1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Local.h" 53 #include "llvm/Transforms/Utils/LoopUtils.h" 54 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 55 using namespace llvm; 56 57 #define DEBUG_TYPE "indvars" 58 59 STATISTIC(NumWidened , "Number of indvars widened"); 60 STATISTIC(NumReplaced , "Number of exit values replaced"); 61 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 62 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 63 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 64 65 // Trip count verification can be enabled by default under NDEBUG if we 66 // implement a strong expression equivalence checker in SCEV. Until then, we 67 // use the verify-indvars flag, which may assert in some cases. 68 static cl::opt<bool> VerifyIndvars( 69 "verify-indvars", cl::Hidden, 70 cl::desc("Verify the ScalarEvolution result after running indvars")); 71 72 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 73 cl::desc("Reduce live induction variables.")); 74 75 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 76 77 static cl::opt<ReplaceExitVal> ReplaceExitValue( 78 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 79 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 80 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 81 clEnumValN(OnlyCheapRepl, "cheap", 82 "only replace exit value when the cost is cheap"), 83 clEnumValN(AlwaysRepl, "always", 84 "always replace exit value whenever possible"), 85 clEnumValEnd)); 86 87 namespace { 88 struct RewritePhi; 89 90 class IndVarSimplify : public LoopPass { 91 LoopInfo *LI; 92 ScalarEvolution *SE; 93 DominatorTree *DT; 94 TargetLibraryInfo *TLI; 95 const TargetTransformInfo *TTI; 96 97 SmallVector<WeakVH, 16> DeadInsts; 98 bool Changed; 99 public: 100 101 static char ID; // Pass identification, replacement for typeid 102 IndVarSimplify() 103 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) { 104 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 105 } 106 107 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 108 109 void getAnalysisUsage(AnalysisUsage &AU) const override { 110 AU.addRequired<DominatorTreeWrapperPass>(); 111 AU.addRequired<LoopInfoWrapperPass>(); 112 AU.addRequired<ScalarEvolutionWrapperPass>(); 113 AU.addRequiredID(LoopSimplifyID); 114 AU.addRequiredID(LCSSAID); 115 AU.addPreserved<GlobalsAAWrapperPass>(); 116 AU.addPreserved<ScalarEvolutionWrapperPass>(); 117 AU.addPreservedID(LoopSimplifyID); 118 AU.addPreservedID(LCSSAID); 119 AU.setPreservesCFG(); 120 } 121 122 private: 123 void releaseMemory() override { 124 DeadInsts.clear(); 125 } 126 127 bool isValidRewrite(Value *FromVal, Value *ToVal); 128 129 void handleFloatingPointIV(Loop *L, PHINode *PH); 130 void rewriteNonIntegerIVs(Loop *L); 131 132 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 133 134 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 135 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 136 void rewriteFirstIterationLoopExitValues(Loop *L); 137 138 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 139 PHINode *IndVar, SCEVExpander &Rewriter); 140 141 void sinkUnusedInvariants(Loop *L); 142 143 Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 144 Instruction *InsertPt, Type *Ty); 145 }; 146 } 147 148 char IndVarSimplify::ID = 0; 149 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 150 "Induction Variable Simplification", false, false) 151 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 152 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 154 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 155 INITIALIZE_PASS_DEPENDENCY(LCSSA) 156 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 157 "Induction Variable Simplification", false, false) 158 159 Pass *llvm::createIndVarSimplifyPass() { 160 return new IndVarSimplify(); 161 } 162 163 /// Return true if the SCEV expansion generated by the rewriter can replace the 164 /// original value. SCEV guarantees that it produces the same value, but the way 165 /// it is produced may be illegal IR. Ideally, this function will only be 166 /// called for verification. 167 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 168 // If an SCEV expression subsumed multiple pointers, its expansion could 169 // reassociate the GEP changing the base pointer. This is illegal because the 170 // final address produced by a GEP chain must be inbounds relative to its 171 // underlying object. Otherwise basic alias analysis, among other things, 172 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 173 // producing an expression involving multiple pointers. Until then, we must 174 // bail out here. 175 // 176 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 177 // because it understands lcssa phis while SCEV does not. 178 Value *FromPtr = FromVal; 179 Value *ToPtr = ToVal; 180 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 181 FromPtr = GEP->getPointerOperand(); 182 } 183 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 184 ToPtr = GEP->getPointerOperand(); 185 } 186 if (FromPtr != FromVal || ToPtr != ToVal) { 187 // Quickly check the common case 188 if (FromPtr == ToPtr) 189 return true; 190 191 // SCEV may have rewritten an expression that produces the GEP's pointer 192 // operand. That's ok as long as the pointer operand has the same base 193 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 194 // base of a recurrence. This handles the case in which SCEV expansion 195 // converts a pointer type recurrence into a nonrecurrent pointer base 196 // indexed by an integer recurrence. 197 198 // If the GEP base pointer is a vector of pointers, abort. 199 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 200 return false; 201 202 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 203 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 204 if (FromBase == ToBase) 205 return true; 206 207 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 208 << *FromBase << " != " << *ToBase << "\n"); 209 210 return false; 211 } 212 return true; 213 } 214 215 /// Determine the insertion point for this user. By default, insert immediately 216 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 217 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 218 /// common dominator for the incoming blocks. 219 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 220 DominatorTree *DT, LoopInfo *LI) { 221 PHINode *PHI = dyn_cast<PHINode>(User); 222 if (!PHI) 223 return User; 224 225 Instruction *InsertPt = nullptr; 226 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 227 if (PHI->getIncomingValue(i) != Def) 228 continue; 229 230 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 231 if (!InsertPt) { 232 InsertPt = InsertBB->getTerminator(); 233 continue; 234 } 235 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 236 InsertPt = InsertBB->getTerminator(); 237 } 238 assert(InsertPt && "Missing phi operand"); 239 240 auto *DefI = dyn_cast<Instruction>(Def); 241 if (!DefI) 242 return InsertPt; 243 244 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 245 246 auto *L = LI->getLoopFor(DefI->getParent()); 247 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 248 249 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 250 if (LI->getLoopFor(DTN->getBlock()) == L) 251 return DTN->getBlock()->getTerminator(); 252 253 llvm_unreachable("DefI dominates InsertPt!"); 254 } 255 256 //===----------------------------------------------------------------------===// 257 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 258 //===----------------------------------------------------------------------===// 259 260 /// Convert APF to an integer, if possible. 261 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 262 bool isExact = false; 263 // See if we can convert this to an int64_t 264 uint64_t UIntVal; 265 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 266 &isExact) != APFloat::opOK || !isExact) 267 return false; 268 IntVal = UIntVal; 269 return true; 270 } 271 272 /// If the loop has floating induction variable then insert corresponding 273 /// integer induction variable if possible. 274 /// For example, 275 /// for(double i = 0; i < 10000; ++i) 276 /// bar(i) 277 /// is converted into 278 /// for(int i = 0; i < 10000; ++i) 279 /// bar((double)i); 280 /// 281 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 282 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 283 unsigned BackEdge = IncomingEdge^1; 284 285 // Check incoming value. 286 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 287 288 int64_t InitValue; 289 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 290 return; 291 292 // Check IV increment. Reject this PN if increment operation is not 293 // an add or increment value can not be represented by an integer. 294 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 295 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 296 297 // If this is not an add of the PHI with a constantfp, or if the constant fp 298 // is not an integer, bail out. 299 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 300 int64_t IncValue; 301 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 302 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 303 return; 304 305 // Check Incr uses. One user is PN and the other user is an exit condition 306 // used by the conditional terminator. 307 Value::user_iterator IncrUse = Incr->user_begin(); 308 Instruction *U1 = cast<Instruction>(*IncrUse++); 309 if (IncrUse == Incr->user_end()) return; 310 Instruction *U2 = cast<Instruction>(*IncrUse++); 311 if (IncrUse != Incr->user_end()) return; 312 313 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 314 // only used by a branch, we can't transform it. 315 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 316 if (!Compare) 317 Compare = dyn_cast<FCmpInst>(U2); 318 if (!Compare || !Compare->hasOneUse() || 319 !isa<BranchInst>(Compare->user_back())) 320 return; 321 322 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 323 324 // We need to verify that the branch actually controls the iteration count 325 // of the loop. If not, the new IV can overflow and no one will notice. 326 // The branch block must be in the loop and one of the successors must be out 327 // of the loop. 328 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 329 if (!L->contains(TheBr->getParent()) || 330 (L->contains(TheBr->getSuccessor(0)) && 331 L->contains(TheBr->getSuccessor(1)))) 332 return; 333 334 335 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 336 // transform it. 337 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 338 int64_t ExitValue; 339 if (ExitValueVal == nullptr || 340 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 341 return; 342 343 // Find new predicate for integer comparison. 344 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 345 switch (Compare->getPredicate()) { 346 default: return; // Unknown comparison. 347 case CmpInst::FCMP_OEQ: 348 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 349 case CmpInst::FCMP_ONE: 350 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 351 case CmpInst::FCMP_OGT: 352 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 353 case CmpInst::FCMP_OGE: 354 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 355 case CmpInst::FCMP_OLT: 356 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 357 case CmpInst::FCMP_OLE: 358 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 359 } 360 361 // We convert the floating point induction variable to a signed i32 value if 362 // we can. This is only safe if the comparison will not overflow in a way 363 // that won't be trapped by the integer equivalent operations. Check for this 364 // now. 365 // TODO: We could use i64 if it is native and the range requires it. 366 367 // The start/stride/exit values must all fit in signed i32. 368 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 369 return; 370 371 // If not actually striding (add x, 0.0), avoid touching the code. 372 if (IncValue == 0) 373 return; 374 375 // Positive and negative strides have different safety conditions. 376 if (IncValue > 0) { 377 // If we have a positive stride, we require the init to be less than the 378 // exit value. 379 if (InitValue >= ExitValue) 380 return; 381 382 uint32_t Range = uint32_t(ExitValue-InitValue); 383 // Check for infinite loop, either: 384 // while (i <= Exit) or until (i > Exit) 385 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 386 if (++Range == 0) return; // Range overflows. 387 } 388 389 unsigned Leftover = Range % uint32_t(IncValue); 390 391 // If this is an equality comparison, we require that the strided value 392 // exactly land on the exit value, otherwise the IV condition will wrap 393 // around and do things the fp IV wouldn't. 394 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 395 Leftover != 0) 396 return; 397 398 // If the stride would wrap around the i32 before exiting, we can't 399 // transform the IV. 400 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 401 return; 402 403 } else { 404 // If we have a negative stride, we require the init to be greater than the 405 // exit value. 406 if (InitValue <= ExitValue) 407 return; 408 409 uint32_t Range = uint32_t(InitValue-ExitValue); 410 // Check for infinite loop, either: 411 // while (i >= Exit) or until (i < Exit) 412 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 413 if (++Range == 0) return; // Range overflows. 414 } 415 416 unsigned Leftover = Range % uint32_t(-IncValue); 417 418 // If this is an equality comparison, we require that the strided value 419 // exactly land on the exit value, otherwise the IV condition will wrap 420 // around and do things the fp IV wouldn't. 421 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 422 Leftover != 0) 423 return; 424 425 // If the stride would wrap around the i32 before exiting, we can't 426 // transform the IV. 427 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 428 return; 429 } 430 431 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 432 433 // Insert new integer induction variable. 434 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 435 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 436 PN->getIncomingBlock(IncomingEdge)); 437 438 Value *NewAdd = 439 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 440 Incr->getName()+".int", Incr); 441 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 442 443 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 444 ConstantInt::get(Int32Ty, ExitValue), 445 Compare->getName()); 446 447 // In the following deletions, PN may become dead and may be deleted. 448 // Use a WeakVH to observe whether this happens. 449 WeakVH WeakPH = PN; 450 451 // Delete the old floating point exit comparison. The branch starts using the 452 // new comparison. 453 NewCompare->takeName(Compare); 454 Compare->replaceAllUsesWith(NewCompare); 455 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 456 457 // Delete the old floating point increment. 458 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 459 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 460 461 // If the FP induction variable still has uses, this is because something else 462 // in the loop uses its value. In order to canonicalize the induction 463 // variable, we chose to eliminate the IV and rewrite it in terms of an 464 // int->fp cast. 465 // 466 // We give preference to sitofp over uitofp because it is faster on most 467 // platforms. 468 if (WeakPH) { 469 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 470 &*PN->getParent()->getFirstInsertionPt()); 471 PN->replaceAllUsesWith(Conv); 472 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 473 } 474 Changed = true; 475 } 476 477 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 478 // First step. Check to see if there are any floating-point recurrences. 479 // If there are, change them into integer recurrences, permitting analysis by 480 // the SCEV routines. 481 // 482 BasicBlock *Header = L->getHeader(); 483 484 SmallVector<WeakVH, 8> PHIs; 485 for (BasicBlock::iterator I = Header->begin(); 486 PHINode *PN = dyn_cast<PHINode>(I); ++I) 487 PHIs.push_back(PN); 488 489 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 490 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 491 handleFloatingPointIV(L, PN); 492 493 // If the loop previously had floating-point IV, ScalarEvolution 494 // may not have been able to compute a trip count. Now that we've done some 495 // re-writing, the trip count may be computable. 496 if (Changed) 497 SE->forgetLoop(L); 498 } 499 500 namespace { 501 // Collect information about PHI nodes which can be transformed in 502 // rewriteLoopExitValues. 503 struct RewritePhi { 504 PHINode *PN; 505 unsigned Ith; // Ith incoming value. 506 Value *Val; // Exit value after expansion. 507 bool HighCost; // High Cost when expansion. 508 509 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 510 : PN(P), Ith(I), Val(V), HighCost(H) {} 511 }; 512 } 513 514 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 515 Loop *L, Instruction *InsertPt, 516 Type *ResultTy) { 517 // Before expanding S into an expensive LLVM expression, see if we can use an 518 // already existing value as the expansion for S. 519 if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L)) 520 if (ExistingValue->getType() == ResultTy) 521 return ExistingValue; 522 523 // We didn't find anything, fall back to using SCEVExpander. 524 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 525 } 526 527 //===----------------------------------------------------------------------===// 528 // rewriteLoopExitValues - Optimize IV users outside the loop. 529 // As a side effect, reduces the amount of IV processing within the loop. 530 //===----------------------------------------------------------------------===// 531 532 /// Check to see if this loop has a computable loop-invariant execution count. 533 /// If so, this means that we can compute the final value of any expressions 534 /// that are recurrent in the loop, and substitute the exit values from the loop 535 /// into any instructions outside of the loop that use the final values of the 536 /// current expressions. 537 /// 538 /// This is mostly redundant with the regular IndVarSimplify activities that 539 /// happen later, except that it's more powerful in some cases, because it's 540 /// able to brute-force evaluate arbitrary instructions as long as they have 541 /// constant operands at the beginning of the loop. 542 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 543 // Check a pre-condition. 544 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 545 546 SmallVector<BasicBlock*, 8> ExitBlocks; 547 L->getUniqueExitBlocks(ExitBlocks); 548 549 SmallVector<RewritePhi, 8> RewritePhiSet; 550 // Find all values that are computed inside the loop, but used outside of it. 551 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 552 // the exit blocks of the loop to find them. 553 for (BasicBlock *ExitBB : ExitBlocks) { 554 // If there are no PHI nodes in this exit block, then no values defined 555 // inside the loop are used on this path, skip it. 556 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 557 if (!PN) continue; 558 559 unsigned NumPreds = PN->getNumIncomingValues(); 560 561 // Iterate over all of the PHI nodes. 562 BasicBlock::iterator BBI = ExitBB->begin(); 563 while ((PN = dyn_cast<PHINode>(BBI++))) { 564 if (PN->use_empty()) 565 continue; // dead use, don't replace it 566 567 // SCEV only supports integer expressions for now. 568 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 569 continue; 570 571 // It's necessary to tell ScalarEvolution about this explicitly so that 572 // it can walk the def-use list and forget all SCEVs, as it may not be 573 // watching the PHI itself. Once the new exit value is in place, there 574 // may not be a def-use connection between the loop and every instruction 575 // which got a SCEVAddRecExpr for that loop. 576 SE->forgetValue(PN); 577 578 // Iterate over all of the values in all the PHI nodes. 579 for (unsigned i = 0; i != NumPreds; ++i) { 580 // If the value being merged in is not integer or is not defined 581 // in the loop, skip it. 582 Value *InVal = PN->getIncomingValue(i); 583 if (!isa<Instruction>(InVal)) 584 continue; 585 586 // If this pred is for a subloop, not L itself, skip it. 587 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 588 continue; // The Block is in a subloop, skip it. 589 590 // Check that InVal is defined in the loop. 591 Instruction *Inst = cast<Instruction>(InVal); 592 if (!L->contains(Inst)) 593 continue; 594 595 // Okay, this instruction has a user outside of the current loop 596 // and varies predictably *inside* the loop. Evaluate the value it 597 // contains when the loop exits, if possible. 598 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 599 if (!SE->isLoopInvariant(ExitValue, L) || 600 !isSafeToExpand(ExitValue, *SE)) 601 continue; 602 603 // Computing the value outside of the loop brings no benefit if : 604 // - it is definitely used inside the loop in a way which can not be 605 // optimized away. 606 // - no use outside of the loop can take advantage of hoisting the 607 // computation out of the loop 608 if (ExitValue->getSCEVType()>=scMulExpr) { 609 unsigned NumHardInternalUses = 0; 610 unsigned NumSoftExternalUses = 0; 611 unsigned NumUses = 0; 612 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 613 IB != IE && NumUses <= 6; ++IB) { 614 Instruction *UseInstr = cast<Instruction>(*IB); 615 unsigned Opc = UseInstr->getOpcode(); 616 NumUses++; 617 if (L->contains(UseInstr)) { 618 if (Opc == Instruction::Call || Opc == Instruction::Ret) 619 NumHardInternalUses++; 620 } else { 621 if (Opc == Instruction::PHI) { 622 // Do not count the Phi as a use. LCSSA may have inserted 623 // plenty of trivial ones. 624 NumUses--; 625 for (auto PB = UseInstr->user_begin(), 626 PE = UseInstr->user_end(); 627 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 628 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 629 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 630 NumSoftExternalUses++; 631 } 632 continue; 633 } 634 if (Opc != Instruction::Call && Opc != Instruction::Ret) 635 NumSoftExternalUses++; 636 } 637 } 638 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 639 continue; 640 } 641 642 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 643 Value *ExitVal = 644 expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 645 646 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 647 << " LoopVal = " << *Inst << "\n"); 648 649 if (!isValidRewrite(Inst, ExitVal)) { 650 DeadInsts.push_back(ExitVal); 651 continue; 652 } 653 654 // Collect all the candidate PHINodes to be rewritten. 655 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 656 } 657 } 658 } 659 660 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 661 662 // Transformation. 663 for (const RewritePhi &Phi : RewritePhiSet) { 664 PHINode *PN = Phi.PN; 665 Value *ExitVal = Phi.Val; 666 667 // Only do the rewrite when the ExitValue can be expanded cheaply. 668 // If LoopCanBeDel is true, rewrite exit value aggressively. 669 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 670 DeadInsts.push_back(ExitVal); 671 continue; 672 } 673 674 Changed = true; 675 ++NumReplaced; 676 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 677 PN->setIncomingValue(Phi.Ith, ExitVal); 678 679 // If this instruction is dead now, delete it. Don't do it now to avoid 680 // invalidating iterators. 681 if (isInstructionTriviallyDead(Inst, TLI)) 682 DeadInsts.push_back(Inst); 683 684 // Replace PN with ExitVal if that is legal and does not break LCSSA. 685 if (PN->getNumIncomingValues() == 1 && 686 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 687 PN->replaceAllUsesWith(ExitVal); 688 PN->eraseFromParent(); 689 } 690 } 691 692 // The insertion point instruction may have been deleted; clear it out 693 // so that the rewriter doesn't trip over it later. 694 Rewriter.clearInsertPoint(); 695 } 696 697 //===---------------------------------------------------------------------===// 698 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 699 // they will exit at the first iteration. 700 //===---------------------------------------------------------------------===// 701 702 /// Check to see if this loop has loop invariant conditions which lead to loop 703 /// exits. If so, we know that if the exit path is taken, it is at the first 704 /// loop iteration. This lets us predict exit values of PHI nodes that live in 705 /// loop header. 706 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 707 // Verify the input to the pass is already in LCSSA form. 708 assert(L->isLCSSAForm(*DT)); 709 710 SmallVector<BasicBlock *, 8> ExitBlocks; 711 L->getUniqueExitBlocks(ExitBlocks); 712 auto *LoopHeader = L->getHeader(); 713 assert(LoopHeader && "Invalid loop"); 714 715 for (auto *ExitBB : ExitBlocks) { 716 BasicBlock::iterator BBI = ExitBB->begin(); 717 // If there are no more PHI nodes in this exit block, then no more 718 // values defined inside the loop are used on this path. 719 while (auto *PN = dyn_cast<PHINode>(BBI++)) { 720 for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues(); 721 IncomingValIdx != E; ++IncomingValIdx) { 722 auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx); 723 724 // We currently only support loop exits from loop header. If the 725 // incoming block is not loop header, we need to recursively check 726 // all conditions starting from loop header are loop invariants. 727 // Additional support might be added in the future. 728 if (IncomingBB != LoopHeader) 729 continue; 730 731 // Get condition that leads to the exit path. 732 auto *TermInst = IncomingBB->getTerminator(); 733 734 Value *Cond = nullptr; 735 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 736 // Must be a conditional branch, otherwise the block 737 // should not be in the loop. 738 Cond = BI->getCondition(); 739 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 740 Cond = SI->getCondition(); 741 else 742 continue; 743 744 if (!L->isLoopInvariant(Cond)) 745 continue; 746 747 auto *ExitVal = 748 dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx)); 749 750 // Only deal with PHIs. 751 if (!ExitVal) 752 continue; 753 754 // If ExitVal is a PHI on the loop header, then we know its 755 // value along this exit because the exit can only be taken 756 // on the first iteration. 757 auto *LoopPreheader = L->getLoopPreheader(); 758 assert(LoopPreheader && "Invalid loop"); 759 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 760 if (PreheaderIdx != -1) { 761 assert(ExitVal->getParent() == LoopHeader && 762 "ExitVal must be in loop header"); 763 PN->setIncomingValue(IncomingValIdx, 764 ExitVal->getIncomingValue(PreheaderIdx)); 765 } 766 } 767 } 768 } 769 } 770 771 /// Check whether it is possible to delete the loop after rewriting exit 772 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 773 /// aggressively. 774 bool IndVarSimplify::canLoopBeDeleted( 775 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 776 777 BasicBlock *Preheader = L->getLoopPreheader(); 778 // If there is no preheader, the loop will not be deleted. 779 if (!Preheader) 780 return false; 781 782 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 783 // We obviate multiple ExitingBlocks case for simplicity. 784 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 785 // after exit value rewriting, we can enhance the logic here. 786 SmallVector<BasicBlock *, 4> ExitingBlocks; 787 L->getExitingBlocks(ExitingBlocks); 788 SmallVector<BasicBlock *, 8> ExitBlocks; 789 L->getUniqueExitBlocks(ExitBlocks); 790 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 791 return false; 792 793 BasicBlock *ExitBlock = ExitBlocks[0]; 794 BasicBlock::iterator BI = ExitBlock->begin(); 795 while (PHINode *P = dyn_cast<PHINode>(BI)) { 796 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 797 798 // If the Incoming value of P is found in RewritePhiSet, we know it 799 // could be rewritten to use a loop invariant value in transformation 800 // phase later. Skip it in the loop invariant check below. 801 bool found = false; 802 for (const RewritePhi &Phi : RewritePhiSet) { 803 unsigned i = Phi.Ith; 804 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 805 found = true; 806 break; 807 } 808 } 809 810 Instruction *I; 811 if (!found && (I = dyn_cast<Instruction>(Incoming))) 812 if (!L->hasLoopInvariantOperands(I)) 813 return false; 814 815 ++BI; 816 } 817 818 for (auto *BB : L->blocks()) 819 if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); })) 820 return false; 821 822 return true; 823 } 824 825 //===----------------------------------------------------------------------===// 826 // IV Widening - Extend the width of an IV to cover its widest uses. 827 //===----------------------------------------------------------------------===// 828 829 namespace { 830 // Collect information about induction variables that are used by sign/zero 831 // extend operations. This information is recorded by CollectExtend and provides 832 // the input to WidenIV. 833 struct WideIVInfo { 834 PHINode *NarrowIV = nullptr; 835 Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext 836 bool IsSigned = false; // Was a sext user seen before a zext? 837 }; 838 } 839 840 /// Update information about the induction variable that is extended by this 841 /// sign or zero extend operation. This is used to determine the final width of 842 /// the IV before actually widening it. 843 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 844 const TargetTransformInfo *TTI) { 845 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 846 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 847 return; 848 849 Type *Ty = Cast->getType(); 850 uint64_t Width = SE->getTypeSizeInBits(Ty); 851 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 852 return; 853 854 // Cast is either an sext or zext up to this point. 855 // We should not widen an indvar if arithmetics on the wider indvar are more 856 // expensive than those on the narrower indvar. We check only the cost of ADD 857 // because at least an ADD is required to increment the induction variable. We 858 // could compute more comprehensively the cost of all instructions on the 859 // induction variable when necessary. 860 if (TTI && 861 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 862 TTI->getArithmeticInstrCost(Instruction::Add, 863 Cast->getOperand(0)->getType())) { 864 return; 865 } 866 867 if (!WI.WidestNativeType) { 868 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 869 WI.IsSigned = IsSigned; 870 return; 871 } 872 873 // We extend the IV to satisfy the sign of its first user, arbitrarily. 874 if (WI.IsSigned != IsSigned) 875 return; 876 877 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 878 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 879 } 880 881 namespace { 882 883 /// Record a link in the Narrow IV def-use chain along with the WideIV that 884 /// computes the same value as the Narrow IV def. This avoids caching Use* 885 /// pointers. 886 struct NarrowIVDefUse { 887 Instruction *NarrowDef = nullptr; 888 Instruction *NarrowUse = nullptr; 889 Instruction *WideDef = nullptr; 890 891 // True if the narrow def is never negative. Tracking this information lets 892 // us use a sign extension instead of a zero extension or vice versa, when 893 // profitable and legal. 894 bool NeverNegative = false; 895 896 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 897 bool NeverNegative) 898 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 899 NeverNegative(NeverNegative) {} 900 }; 901 902 /// The goal of this transform is to remove sign and zero extends without 903 /// creating any new induction variables. To do this, it creates a new phi of 904 /// the wider type and redirects all users, either removing extends or inserting 905 /// truncs whenever we stop propagating the type. 906 /// 907 class WidenIV { 908 // Parameters 909 PHINode *OrigPhi; 910 Type *WideType; 911 bool IsSigned; 912 913 // Context 914 LoopInfo *LI; 915 Loop *L; 916 ScalarEvolution *SE; 917 DominatorTree *DT; 918 919 // Result 920 PHINode *WidePhi; 921 Instruction *WideInc; 922 const SCEV *WideIncExpr; 923 SmallVectorImpl<WeakVH> &DeadInsts; 924 925 SmallPtrSet<Instruction*,16> Widened; 926 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 927 928 public: 929 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 930 ScalarEvolution *SEv, DominatorTree *DTree, 931 SmallVectorImpl<WeakVH> &DI) : 932 OrigPhi(WI.NarrowIV), 933 WideType(WI.WidestNativeType), 934 IsSigned(WI.IsSigned), 935 LI(LInfo), 936 L(LI->getLoopFor(OrigPhi->getParent())), 937 SE(SEv), 938 DT(DTree), 939 WidePhi(nullptr), 940 WideInc(nullptr), 941 WideIncExpr(nullptr), 942 DeadInsts(DI) { 943 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 944 } 945 946 PHINode *createWideIV(SCEVExpander &Rewriter); 947 948 protected: 949 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 950 Instruction *Use); 951 952 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 953 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 954 const SCEVAddRecExpr *WideAR); 955 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 956 957 const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse); 958 959 const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU); 960 961 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 962 unsigned OpCode) const; 963 964 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 965 966 bool widenLoopCompare(NarrowIVDefUse DU); 967 968 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 969 }; 970 } // anonymous namespace 971 972 /// Perform a quick domtree based check for loop invariance assuming that V is 973 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 974 /// purpose. 975 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 976 Instruction *Inst = dyn_cast<Instruction>(V); 977 if (!Inst) 978 return true; 979 980 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 981 } 982 983 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 984 bool IsSigned, Instruction *Use) { 985 // Set the debug location and conservative insertion point. 986 IRBuilder<> Builder(Use); 987 // Hoist the insertion point into loop preheaders as far as possible. 988 for (const Loop *L = LI->getLoopFor(Use->getParent()); 989 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 990 L = L->getParentLoop()) 991 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 992 993 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 994 Builder.CreateZExt(NarrowOper, WideType); 995 } 996 997 /// Instantiate a wide operation to replace a narrow operation. This only needs 998 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 999 /// 0 for any operation we decide not to clone. 1000 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1001 const SCEVAddRecExpr *WideAR) { 1002 unsigned Opcode = DU.NarrowUse->getOpcode(); 1003 switch (Opcode) { 1004 default: 1005 return nullptr; 1006 case Instruction::Add: 1007 case Instruction::Mul: 1008 case Instruction::UDiv: 1009 case Instruction::Sub: 1010 return cloneArithmeticIVUser(DU, WideAR); 1011 1012 case Instruction::And: 1013 case Instruction::Or: 1014 case Instruction::Xor: 1015 case Instruction::Shl: 1016 case Instruction::LShr: 1017 case Instruction::AShr: 1018 return cloneBitwiseIVUser(DU); 1019 } 1020 } 1021 1022 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1023 Instruction *NarrowUse = DU.NarrowUse; 1024 Instruction *NarrowDef = DU.NarrowDef; 1025 Instruction *WideDef = DU.WideDef; 1026 1027 DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1028 1029 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1030 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1031 // invariant and will be folded or hoisted. If it actually comes from a 1032 // widened IV, it should be removed during a future call to widenIVUse. 1033 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1034 ? WideDef 1035 : createExtendInst(NarrowUse->getOperand(0), WideType, 1036 IsSigned, NarrowUse); 1037 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1038 ? WideDef 1039 : createExtendInst(NarrowUse->getOperand(1), WideType, 1040 IsSigned, NarrowUse); 1041 1042 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1043 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1044 NarrowBO->getName()); 1045 IRBuilder<> Builder(NarrowUse); 1046 Builder.Insert(WideBO); 1047 WideBO->copyIRFlags(NarrowBO); 1048 return WideBO; 1049 } 1050 1051 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1052 const SCEVAddRecExpr *WideAR) { 1053 Instruction *NarrowUse = DU.NarrowUse; 1054 Instruction *NarrowDef = DU.NarrowDef; 1055 Instruction *WideDef = DU.WideDef; 1056 1057 DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1058 1059 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1060 1061 // We're trying to find X such that 1062 // 1063 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1064 // 1065 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1066 // and check using SCEV if any of them are correct. 1067 1068 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1069 // correct solution to X. 1070 auto GuessNonIVOperand = [&](bool SignExt) { 1071 const SCEV *WideLHS; 1072 const SCEV *WideRHS; 1073 1074 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1075 if (SignExt) 1076 return SE->getSignExtendExpr(S, Ty); 1077 return SE->getZeroExtendExpr(S, Ty); 1078 }; 1079 1080 if (IVOpIdx == 0) { 1081 WideLHS = SE->getSCEV(WideDef); 1082 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1083 WideRHS = GetExtend(NarrowRHS, WideType); 1084 } else { 1085 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1086 WideLHS = GetExtend(NarrowLHS, WideType); 1087 WideRHS = SE->getSCEV(WideDef); 1088 } 1089 1090 // WideUse is "WideDef `op.wide` X" as described in the comment. 1091 const SCEV *WideUse = nullptr; 1092 1093 switch (NarrowUse->getOpcode()) { 1094 default: 1095 llvm_unreachable("No other possibility!"); 1096 1097 case Instruction::Add: 1098 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1099 break; 1100 1101 case Instruction::Mul: 1102 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1103 break; 1104 1105 case Instruction::UDiv: 1106 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1107 break; 1108 1109 case Instruction::Sub: 1110 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1111 break; 1112 } 1113 1114 return WideUse == WideAR; 1115 }; 1116 1117 bool SignExtend = IsSigned; 1118 if (!GuessNonIVOperand(SignExtend)) { 1119 SignExtend = !SignExtend; 1120 if (!GuessNonIVOperand(SignExtend)) 1121 return nullptr; 1122 } 1123 1124 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1125 ? WideDef 1126 : createExtendInst(NarrowUse->getOperand(0), WideType, 1127 SignExtend, NarrowUse); 1128 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1129 ? WideDef 1130 : createExtendInst(NarrowUse->getOperand(1), WideType, 1131 SignExtend, NarrowUse); 1132 1133 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1134 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1135 NarrowBO->getName()); 1136 1137 IRBuilder<> Builder(NarrowUse); 1138 Builder.Insert(WideBO); 1139 WideBO->copyIRFlags(NarrowBO); 1140 return WideBO; 1141 } 1142 1143 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1144 unsigned OpCode) const { 1145 if (OpCode == Instruction::Add) 1146 return SE->getAddExpr(LHS, RHS); 1147 if (OpCode == Instruction::Sub) 1148 return SE->getMinusSCEV(LHS, RHS); 1149 if (OpCode == Instruction::Mul) 1150 return SE->getMulExpr(LHS, RHS); 1151 1152 llvm_unreachable("Unsupported opcode."); 1153 } 1154 1155 /// No-wrap operations can transfer sign extension of their result to their 1156 /// operands. Generate the SCEV value for the widened operation without 1157 /// actually modifying the IR yet. If the expression after extending the 1158 /// operands is an AddRec for this loop, return it. 1159 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1160 1161 // Handle the common case of add<nsw/nuw> 1162 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1163 // Only Add/Sub/Mul instructions supported yet. 1164 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1165 OpCode != Instruction::Mul) 1166 return nullptr; 1167 1168 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1169 // if extending the other will lead to a recurrence. 1170 const unsigned ExtendOperIdx = 1171 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1172 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1173 1174 const SCEV *ExtendOperExpr = nullptr; 1175 const OverflowingBinaryOperator *OBO = 1176 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1177 if (IsSigned && OBO->hasNoSignedWrap()) 1178 ExtendOperExpr = SE->getSignExtendExpr( 1179 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1180 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1181 ExtendOperExpr = SE->getZeroExtendExpr( 1182 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1183 else 1184 return nullptr; 1185 1186 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1187 // flags. This instruction may be guarded by control flow that the no-wrap 1188 // behavior depends on. Non-control-equivalent instructions can be mapped to 1189 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1190 // semantics to those operations. 1191 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1192 const SCEV *rhs = ExtendOperExpr; 1193 1194 // Let's swap operands to the initial order for the case of non-commutative 1195 // operations, like SUB. See PR21014. 1196 if (ExtendOperIdx == 0) 1197 std::swap(lhs, rhs); 1198 const SCEVAddRecExpr *AddRec = 1199 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1200 1201 if (!AddRec || AddRec->getLoop() != L) 1202 return nullptr; 1203 return AddRec; 1204 } 1205 1206 /// Is this instruction potentially interesting for further simplification after 1207 /// widening it's type? In other words, can the extend be safely hoisted out of 1208 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1209 /// so, return the sign or zero extended recurrence. Otherwise return NULL. 1210 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) { 1211 if (!SE->isSCEVable(NarrowUse->getType())) 1212 return nullptr; 1213 1214 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1215 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 1216 >= SE->getTypeSizeInBits(WideType)) { 1217 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1218 // index. So don't follow this use. 1219 return nullptr; 1220 } 1221 1222 const SCEV *WideExpr = IsSigned ? 1223 SE->getSignExtendExpr(NarrowExpr, WideType) : 1224 SE->getZeroExtendExpr(NarrowExpr, WideType); 1225 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1226 if (!AddRec || AddRec->getLoop() != L) 1227 return nullptr; 1228 return AddRec; 1229 } 1230 1231 /// This IV user cannot be widen. Replace this use of the original narrow IV 1232 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1233 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1234 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1235 << " for user " << *DU.NarrowUse << "\n"); 1236 IRBuilder<> Builder( 1237 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1238 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1239 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1240 } 1241 1242 /// If the narrow use is a compare instruction, then widen the compare 1243 // (and possibly the other operand). The extend operation is hoisted into the 1244 // loop preheader as far as possible. 1245 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1246 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1247 if (!Cmp) 1248 return false; 1249 1250 // We can legally widen the comparison in the following two cases: 1251 // 1252 // - The signedness of the IV extension and comparison match 1253 // 1254 // - The narrow IV is always positive (and thus its sign extension is equal 1255 // to its zero extension). For instance, let's say we're zero extending 1256 // %narrow for the following use 1257 // 1258 // icmp slt i32 %narrow, %val ... (A) 1259 // 1260 // and %narrow is always positive. Then 1261 // 1262 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1263 // == icmp slt i32 zext(%narrow), sext(%val) 1264 1265 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1266 return false; 1267 1268 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1269 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1270 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1271 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1272 1273 // Widen the compare instruction. 1274 IRBuilder<> Builder( 1275 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1276 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1277 1278 // Widen the other operand of the compare, if necessary. 1279 if (CastWidth < IVWidth) { 1280 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1281 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1282 } 1283 return true; 1284 } 1285 1286 /// Determine whether an individual user of the narrow IV can be widened. If so, 1287 /// return the wide clone of the user. 1288 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1289 1290 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1291 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1292 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1293 // For LCSSA phis, sink the truncate outside the loop. 1294 // After SimplifyCFG most loop exit targets have a single predecessor. 1295 // Otherwise fall back to a truncate within the loop. 1296 if (UsePhi->getNumOperands() != 1) 1297 truncateIVUse(DU, DT, LI); 1298 else { 1299 PHINode *WidePhi = 1300 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1301 UsePhi); 1302 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1303 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1304 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1305 UsePhi->replaceAllUsesWith(Trunc); 1306 DeadInsts.emplace_back(UsePhi); 1307 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1308 << " to " << *WidePhi << "\n"); 1309 } 1310 return nullptr; 1311 } 1312 } 1313 // Our raison d'etre! Eliminate sign and zero extension. 1314 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1315 Value *NewDef = DU.WideDef; 1316 if (DU.NarrowUse->getType() != WideType) { 1317 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1318 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1319 if (CastWidth < IVWidth) { 1320 // The cast isn't as wide as the IV, so insert a Trunc. 1321 IRBuilder<> Builder(DU.NarrowUse); 1322 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1323 } 1324 else { 1325 // A wider extend was hidden behind a narrower one. This may induce 1326 // another round of IV widening in which the intermediate IV becomes 1327 // dead. It should be very rare. 1328 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1329 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1330 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1331 NewDef = DU.NarrowUse; 1332 } 1333 } 1334 if (NewDef != DU.NarrowUse) { 1335 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1336 << " replaced by " << *DU.WideDef << "\n"); 1337 ++NumElimExt; 1338 DU.NarrowUse->replaceAllUsesWith(NewDef); 1339 DeadInsts.emplace_back(DU.NarrowUse); 1340 } 1341 // Now that the extend is gone, we want to expose it's uses for potential 1342 // further simplification. We don't need to directly inform SimplifyIVUsers 1343 // of the new users, because their parent IV will be processed later as a 1344 // new loop phi. If we preserved IVUsers analysis, we would also want to 1345 // push the uses of WideDef here. 1346 1347 // No further widening is needed. The deceased [sz]ext had done it for us. 1348 return nullptr; 1349 } 1350 1351 // Does this user itself evaluate to a recurrence after widening? 1352 const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse); 1353 if (!WideAddRec) 1354 WideAddRec = getExtendedOperandRecurrence(DU); 1355 1356 if (!WideAddRec) { 1357 // If use is a loop condition, try to promote the condition instead of 1358 // truncating the IV first. 1359 if (widenLoopCompare(DU)) 1360 return nullptr; 1361 1362 // This user does not evaluate to a recurence after widening, so don't 1363 // follow it. Instead insert a Trunc to kill off the original use, 1364 // eventually isolating the original narrow IV so it can be removed. 1365 truncateIVUse(DU, DT, LI); 1366 return nullptr; 1367 } 1368 // Assume block terminators cannot evaluate to a recurrence. We can't to 1369 // insert a Trunc after a terminator if there happens to be a critical edge. 1370 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1371 "SCEV is not expected to evaluate a block terminator"); 1372 1373 // Reuse the IV increment that SCEVExpander created as long as it dominates 1374 // NarrowUse. 1375 Instruction *WideUse = nullptr; 1376 if (WideAddRec == WideIncExpr 1377 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1378 WideUse = WideInc; 1379 else { 1380 WideUse = cloneIVUser(DU, WideAddRec); 1381 if (!WideUse) 1382 return nullptr; 1383 } 1384 // Evaluation of WideAddRec ensured that the narrow expression could be 1385 // extended outside the loop without overflow. This suggests that the wide use 1386 // evaluates to the same expression as the extended narrow use, but doesn't 1387 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1388 // where it fails, we simply throw away the newly created wide use. 1389 if (WideAddRec != SE->getSCEV(WideUse)) { 1390 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1391 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1392 DeadInsts.emplace_back(WideUse); 1393 return nullptr; 1394 } 1395 1396 // Returning WideUse pushes it on the worklist. 1397 return WideUse; 1398 } 1399 1400 /// Add eligible users of NarrowDef to NarrowIVUsers. 1401 /// 1402 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1403 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1404 bool NeverNegative = 1405 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1406 SE->getConstant(NarrowSCEV->getType(), 0)); 1407 for (User *U : NarrowDef->users()) { 1408 Instruction *NarrowUser = cast<Instruction>(U); 1409 1410 // Handle data flow merges and bizarre phi cycles. 1411 if (!Widened.insert(NarrowUser).second) 1412 continue; 1413 1414 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative); 1415 } 1416 } 1417 1418 /// Process a single induction variable. First use the SCEVExpander to create a 1419 /// wide induction variable that evaluates to the same recurrence as the 1420 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1421 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1422 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1423 /// 1424 /// It would be simpler to delete uses as they are processed, but we must avoid 1425 /// invalidating SCEV expressions. 1426 /// 1427 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1428 // Is this phi an induction variable? 1429 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1430 if (!AddRec) 1431 return nullptr; 1432 1433 // Widen the induction variable expression. 1434 const SCEV *WideIVExpr = IsSigned ? 1435 SE->getSignExtendExpr(AddRec, WideType) : 1436 SE->getZeroExtendExpr(AddRec, WideType); 1437 1438 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1439 "Expect the new IV expression to preserve its type"); 1440 1441 // Can the IV be extended outside the loop without overflow? 1442 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1443 if (!AddRec || AddRec->getLoop() != L) 1444 return nullptr; 1445 1446 // An AddRec must have loop-invariant operands. Since this AddRec is 1447 // materialized by a loop header phi, the expression cannot have any post-loop 1448 // operands, so they must dominate the loop header. 1449 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1450 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1451 && "Loop header phi recurrence inputs do not dominate the loop"); 1452 1453 // The rewriter provides a value for the desired IV expression. This may 1454 // either find an existing phi or materialize a new one. Either way, we 1455 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1456 // of the phi-SCC dominates the loop entry. 1457 Instruction *InsertPt = &L->getHeader()->front(); 1458 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1459 1460 // Remembering the WideIV increment generated by SCEVExpander allows 1461 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1462 // employ a general reuse mechanism because the call above is the only call to 1463 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1464 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1465 WideInc = 1466 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1467 WideIncExpr = SE->getSCEV(WideInc); 1468 } 1469 1470 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1471 ++NumWidened; 1472 1473 // Traverse the def-use chain using a worklist starting at the original IV. 1474 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1475 1476 Widened.insert(OrigPhi); 1477 pushNarrowIVUsers(OrigPhi, WidePhi); 1478 1479 while (!NarrowIVUsers.empty()) { 1480 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1481 1482 // Process a def-use edge. This may replace the use, so don't hold a 1483 // use_iterator across it. 1484 Instruction *WideUse = widenIVUse(DU, Rewriter); 1485 1486 // Follow all def-use edges from the previous narrow use. 1487 if (WideUse) 1488 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1489 1490 // widenIVUse may have removed the def-use edge. 1491 if (DU.NarrowDef->use_empty()) 1492 DeadInsts.emplace_back(DU.NarrowDef); 1493 } 1494 return WidePhi; 1495 } 1496 1497 //===----------------------------------------------------------------------===// 1498 // Live IV Reduction - Minimize IVs live across the loop. 1499 //===----------------------------------------------------------------------===// 1500 1501 1502 //===----------------------------------------------------------------------===// 1503 // Simplification of IV users based on SCEV evaluation. 1504 //===----------------------------------------------------------------------===// 1505 1506 namespace { 1507 class IndVarSimplifyVisitor : public IVVisitor { 1508 ScalarEvolution *SE; 1509 const TargetTransformInfo *TTI; 1510 PHINode *IVPhi; 1511 1512 public: 1513 WideIVInfo WI; 1514 1515 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1516 const TargetTransformInfo *TTI, 1517 const DominatorTree *DTree) 1518 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1519 DT = DTree; 1520 WI.NarrowIV = IVPhi; 1521 if (ReduceLiveIVs) 1522 setSplitOverflowIntrinsics(); 1523 } 1524 1525 // Implement the interface used by simplifyUsersOfIV. 1526 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1527 }; 1528 } 1529 1530 /// Iteratively perform simplification on a worklist of IV users. Each 1531 /// successive simplification may push more users which may themselves be 1532 /// candidates for simplification. 1533 /// 1534 /// Sign/Zero extend elimination is interleaved with IV simplification. 1535 /// 1536 void IndVarSimplify::simplifyAndExtend(Loop *L, 1537 SCEVExpander &Rewriter, 1538 LoopInfo *LI) { 1539 SmallVector<WideIVInfo, 8> WideIVs; 1540 1541 SmallVector<PHINode*, 8> LoopPhis; 1542 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1543 LoopPhis.push_back(cast<PHINode>(I)); 1544 } 1545 // Each round of simplification iterates through the SimplifyIVUsers worklist 1546 // for all current phis, then determines whether any IVs can be 1547 // widened. Widening adds new phis to LoopPhis, inducing another round of 1548 // simplification on the wide IVs. 1549 while (!LoopPhis.empty()) { 1550 // Evaluate as many IV expressions as possible before widening any IVs. This 1551 // forces SCEV to set no-wrap flags before evaluating sign/zero 1552 // extension. The first time SCEV attempts to normalize sign/zero extension, 1553 // the result becomes final. So for the most predictable results, we delay 1554 // evaluation of sign/zero extend evaluation until needed, and avoid running 1555 // other SCEV based analysis prior to simplifyAndExtend. 1556 do { 1557 PHINode *CurrIV = LoopPhis.pop_back_val(); 1558 1559 // Information about sign/zero extensions of CurrIV. 1560 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1561 1562 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor); 1563 1564 if (Visitor.WI.WidestNativeType) { 1565 WideIVs.push_back(Visitor.WI); 1566 } 1567 } while(!LoopPhis.empty()); 1568 1569 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1570 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1571 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1572 Changed = true; 1573 LoopPhis.push_back(WidePhi); 1574 } 1575 } 1576 } 1577 } 1578 1579 //===----------------------------------------------------------------------===// 1580 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1581 //===----------------------------------------------------------------------===// 1582 1583 /// Return true if this loop's backedge taken count expression can be safely and 1584 /// cheaply expanded into an instruction sequence that can be used by 1585 /// linearFunctionTestReplace. 1586 /// 1587 /// TODO: This fails for pointer-type loop counters with greater than one byte 1588 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1589 /// we could skip this check in the case that the LFTR loop counter (chosen by 1590 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1591 /// the loop test to an inequality test by checking the target data's alignment 1592 /// of element types (given that the initial pointer value originates from or is 1593 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1594 /// However, we don't yet have a strong motivation for converting loop tests 1595 /// into inequality tests. 1596 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1597 SCEVExpander &Rewriter) { 1598 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1599 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1600 BackedgeTakenCount->isZero()) 1601 return false; 1602 1603 if (!L->getExitingBlock()) 1604 return false; 1605 1606 // Can't rewrite non-branch yet. 1607 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1608 return false; 1609 1610 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1611 return false; 1612 1613 return true; 1614 } 1615 1616 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1617 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1618 Instruction *IncI = dyn_cast<Instruction>(IncV); 1619 if (!IncI) 1620 return nullptr; 1621 1622 switch (IncI->getOpcode()) { 1623 case Instruction::Add: 1624 case Instruction::Sub: 1625 break; 1626 case Instruction::GetElementPtr: 1627 // An IV counter must preserve its type. 1628 if (IncI->getNumOperands() == 2) 1629 break; 1630 default: 1631 return nullptr; 1632 } 1633 1634 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1635 if (Phi && Phi->getParent() == L->getHeader()) { 1636 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1637 return Phi; 1638 return nullptr; 1639 } 1640 if (IncI->getOpcode() == Instruction::GetElementPtr) 1641 return nullptr; 1642 1643 // Allow add/sub to be commuted. 1644 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1645 if (Phi && Phi->getParent() == L->getHeader()) { 1646 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1647 return Phi; 1648 } 1649 return nullptr; 1650 } 1651 1652 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1653 static ICmpInst *getLoopTest(Loop *L) { 1654 assert(L->getExitingBlock() && "expected loop exit"); 1655 1656 BasicBlock *LatchBlock = L->getLoopLatch(); 1657 // Don't bother with LFTR if the loop is not properly simplified. 1658 if (!LatchBlock) 1659 return nullptr; 1660 1661 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1662 assert(BI && "expected exit branch"); 1663 1664 return dyn_cast<ICmpInst>(BI->getCondition()); 1665 } 1666 1667 /// linearFunctionTestReplace policy. Return true unless we can show that the 1668 /// current exit test is already sufficiently canonical. 1669 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1670 // Do LFTR to simplify the exit condition to an ICMP. 1671 ICmpInst *Cond = getLoopTest(L); 1672 if (!Cond) 1673 return true; 1674 1675 // Do LFTR to simplify the exit ICMP to EQ/NE 1676 ICmpInst::Predicate Pred = Cond->getPredicate(); 1677 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1678 return true; 1679 1680 // Look for a loop invariant RHS 1681 Value *LHS = Cond->getOperand(0); 1682 Value *RHS = Cond->getOperand(1); 1683 if (!isLoopInvariant(RHS, L, DT)) { 1684 if (!isLoopInvariant(LHS, L, DT)) 1685 return true; 1686 std::swap(LHS, RHS); 1687 } 1688 // Look for a simple IV counter LHS 1689 PHINode *Phi = dyn_cast<PHINode>(LHS); 1690 if (!Phi) 1691 Phi = getLoopPhiForCounter(LHS, L, DT); 1692 1693 if (!Phi) 1694 return true; 1695 1696 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1697 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1698 if (Idx < 0) 1699 return true; 1700 1701 // Do LFTR if the exit condition's IV is *not* a simple counter. 1702 Value *IncV = Phi->getIncomingValue(Idx); 1703 return Phi != getLoopPhiForCounter(IncV, L, DT); 1704 } 1705 1706 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1707 /// down to checking that all operands are constant and listing instructions 1708 /// that may hide undef. 1709 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1710 unsigned Depth) { 1711 if (isa<Constant>(V)) 1712 return !isa<UndefValue>(V); 1713 1714 if (Depth >= 6) 1715 return false; 1716 1717 // Conservatively handle non-constant non-instructions. For example, Arguments 1718 // may be undef. 1719 Instruction *I = dyn_cast<Instruction>(V); 1720 if (!I) 1721 return false; 1722 1723 // Load and return values may be undef. 1724 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1725 return false; 1726 1727 // Optimistically handle other instructions. 1728 for (Value *Op : I->operands()) { 1729 if (!Visited.insert(Op).second) 1730 continue; 1731 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 1732 return false; 1733 } 1734 return true; 1735 } 1736 1737 /// Return true if the given value is concrete. We must prove that undef can 1738 /// never reach it. 1739 /// 1740 /// TODO: If we decide that this is a good approach to checking for undef, we 1741 /// may factor it into a common location. 1742 static bool hasConcreteDef(Value *V) { 1743 SmallPtrSet<Value*, 8> Visited; 1744 Visited.insert(V); 1745 return hasConcreteDefImpl(V, Visited, 0); 1746 } 1747 1748 /// Return true if this IV has any uses other than the (soon to be rewritten) 1749 /// loop exit test. 1750 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1751 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1752 Value *IncV = Phi->getIncomingValue(LatchIdx); 1753 1754 for (User *U : Phi->users()) 1755 if (U != Cond && U != IncV) return false; 1756 1757 for (User *U : IncV->users()) 1758 if (U != Cond && U != Phi) return false; 1759 return true; 1760 } 1761 1762 /// Find an affine IV in canonical form. 1763 /// 1764 /// BECount may be an i8* pointer type. The pointer difference is already 1765 /// valid count without scaling the address stride, so it remains a pointer 1766 /// expression as far as SCEV is concerned. 1767 /// 1768 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1769 /// 1770 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1771 /// 1772 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1773 /// This is difficult in general for SCEV because of potential overflow. But we 1774 /// could at least handle constant BECounts. 1775 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1776 ScalarEvolution *SE, DominatorTree *DT) { 1777 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1778 1779 Value *Cond = 1780 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1781 1782 // Loop over all of the PHI nodes, looking for a simple counter. 1783 PHINode *BestPhi = nullptr; 1784 const SCEV *BestInit = nullptr; 1785 BasicBlock *LatchBlock = L->getLoopLatch(); 1786 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1787 1788 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1789 PHINode *Phi = cast<PHINode>(I); 1790 if (!SE->isSCEVable(Phi->getType())) 1791 continue; 1792 1793 // Avoid comparing an integer IV against a pointer Limit. 1794 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1795 continue; 1796 1797 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1798 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1799 continue; 1800 1801 // AR may be a pointer type, while BECount is an integer type. 1802 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1803 // AR may not be a narrower type, or we may never exit. 1804 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1805 if (PhiWidth < BCWidth || 1806 !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth)) 1807 continue; 1808 1809 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1810 if (!Step || !Step->isOne()) 1811 continue; 1812 1813 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1814 Value *IncV = Phi->getIncomingValue(LatchIdx); 1815 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1816 continue; 1817 1818 // Avoid reusing a potentially undef value to compute other values that may 1819 // have originally had a concrete definition. 1820 if (!hasConcreteDef(Phi)) { 1821 // We explicitly allow unknown phis as long as they are already used by 1822 // the loop test. In this case we assume that performing LFTR could not 1823 // increase the number of undef users. 1824 if (ICmpInst *Cond = getLoopTest(L)) { 1825 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1826 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1827 continue; 1828 } 1829 } 1830 } 1831 const SCEV *Init = AR->getStart(); 1832 1833 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1834 // Don't force a live loop counter if another IV can be used. 1835 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1836 continue; 1837 1838 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1839 // also prefers integer to pointer IVs. 1840 if (BestInit->isZero() != Init->isZero()) { 1841 if (BestInit->isZero()) 1842 continue; 1843 } 1844 // If two IVs both count from zero or both count from nonzero then the 1845 // narrower is likely a dead phi that has been widened. Use the wider phi 1846 // to allow the other to be eliminated. 1847 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1848 continue; 1849 } 1850 BestPhi = Phi; 1851 BestInit = Init; 1852 } 1853 return BestPhi; 1854 } 1855 1856 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 1857 /// the new loop test. 1858 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1859 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1860 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1861 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1862 const SCEV *IVInit = AR->getStart(); 1863 1864 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1865 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1866 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1867 // the existing GEPs whenever possible. 1868 if (IndVar->getType()->isPointerTy() 1869 && !IVCount->getType()->isPointerTy()) { 1870 1871 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1872 // signed value. IVCount on the other hand represents the loop trip count, 1873 // which is an unsigned value. FindLoopCounter only allows induction 1874 // variables that have a positive unit stride of one. This means we don't 1875 // have to handle the case of negative offsets (yet) and just need to zero 1876 // extend IVCount. 1877 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1878 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1879 1880 // Expand the code for the iteration count. 1881 assert(SE->isLoopInvariant(IVOffset, L) && 1882 "Computed iteration count is not loop invariant!"); 1883 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1884 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1885 1886 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1887 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1888 // We could handle pointer IVs other than i8*, but we need to compensate for 1889 // gep index scaling. See canExpandBackedgeTakenCount comments. 1890 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1891 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1892 && "unit stride pointer IV must be i8*"); 1893 1894 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1895 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1896 } 1897 else { 1898 // In any other case, convert both IVInit and IVCount to integers before 1899 // comparing. This may result in SCEV expension of pointers, but in practice 1900 // SCEV will fold the pointer arithmetic away as such: 1901 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1902 // 1903 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1904 // for simple memset-style loops. 1905 // 1906 // IVInit integer and IVCount pointer would only occur if a canonical IV 1907 // were generated on top of case #2, which is not expected. 1908 1909 const SCEV *IVLimit = nullptr; 1910 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1911 // For non-zero Start, compute IVCount here. 1912 if (AR->getStart()->isZero()) 1913 IVLimit = IVCount; 1914 else { 1915 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1916 const SCEV *IVInit = AR->getStart(); 1917 1918 // For integer IVs, truncate the IV before computing IVInit + BECount. 1919 if (SE->getTypeSizeInBits(IVInit->getType()) 1920 > SE->getTypeSizeInBits(IVCount->getType())) 1921 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1922 1923 IVLimit = SE->getAddExpr(IVInit, IVCount); 1924 } 1925 // Expand the code for the iteration count. 1926 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1927 IRBuilder<> Builder(BI); 1928 assert(SE->isLoopInvariant(IVLimit, L) && 1929 "Computed iteration count is not loop invariant!"); 1930 // Ensure that we generate the same type as IndVar, or a smaller integer 1931 // type. In the presence of null pointer values, we have an integer type 1932 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1933 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1934 IndVar->getType() : IVCount->getType(); 1935 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1936 } 1937 } 1938 1939 /// This method rewrites the exit condition of the loop to be a canonical != 1940 /// comparison against the incremented loop induction variable. This pass is 1941 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1942 /// determine a loop-invariant trip count of the loop, which is actually a much 1943 /// broader range than just linear tests. 1944 Value *IndVarSimplify:: 1945 linearFunctionTestReplace(Loop *L, 1946 const SCEV *BackedgeTakenCount, 1947 PHINode *IndVar, 1948 SCEVExpander &Rewriter) { 1949 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1950 1951 // Initialize CmpIndVar and IVCount to their preincremented values. 1952 Value *CmpIndVar = IndVar; 1953 const SCEV *IVCount = BackedgeTakenCount; 1954 1955 // If the exiting block is the same as the backedge block, we prefer to 1956 // compare against the post-incremented value, otherwise we must compare 1957 // against the preincremented value. 1958 if (L->getExitingBlock() == L->getLoopLatch()) { 1959 // Add one to the "backedge-taken" count to get the trip count. 1960 // This addition may overflow, which is valid as long as the comparison is 1961 // truncated to BackedgeTakenCount->getType(). 1962 IVCount = SE->getAddExpr(BackedgeTakenCount, 1963 SE->getOne(BackedgeTakenCount->getType())); 1964 // The BackedgeTaken expression contains the number of times that the 1965 // backedge branches to the loop header. This is one less than the 1966 // number of times the loop executes, so use the incremented indvar. 1967 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1968 } 1969 1970 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1971 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1972 && "genLoopLimit missed a cast"); 1973 1974 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1975 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1976 ICmpInst::Predicate P; 1977 if (L->contains(BI->getSuccessor(0))) 1978 P = ICmpInst::ICMP_NE; 1979 else 1980 P = ICmpInst::ICMP_EQ; 1981 1982 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1983 << " LHS:" << *CmpIndVar << '\n' 1984 << " op:\t" 1985 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1986 << " RHS:\t" << *ExitCnt << "\n" 1987 << " IVCount:\t" << *IVCount << "\n"); 1988 1989 IRBuilder<> Builder(BI); 1990 1991 // LFTR can ignore IV overflow and truncate to the width of 1992 // BECount. This avoids materializing the add(zext(add)) expression. 1993 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1994 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1995 if (CmpIndVarSize > ExitCntSize) { 1996 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1997 const SCEV *ARStart = AR->getStart(); 1998 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1999 // For constant IVCount, avoid truncation. 2000 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2001 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2002 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2003 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2004 // above such that IVCount is now zero. 2005 if (IVCount != BackedgeTakenCount && Count == 0) { 2006 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2007 ++Count; 2008 } 2009 else 2010 Count = Count.zext(CmpIndVarSize); 2011 APInt NewLimit; 2012 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2013 NewLimit = Start - Count; 2014 else 2015 NewLimit = Start + Count; 2016 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2017 2018 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2019 } else { 2020 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2021 "lftr.wideiv"); 2022 } 2023 } 2024 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2025 Value *OrigCond = BI->getCondition(); 2026 // It's tempting to use replaceAllUsesWith here to fully replace the old 2027 // comparison, but that's not immediately safe, since users of the old 2028 // comparison may not be dominated by the new comparison. Instead, just 2029 // update the branch to use the new comparison; in the common case this 2030 // will make old comparison dead. 2031 BI->setCondition(Cond); 2032 DeadInsts.push_back(OrigCond); 2033 2034 ++NumLFTR; 2035 Changed = true; 2036 return Cond; 2037 } 2038 2039 //===----------------------------------------------------------------------===// 2040 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2041 //===----------------------------------------------------------------------===// 2042 2043 /// If there's a single exit block, sink any loop-invariant values that 2044 /// were defined in the preheader but not used inside the loop into the 2045 /// exit block to reduce register pressure in the loop. 2046 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2047 BasicBlock *ExitBlock = L->getExitBlock(); 2048 if (!ExitBlock) return; 2049 2050 BasicBlock *Preheader = L->getLoopPreheader(); 2051 if (!Preheader) return; 2052 2053 Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt(); 2054 BasicBlock::iterator I(Preheader->getTerminator()); 2055 while (I != Preheader->begin()) { 2056 --I; 2057 // New instructions were inserted at the end of the preheader. 2058 if (isa<PHINode>(I)) 2059 break; 2060 2061 // Don't move instructions which might have side effects, since the side 2062 // effects need to complete before instructions inside the loop. Also don't 2063 // move instructions which might read memory, since the loop may modify 2064 // memory. Note that it's okay if the instruction might have undefined 2065 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2066 // block. 2067 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2068 continue; 2069 2070 // Skip debug info intrinsics. 2071 if (isa<DbgInfoIntrinsic>(I)) 2072 continue; 2073 2074 // Skip eh pad instructions. 2075 if (I->isEHPad()) 2076 continue; 2077 2078 // Don't sink alloca: we never want to sink static alloca's out of the 2079 // entry block, and correctly sinking dynamic alloca's requires 2080 // checks for stacksave/stackrestore intrinsics. 2081 // FIXME: Refactor this check somehow? 2082 if (isa<AllocaInst>(I)) 2083 continue; 2084 2085 // Determine if there is a use in or before the loop (direct or 2086 // otherwise). 2087 bool UsedInLoop = false; 2088 for (Use &U : I->uses()) { 2089 Instruction *User = cast<Instruction>(U.getUser()); 2090 BasicBlock *UseBB = User->getParent(); 2091 if (PHINode *P = dyn_cast<PHINode>(User)) { 2092 unsigned i = 2093 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2094 UseBB = P->getIncomingBlock(i); 2095 } 2096 if (UseBB == Preheader || L->contains(UseBB)) { 2097 UsedInLoop = true; 2098 break; 2099 } 2100 } 2101 2102 // If there is, the def must remain in the preheader. 2103 if (UsedInLoop) 2104 continue; 2105 2106 // Otherwise, sink it to the exit block. 2107 Instruction *ToMove = &*I; 2108 bool Done = false; 2109 2110 if (I != Preheader->begin()) { 2111 // Skip debug info intrinsics. 2112 do { 2113 --I; 2114 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2115 2116 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2117 Done = true; 2118 } else { 2119 Done = true; 2120 } 2121 2122 ToMove->moveBefore(InsertPt); 2123 if (Done) break; 2124 InsertPt = ToMove; 2125 } 2126 } 2127 2128 //===----------------------------------------------------------------------===// 2129 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2130 //===----------------------------------------------------------------------===// 2131 2132 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 2133 if (skipOptnoneFunction(L)) 2134 return false; 2135 2136 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2137 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2138 // canonicalization can be a pessimization without LSR to "clean up" 2139 // afterwards. 2140 // - We depend on having a preheader; in particular, 2141 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2142 // and we're in trouble if we can't find the induction variable even when 2143 // we've manually inserted one. 2144 if (!L->isLoopSimplifyForm()) 2145 return false; 2146 2147 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2148 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2149 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2150 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2151 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2152 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2153 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2154 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2155 2156 DeadInsts.clear(); 2157 Changed = false; 2158 2159 // If there are any floating-point recurrences, attempt to 2160 // transform them to use integer recurrences. 2161 rewriteNonIntegerIVs(L); 2162 2163 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2164 2165 // Create a rewriter object which we'll use to transform the code with. 2166 SCEVExpander Rewriter(*SE, DL, "indvars"); 2167 #ifndef NDEBUG 2168 Rewriter.setDebugType(DEBUG_TYPE); 2169 #endif 2170 2171 // Eliminate redundant IV users. 2172 // 2173 // Simplification works best when run before other consumers of SCEV. We 2174 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2175 // other expressions involving loop IVs have been evaluated. This helps SCEV 2176 // set no-wrap flags before normalizing sign/zero extension. 2177 Rewriter.disableCanonicalMode(); 2178 simplifyAndExtend(L, Rewriter, LI); 2179 2180 // Check to see if this loop has a computable loop-invariant execution count. 2181 // If so, this means that we can compute the final value of any expressions 2182 // that are recurrent in the loop, and substitute the exit values from the 2183 // loop into any instructions outside of the loop that use the final values of 2184 // the current expressions. 2185 // 2186 if (ReplaceExitValue != NeverRepl && 2187 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2188 rewriteLoopExitValues(L, Rewriter); 2189 2190 // Eliminate redundant IV cycles. 2191 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2192 2193 // If we have a trip count expression, rewrite the loop's exit condition 2194 // using it. We can currently only handle loops with a single exit. 2195 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2196 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2197 if (IndVar) { 2198 // Check preconditions for proper SCEVExpander operation. SCEV does not 2199 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2200 // pass that uses the SCEVExpander must do it. This does not work well for 2201 // loop passes because SCEVExpander makes assumptions about all loops, 2202 // while LoopPassManager only forces the current loop to be simplified. 2203 // 2204 // FIXME: SCEV expansion has no way to bail out, so the caller must 2205 // explicitly check any assumptions made by SCEV. Brittle. 2206 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2207 if (!AR || AR->getLoop()->getLoopPreheader()) 2208 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2209 Rewriter); 2210 } 2211 } 2212 // Clear the rewriter cache, because values that are in the rewriter's cache 2213 // can be deleted in the loop below, causing the AssertingVH in the cache to 2214 // trigger. 2215 Rewriter.clear(); 2216 2217 // Now that we're done iterating through lists, clean up any instructions 2218 // which are now dead. 2219 while (!DeadInsts.empty()) 2220 if (Instruction *Inst = 2221 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2222 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2223 2224 // The Rewriter may not be used from this point on. 2225 2226 // Loop-invariant instructions in the preheader that aren't used in the 2227 // loop may be sunk below the loop to reduce register pressure. 2228 sinkUnusedInvariants(L); 2229 2230 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2231 // trip count and therefore can further simplify exit values in addition to 2232 // rewriteLoopExitValues. 2233 rewriteFirstIterationLoopExitValues(L); 2234 2235 // Clean up dead instructions. 2236 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2237 2238 // Check a post-condition. 2239 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 2240 2241 // Verify that LFTR, and any other change have not interfered with SCEV's 2242 // ability to compute trip count. 2243 #ifndef NDEBUG 2244 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2245 SE->forgetLoop(L); 2246 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2247 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2248 SE->getTypeSizeInBits(NewBECount->getType())) 2249 NewBECount = SE->getTruncateOrNoop(NewBECount, 2250 BackedgeTakenCount->getType()); 2251 else 2252 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2253 NewBECount->getType()); 2254 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2255 } 2256 #endif 2257 2258 return Changed; 2259 } 2260