariantRHS); 1471 return true; 1472 } 1473 case CannotOptimize: 1474 return false; 1475 } 1476 llvm_unreachable("Unknown case!"); 1477 }; 1478 1479 // TODO: We might have proved that we can skip the last iteration for 1480 // this check. In this case, we only want to check the condition on the 1481 // pre-last iteration (MaxExitCount - 1). However, there is a nasty 1482 // corner case: 1483 // 1484 // for (i = len; i != 0; i--) { ... check (i ult X) ... } 1485 // 1486 // If we could not prove that len != 0, then we also could not prove that 1487 // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then 1488 // OptimizeCond will likely not prove anything for it, even if it could 1489 // prove the same fact for len. 1490 // 1491 // As a temporary solution, we query both last and pre-last iterations in 1492 // hope that we will be able to prove triviality for at least one of 1493 // them. We can stop querying MaxExitCount for this case once SCEV 1494 // understands that (MaxExitCount - 1) will not overflow here. 1495 if (OptimizeCond(false, false) || OptimizeCond(true, false)) 1496 Changed = true; 1497 else if (SkipLastIter) 1498 if (OptimizeCond(false, true) || OptimizeCond(true, true)) 1499 Changed = true; 1500 continue; 1501 } 1502 1503 if (MaxExitCount == ExitCount) 1504 // If the loop has more than 1 iteration, all further checks will be 1505 // executed 1 iteration less. 1506 SkipLastIter = true; 1507 1508 // If we know we'd exit on the first iteration, rewrite the exit to 1509 // reflect this. This does not imply the loop must exit through this 1510 // exit; there may be an earlier one taken on the first iteration. 1511 // TODO: Given we know the backedge can't be taken, we should go ahead 1512 // and break it. Or at least, kill all the header phis and simplify. 1513 if (ExitCount->isZero()) { 1514 FoldExit(ExitingBB, true); 1515 Changed = true; 1516 continue; 1517 } 1518 1519 // If we end up with a pointer exit count, bail. Note that we can end up 1520 // with a pointer exit count for one exiting block, and not for another in 1521 // the same loop. 1522 if (!ExitCount->getType()->isIntegerTy() || 1523 !MaxExitCount->getType()->isIntegerTy()) 1524 continue; 1525 1526 Type *WiderType = 1527 SE->getWiderType(MaxExitCount->getType(), ExitCount->getType()); 1528 ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType); 1529 MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType); 1530 assert(MaxExitCount->getType() == ExitCount->getType()); 1531 1532 // Can we prove that some other exit must be taken strictly before this 1533 // one? 1534 if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, 1535 MaxExitCount, ExitCount)) { 1536 FoldExit(ExitingBB, false); 1537 Changed = true; 1538 continue; 1539 } 1540 1541 // As we run, keep track of which exit counts we've encountered. If we 1542 // find a duplicate, we've found an exit which would have exited on the 1543 // exiting iteration, but (from the visit order) strictly follows another 1544 // which does the same and is thus dead. 1545 if (!DominatingExitCounts.insert(ExitCount).second) { 1546 FoldExit(ExitingBB, false); 1547 Changed = true; 1548 continue; 1549 } 1550 1551 // TODO: There might be another oppurtunity to leverage SCEV's reasoning 1552 // here. If we kept track of the min of dominanting exits so far, we could 1553 // discharge exits with EC >= MDEC. This is less powerful than the existing 1554 // transform (since later exits aren't considered), but potentially more 1555 // powerful for any case where SCEV can prove a >=u b, but neither a == b 1556 // or a >u b. Such a case is not currently known. 1557 } 1558 return Changed; 1559 } 1560 1561 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1562 SmallVector<BasicBlock*, 16> ExitingBlocks; 1563 L->getExitingBlocks(ExitingBlocks); 1564 1565 // Finally, see if we can rewrite our exit conditions into a loop invariant 1566 // form. If we have a read-only loop, and we can tell that we must exit down 1567 // a path which does not need any of the values computed within the loop, we 1568 // can rewrite the loop to exit on the first iteration. Note that this 1569 // doesn't either a) tell us the loop exits on the first iteration (unless 1570 // *all* exits are predicateable) or b) tell us *which* exit might be taken. 1571 // This transformation looks a lot like a restricted form of dead loop 1572 // elimination, but restricted to read-only loops and without neccesssarily 1573 // needing to kill the loop entirely. 1574 if (!LoopPredication) 1575 return false; 1576 1577 if (!SE->hasLoopInvariantBackedgeTakenCount(L)) 1578 return false; 1579 1580 // Note: ExactBTC is the exact backedge taken count *iff* the loop exits 1581 // through *explicit* control flow. We have to eliminate the possibility of 1582 // implicit exits (see below) before we know it's truly exact. 1583 const SCEV *ExactBTC = SE->getBackedgeTakenCount(L); 1584 if (isa<SCEVCouldNotCompute>(ExactBTC) || 1585 !SE->isLoopInvariant(ExactBTC, L) || 1586 !isSafeToExpand(ExactBTC, *SE)) 1587 return false; 1588 1589 // If we end up with a pointer exit count, bail. It may be unsized. 1590 if (!ExactBTC->getType()->isIntegerTy()) 1591 return false; 1592 1593 auto BadExit = [&](BasicBlock *ExitingBB) { 1594 // If our exiting block exits multiple loops, we can only rewrite the 1595 // innermost one. Otherwise, we're changing how many times the innermost 1596 // loop runs before it exits. 1597 if (LI->getLoopFor(ExitingBB) != L) 1598 return true; 1599 1600 // Can't rewrite non-branch yet. 1601 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1602 if (!BI) 1603 return true; 1604 1605 // If already constant, nothing to do. 1606 if (isa<Constant>(BI->getCondition())) 1607 return true; 1608 1609 // If the exit block has phis, we need to be able to compute the values 1610 // within the loop which contains them. This assumes trivially lcssa phis 1611 // have already been removed; TODO: generalize 1612 BasicBlock *ExitBlock = 1613 BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0); 1614 if (!ExitBlock->phis().empty()) 1615 return true; 1616 1617 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1618 assert(!isa<SCEVCouldNotCompute>(ExactBTC) && "implied by having exact trip count"); 1619 if (!SE->isLoopInvariant(ExitCount, L) || 1620 !isSafeToExpand(ExitCount, *SE)) 1621 return true; 1622 1623 // If we end up with a pointer exit count, bail. It may be unsized. 1624 if (!ExitCount->getType()->isIntegerTy()) 1625 return true; 1626 1627 return false; 1628 }; 1629 1630 // If we have any exits which can't be predicated themselves, than we can't 1631 // predicate any exit which isn't guaranteed to execute before it. Consider 1632 // two exits (a) and (b) which would both exit on the same iteration. If we 1633 // can predicate (b), but not (a), and (a) preceeds (b) along some path, then 1634 // we could convert a loop from exiting through (a) to one exiting through 1635 // (b). Note that this problem exists only for exits with the same exit 1636 // count, and we could be more aggressive when exit counts are known inequal. 1637 llvm::sort(ExitingBlocks, 1638 [&](BasicBlock *A, BasicBlock *B) { 1639 // std::sort sorts in ascending order, so we want the inverse of 1640 // the normal dominance relation, plus a tie breaker for blocks 1641 // unordered by dominance. 1642 if (DT->properlyDominates(A, B)) return true; 1643 if (DT->properlyDominates(B, A)) return false; 1644 return A->getName() < B->getName(); 1645 }); 1646 // Check to see if our exit blocks are a total order (i.e. a linear chain of 1647 // exits before the backedge). If they aren't, reasoning about reachability 1648 // is complicated and we choose not to for now. 1649 for (unsigned i = 1; i < ExitingBlocks.size(); i++) 1650 if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])) 1651 return false; 1652 1653 // Given our sorted total order, we know that exit[j] must be evaluated 1654 // after all exit[i] such j > i. 1655 for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++) 1656 if (BadExit(ExitingBlocks[i])) { 1657 ExitingBlocks.resize(i); 1658 break; 1659 } 1660 1661 if (ExitingBlocks.empty()) 1662 return false; 1663 1664 // We rely on not being able to reach an exiting block on a later iteration 1665 // then it's statically compute exit count. The implementaton of 1666 // getExitCount currently has this invariant, but assert it here so that 1667 // breakage is obvious if this ever changes.. 1668 assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1669 return DT->dominates(ExitingBB, L->getLoopLatch()); 1670 })); 1671 1672 // At this point, ExitingBlocks consists of only those blocks which are 1673 // predicatable. Given that, we know we have at least one exit we can 1674 // predicate if the loop is doesn't have side effects and doesn't have any 1675 // implicit exits (because then our exact BTC isn't actually exact). 1676 // @Reviewers - As structured, this is O(I^2) for loop nests. Any 1677 // suggestions on how to improve this? I can obviously bail out for outer 1678 // loops, but that seems less than ideal. MemorySSA can find memory writes, 1679 // is that enough for *all* side effects? 1680 for (BasicBlock *BB : L->blocks()) 1681 for (auto &I : *BB) 1682 // TODO:isGuaranteedToTransfer 1683 if (I.mayHaveSideEffects() || I.mayThrow()) 1684 return false; 1685 1686 bool Changed = false; 1687 // Finally, do the actual predication for all predicatable blocks. A couple 1688 // of notes here: 1689 // 1) We don't bother to constant fold dominated exits with identical exit 1690 // counts; that's simply a form of CSE/equality propagation and we leave 1691 // it for dedicated passes. 1692 // 2) We insert the comparison at the branch. Hoisting introduces additional 1693 // legality constraints and we leave that to dedicated logic. We want to 1694 // predicate even if we can't insert a loop invariant expression as 1695 // peeling or unrolling will likely reduce the cost of the otherwise loop 1696 // varying check. 1697 Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator()); 1698 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 1699 Value *ExactBTCV = nullptr; // Lazily generated if needed. 1700 for (BasicBlock *ExitingBB : ExitingBlocks) { 1701 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1702 1703 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1704 Value *NewCond; 1705 if (ExitCount == ExactBTC) { 1706 NewCond = L->contains(BI->getSuccessor(0)) ? 1707 B.getFalse() : B.getTrue(); 1708 } else { 1709 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1710 if (!ExactBTCV) 1711 ExactBTCV = Rewriter.expandCodeFor(ExactBTC); 1712 Value *RHS = ExactBTCV; 1713 if (ECV->getType() != RHS->getType()) { 1714 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1715 ECV = B.CreateZExt(ECV, WiderTy); 1716 RHS = B.CreateZExt(RHS, WiderTy); 1717 } 1718 auto Pred = L->contains(BI->getSuccessor(0)) ? 1719 ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 1720 NewCond = B.CreateICmp(Pred, ECV, RHS); 1721 } 1722 Value *OldCond = BI->getCondition(); 1723 BI->setCondition(NewCond); 1724 if (OldCond->use_empty()) 1725 DeadInsts.emplace_back(OldCond); 1726 Changed = true; 1727 } 1728 1729 return Changed; 1730 } 1731 1732 //===----------------------------------------------------------------------===// 1733 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1734 //===----------------------------------------------------------------------===// 1735 1736 bool IndVarSimplify::run(Loop *L) { 1737 // We need (and expect!) the incoming loop to be in LCSSA. 1738 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1739 "LCSSA required to run indvars!"); 1740 1741 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1742 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1743 // canonicalization can be a pessimization without LSR to "clean up" 1744 // afterwards. 1745 // - We depend on having a preheader; in particular, 1746 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1747 // and we're in trouble if we can't find the induction variable even when 1748 // we've manually inserted one. 1749 // - LFTR relies on having a single backedge. 1750 if (!L->isLoopSimplifyForm()) 1751 return false; 1752 1753 #ifndef NDEBUG 1754 // Used below for a consistency check only 1755 // Note: Since the result returned by ScalarEvolution may depend on the order 1756 // in which previous results are added to its cache, the call to 1757 // getBackedgeTakenCount() may change following SCEV queries. 1758 const SCEV *BackedgeTakenCount; 1759 if (VerifyIndvars) 1760 BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1761 #endif 1762 1763 bool Changed = false; 1764 // If there are any floating-point recurrences, attempt to 1765 // transform them to use integer recurrences. 1766 Changed |= rewriteNonIntegerIVs(L); 1767 1768 // Create a rewriter object which we'll use to transform the code with. 1769 SCEVExpander Rewriter(*SE, DL, "indvars"); 1770 #ifndef NDEBUG 1771 Rewriter.setDebugType(DEBUG_TYPE); 1772 #endif 1773 1774 // Eliminate redundant IV users. 1775 // 1776 // Simplification works best when run before other consumers of SCEV. We 1777 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1778 // other expressions involving loop IVs have been evaluated. This helps SCEV 1779 // set no-wrap flags before normalizing sign/zero extension. 1780 Rewriter.disableCanonicalMode(); 1781 Changed |= simplifyAndExtend(L, Rewriter, LI); 1782 1783 // Check to see if we can compute the final value of any expressions 1784 // that are recurrent in the loop, and substitute the exit values from the 1785 // loop into any instructions outside of the loop that use the final values 1786 // of the current expressions. 1787 if (ReplaceExitValue != NeverRepl) { 1788 if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, 1789 ReplaceExitValue, DeadInsts)) { 1790 NumReplaced += Rewrites; 1791 Changed = true; 1792 } 1793 } 1794 1795 // Eliminate redundant IV cycles. 1796 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1797 1798 // Try to eliminate loop exits based on analyzeable exit counts 1799 if (optimizeLoopExits(L, Rewriter)) { 1800 Changed = true; 1801 // Given we've changed exit counts, notify SCEV 1802 SE->forgetLoop(L); 1803 } 1804 1805 // Try to form loop invariant tests for loop exits by changing how many 1806 // iterations of the loop run when that is unobservable. 1807 if (predicateLoopExits(L, Rewriter)) { 1808 Changed = true; 1809 // Given we've changed exit counts, notify SCEV 1810 SE->forgetLoop(L); 1811 } 1812 1813 // If we have a trip count expression, rewrite the loop's exit condition 1814 // using it. 1815 if (!DisableLFTR) { 1816 BasicBlock *PreHeader = L->getLoopPreheader(); 1817 BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator()); 1818 1819 SmallVector<BasicBlock*, 16> ExitingBlocks; 1820 L->getExitingBlocks(ExitingBlocks); 1821 for (BasicBlock *ExitingBB : ExitingBlocks) { 1822 // Can't rewrite non-branch yet. 1823 if (!isa<BranchInst>(ExitingBB->getTerminator())) 1824 continue; 1825 1826 // If our exitting block exits multiple loops, we can only rewrite the 1827 // innermost one. Otherwise, we're changing how many times the innermost 1828 // loop runs before it exits. 1829 if (LI->getLoopFor(ExitingBB) != L) 1830 continue; 1831 1832 if (!needsLFTR(L, ExitingBB)) 1833 continue; 1834 1835 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1836 if (isa<SCEVCouldNotCompute>(ExitCount)) 1837 continue; 1838 1839 // This was handled above, but as we form SCEVs, we can sometimes refine 1840 // existing ones; this allows exit counts to be folded to zero which 1841 // weren't when optimizeLoopExits saw them. Arguably, we should iterate 1842 // until stable to handle cases like this better. 1843 if (ExitCount->isZero()) 1844 continue; 1845 1846 PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); 1847 if (!IndVar) 1848 continue; 1849 1850 // Avoid high cost expansions. Note: This heuristic is questionable in 1851 // that our definition of "high cost" is not exactly principled. 1852 if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget, 1853 TTI, PreHeaderBR)) 1854 continue; 1855 1856 // Check preconditions for proper SCEVExpander operation. SCEV does not 1857 // express SCEVExpander's dependencies, such as LoopSimplify. Instead 1858 // any pass that uses the SCEVExpander must do it. This does not work 1859 // well for loop passes because SCEVExpander makes assumptions about 1860 // all loops, while LoopPassManager only forces the current loop to be 1861 // simplified. 1862 // 1863 // FIXME: SCEV expansion has no way to bail out, so the caller must 1864 // explicitly check any assumptions made by SCEV. Brittle. 1865 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount); 1866 if (!AR || AR->getLoop()->getLoopPreheader()) 1867 Changed |= linearFunctionTestReplace(L, ExitingBB, 1868 ExitCount, IndVar, 1869 Rewriter); 1870 } 1871 } 1872 // Clear the rewriter cache, because values that are in the rewriter's cache 1873 // can be deleted in the loop below, causing the AssertingVH in the cache to 1874 // trigger. 1875 Rewriter.clear(); 1876 1877 // Now that we're done iterating through lists, clean up any instructions 1878 // which are now dead. 1879 while (!DeadInsts.empty()) 1880 if (Instruction *Inst = 1881 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 1882 Changed |= 1883 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get()); 1884 1885 // The Rewriter may not be used from this point on. 1886 1887 // Loop-invariant instructions in the preheader that aren't used in the 1888 // loop may be sunk below the loop to reduce register pressure. 1889 Changed |= sinkUnusedInvariants(L); 1890 1891 // rewriteFirstIterationLoopExitValues does not rely on the computation of 1892 // trip count and therefore can further simplify exit values in addition to 1893 // rewriteLoopExitValues. 1894 Changed |= rewriteFirstIterationLoopExitValues(L); 1895 1896 // Clean up dead instructions. 1897 Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get()); 1898 1899 // Check a post-condition. 1900 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1901 "Indvars did not preserve LCSSA!"); 1902 1903 // Verify that LFTR, and any other change have not interfered with SCEV's 1904 // ability to compute trip count. We may have *changed* the exit count, but 1905 // only by reducing it. 1906 #ifndef NDEBUG 1907 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1908 SE->forgetLoop(L); 1909 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1910 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1911 SE->getTypeSizeInBits(NewBECount->getType())) 1912 NewBECount = SE->getTruncateOrNoop(NewBECount, 1913 BackedgeTakenCount->getType()); 1914 else 1915 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1916 NewBECount->getType()); 1917 assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount, 1918 NewBECount) && "indvars must preserve SCEV"); 1919 } 1920 if (VerifyMemorySSA && MSSAU) 1921 MSSAU->getMemorySSA()->verifyMemorySSA(); 1922 #endif 1923 1924 return Changed; 1925 } 1926 1927 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 1928 LoopStandardAnalysisResults &AR, 1929 LPMUpdater &) { 1930 Function *F = L.getHeader()->getParent(); 1931 const DataLayout &DL = F->getParent()->getDataLayout(); 1932 1933 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA, 1934 WidenIndVars && AllowIVWidening); 1935 if (!IVS.run(&L)) 1936 return PreservedAnalyses::all(); 1937 1938 auto PA = getLoopPassPreservedAnalyses(); 1939 PA.preserveSet<CFGAnalyses>(); 1940 if (AR.MSSA) 1941 PA.preserve<MemorySSAAnalysis>(); 1942 return PA; 1943 } 1944 1945 namespace { 1946 1947 struct IndVarSimplifyLegacyPass : public LoopPass { 1948 static char ID; // Pass identification, replacement for typeid 1949 1950 IndVarSimplifyLegacyPass() : LoopPass(ID) { 1951 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 1952 } 1953 1954 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 1955 if (skipLoop(L)) 1956 return false; 1957 1958 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1959 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1960 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1961 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1962 auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr; 1963 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 1964 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 1965 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1966 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 1967 MemorySSA *MSSA = nullptr; 1968 if (MSSAAnalysis) 1969 MSSA = &MSSAAnalysis->getMSSA(); 1970 1971 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening); 1972 return IVS.run(L); 1973 } 1974 1975 void getAnalysisUsage(AnalysisUsage &AU) const override { 1976 AU.setPreservesCFG(); 1977 AU.addPreserved<MemorySSAWrapperPass>(); 1978 getLoopAnalysisUsage(AU); 1979 } 1980 }; 1981 1982 } // end anonymous namespace 1983 1984 char IndVarSimplifyLegacyPass::ID = 0; 1985 1986 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 1987 "Induction Variable Simplification", false, false) 1988 INITIALIZE_PASS_DEPENDENCY(LoopPass) 1989 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 1990 "Induction Variable Simplification", false, false) 1991 1992 Pass *llvm::createIndVarSimplifyPass() { 1993 return new IndVarSimplifyLegacyPass(); 1994 } 1995