xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 9224d322a27fa383d9c33d4eee4d8aa7842a939b)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/MemorySSA.h"
42 #include "llvm/Analysis/MemorySSAUpdater.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/ConstantRange.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/PassManager.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Scalar/LoopPassManager.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/LoopUtils.h"
85 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
86 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
87 #include <cassert>
88 #include <cstdint>
89 #include <utility>
90 
91 using namespace llvm;
92 
93 #define DEBUG_TYPE "indvars"
94 
95 STATISTIC(NumWidened     , "Number of indvars widened");
96 STATISTIC(NumReplaced    , "Number of exit values replaced");
97 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
98 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
99 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
100 
101 // Trip count verification can be enabled by default under NDEBUG if we
102 // implement a strong expression equivalence checker in SCEV. Until then, we
103 // use the verify-indvars flag, which may assert in some cases.
104 static cl::opt<bool> VerifyIndvars(
105     "verify-indvars", cl::Hidden,
106     cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
107              "effect in release builds. (Note: this adds additional SCEV "
108              "queries potentially changing the analysis result)"));
109 
110 static cl::opt<ReplaceExitVal> ReplaceExitValue(
111     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
112     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
113     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
114                clEnumValN(OnlyCheapRepl, "cheap",
115                           "only replace exit value when the cost is cheap"),
116                clEnumValN(NoHardUse, "noharduse",
117                           "only replace exit values when loop def likely dead"),
118                clEnumValN(AlwaysRepl, "always",
119                           "always replace exit value whenever possible")));
120 
121 static cl::opt<bool> UsePostIncrementRanges(
122   "indvars-post-increment-ranges", cl::Hidden,
123   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
124   cl::init(true));
125 
126 static cl::opt<bool>
127 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
128             cl::desc("Disable Linear Function Test Replace optimization"));
129 
130 static cl::opt<bool>
131 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
132                 cl::desc("Predicate conditions in read only loops"));
133 
134 static cl::opt<bool>
135 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
136                 cl::desc("Allow widening of indvars to eliminate s/zext"));
137 
138 namespace {
139 
140 struct RewritePhi;
141 
142 class IndVarSimplify {
143   LoopInfo *LI;
144   ScalarEvolution *SE;
145   DominatorTree *DT;
146   const DataLayout &DL;
147   TargetLibraryInfo *TLI;
148   const TargetTransformInfo *TTI;
149   std::unique_ptr<MemorySSAUpdater> MSSAU;
150 
151   SmallVector<WeakTrackingVH, 16> DeadInsts;
152   bool WidenIndVars;
153 
154   bool handleFloatingPointIV(Loop *L, PHINode *PH);
155   bool rewriteNonIntegerIVs(Loop *L);
156 
157   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
158   /// Try to eliminate loop exits based on analyzeable exit counts
159   bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
160   /// Try to form loop invariant tests for loop exits by changing how many
161   /// iterations of the loop run when that is unobservable.
162   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
163 
164   bool rewriteFirstIterationLoopExitValues(Loop *L);
165 
166   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
167                                  const SCEV *ExitCount,
168                                  PHINode *IndVar, SCEVExpander &Rewriter);
169 
170   bool sinkUnusedInvariants(Loop *L);
171 
172 public:
173   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
174                  const DataLayout &DL, TargetLibraryInfo *TLI,
175                  TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
176       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
177         WidenIndVars(WidenIndVars) {
178     if (MSSA)
179       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
180   }
181 
182   bool run(Loop *L);
183 };
184 
185 } // end anonymous namespace
186 
187 //===----------------------------------------------------------------------===//
188 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
189 //===----------------------------------------------------------------------===//
190 
191 /// Convert APF to an integer, if possible.
192 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
193   bool isExact = false;
194   // See if we can convert this to an int64_t
195   uint64_t UIntVal;
196   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
197                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
198       !isExact)
199     return false;
200   IntVal = UIntVal;
201   return true;
202 }
203 
204 /// If the loop has floating induction variable then insert corresponding
205 /// integer induction variable if possible.
206 /// For example,
207 /// for(double i = 0; i < 10000; ++i)
208 ///   bar(i)
209 /// is converted into
210 /// for(int i = 0; i < 10000; ++i)
211 ///   bar((double)i);
212 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
213   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
214   unsigned BackEdge     = IncomingEdge^1;
215 
216   // Check incoming value.
217   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
218 
219   int64_t InitValue;
220   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
221     return false;
222 
223   // Check IV increment. Reject this PN if increment operation is not
224   // an add or increment value can not be represented by an integer.
225   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
226   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
227 
228   // If this is not an add of the PHI with a constantfp, or if the constant fp
229   // is not an integer, bail out.
230   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
231   int64_t IncValue;
232   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
233       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
234     return false;
235 
236   // Check Incr uses. One user is PN and the other user is an exit condition
237   // used by the conditional terminator.
238   Value::user_iterator IncrUse = Incr->user_begin();
239   Instruction *U1 = cast<Instruction>(*IncrUse++);
240   if (IncrUse == Incr->user_end()) return false;
241   Instruction *U2 = cast<Instruction>(*IncrUse++);
242   if (IncrUse != Incr->user_end()) return false;
243 
244   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
245   // only used by a branch, we can't transform it.
246   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
247   if (!Compare)
248     Compare = dyn_cast<FCmpInst>(U2);
249   if (!Compare || !Compare->hasOneUse() ||
250       !isa<BranchInst>(Compare->user_back()))
251     return false;
252 
253   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
254 
255   // We need to verify that the branch actually controls the iteration count
256   // of the loop.  If not, the new IV can overflow and no one will notice.
257   // The branch block must be in the loop and one of the successors must be out
258   // of the loop.
259   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
260   if (!L->contains(TheBr->getParent()) ||
261       (L->contains(TheBr->getSuccessor(0)) &&
262        L->contains(TheBr->getSuccessor(1))))
263     return false;
264 
265   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
266   // transform it.
267   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
268   int64_t ExitValue;
269   if (ExitValueVal == nullptr ||
270       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
271     return false;
272 
273   // Find new predicate for integer comparison.
274   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
275   switch (Compare->getPredicate()) {
276   default: return false;  // Unknown comparison.
277   case CmpInst::FCMP_OEQ:
278   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
279   case CmpInst::FCMP_ONE:
280   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
281   case CmpInst::FCMP_OGT:
282   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
283   case CmpInst::FCMP_OGE:
284   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
285   case CmpInst::FCMP_OLT:
286   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
287   case CmpInst::FCMP_OLE:
288   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
289   }
290 
291   // We convert the floating point induction variable to a signed i32 value if
292   // we can.  This is only safe if the comparison will not overflow in a way
293   // that won't be trapped by the integer equivalent operations.  Check for this
294   // now.
295   // TODO: We could use i64 if it is native and the range requires it.
296 
297   // The start/stride/exit values must all fit in signed i32.
298   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
299     return false;
300 
301   // If not actually striding (add x, 0.0), avoid touching the code.
302   if (IncValue == 0)
303     return false;
304 
305   // Positive and negative strides have different safety conditions.
306   if (IncValue > 0) {
307     // If we have a positive stride, we require the init to be less than the
308     // exit value.
309     if (InitValue >= ExitValue)
310       return false;
311 
312     uint32_t Range = uint32_t(ExitValue-InitValue);
313     // Check for infinite loop, either:
314     // while (i <= Exit) or until (i > Exit)
315     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
316       if (++Range == 0) return false;  // Range overflows.
317     }
318 
319     unsigned Leftover = Range % uint32_t(IncValue);
320 
321     // If this is an equality comparison, we require that the strided value
322     // exactly land on the exit value, otherwise the IV condition will wrap
323     // around and do things the fp IV wouldn't.
324     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
325         Leftover != 0)
326       return false;
327 
328     // If the stride would wrap around the i32 before exiting, we can't
329     // transform the IV.
330     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
331       return false;
332   } else {
333     // If we have a negative stride, we require the init to be greater than the
334     // exit value.
335     if (InitValue <= ExitValue)
336       return false;
337 
338     uint32_t Range = uint32_t(InitValue-ExitValue);
339     // Check for infinite loop, either:
340     // while (i >= Exit) or until (i < Exit)
341     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
342       if (++Range == 0) return false;  // Range overflows.
343     }
344 
345     unsigned Leftover = Range % uint32_t(-IncValue);
346 
347     // If this is an equality comparison, we require that the strided value
348     // exactly land on the exit value, otherwise the IV condition will wrap
349     // around and do things the fp IV wouldn't.
350     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
351         Leftover != 0)
352       return false;
353 
354     // If the stride would wrap around the i32 before exiting, we can't
355     // transform the IV.
356     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
357       return false;
358   }
359 
360   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
361 
362   // Insert new integer induction variable.
363   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
364   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
365                       PN->getIncomingBlock(IncomingEdge));
366 
367   Value *NewAdd =
368     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
369                               Incr->getName()+".int", Incr);
370   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
371 
372   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
373                                       ConstantInt::get(Int32Ty, ExitValue),
374                                       Compare->getName());
375 
376   // In the following deletions, PN may become dead and may be deleted.
377   // Use a WeakTrackingVH to observe whether this happens.
378   WeakTrackingVH WeakPH = PN;
379 
380   // Delete the old floating point exit comparison.  The branch starts using the
381   // new comparison.
382   NewCompare->takeName(Compare);
383   Compare->replaceAllUsesWith(NewCompare);
384   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
385 
386   // Delete the old floating point increment.
387   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
388   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
389 
390   // If the FP induction variable still has uses, this is because something else
391   // in the loop uses its value.  In order to canonicalize the induction
392   // variable, we chose to eliminate the IV and rewrite it in terms of an
393   // int->fp cast.
394   //
395   // We give preference to sitofp over uitofp because it is faster on most
396   // platforms.
397   if (WeakPH) {
398     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
399                                  &*PN->getParent()->getFirstInsertionPt());
400     PN->replaceAllUsesWith(Conv);
401     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
402   }
403   return true;
404 }
405 
406 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
407   // First step.  Check to see if there are any floating-point recurrences.
408   // If there are, change them into integer recurrences, permitting analysis by
409   // the SCEV routines.
410   BasicBlock *Header = L->getHeader();
411 
412   SmallVector<WeakTrackingVH, 8> PHIs;
413   for (PHINode &PN : Header->phis())
414     PHIs.push_back(&PN);
415 
416   bool Changed = false;
417   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
418     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
419       Changed |= handleFloatingPointIV(L, PN);
420 
421   // If the loop previously had floating-point IV, ScalarEvolution
422   // may not have been able to compute a trip count. Now that we've done some
423   // re-writing, the trip count may be computable.
424   if (Changed)
425     SE->forgetLoop(L);
426   return Changed;
427 }
428 
429 //===---------------------------------------------------------------------===//
430 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
431 // they will exit at the first iteration.
432 //===---------------------------------------------------------------------===//
433 
434 /// Check to see if this loop has loop invariant conditions which lead to loop
435 /// exits. If so, we know that if the exit path is taken, it is at the first
436 /// loop iteration. This lets us predict exit values of PHI nodes that live in
437 /// loop header.
438 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
439   // Verify the input to the pass is already in LCSSA form.
440   assert(L->isLCSSAForm(*DT));
441 
442   SmallVector<BasicBlock *, 8> ExitBlocks;
443   L->getUniqueExitBlocks(ExitBlocks);
444 
445   bool MadeAnyChanges = false;
446   for (auto *ExitBB : ExitBlocks) {
447     // If there are no more PHI nodes in this exit block, then no more
448     // values defined inside the loop are used on this path.
449     for (PHINode &PN : ExitBB->phis()) {
450       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
451            IncomingValIdx != E; ++IncomingValIdx) {
452         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
453 
454         // Can we prove that the exit must run on the first iteration if it
455         // runs at all?  (i.e. early exits are fine for our purposes, but
456         // traces which lead to this exit being taken on the 2nd iteration
457         // aren't.)  Note that this is about whether the exit branch is
458         // executed, not about whether it is taken.
459         if (!L->getLoopLatch() ||
460             !DT->dominates(IncomingBB, L->getLoopLatch()))
461           continue;
462 
463         // Get condition that leads to the exit path.
464         auto *TermInst = IncomingBB->getTerminator();
465 
466         Value *Cond = nullptr;
467         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
468           // Must be a conditional branch, otherwise the block
469           // should not be in the loop.
470           Cond = BI->getCondition();
471         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
472           Cond = SI->getCondition();
473         else
474           continue;
475 
476         if (!L->isLoopInvariant(Cond))
477           continue;
478 
479         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
480 
481         // Only deal with PHIs in the loop header.
482         if (!ExitVal || ExitVal->getParent() != L->getHeader())
483           continue;
484 
485         // If ExitVal is a PHI on the loop header, then we know its
486         // value along this exit because the exit can only be taken
487         // on the first iteration.
488         auto *LoopPreheader = L->getLoopPreheader();
489         assert(LoopPreheader && "Invalid loop");
490         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
491         if (PreheaderIdx != -1) {
492           assert(ExitVal->getParent() == L->getHeader() &&
493                  "ExitVal must be in loop header");
494           MadeAnyChanges = true;
495           PN.setIncomingValue(IncomingValIdx,
496                               ExitVal->getIncomingValue(PreheaderIdx));
497         }
498       }
499     }
500   }
501   return MadeAnyChanges;
502 }
503 
504 //===----------------------------------------------------------------------===//
505 //  IV Widening - Extend the width of an IV to cover its widest uses.
506 //===----------------------------------------------------------------------===//
507 
508 /// Update information about the induction variable that is extended by this
509 /// sign or zero extend operation. This is used to determine the final width of
510 /// the IV before actually widening it.
511 static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
512                         ScalarEvolution *SE,
513                         const TargetTransformInfo *TTI) {
514   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
515   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
516     return;
517 
518   Type *Ty = Cast->getType();
519   uint64_t Width = SE->getTypeSizeInBits(Ty);
520   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
521     return;
522 
523   // Check that `Cast` actually extends the induction variable (we rely on this
524   // later).  This takes care of cases where `Cast` is extending a truncation of
525   // the narrow induction variable, and thus can end up being narrower than the
526   // "narrow" induction variable.
527   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
528   if (NarrowIVWidth >= Width)
529     return;
530 
531   // Cast is either an sext or zext up to this point.
532   // We should not widen an indvar if arithmetics on the wider indvar are more
533   // expensive than those on the narrower indvar. We check only the cost of ADD
534   // because at least an ADD is required to increment the induction variable. We
535   // could compute more comprehensively the cost of all instructions on the
536   // induction variable when necessary.
537   if (TTI &&
538       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
539           TTI->getArithmeticInstrCost(Instruction::Add,
540                                       Cast->getOperand(0)->getType())) {
541     return;
542   }
543 
544   if (!WI.WidestNativeType) {
545     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
546     WI.IsSigned = IsSigned;
547     return;
548   }
549 
550   // We extend the IV to satisfy the sign of its first user, arbitrarily.
551   if (WI.IsSigned != IsSigned)
552     return;
553 
554   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
555     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
556 }
557 
558 //===----------------------------------------------------------------------===//
559 //  Live IV Reduction - Minimize IVs live across the loop.
560 //===----------------------------------------------------------------------===//
561 
562 //===----------------------------------------------------------------------===//
563 //  Simplification of IV users based on SCEV evaluation.
564 //===----------------------------------------------------------------------===//
565 
566 namespace {
567 
568 class IndVarSimplifyVisitor : public IVVisitor {
569   ScalarEvolution *SE;
570   const TargetTransformInfo *TTI;
571   PHINode *IVPhi;
572 
573 public:
574   WideIVInfo WI;
575 
576   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
577                         const TargetTransformInfo *TTI,
578                         const DominatorTree *DTree)
579     : SE(SCEV), TTI(TTI), IVPhi(IV) {
580     DT = DTree;
581     WI.NarrowIV = IVPhi;
582   }
583 
584   // Implement the interface used by simplifyUsersOfIV.
585   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
586 };
587 
588 } // end anonymous namespace
589 
590 /// Iteratively perform simplification on a worklist of IV users. Each
591 /// successive simplification may push more users which may themselves be
592 /// candidates for simplification.
593 ///
594 /// Sign/Zero extend elimination is interleaved with IV simplification.
595 bool IndVarSimplify::simplifyAndExtend(Loop *L,
596                                        SCEVExpander &Rewriter,
597                                        LoopInfo *LI) {
598   SmallVector<WideIVInfo, 8> WideIVs;
599 
600   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
601           Intrinsic::getName(Intrinsic::experimental_guard));
602   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
603 
604   SmallVector<PHINode*, 8> LoopPhis;
605   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
606     LoopPhis.push_back(cast<PHINode>(I));
607   }
608   // Each round of simplification iterates through the SimplifyIVUsers worklist
609   // for all current phis, then determines whether any IVs can be
610   // widened. Widening adds new phis to LoopPhis, inducing another round of
611   // simplification on the wide IVs.
612   bool Changed = false;
613   while (!LoopPhis.empty()) {
614     // Evaluate as many IV expressions as possible before widening any IVs. This
615     // forces SCEV to set no-wrap flags before evaluating sign/zero
616     // extension. The first time SCEV attempts to normalize sign/zero extension,
617     // the result becomes final. So for the most predictable results, we delay
618     // evaluation of sign/zero extend evaluation until needed, and avoid running
619     // other SCEV based analysis prior to simplifyAndExtend.
620     do {
621       PHINode *CurrIV = LoopPhis.pop_back_val();
622 
623       // Information about sign/zero extensions of CurrIV.
624       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
625 
626       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
627                                    &Visitor);
628 
629       if (Visitor.WI.WidestNativeType) {
630         WideIVs.push_back(Visitor.WI);
631       }
632     } while(!LoopPhis.empty());
633 
634     // Continue if we disallowed widening.
635     if (!WidenIndVars)
636       continue;
637 
638     for (; !WideIVs.empty(); WideIVs.pop_back()) {
639       unsigned ElimExt;
640       unsigned Widened;
641       if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
642                                           DT, DeadInsts, ElimExt, Widened,
643                                           HasGuards, UsePostIncrementRanges)) {
644         NumElimExt += ElimExt;
645         NumWidened += Widened;
646         Changed = true;
647         LoopPhis.push_back(WidePhi);
648       }
649     }
650   }
651   return Changed;
652 }
653 
654 //===----------------------------------------------------------------------===//
655 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
656 //===----------------------------------------------------------------------===//
657 
658 /// Given an Value which is hoped to be part of an add recurance in the given
659 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
660 /// that this is less general than SCEVs AddRec checking.
661 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
662   Instruction *IncI = dyn_cast<Instruction>(IncV);
663   if (!IncI)
664     return nullptr;
665 
666   switch (IncI->getOpcode()) {
667   case Instruction::Add:
668   case Instruction::Sub:
669     break;
670   case Instruction::GetElementPtr:
671     // An IV counter must preserve its type.
672     if (IncI->getNumOperands() == 2)
673       break;
674     LLVM_FALLTHROUGH;
675   default:
676     return nullptr;
677   }
678 
679   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
680   if (Phi && Phi->getParent() == L->getHeader()) {
681     if (L->isLoopInvariant(IncI->getOperand(1)))
682       return Phi;
683     return nullptr;
684   }
685   if (IncI->getOpcode() == Instruction::GetElementPtr)
686     return nullptr;
687 
688   // Allow add/sub to be commuted.
689   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
690   if (Phi && Phi->getParent() == L->getHeader()) {
691     if (L->isLoopInvariant(IncI->getOperand(0)))
692       return Phi;
693   }
694   return nullptr;
695 }
696 
697 /// Whether the current loop exit test is based on this value.  Currently this
698 /// is limited to a direct use in the loop condition.
699 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
700   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
701   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
702   // TODO: Allow non-icmp loop test.
703   if (!ICmp)
704     return false;
705 
706   // TODO: Allow indirect use.
707   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
708 }
709 
710 /// linearFunctionTestReplace policy. Return true unless we can show that the
711 /// current exit test is already sufficiently canonical.
712 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
713   assert(L->getLoopLatch() && "Must be in simplified form");
714 
715   // Avoid converting a constant or loop invariant test back to a runtime
716   // test.  This is critical for when SCEV's cached ExitCount is less precise
717   // than the current IR (such as after we've proven a particular exit is
718   // actually dead and thus the BE count never reaches our ExitCount.)
719   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
720   if (L->isLoopInvariant(BI->getCondition()))
721     return false;
722 
723   // Do LFTR to simplify the exit condition to an ICMP.
724   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
725   if (!Cond)
726     return true;
727 
728   // Do LFTR to simplify the exit ICMP to EQ/NE
729   ICmpInst::Predicate Pred = Cond->getPredicate();
730   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
731     return true;
732 
733   // Look for a loop invariant RHS
734   Value *LHS = Cond->getOperand(0);
735   Value *RHS = Cond->getOperand(1);
736   if (!L->isLoopInvariant(RHS)) {
737     if (!L->isLoopInvariant(LHS))
738       return true;
739     std::swap(LHS, RHS);
740   }
741   // Look for a simple IV counter LHS
742   PHINode *Phi = dyn_cast<PHINode>(LHS);
743   if (!Phi)
744     Phi = getLoopPhiForCounter(LHS, L);
745 
746   if (!Phi)
747     return true;
748 
749   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
750   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
751   if (Idx < 0)
752     return true;
753 
754   // Do LFTR if the exit condition's IV is *not* a simple counter.
755   Value *IncV = Phi->getIncomingValue(Idx);
756   return Phi != getLoopPhiForCounter(IncV, L);
757 }
758 
759 /// Return true if undefined behavior would provable be executed on the path to
760 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
761 /// anything about whether OnPathTo is actually executed or whether Root is
762 /// actually poison.  This can be used to assess whether a new use of Root can
763 /// be added at a location which is control equivalent with OnPathTo (such as
764 /// immediately before it) without introducing UB which didn't previously
765 /// exist.  Note that a false result conveys no information.
766 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
767                                           Instruction *OnPathTo,
768                                           DominatorTree *DT) {
769   // Basic approach is to assume Root is poison, propagate poison forward
770   // through all users we can easily track, and then check whether any of those
771   // users are provable UB and must execute before out exiting block might
772   // exit.
773 
774   // The set of all recursive users we've visited (which are assumed to all be
775   // poison because of said visit)
776   SmallSet<const Value *, 16> KnownPoison;
777   SmallVector<const Instruction*, 16> Worklist;
778   Worklist.push_back(Root);
779   while (!Worklist.empty()) {
780     const Instruction *I = Worklist.pop_back_val();
781 
782     // If we know this must trigger UB on a path leading our target.
783     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
784       return true;
785 
786     // If we can't analyze propagation through this instruction, just skip it
787     // and transitive users.  Safe as false is a conservative result.
788     if (!propagatesPoison(cast<Operator>(I)) && I != Root)
789       continue;
790 
791     if (KnownPoison.insert(I).second)
792       for (const User *User : I->users())
793         Worklist.push_back(cast<Instruction>(User));
794   }
795 
796   // Might be non-UB, or might have a path we couldn't prove must execute on
797   // way to exiting bb.
798   return false;
799 }
800 
801 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
802 /// down to checking that all operands are constant and listing instructions
803 /// that may hide undef.
804 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
805                                unsigned Depth) {
806   if (isa<Constant>(V))
807     return !isa<UndefValue>(V);
808 
809   if (Depth >= 6)
810     return false;
811 
812   // Conservatively handle non-constant non-instructions. For example, Arguments
813   // may be undef.
814   Instruction *I = dyn_cast<Instruction>(V);
815   if (!I)
816     return false;
817 
818   // Load and return values may be undef.
819   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
820     return false;
821 
822   // Optimistically handle other instructions.
823   for (Value *Op : I->operands()) {
824     if (!Visited.insert(Op).second)
825       continue;
826     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
827       return false;
828   }
829   return true;
830 }
831 
832 /// Return true if the given value is concrete. We must prove that undef can
833 /// never reach it.
834 ///
835 /// TODO: If we decide that this is a good approach to checking for undef, we
836 /// may factor it into a common location.
837 static bool hasConcreteDef(Value *V) {
838   SmallPtrSet<Value*, 8> Visited;
839   Visited.insert(V);
840   return hasConcreteDefImpl(V, Visited, 0);
841 }
842 
843 /// Return true if this IV has any uses other than the (soon to be rewritten)
844 /// loop exit test.
845 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
846   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
847   Value *IncV = Phi->getIncomingValue(LatchIdx);
848 
849   for (User *U : Phi->users())
850     if (U != Cond && U != IncV) return false;
851 
852   for (User *U : IncV->users())
853     if (U != Cond && U != Phi) return false;
854   return true;
855 }
856 
857 /// Return true if the given phi is a "counter" in L.  A counter is an
858 /// add recurance (of integer or pointer type) with an arbitrary start, and a
859 /// step of 1.  Note that L must have exactly one latch.
860 static bool isLoopCounter(PHINode* Phi, Loop *L,
861                           ScalarEvolution *SE) {
862   assert(Phi->getParent() == L->getHeader());
863   assert(L->getLoopLatch());
864 
865   if (!SE->isSCEVable(Phi->getType()))
866     return false;
867 
868   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
869   if (!AR || AR->getLoop() != L || !AR->isAffine())
870     return false;
871 
872   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
873   if (!Step || !Step->isOne())
874     return false;
875 
876   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
877   Value *IncV = Phi->getIncomingValue(LatchIdx);
878   return (getLoopPhiForCounter(IncV, L) == Phi);
879 }
880 
881 /// Search the loop header for a loop counter (anadd rec w/step of one)
882 /// suitable for use by LFTR.  If multiple counters are available, select the
883 /// "best" one based profitable heuristics.
884 ///
885 /// BECount may be an i8* pointer type. The pointer difference is already
886 /// valid count without scaling the address stride, so it remains a pointer
887 /// expression as far as SCEV is concerned.
888 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
889                                 const SCEV *BECount,
890                                 ScalarEvolution *SE, DominatorTree *DT) {
891   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
892 
893   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
894 
895   // Loop over all of the PHI nodes, looking for a simple counter.
896   PHINode *BestPhi = nullptr;
897   const SCEV *BestInit = nullptr;
898   BasicBlock *LatchBlock = L->getLoopLatch();
899   assert(LatchBlock && "Must be in simplified form");
900   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
901 
902   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
903     PHINode *Phi = cast<PHINode>(I);
904     if (!isLoopCounter(Phi, L, SE))
905       continue;
906 
907     // Avoid comparing an integer IV against a pointer Limit.
908     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
909       continue;
910 
911     const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
912 
913     // AR may be a pointer type, while BECount is an integer type.
914     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
915     // AR may not be a narrower type, or we may never exit.
916     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
917     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
918       continue;
919 
920     // Avoid reusing a potentially undef value to compute other values that may
921     // have originally had a concrete definition.
922     if (!hasConcreteDef(Phi)) {
923       // We explicitly allow unknown phis as long as they are already used by
924       // the loop exit test.  This is legal since performing LFTR could not
925       // increase the number of undef users.
926       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
927       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
928           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
929         continue;
930     }
931 
932     // Avoid introducing undefined behavior due to poison which didn't exist in
933     // the original program.  (Annoyingly, the rules for poison and undef
934     // propagation are distinct, so this does NOT cover the undef case above.)
935     // We have to ensure that we don't introduce UB by introducing a use on an
936     // iteration where said IV produces poison.  Our strategy here differs for
937     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
938     // see code in linearFunctionTestReplace.  For pointers, we restrict
939     // transforms as there is no good way to reinfer inbounds once lost.
940     if (!Phi->getType()->isIntegerTy() &&
941         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
942       continue;
943 
944     const SCEV *Init = AR->getStart();
945 
946     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
947       // Don't force a live loop counter if another IV can be used.
948       if (AlmostDeadIV(Phi, LatchBlock, Cond))
949         continue;
950 
951       // Prefer to count-from-zero. This is a more "canonical" counter form. It
952       // also prefers integer to pointer IVs.
953       if (BestInit->isZero() != Init->isZero()) {
954         if (BestInit->isZero())
955           continue;
956       }
957       // If two IVs both count from zero or both count from nonzero then the
958       // narrower is likely a dead phi that has been widened. Use the wider phi
959       // to allow the other to be eliminated.
960       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
961         continue;
962     }
963     BestPhi = Phi;
964     BestInit = Init;
965   }
966   return BestPhi;
967 }
968 
969 /// Insert an IR expression which computes the value held by the IV IndVar
970 /// (which must be an loop counter w/unit stride) after the backedge of loop L
971 /// is taken ExitCount times.
972 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
973                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
974                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
975   assert(isLoopCounter(IndVar, L, SE));
976   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
977   const SCEV *IVInit = AR->getStart();
978 
979   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
980   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
981   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
982   // the existing GEPs whenever possible.
983   if (IndVar->getType()->isPointerTy() &&
984       !ExitCount->getType()->isPointerTy()) {
985     // IVOffset will be the new GEP offset that is interpreted by GEP as a
986     // signed value. ExitCount on the other hand represents the loop trip count,
987     // which is an unsigned value. FindLoopCounter only allows induction
988     // variables that have a positive unit stride of one. This means we don't
989     // have to handle the case of negative offsets (yet) and just need to zero
990     // extend ExitCount.
991     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
992     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
993     if (UsePostInc)
994       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
995 
996     // Expand the code for the iteration count.
997     assert(SE->isLoopInvariant(IVOffset, L) &&
998            "Computed iteration count is not loop invariant!");
999 
1000     // We could handle pointer IVs other than i8*, but we need to compensate for
1001     // gep index scaling.
1002     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1003                              cast<PointerType>(IndVar->getType())
1004                                  ->getElementType())->isOne() &&
1005            "unit stride pointer IV must be i8*");
1006 
1007     const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
1008     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1009     return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
1010   } else {
1011     // In any other case, convert both IVInit and ExitCount to integers before
1012     // comparing. This may result in SCEV expansion of pointers, but in practice
1013     // SCEV will fold the pointer arithmetic away as such:
1014     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1015     //
1016     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1017     // for simple memset-style loops.
1018     //
1019     // IVInit integer and ExitCount pointer would only occur if a canonical IV
1020     // were generated on top of case #2, which is not expected.
1021 
1022     assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1023     // For unit stride, IVCount = Start + ExitCount with 2's complement
1024     // overflow.
1025 
1026     // For integer IVs, truncate the IV before computing IVInit + BECount,
1027     // unless we know apriori that the limit must be a constant when evaluated
1028     // in the bitwidth of the IV.  We prefer (potentially) keeping a truncate
1029     // of the IV in the loop over a (potentially) expensive expansion of the
1030     // widened exit count add(zext(add)) expression.
1031     if (SE->getTypeSizeInBits(IVInit->getType())
1032         > SE->getTypeSizeInBits(ExitCount->getType())) {
1033       if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
1034         ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
1035       else
1036         IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
1037     }
1038 
1039     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
1040 
1041     if (UsePostInc)
1042       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
1043 
1044     // Expand the code for the iteration count.
1045     assert(SE->isLoopInvariant(IVLimit, L) &&
1046            "Computed iteration count is not loop invariant!");
1047     // Ensure that we generate the same type as IndVar, or a smaller integer
1048     // type. In the presence of null pointer values, we have an integer type
1049     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1050     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
1051       IndVar->getType() : ExitCount->getType();
1052     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1053     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1054   }
1055 }
1056 
1057 /// This method rewrites the exit condition of the loop to be a canonical !=
1058 /// comparison against the incremented loop induction variable.  This pass is
1059 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1060 /// determine a loop-invariant trip count of the loop, which is actually a much
1061 /// broader range than just linear tests.
1062 bool IndVarSimplify::
1063 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
1064                           const SCEV *ExitCount,
1065                           PHINode *IndVar, SCEVExpander &Rewriter) {
1066   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
1067   assert(isLoopCounter(IndVar, L, SE));
1068   Instruction * const IncVar =
1069     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
1070 
1071   // Initialize CmpIndVar to the preincremented IV.
1072   Value *CmpIndVar = IndVar;
1073   bool UsePostInc = false;
1074 
1075   // If the exiting block is the same as the backedge block, we prefer to
1076   // compare against the post-incremented value, otherwise we must compare
1077   // against the preincremented value.
1078   if (ExitingBB == L->getLoopLatch()) {
1079     // For pointer IVs, we chose to not strip inbounds which requires us not
1080     // to add a potentially UB introducing use.  We need to either a) show
1081     // the loop test we're modifying is already in post-inc form, or b) show
1082     // that adding a use must not introduce UB.
1083     bool SafeToPostInc =
1084         IndVar->getType()->isIntegerTy() ||
1085         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
1086         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
1087     if (SafeToPostInc) {
1088       UsePostInc = true;
1089       CmpIndVar = IncVar;
1090     }
1091   }
1092 
1093   // It may be necessary to drop nowrap flags on the incrementing instruction
1094   // if either LFTR moves from a pre-inc check to a post-inc check (in which
1095   // case the increment might have previously been poison on the last iteration
1096   // only) or if LFTR switches to a different IV that was previously dynamically
1097   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
1098   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
1099   // check), because the pre-inc addrec flags may be adopted from the original
1100   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
1101   // TODO: This handling is inaccurate for one case: If we switch to a
1102   // dynamically dead IV that wraps on the first loop iteration only, which is
1103   // not covered by the post-inc addrec. (If the new IV was not dynamically
1104   // dead, it could not be poison on the first iteration in the first place.)
1105   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
1106     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
1107     if (BO->hasNoUnsignedWrap())
1108       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
1109     if (BO->hasNoSignedWrap())
1110       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
1111   }
1112 
1113   Value *ExitCnt = genLoopLimit(
1114       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1115   assert(ExitCnt->getType()->isPointerTy() ==
1116              IndVar->getType()->isPointerTy() &&
1117          "genLoopLimit missed a cast");
1118 
1119   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1120   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1121   ICmpInst::Predicate P;
1122   if (L->contains(BI->getSuccessor(0)))
1123     P = ICmpInst::ICMP_NE;
1124   else
1125     P = ICmpInst::ICMP_EQ;
1126 
1127   IRBuilder<> Builder(BI);
1128 
1129   // The new loop exit condition should reuse the debug location of the
1130   // original loop exit condition.
1131   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
1132     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
1133 
1134   // For integer IVs, if we evaluated the limit in the narrower bitwidth to
1135   // avoid the expensive expansion of the limit expression in the wider type,
1136   // emit a truncate to narrow the IV to the ExitCount type.  This is safe
1137   // since we know (from the exit count bitwidth), that we can't self-wrap in
1138   // the narrower type.
1139   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1140   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1141   if (CmpIndVarSize > ExitCntSize) {
1142     assert(!CmpIndVar->getType()->isPointerTy() &&
1143            !ExitCnt->getType()->isPointerTy());
1144 
1145     // Before resorting to actually inserting the truncate, use the same
1146     // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
1147     // the other side of the comparison instead.  We still evaluate the limit
1148     // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
1149     // a truncate within in.
1150     bool Extended = false;
1151     const SCEV *IV = SE->getSCEV(CmpIndVar);
1152     const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
1153                                                   ExitCnt->getType());
1154     const SCEV *ZExtTrunc =
1155       SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
1156 
1157     if (ZExtTrunc == IV) {
1158       Extended = true;
1159       ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
1160                                    "wide.trip.count");
1161     } else {
1162       const SCEV *SExtTrunc =
1163         SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
1164       if (SExtTrunc == IV) {
1165         Extended = true;
1166         ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
1167                                      "wide.trip.count");
1168       }
1169     }
1170 
1171     if (Extended) {
1172       bool Discard;
1173       L->makeLoopInvariant(ExitCnt, Discard);
1174     } else
1175       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1176                                       "lftr.wideiv");
1177   }
1178   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1179                     << "      LHS:" << *CmpIndVar << '\n'
1180                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
1181                     << "\n"
1182                     << "      RHS:\t" << *ExitCnt << "\n"
1183                     << "ExitCount:\t" << *ExitCount << "\n"
1184                     << "  was: " << *BI->getCondition() << "\n");
1185 
1186   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1187   Value *OrigCond = BI->getCondition();
1188   // It's tempting to use replaceAllUsesWith here to fully replace the old
1189   // comparison, but that's not immediately safe, since users of the old
1190   // comparison may not be dominated by the new comparison. Instead, just
1191   // update the branch to use the new comparison; in the common case this
1192   // will make old comparison dead.
1193   BI->setCondition(Cond);
1194   DeadInsts.emplace_back(OrigCond);
1195 
1196   ++NumLFTR;
1197   return true;
1198 }
1199 
1200 //===----------------------------------------------------------------------===//
1201 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1202 //===----------------------------------------------------------------------===//
1203 
1204 /// If there's a single exit block, sink any loop-invariant values that
1205 /// were defined in the preheader but not used inside the loop into the
1206 /// exit block to reduce register pressure in the loop.
1207 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1208   BasicBlock *ExitBlock = L->getExitBlock();
1209   if (!ExitBlock) return false;
1210 
1211   BasicBlock *Preheader = L->getLoopPreheader();
1212   if (!Preheader) return false;
1213 
1214   bool MadeAnyChanges = false;
1215   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
1216   BasicBlock::iterator I(Preheader->getTerminator());
1217   while (I != Preheader->begin()) {
1218     --I;
1219     // New instructions were inserted at the end of the preheader.
1220     if (isa<PHINode>(I))
1221       break;
1222 
1223     // Don't move instructions which might have side effects, since the side
1224     // effects need to complete before instructions inside the loop.  Also don't
1225     // move instructions which might read memory, since the loop may modify
1226     // memory. Note that it's okay if the instruction might have undefined
1227     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1228     // block.
1229     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1230       continue;
1231 
1232     // Skip debug info intrinsics.
1233     if (isa<DbgInfoIntrinsic>(I))
1234       continue;
1235 
1236     // Skip eh pad instructions.
1237     if (I->isEHPad())
1238       continue;
1239 
1240     // Don't sink alloca: we never want to sink static alloca's out of the
1241     // entry block, and correctly sinking dynamic alloca's requires
1242     // checks for stacksave/stackrestore intrinsics.
1243     // FIXME: Refactor this check somehow?
1244     if (isa<AllocaInst>(I))
1245       continue;
1246 
1247     // Determine if there is a use in or before the loop (direct or
1248     // otherwise).
1249     bool UsedInLoop = false;
1250     for (Use &U : I->uses()) {
1251       Instruction *User = cast<Instruction>(U.getUser());
1252       BasicBlock *UseBB = User->getParent();
1253       if (PHINode *P = dyn_cast<PHINode>(User)) {
1254         unsigned i =
1255           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1256         UseBB = P->getIncomingBlock(i);
1257       }
1258       if (UseBB == Preheader || L->contains(UseBB)) {
1259         UsedInLoop = true;
1260         break;
1261       }
1262     }
1263 
1264     // If there is, the def must remain in the preheader.
1265     if (UsedInLoop)
1266       continue;
1267 
1268     // Otherwise, sink it to the exit block.
1269     Instruction *ToMove = &*I;
1270     bool Done = false;
1271 
1272     if (I != Preheader->begin()) {
1273       // Skip debug info intrinsics.
1274       do {
1275         --I;
1276       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1277 
1278       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1279         Done = true;
1280     } else {
1281       Done = true;
1282     }
1283 
1284     MadeAnyChanges = true;
1285     ToMove->moveBefore(*ExitBlock, InsertPt);
1286     if (Done) break;
1287     InsertPt = ToMove->getIterator();
1288   }
1289 
1290   return MadeAnyChanges;
1291 }
1292 
1293 enum ExitCondAnalysisResult {
1294   CanBeRemoved,
1295   CanBeReplacedWithInvariant,
1296   CannotOptimize
1297 };
1298 
1299 /// If the condition of BI is trivially true during at least first MaxIter
1300 /// iterations, return CanBeRemoved.
1301 /// If the condition is equivalent to loop-invariant condition expressed as
1302 /// 'InvariantLHS `InvariantPred` InvariantRHS', fill them into respective
1303 /// output parameters and return CanBeReplacedWithInvariant.
1304 /// Otherwise, return CannotOptimize.
1305 static ExitCondAnalysisResult
1306 analyzeCond(const Loop *L, BranchInst *BI, ScalarEvolution *SE,
1307             bool ProvingLoopExit, const SCEV *MaxIter,
1308             ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
1309             const SCEV *&InvariantRHS) {
1310   ICmpInst::Predicate Pred;
1311   Value *LHS, *RHS;
1312   using namespace PatternMatch;
1313   BasicBlock *TrueSucc, *FalseSucc;
1314   if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
1315                       m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc))))
1316     return CannotOptimize;
1317 
1318   assert((L->contains(TrueSucc) != L->contains(FalseSucc)) &&
1319          "Not a loop exit!");
1320 
1321   // 'LHS pred RHS' should now mean that we stay in loop.
1322   if (L->contains(FalseSucc))
1323     Pred = CmpInst::getInversePredicate(Pred);
1324 
1325   // If we are proving loop exit, invert the predicate.
1326   if (ProvingLoopExit)
1327     Pred = CmpInst::getInversePredicate(Pred);
1328 
1329   const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
1330   const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
1331   // Can we prove it to be trivially true?
1332   if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI))
1333     return CanBeRemoved;
1334 
1335   if (ProvingLoopExit)
1336     return CannotOptimize;
1337 
1338   // Check if there is a loop-invariant predicate equivalent to our check.
1339   auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS,
1340                                                                L, BI, MaxIter);
1341   if (!LIP)
1342     return CannotOptimize;
1343   InvariantPred = LIP->Pred;
1344   InvariantLHS = LIP->LHS;
1345   InvariantRHS = LIP->RHS;
1346 
1347   // Can we prove it to be trivially true?
1348   if (SE->isKnownPredicateAt(InvariantPred, InvariantLHS, InvariantRHS, BI))
1349     return CanBeRemoved;
1350   return CanBeReplacedWithInvariant;
1351 }
1352 
1353 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
1354   SmallVector<BasicBlock*, 16> ExitingBlocks;
1355   L->getExitingBlocks(ExitingBlocks);
1356 
1357   // Remove all exits which aren't both rewriteable and execute on every
1358   // iteration.
1359   auto NewEnd = llvm::remove_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1360     // If our exitting block exits multiple loops, we can only rewrite the
1361     // innermost one.  Otherwise, we're changing how many times the innermost
1362     // loop runs before it exits.
1363     if (LI->getLoopFor(ExitingBB) != L)
1364       return true;
1365 
1366     // Can't rewrite non-branch yet.
1367     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1368     if (!BI)
1369       return true;
1370 
1371     // If already constant, nothing to do.
1372     if (isa<Constant>(BI->getCondition()))
1373       return true;
1374 
1375     // Likewise, the loop latch must be dominated by the exiting BB.
1376     if (!DT->dominates(ExitingBB, L->getLoopLatch()))
1377       return true;
1378 
1379     return false;
1380   });
1381   ExitingBlocks.erase(NewEnd, ExitingBlocks.end());
1382 
1383   if (ExitingBlocks.empty())
1384     return false;
1385 
1386   // Get a symbolic upper bound on the loop backedge taken count.
1387   const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L);
1388   if (isa<SCEVCouldNotCompute>(MaxExitCount))
1389     return false;
1390 
1391   // Visit our exit blocks in order of dominance. We know from the fact that
1392   // all exits must dominate the latch, so there is a total dominance order
1393   // between them.
1394   llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
1395                // std::sort sorts in ascending order, so we want the inverse of
1396                // the normal dominance relation.
1397                if (A == B) return false;
1398                if (DT->properlyDominates(A, B))
1399                  return true;
1400                else {
1401                  assert(DT->properlyDominates(B, A) &&
1402                         "expected total dominance order!");
1403                  return false;
1404                }
1405   });
1406 #ifdef ASSERT
1407   for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
1408     assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
1409   }
1410 #endif
1411 
1412   auto ReplaceExitCond = [&](BranchInst *BI, Value *NewCond) {
1413     auto *OldCond = BI->getCondition();
1414     BI->setCondition(NewCond);
1415     if (OldCond->use_empty())
1416       DeadInsts.emplace_back(OldCond);
1417   };
1418 
1419   auto FoldExit = [&](BasicBlock *ExitingBB, bool IsTaken) {
1420     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1421     bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1422     auto *OldCond = BI->getCondition();
1423     auto *NewCond = ConstantInt::get(OldCond->getType(),
1424                                      IsTaken ? ExitIfTrue : !ExitIfTrue);
1425     ReplaceExitCond(BI, NewCond);
1426   };
1427 
1428   auto ReplaceWithInvariantCond = [&](
1429       BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred,
1430       const SCEV *InvariantLHS, const SCEV *InvariantRHS) {
1431     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1432     Rewriter.setInsertPoint(BI);
1433     auto *LHSV = Rewriter.expandCodeFor(InvariantLHS);
1434     auto *RHSV = Rewriter.expandCodeFor(InvariantRHS);
1435     bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1436     if (ExitIfTrue)
1437       InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
1438     IRBuilder<> Builder(BI);
1439     auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV,
1440                                        BI->getCondition()->getName());
1441     ReplaceExitCond(BI, NewCond);
1442   };
1443 
1444   bool Changed = false;
1445   bool SkipLastIter = false;
1446   SmallSet<const SCEV*, 8> DominatingExitCounts;
1447   for (BasicBlock *ExitingBB : ExitingBlocks) {
1448     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1449     if (isa<SCEVCouldNotCompute>(ExitCount)) {
1450       // Okay, we do not know the exit count here. Can we at least prove that it
1451       // will remain the same within iteration space?
1452       auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1453       auto OptimizeCond = [this, L, BI, ExitingBB, MaxExitCount, &FoldExit,
1454                            &ReplaceWithInvariantCond](bool Inverted,
1455                                                       bool SkipLastIter) {
1456         const SCEV *MaxIter = MaxExitCount;
1457         if (SkipLastIter) {
1458           const SCEV *One = SE->getOne(MaxIter->getType());
1459           MaxIter = SE->getMinusSCEV(MaxIter, One);
1460         }
1461         ICmpInst::Predicate InvariantPred;
1462         const SCEV *InvariantLHS, *InvariantRHS;
1463         switch (analyzeCond(L, BI, SE, Inverted, MaxIter, InvariantPred,
1464                             InvariantLHS, InvariantRHS)) {
1465         case CanBeRemoved:
1466           FoldExit(ExitingBB, Inverted);
1467           return true;
1468         case CanBeReplacedWithInvariant: {
1469           ReplaceWithInvariantCond(ExitingBB, InvariantPred, InvariantLHS,
1470                                    InvariantRHS);
1471           return true;
1472         }
1473         case CannotOptimize:
1474           return false;
1475         }
1476         llvm_unreachable("Unknown case!");
1477       };
1478 
1479       // TODO: We might have proved that we can skip the last iteration for
1480       // this check. In this case, we only want to check the condition on the
1481       // pre-last iteration (MaxExitCount - 1). However, there is a nasty
1482       // corner case:
1483       //
1484       //   for (i = len; i != 0; i--) { ... check (i ult X) ... }
1485       //
1486       // If we could not prove that len != 0, then we also could not prove that
1487       // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
1488       // OptimizeCond will likely not prove anything for it, even if it could
1489       // prove the same fact for len.
1490       //
1491       // As a temporary solution, we query both last and pre-last iterations in
1492       // hope that we will be able to prove triviality for at least one of
1493       // them. We can stop querying MaxExitCount for this case once SCEV
1494       // understands that (MaxExitCount - 1) will not overflow here.
1495       if (OptimizeCond(false, false) || OptimizeCond(true, false))
1496         Changed = true;
1497       else if (SkipLastIter)
1498         if (OptimizeCond(false, true) || OptimizeCond(true, true))
1499           Changed = true;
1500       continue;
1501     }
1502 
1503     if (MaxExitCount == ExitCount)
1504       // If the loop has more than 1 iteration, all further checks will be
1505       // executed 1 iteration less.
1506       SkipLastIter = true;
1507 
1508     // If we know we'd exit on the first iteration, rewrite the exit to
1509     // reflect this.  This does not imply the loop must exit through this
1510     // exit; there may be an earlier one taken on the first iteration.
1511     // TODO: Given we know the backedge can't be taken, we should go ahead
1512     // and break it.  Or at least, kill all the header phis and simplify.
1513     if (ExitCount->isZero()) {
1514       FoldExit(ExitingBB, true);
1515       Changed = true;
1516       continue;
1517     }
1518 
1519     // If we end up with a pointer exit count, bail.  Note that we can end up
1520     // with a pointer exit count for one exiting block, and not for another in
1521     // the same loop.
1522     if (!ExitCount->getType()->isIntegerTy() ||
1523         !MaxExitCount->getType()->isIntegerTy())
1524       continue;
1525 
1526     Type *WiderType =
1527       SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
1528     ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
1529     MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
1530     assert(MaxExitCount->getType() == ExitCount->getType());
1531 
1532     // Can we prove that some other exit must be taken strictly before this
1533     // one?
1534     if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
1535                                      MaxExitCount, ExitCount)) {
1536       FoldExit(ExitingBB, false);
1537       Changed = true;
1538       continue;
1539     }
1540 
1541     // As we run, keep track of which exit counts we've encountered.  If we
1542     // find a duplicate, we've found an exit which would have exited on the
1543     // exiting iteration, but (from the visit order) strictly follows another
1544     // which does the same and is thus dead.
1545     if (!DominatingExitCounts.insert(ExitCount).second) {
1546       FoldExit(ExitingBB, false);
1547       Changed = true;
1548       continue;
1549     }
1550 
1551     // TODO: There might be another oppurtunity to leverage SCEV's reasoning
1552     // here.  If we kept track of the min of dominanting exits so far, we could
1553     // discharge exits with EC >= MDEC. This is less powerful than the existing
1554     // transform (since later exits aren't considered), but potentially more
1555     // powerful for any case where SCEV can prove a >=u b, but neither a == b
1556     // or a >u b.  Such a case is not currently known.
1557   }
1558   return Changed;
1559 }
1560 
1561 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1562   SmallVector<BasicBlock*, 16> ExitingBlocks;
1563   L->getExitingBlocks(ExitingBlocks);
1564 
1565   // Finally, see if we can rewrite our exit conditions into a loop invariant
1566   // form. If we have a read-only loop, and we can tell that we must exit down
1567   // a path which does not need any of the values computed within the loop, we
1568   // can rewrite the loop to exit on the first iteration.  Note that this
1569   // doesn't either a) tell us the loop exits on the first iteration (unless
1570   // *all* exits are predicateable) or b) tell us *which* exit might be taken.
1571   // This transformation looks a lot like a restricted form of dead loop
1572   // elimination, but restricted to read-only loops and without neccesssarily
1573   // needing to kill the loop entirely.
1574   if (!LoopPredication)
1575     return false;
1576 
1577   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1578     return false;
1579 
1580   // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
1581   // through *explicit* control flow.  We have to eliminate the possibility of
1582   // implicit exits (see below) before we know it's truly exact.
1583   const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1584   if (isa<SCEVCouldNotCompute>(ExactBTC) ||
1585       !SE->isLoopInvariant(ExactBTC, L) ||
1586       !isSafeToExpand(ExactBTC, *SE))
1587     return false;
1588 
1589   // If we end up with a pointer exit count, bail.  It may be unsized.
1590   if (!ExactBTC->getType()->isIntegerTy())
1591     return false;
1592 
1593   auto BadExit = [&](BasicBlock *ExitingBB) {
1594     // If our exiting block exits multiple loops, we can only rewrite the
1595     // innermost one.  Otherwise, we're changing how many times the innermost
1596     // loop runs before it exits.
1597     if (LI->getLoopFor(ExitingBB) != L)
1598       return true;
1599 
1600     // Can't rewrite non-branch yet.
1601     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1602     if (!BI)
1603       return true;
1604 
1605     // If already constant, nothing to do.
1606     if (isa<Constant>(BI->getCondition()))
1607       return true;
1608 
1609     // If the exit block has phis, we need to be able to compute the values
1610     // within the loop which contains them.  This assumes trivially lcssa phis
1611     // have already been removed; TODO: generalize
1612     BasicBlock *ExitBlock =
1613     BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
1614     if (!ExitBlock->phis().empty())
1615       return true;
1616 
1617     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1618     assert(!isa<SCEVCouldNotCompute>(ExactBTC) && "implied by having exact trip count");
1619     if (!SE->isLoopInvariant(ExitCount, L) ||
1620         !isSafeToExpand(ExitCount, *SE))
1621       return true;
1622 
1623     // If we end up with a pointer exit count, bail.  It may be unsized.
1624     if (!ExitCount->getType()->isIntegerTy())
1625       return true;
1626 
1627     return false;
1628   };
1629 
1630   // If we have any exits which can't be predicated themselves, than we can't
1631   // predicate any exit which isn't guaranteed to execute before it.  Consider
1632   // two exits (a) and (b) which would both exit on the same iteration.  If we
1633   // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
1634   // we could convert a loop from exiting through (a) to one exiting through
1635   // (b).  Note that this problem exists only for exits with the same exit
1636   // count, and we could be more aggressive when exit counts are known inequal.
1637   llvm::sort(ExitingBlocks,
1638             [&](BasicBlock *A, BasicBlock *B) {
1639               // std::sort sorts in ascending order, so we want the inverse of
1640               // the normal dominance relation, plus a tie breaker for blocks
1641               // unordered by dominance.
1642               if (DT->properlyDominates(A, B)) return true;
1643               if (DT->properlyDominates(B, A)) return false;
1644               return A->getName() < B->getName();
1645             });
1646   // Check to see if our exit blocks are a total order (i.e. a linear chain of
1647   // exits before the backedge).  If they aren't, reasoning about reachability
1648   // is complicated and we choose not to for now.
1649   for (unsigned i = 1; i < ExitingBlocks.size(); i++)
1650     if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
1651       return false;
1652 
1653   // Given our sorted total order, we know that exit[j] must be evaluated
1654   // after all exit[i] such j > i.
1655   for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1656     if (BadExit(ExitingBlocks[i])) {
1657       ExitingBlocks.resize(i);
1658       break;
1659     }
1660 
1661   if (ExitingBlocks.empty())
1662     return false;
1663 
1664   // We rely on not being able to reach an exiting block on a later iteration
1665   // then it's statically compute exit count.  The implementaton of
1666   // getExitCount currently has this invariant, but assert it here so that
1667   // breakage is obvious if this ever changes..
1668   assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1669         return DT->dominates(ExitingBB, L->getLoopLatch());
1670       }));
1671 
1672   // At this point, ExitingBlocks consists of only those blocks which are
1673   // predicatable.  Given that, we know we have at least one exit we can
1674   // predicate if the loop is doesn't have side effects and doesn't have any
1675   // implicit exits (because then our exact BTC isn't actually exact).
1676   // @Reviewers - As structured, this is O(I^2) for loop nests.  Any
1677   // suggestions on how to improve this?  I can obviously bail out for outer
1678   // loops, but that seems less than ideal.  MemorySSA can find memory writes,
1679   // is that enough for *all* side effects?
1680   for (BasicBlock *BB : L->blocks())
1681     for (auto &I : *BB)
1682       // TODO:isGuaranteedToTransfer
1683       if (I.mayHaveSideEffects() || I.mayThrow())
1684         return false;
1685 
1686   bool Changed = false;
1687   // Finally, do the actual predication for all predicatable blocks.  A couple
1688   // of notes here:
1689   // 1) We don't bother to constant fold dominated exits with identical exit
1690   //    counts; that's simply a form of CSE/equality propagation and we leave
1691   //    it for dedicated passes.
1692   // 2) We insert the comparison at the branch.  Hoisting introduces additional
1693   //    legality constraints and we leave that to dedicated logic.  We want to
1694   //    predicate even if we can't insert a loop invariant expression as
1695   //    peeling or unrolling will likely reduce the cost of the otherwise loop
1696   //    varying check.
1697   Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
1698   IRBuilder<> B(L->getLoopPreheader()->getTerminator());
1699   Value *ExactBTCV = nullptr; // Lazily generated if needed.
1700   for (BasicBlock *ExitingBB : ExitingBlocks) {
1701     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1702 
1703     auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1704     Value *NewCond;
1705     if (ExitCount == ExactBTC) {
1706       NewCond = L->contains(BI->getSuccessor(0)) ?
1707         B.getFalse() : B.getTrue();
1708     } else {
1709       Value *ECV = Rewriter.expandCodeFor(ExitCount);
1710       if (!ExactBTCV)
1711         ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
1712       Value *RHS = ExactBTCV;
1713       if (ECV->getType() != RHS->getType()) {
1714         Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1715         ECV = B.CreateZExt(ECV, WiderTy);
1716         RHS = B.CreateZExt(RHS, WiderTy);
1717       }
1718       auto Pred = L->contains(BI->getSuccessor(0)) ?
1719         ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1720       NewCond = B.CreateICmp(Pred, ECV, RHS);
1721     }
1722     Value *OldCond = BI->getCondition();
1723     BI->setCondition(NewCond);
1724     if (OldCond->use_empty())
1725       DeadInsts.emplace_back(OldCond);
1726     Changed = true;
1727   }
1728 
1729   return Changed;
1730 }
1731 
1732 //===----------------------------------------------------------------------===//
1733 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1734 //===----------------------------------------------------------------------===//
1735 
1736 bool IndVarSimplify::run(Loop *L) {
1737   // We need (and expect!) the incoming loop to be in LCSSA.
1738   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1739          "LCSSA required to run indvars!");
1740 
1741   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1742   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1743   //    canonicalization can be a pessimization without LSR to "clean up"
1744   //    afterwards.
1745   //  - We depend on having a preheader; in particular,
1746   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1747   //    and we're in trouble if we can't find the induction variable even when
1748   //    we've manually inserted one.
1749   //  - LFTR relies on having a single backedge.
1750   if (!L->isLoopSimplifyForm())
1751     return false;
1752 
1753 #ifndef NDEBUG
1754   // Used below for a consistency check only
1755   // Note: Since the result returned by ScalarEvolution may depend on the order
1756   // in which previous results are added to its cache, the call to
1757   // getBackedgeTakenCount() may change following SCEV queries.
1758   const SCEV *BackedgeTakenCount;
1759   if (VerifyIndvars)
1760     BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1761 #endif
1762 
1763   bool Changed = false;
1764   // If there are any floating-point recurrences, attempt to
1765   // transform them to use integer recurrences.
1766   Changed |= rewriteNonIntegerIVs(L);
1767 
1768   // Create a rewriter object which we'll use to transform the code with.
1769   SCEVExpander Rewriter(*SE, DL, "indvars");
1770 #ifndef NDEBUG
1771   Rewriter.setDebugType(DEBUG_TYPE);
1772 #endif
1773 
1774   // Eliminate redundant IV users.
1775   //
1776   // Simplification works best when run before other consumers of SCEV. We
1777   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1778   // other expressions involving loop IVs have been evaluated. This helps SCEV
1779   // set no-wrap flags before normalizing sign/zero extension.
1780   Rewriter.disableCanonicalMode();
1781   Changed |= simplifyAndExtend(L, Rewriter, LI);
1782 
1783   // Check to see if we can compute the final value of any expressions
1784   // that are recurrent in the loop, and substitute the exit values from the
1785   // loop into any instructions outside of the loop that use the final values
1786   // of the current expressions.
1787   if (ReplaceExitValue != NeverRepl) {
1788     if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
1789                                              ReplaceExitValue, DeadInsts)) {
1790       NumReplaced += Rewrites;
1791       Changed = true;
1792     }
1793   }
1794 
1795   // Eliminate redundant IV cycles.
1796   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1797 
1798   // Try to eliminate loop exits based on analyzeable exit counts
1799   if (optimizeLoopExits(L, Rewriter))  {
1800     Changed = true;
1801     // Given we've changed exit counts, notify SCEV
1802     SE->forgetLoop(L);
1803   }
1804 
1805   // Try to form loop invariant tests for loop exits by changing how many
1806   // iterations of the loop run when that is unobservable.
1807   if (predicateLoopExits(L, Rewriter)) {
1808     Changed = true;
1809     // Given we've changed exit counts, notify SCEV
1810     SE->forgetLoop(L);
1811   }
1812 
1813   // If we have a trip count expression, rewrite the loop's exit condition
1814   // using it.
1815   if (!DisableLFTR) {
1816     BasicBlock *PreHeader = L->getLoopPreheader();
1817     BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
1818 
1819     SmallVector<BasicBlock*, 16> ExitingBlocks;
1820     L->getExitingBlocks(ExitingBlocks);
1821     for (BasicBlock *ExitingBB : ExitingBlocks) {
1822       // Can't rewrite non-branch yet.
1823       if (!isa<BranchInst>(ExitingBB->getTerminator()))
1824         continue;
1825 
1826       // If our exitting block exits multiple loops, we can only rewrite the
1827       // innermost one.  Otherwise, we're changing how many times the innermost
1828       // loop runs before it exits.
1829       if (LI->getLoopFor(ExitingBB) != L)
1830         continue;
1831 
1832       if (!needsLFTR(L, ExitingBB))
1833         continue;
1834 
1835       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1836       if (isa<SCEVCouldNotCompute>(ExitCount))
1837         continue;
1838 
1839       // This was handled above, but as we form SCEVs, we can sometimes refine
1840       // existing ones; this allows exit counts to be folded to zero which
1841       // weren't when optimizeLoopExits saw them.  Arguably, we should iterate
1842       // until stable to handle cases like this better.
1843       if (ExitCount->isZero())
1844         continue;
1845 
1846       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
1847       if (!IndVar)
1848         continue;
1849 
1850       // Avoid high cost expansions.  Note: This heuristic is questionable in
1851       // that our definition of "high cost" is not exactly principled.
1852       if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
1853                                        TTI, PreHeaderBR))
1854         continue;
1855 
1856       // Check preconditions for proper SCEVExpander operation. SCEV does not
1857       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
1858       // any pass that uses the SCEVExpander must do it. This does not work
1859       // well for loop passes because SCEVExpander makes assumptions about
1860       // all loops, while LoopPassManager only forces the current loop to be
1861       // simplified.
1862       //
1863       // FIXME: SCEV expansion has no way to bail out, so the caller must
1864       // explicitly check any assumptions made by SCEV. Brittle.
1865       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
1866       if (!AR || AR->getLoop()->getLoopPreheader())
1867         Changed |= linearFunctionTestReplace(L, ExitingBB,
1868                                              ExitCount, IndVar,
1869                                              Rewriter);
1870     }
1871   }
1872   // Clear the rewriter cache, because values that are in the rewriter's cache
1873   // can be deleted in the loop below, causing the AssertingVH in the cache to
1874   // trigger.
1875   Rewriter.clear();
1876 
1877   // Now that we're done iterating through lists, clean up any instructions
1878   // which are now dead.
1879   while (!DeadInsts.empty())
1880     if (Instruction *Inst =
1881             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
1882       Changed |=
1883           RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
1884 
1885   // The Rewriter may not be used from this point on.
1886 
1887   // Loop-invariant instructions in the preheader that aren't used in the
1888   // loop may be sunk below the loop to reduce register pressure.
1889   Changed |= sinkUnusedInvariants(L);
1890 
1891   // rewriteFirstIterationLoopExitValues does not rely on the computation of
1892   // trip count and therefore can further simplify exit values in addition to
1893   // rewriteLoopExitValues.
1894   Changed |= rewriteFirstIterationLoopExitValues(L);
1895 
1896   // Clean up dead instructions.
1897   Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
1898 
1899   // Check a post-condition.
1900   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1901          "Indvars did not preserve LCSSA!");
1902 
1903   // Verify that LFTR, and any other change have not interfered with SCEV's
1904   // ability to compute trip count.  We may have *changed* the exit count, but
1905   // only by reducing it.
1906 #ifndef NDEBUG
1907   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1908     SE->forgetLoop(L);
1909     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1910     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1911         SE->getTypeSizeInBits(NewBECount->getType()))
1912       NewBECount = SE->getTruncateOrNoop(NewBECount,
1913                                          BackedgeTakenCount->getType());
1914     else
1915       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1916                                                  NewBECount->getType());
1917     assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
1918                                  NewBECount) && "indvars must preserve SCEV");
1919   }
1920   if (VerifyMemorySSA && MSSAU)
1921     MSSAU->getMemorySSA()->verifyMemorySSA();
1922 #endif
1923 
1924   return Changed;
1925 }
1926 
1927 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
1928                                           LoopStandardAnalysisResults &AR,
1929                                           LPMUpdater &) {
1930   Function *F = L.getHeader()->getParent();
1931   const DataLayout &DL = F->getParent()->getDataLayout();
1932 
1933   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
1934                      WidenIndVars && AllowIVWidening);
1935   if (!IVS.run(&L))
1936     return PreservedAnalyses::all();
1937 
1938   auto PA = getLoopPassPreservedAnalyses();
1939   PA.preserveSet<CFGAnalyses>();
1940   if (AR.MSSA)
1941     PA.preserve<MemorySSAAnalysis>();
1942   return PA;
1943 }
1944 
1945 namespace {
1946 
1947 struct IndVarSimplifyLegacyPass : public LoopPass {
1948   static char ID; // Pass identification, replacement for typeid
1949 
1950   IndVarSimplifyLegacyPass() : LoopPass(ID) {
1951     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
1952   }
1953 
1954   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1955     if (skipLoop(L))
1956       return false;
1957 
1958     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1959     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1960     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1961     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1962     auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
1963     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
1964     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
1965     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1966     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
1967     MemorySSA *MSSA = nullptr;
1968     if (MSSAAnalysis)
1969       MSSA = &MSSAAnalysis->getMSSA();
1970 
1971     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
1972     return IVS.run(L);
1973   }
1974 
1975   void getAnalysisUsage(AnalysisUsage &AU) const override {
1976     AU.setPreservesCFG();
1977     AU.addPreserved<MemorySSAWrapperPass>();
1978     getLoopAnalysisUsage(AU);
1979   }
1980 };
1981 
1982 } // end anonymous namespace
1983 
1984 char IndVarSimplifyLegacyPass::ID = 0;
1985 
1986 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
1987                       "Induction Variable Simplification", false, false)
1988 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1989 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
1990                     "Induction Variable Simplification", false, false)
1991 
1992 Pass *llvm::createIndVarSimplifyPass() {
1993   return new IndVarSimplifyLegacyPass();
1994 }
1995