xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 8fdf87c3380c250b1d042c76126cf6d06ad14b6e)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopPass.h"
34 #include "llvm/Analysis/ScalarEvolutionExpander.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/Local.h"
53 #include "llvm/Transforms/Utils/LoopUtils.h"
54 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "indvars"
58 
59 STATISTIC(NumWidened     , "Number of indvars widened");
60 STATISTIC(NumReplaced    , "Number of exit values replaced");
61 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
62 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
63 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
64 
65 // Trip count verification can be enabled by default under NDEBUG if we
66 // implement a strong expression equivalence checker in SCEV. Until then, we
67 // use the verify-indvars flag, which may assert in some cases.
68 static cl::opt<bool> VerifyIndvars(
69   "verify-indvars", cl::Hidden,
70   cl::desc("Verify the ScalarEvolution result after running indvars"));
71 
72 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
73   cl::desc("Reduce live induction variables."));
74 
75 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
76 
77 static cl::opt<ReplaceExitVal> ReplaceExitValue(
78     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
79     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
80     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
81                clEnumValN(OnlyCheapRepl, "cheap",
82                           "only replace exit value when the cost is cheap"),
83                clEnumValN(AlwaysRepl, "always",
84                           "always replace exit value whenever possible"),
85                clEnumValEnd));
86 
87 namespace {
88 struct RewritePhi;
89 
90 class IndVarSimplify : public LoopPass {
91   LoopInfo                  *LI;
92   ScalarEvolution           *SE;
93   DominatorTree             *DT;
94   TargetLibraryInfo         *TLI;
95   const TargetTransformInfo *TTI;
96 
97   SmallVector<WeakVH, 16> DeadInsts;
98   bool Changed;
99 public:
100 
101   static char ID; // Pass identification, replacement for typeid
102   IndVarSimplify()
103     : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
104     initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
105   }
106 
107   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
108 
109   void getAnalysisUsage(AnalysisUsage &AU) const override {
110     AU.addRequired<DominatorTreeWrapperPass>();
111     AU.addRequired<LoopInfoWrapperPass>();
112     AU.addRequired<ScalarEvolutionWrapperPass>();
113     AU.addRequiredID(LoopSimplifyID);
114     AU.addRequiredID(LCSSAID);
115     AU.addPreserved<GlobalsAAWrapperPass>();
116     AU.addPreserved<ScalarEvolutionWrapperPass>();
117     AU.addPreservedID(LoopSimplifyID);
118     AU.addPreservedID(LCSSAID);
119     AU.setPreservesCFG();
120   }
121 
122 private:
123   void releaseMemory() override {
124     DeadInsts.clear();
125   }
126 
127   bool isValidRewrite(Value *FromVal, Value *ToVal);
128 
129   void handleFloatingPointIV(Loop *L, PHINode *PH);
130   void rewriteNonIntegerIVs(Loop *L);
131 
132   void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
133 
134   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
135   void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
136   void rewriteFirstIterationLoopExitValues(Loop *L);
137 
138   Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
139                                    PHINode *IndVar, SCEVExpander &Rewriter);
140 
141   void sinkUnusedInvariants(Loop *L);
142 
143   Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
144                             Instruction *InsertPt, Type *Ty);
145 };
146 }
147 
148 char IndVarSimplify::ID = 0;
149 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
150                 "Induction Variable Simplification", false, false)
151 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
152 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
155 INITIALIZE_PASS_DEPENDENCY(LCSSA)
156 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
157                 "Induction Variable Simplification", false, false)
158 
159 Pass *llvm::createIndVarSimplifyPass() {
160   return new IndVarSimplify();
161 }
162 
163 /// Return true if the SCEV expansion generated by the rewriter can replace the
164 /// original value. SCEV guarantees that it produces the same value, but the way
165 /// it is produced may be illegal IR.  Ideally, this function will only be
166 /// called for verification.
167 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
168   // If an SCEV expression subsumed multiple pointers, its expansion could
169   // reassociate the GEP changing the base pointer. This is illegal because the
170   // final address produced by a GEP chain must be inbounds relative to its
171   // underlying object. Otherwise basic alias analysis, among other things,
172   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
173   // producing an expression involving multiple pointers. Until then, we must
174   // bail out here.
175   //
176   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
177   // because it understands lcssa phis while SCEV does not.
178   Value *FromPtr = FromVal;
179   Value *ToPtr = ToVal;
180   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
181     FromPtr = GEP->getPointerOperand();
182   }
183   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
184     ToPtr = GEP->getPointerOperand();
185   }
186   if (FromPtr != FromVal || ToPtr != ToVal) {
187     // Quickly check the common case
188     if (FromPtr == ToPtr)
189       return true;
190 
191     // SCEV may have rewritten an expression that produces the GEP's pointer
192     // operand. That's ok as long as the pointer operand has the same base
193     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
194     // base of a recurrence. This handles the case in which SCEV expansion
195     // converts a pointer type recurrence into a nonrecurrent pointer base
196     // indexed by an integer recurrence.
197 
198     // If the GEP base pointer is a vector of pointers, abort.
199     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
200       return false;
201 
202     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
203     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
204     if (FromBase == ToBase)
205       return true;
206 
207     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
208           << *FromBase << " != " << *ToBase << "\n");
209 
210     return false;
211   }
212   return true;
213 }
214 
215 /// Determine the insertion point for this user. By default, insert immediately
216 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
217 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
218 /// common dominator for the incoming blocks.
219 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
220                                           DominatorTree *DT, LoopInfo *LI) {
221   PHINode *PHI = dyn_cast<PHINode>(User);
222   if (!PHI)
223     return User;
224 
225   Instruction *InsertPt = nullptr;
226   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
227     if (PHI->getIncomingValue(i) != Def)
228       continue;
229 
230     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
231     if (!InsertPt) {
232       InsertPt = InsertBB->getTerminator();
233       continue;
234     }
235     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
236     InsertPt = InsertBB->getTerminator();
237   }
238   assert(InsertPt && "Missing phi operand");
239 
240   auto *DefI = dyn_cast<Instruction>(Def);
241   if (!DefI)
242     return InsertPt;
243 
244   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
245 
246   auto *L = LI->getLoopFor(DefI->getParent());
247   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
248 
249   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
250     if (LI->getLoopFor(DTN->getBlock()) == L)
251       return DTN->getBlock()->getTerminator();
252 
253   llvm_unreachable("DefI dominates InsertPt!");
254 }
255 
256 //===----------------------------------------------------------------------===//
257 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
258 //===----------------------------------------------------------------------===//
259 
260 /// Convert APF to an integer, if possible.
261 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
262   bool isExact = false;
263   // See if we can convert this to an int64_t
264   uint64_t UIntVal;
265   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
266                            &isExact) != APFloat::opOK || !isExact)
267     return false;
268   IntVal = UIntVal;
269   return true;
270 }
271 
272 /// If the loop has floating induction variable then insert corresponding
273 /// integer induction variable if possible.
274 /// For example,
275 /// for(double i = 0; i < 10000; ++i)
276 ///   bar(i)
277 /// is converted into
278 /// for(int i = 0; i < 10000; ++i)
279 ///   bar((double)i);
280 ///
281 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
282   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
283   unsigned BackEdge     = IncomingEdge^1;
284 
285   // Check incoming value.
286   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
287 
288   int64_t InitValue;
289   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
290     return;
291 
292   // Check IV increment. Reject this PN if increment operation is not
293   // an add or increment value can not be represented by an integer.
294   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
295   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
296 
297   // If this is not an add of the PHI with a constantfp, or if the constant fp
298   // is not an integer, bail out.
299   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
300   int64_t IncValue;
301   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
302       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
303     return;
304 
305   // Check Incr uses. One user is PN and the other user is an exit condition
306   // used by the conditional terminator.
307   Value::user_iterator IncrUse = Incr->user_begin();
308   Instruction *U1 = cast<Instruction>(*IncrUse++);
309   if (IncrUse == Incr->user_end()) return;
310   Instruction *U2 = cast<Instruction>(*IncrUse++);
311   if (IncrUse != Incr->user_end()) return;
312 
313   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
314   // only used by a branch, we can't transform it.
315   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
316   if (!Compare)
317     Compare = dyn_cast<FCmpInst>(U2);
318   if (!Compare || !Compare->hasOneUse() ||
319       !isa<BranchInst>(Compare->user_back()))
320     return;
321 
322   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
323 
324   // We need to verify that the branch actually controls the iteration count
325   // of the loop.  If not, the new IV can overflow and no one will notice.
326   // The branch block must be in the loop and one of the successors must be out
327   // of the loop.
328   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
329   if (!L->contains(TheBr->getParent()) ||
330       (L->contains(TheBr->getSuccessor(0)) &&
331        L->contains(TheBr->getSuccessor(1))))
332     return;
333 
334 
335   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
336   // transform it.
337   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
338   int64_t ExitValue;
339   if (ExitValueVal == nullptr ||
340       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
341     return;
342 
343   // Find new predicate for integer comparison.
344   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
345   switch (Compare->getPredicate()) {
346   default: return;  // Unknown comparison.
347   case CmpInst::FCMP_OEQ:
348   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
349   case CmpInst::FCMP_ONE:
350   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
351   case CmpInst::FCMP_OGT:
352   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
353   case CmpInst::FCMP_OGE:
354   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
355   case CmpInst::FCMP_OLT:
356   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
357   case CmpInst::FCMP_OLE:
358   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
359   }
360 
361   // We convert the floating point induction variable to a signed i32 value if
362   // we can.  This is only safe if the comparison will not overflow in a way
363   // that won't be trapped by the integer equivalent operations.  Check for this
364   // now.
365   // TODO: We could use i64 if it is native and the range requires it.
366 
367   // The start/stride/exit values must all fit in signed i32.
368   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
369     return;
370 
371   // If not actually striding (add x, 0.0), avoid touching the code.
372   if (IncValue == 0)
373     return;
374 
375   // Positive and negative strides have different safety conditions.
376   if (IncValue > 0) {
377     // If we have a positive stride, we require the init to be less than the
378     // exit value.
379     if (InitValue >= ExitValue)
380       return;
381 
382     uint32_t Range = uint32_t(ExitValue-InitValue);
383     // Check for infinite loop, either:
384     // while (i <= Exit) or until (i > Exit)
385     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
386       if (++Range == 0) return;  // Range overflows.
387     }
388 
389     unsigned Leftover = Range % uint32_t(IncValue);
390 
391     // If this is an equality comparison, we require that the strided value
392     // exactly land on the exit value, otherwise the IV condition will wrap
393     // around and do things the fp IV wouldn't.
394     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
395         Leftover != 0)
396       return;
397 
398     // If the stride would wrap around the i32 before exiting, we can't
399     // transform the IV.
400     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
401       return;
402 
403   } else {
404     // If we have a negative stride, we require the init to be greater than the
405     // exit value.
406     if (InitValue <= ExitValue)
407       return;
408 
409     uint32_t Range = uint32_t(InitValue-ExitValue);
410     // Check for infinite loop, either:
411     // while (i >= Exit) or until (i < Exit)
412     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
413       if (++Range == 0) return;  // Range overflows.
414     }
415 
416     unsigned Leftover = Range % uint32_t(-IncValue);
417 
418     // If this is an equality comparison, we require that the strided value
419     // exactly land on the exit value, otherwise the IV condition will wrap
420     // around and do things the fp IV wouldn't.
421     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
422         Leftover != 0)
423       return;
424 
425     // If the stride would wrap around the i32 before exiting, we can't
426     // transform the IV.
427     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
428       return;
429   }
430 
431   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
432 
433   // Insert new integer induction variable.
434   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
435   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
436                       PN->getIncomingBlock(IncomingEdge));
437 
438   Value *NewAdd =
439     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
440                               Incr->getName()+".int", Incr);
441   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
442 
443   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
444                                       ConstantInt::get(Int32Ty, ExitValue),
445                                       Compare->getName());
446 
447   // In the following deletions, PN may become dead and may be deleted.
448   // Use a WeakVH to observe whether this happens.
449   WeakVH WeakPH = PN;
450 
451   // Delete the old floating point exit comparison.  The branch starts using the
452   // new comparison.
453   NewCompare->takeName(Compare);
454   Compare->replaceAllUsesWith(NewCompare);
455   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
456 
457   // Delete the old floating point increment.
458   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
459   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
460 
461   // If the FP induction variable still has uses, this is because something else
462   // in the loop uses its value.  In order to canonicalize the induction
463   // variable, we chose to eliminate the IV and rewrite it in terms of an
464   // int->fp cast.
465   //
466   // We give preference to sitofp over uitofp because it is faster on most
467   // platforms.
468   if (WeakPH) {
469     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
470                                  &*PN->getParent()->getFirstInsertionPt());
471     PN->replaceAllUsesWith(Conv);
472     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
473   }
474   Changed = true;
475 }
476 
477 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
478   // First step.  Check to see if there are any floating-point recurrences.
479   // If there are, change them into integer recurrences, permitting analysis by
480   // the SCEV routines.
481   //
482   BasicBlock *Header = L->getHeader();
483 
484   SmallVector<WeakVH, 8> PHIs;
485   for (BasicBlock::iterator I = Header->begin();
486        PHINode *PN = dyn_cast<PHINode>(I); ++I)
487     PHIs.push_back(PN);
488 
489   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
490     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
491       handleFloatingPointIV(L, PN);
492 
493   // If the loop previously had floating-point IV, ScalarEvolution
494   // may not have been able to compute a trip count. Now that we've done some
495   // re-writing, the trip count may be computable.
496   if (Changed)
497     SE->forgetLoop(L);
498 }
499 
500 namespace {
501 // Collect information about PHI nodes which can be transformed in
502 // rewriteLoopExitValues.
503 struct RewritePhi {
504   PHINode *PN;
505   unsigned Ith;  // Ith incoming value.
506   Value *Val;    // Exit value after expansion.
507   bool HighCost; // High Cost when expansion.
508 
509   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
510       : PN(P), Ith(I), Val(V), HighCost(H) {}
511 };
512 }
513 
514 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
515                                           Loop *L, Instruction *InsertPt,
516                                           Type *ResultTy) {
517   // Before expanding S into an expensive LLVM expression, see if we can use an
518   // already existing value as the expansion for S.
519   if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L))
520     if (ExistingValue->getType() == ResultTy)
521       return ExistingValue;
522 
523   // We didn't find anything, fall back to using SCEVExpander.
524   return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
525 }
526 
527 //===----------------------------------------------------------------------===//
528 // rewriteLoopExitValues - Optimize IV users outside the loop.
529 // As a side effect, reduces the amount of IV processing within the loop.
530 //===----------------------------------------------------------------------===//
531 
532 /// Check to see if this loop has a computable loop-invariant execution count.
533 /// If so, this means that we can compute the final value of any expressions
534 /// that are recurrent in the loop, and substitute the exit values from the loop
535 /// into any instructions outside of the loop that use the final values of the
536 /// current expressions.
537 ///
538 /// This is mostly redundant with the regular IndVarSimplify activities that
539 /// happen later, except that it's more powerful in some cases, because it's
540 /// able to brute-force evaluate arbitrary instructions as long as they have
541 /// constant operands at the beginning of the loop.
542 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
543   // Check a pre-condition.
544   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
545 
546   SmallVector<BasicBlock*, 8> ExitBlocks;
547   L->getUniqueExitBlocks(ExitBlocks);
548 
549   SmallVector<RewritePhi, 8> RewritePhiSet;
550   // Find all values that are computed inside the loop, but used outside of it.
551   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
552   // the exit blocks of the loop to find them.
553   for (BasicBlock *ExitBB : ExitBlocks) {
554     // If there are no PHI nodes in this exit block, then no values defined
555     // inside the loop are used on this path, skip it.
556     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
557     if (!PN) continue;
558 
559     unsigned NumPreds = PN->getNumIncomingValues();
560 
561     // Iterate over all of the PHI nodes.
562     BasicBlock::iterator BBI = ExitBB->begin();
563     while ((PN = dyn_cast<PHINode>(BBI++))) {
564       if (PN->use_empty())
565         continue; // dead use, don't replace it
566 
567       // SCEV only supports integer expressions for now.
568       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
569         continue;
570 
571       // It's necessary to tell ScalarEvolution about this explicitly so that
572       // it can walk the def-use list and forget all SCEVs, as it may not be
573       // watching the PHI itself. Once the new exit value is in place, there
574       // may not be a def-use connection between the loop and every instruction
575       // which got a SCEVAddRecExpr for that loop.
576       SE->forgetValue(PN);
577 
578       // Iterate over all of the values in all the PHI nodes.
579       for (unsigned i = 0; i != NumPreds; ++i) {
580         // If the value being merged in is not integer or is not defined
581         // in the loop, skip it.
582         Value *InVal = PN->getIncomingValue(i);
583         if (!isa<Instruction>(InVal))
584           continue;
585 
586         // If this pred is for a subloop, not L itself, skip it.
587         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
588           continue; // The Block is in a subloop, skip it.
589 
590         // Check that InVal is defined in the loop.
591         Instruction *Inst = cast<Instruction>(InVal);
592         if (!L->contains(Inst))
593           continue;
594 
595         // Okay, this instruction has a user outside of the current loop
596         // and varies predictably *inside* the loop.  Evaluate the value it
597         // contains when the loop exits, if possible.
598         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
599         if (!SE->isLoopInvariant(ExitValue, L) ||
600             !isSafeToExpand(ExitValue, *SE))
601           continue;
602 
603         // Computing the value outside of the loop brings no benefit if :
604         //  - it is definitely used inside the loop in a way which can not be
605         //    optimized away.
606         //  - no use outside of the loop can take advantage of hoisting the
607         //    computation out of the loop
608         if (ExitValue->getSCEVType()>=scMulExpr) {
609           unsigned NumHardInternalUses = 0;
610           unsigned NumSoftExternalUses = 0;
611           unsigned NumUses = 0;
612           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
613                IB != IE && NumUses <= 6; ++IB) {
614             Instruction *UseInstr = cast<Instruction>(*IB);
615             unsigned Opc = UseInstr->getOpcode();
616             NumUses++;
617             if (L->contains(UseInstr)) {
618               if (Opc == Instruction::Call || Opc == Instruction::Ret)
619                 NumHardInternalUses++;
620             } else {
621               if (Opc == Instruction::PHI) {
622                 // Do not count the Phi as a use. LCSSA may have inserted
623                 // plenty of trivial ones.
624                 NumUses--;
625                 for (auto PB = UseInstr->user_begin(),
626                           PE = UseInstr->user_end();
627                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
628                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
629                   if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
630                     NumSoftExternalUses++;
631                 }
632                 continue;
633               }
634               if (Opc != Instruction::Call && Opc != Instruction::Ret)
635                 NumSoftExternalUses++;
636             }
637           }
638           if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
639             continue;
640         }
641 
642         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
643         Value *ExitVal =
644             expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType());
645 
646         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
647                      << "  LoopVal = " << *Inst << "\n");
648 
649         if (!isValidRewrite(Inst, ExitVal)) {
650           DeadInsts.push_back(ExitVal);
651           continue;
652         }
653 
654         // Collect all the candidate PHINodes to be rewritten.
655         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
656       }
657     }
658   }
659 
660   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
661 
662   // Transformation.
663   for (const RewritePhi &Phi : RewritePhiSet) {
664     PHINode *PN = Phi.PN;
665     Value *ExitVal = Phi.Val;
666 
667     // Only do the rewrite when the ExitValue can be expanded cheaply.
668     // If LoopCanBeDel is true, rewrite exit value aggressively.
669     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
670       DeadInsts.push_back(ExitVal);
671       continue;
672     }
673 
674     Changed = true;
675     ++NumReplaced;
676     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
677     PN->setIncomingValue(Phi.Ith, ExitVal);
678 
679     // If this instruction is dead now, delete it. Don't do it now to avoid
680     // invalidating iterators.
681     if (isInstructionTriviallyDead(Inst, TLI))
682       DeadInsts.push_back(Inst);
683 
684     // Replace PN with ExitVal if that is legal and does not break LCSSA.
685     if (PN->getNumIncomingValues() == 1 &&
686         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
687       PN->replaceAllUsesWith(ExitVal);
688       PN->eraseFromParent();
689     }
690   }
691 
692   // The insertion point instruction may have been deleted; clear it out
693   // so that the rewriter doesn't trip over it later.
694   Rewriter.clearInsertPoint();
695 }
696 
697 //===---------------------------------------------------------------------===//
698 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
699 // they will exit at the first iteration.
700 //===---------------------------------------------------------------------===//
701 
702 /// Check to see if this loop has loop invariant conditions which lead to loop
703 /// exits. If so, we know that if the exit path is taken, it is at the first
704 /// loop iteration. This lets us predict exit values of PHI nodes that live in
705 /// loop header.
706 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
707   // Verify the input to the pass is already in LCSSA form.
708   assert(L->isLCSSAForm(*DT));
709 
710   SmallVector<BasicBlock *, 8> ExitBlocks;
711   L->getUniqueExitBlocks(ExitBlocks);
712   auto *LoopHeader = L->getHeader();
713   assert(LoopHeader && "Invalid loop");
714 
715   for (auto *ExitBB : ExitBlocks) {
716     BasicBlock::iterator BBI = ExitBB->begin();
717     // If there are no more PHI nodes in this exit block, then no more
718     // values defined inside the loop are used on this path.
719     while (auto *PN = dyn_cast<PHINode>(BBI++)) {
720       for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues();
721           IncomingValIdx != E; ++IncomingValIdx) {
722         auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx);
723 
724         // We currently only support loop exits from loop header. If the
725         // incoming block is not loop header, we need to recursively check
726         // all conditions starting from loop header are loop invariants.
727         // Additional support might be added in the future.
728         if (IncomingBB != LoopHeader)
729           continue;
730 
731         // Get condition that leads to the exit path.
732         auto *TermInst = IncomingBB->getTerminator();
733 
734         Value *Cond = nullptr;
735         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
736           // Must be a conditional branch, otherwise the block
737           // should not be in the loop.
738           Cond = BI->getCondition();
739         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
740           Cond = SI->getCondition();
741         else
742           continue;
743 
744         if (!L->isLoopInvariant(Cond))
745           continue;
746 
747         auto *ExitVal =
748             dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx));
749 
750         // Only deal with PHIs.
751         if (!ExitVal)
752           continue;
753 
754         // If ExitVal is a PHI on the loop header, then we know its
755         // value along this exit because the exit can only be taken
756         // on the first iteration.
757         auto *LoopPreheader = L->getLoopPreheader();
758         assert(LoopPreheader && "Invalid loop");
759         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
760         if (PreheaderIdx != -1) {
761           assert(ExitVal->getParent() == LoopHeader &&
762                  "ExitVal must be in loop header");
763           PN->setIncomingValue(IncomingValIdx,
764               ExitVal->getIncomingValue(PreheaderIdx));
765         }
766       }
767     }
768   }
769 }
770 
771 /// Check whether it is possible to delete the loop after rewriting exit
772 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
773 /// aggressively.
774 bool IndVarSimplify::canLoopBeDeleted(
775     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
776 
777   BasicBlock *Preheader = L->getLoopPreheader();
778   // If there is no preheader, the loop will not be deleted.
779   if (!Preheader)
780     return false;
781 
782   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
783   // We obviate multiple ExitingBlocks case for simplicity.
784   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
785   // after exit value rewriting, we can enhance the logic here.
786   SmallVector<BasicBlock *, 4> ExitingBlocks;
787   L->getExitingBlocks(ExitingBlocks);
788   SmallVector<BasicBlock *, 8> ExitBlocks;
789   L->getUniqueExitBlocks(ExitBlocks);
790   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
791     return false;
792 
793   BasicBlock *ExitBlock = ExitBlocks[0];
794   BasicBlock::iterator BI = ExitBlock->begin();
795   while (PHINode *P = dyn_cast<PHINode>(BI)) {
796     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
797 
798     // If the Incoming value of P is found in RewritePhiSet, we know it
799     // could be rewritten to use a loop invariant value in transformation
800     // phase later. Skip it in the loop invariant check below.
801     bool found = false;
802     for (const RewritePhi &Phi : RewritePhiSet) {
803       unsigned i = Phi.Ith;
804       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
805         found = true;
806         break;
807       }
808     }
809 
810     Instruction *I;
811     if (!found && (I = dyn_cast<Instruction>(Incoming)))
812       if (!L->hasLoopInvariantOperands(I))
813         return false;
814 
815     ++BI;
816   }
817 
818   for (auto *BB : L->blocks())
819     if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); }))
820       return false;
821 
822   return true;
823 }
824 
825 //===----------------------------------------------------------------------===//
826 //  IV Widening - Extend the width of an IV to cover its widest uses.
827 //===----------------------------------------------------------------------===//
828 
829 namespace {
830 // Collect information about induction variables that are used by sign/zero
831 // extend operations. This information is recorded by CollectExtend and provides
832 // the input to WidenIV.
833 struct WideIVInfo {
834   PHINode *NarrowIV = nullptr;
835   Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext
836   bool IsSigned = false;            // Was a sext user seen before a zext?
837 };
838 }
839 
840 /// Update information about the induction variable that is extended by this
841 /// sign or zero extend operation. This is used to determine the final width of
842 /// the IV before actually widening it.
843 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
844                         const TargetTransformInfo *TTI) {
845   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
846   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
847     return;
848 
849   Type *Ty = Cast->getType();
850   uint64_t Width = SE->getTypeSizeInBits(Ty);
851   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
852     return;
853 
854   // Cast is either an sext or zext up to this point.
855   // We should not widen an indvar if arithmetics on the wider indvar are more
856   // expensive than those on the narrower indvar. We check only the cost of ADD
857   // because at least an ADD is required to increment the induction variable. We
858   // could compute more comprehensively the cost of all instructions on the
859   // induction variable when necessary.
860   if (TTI &&
861       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
862           TTI->getArithmeticInstrCost(Instruction::Add,
863                                       Cast->getOperand(0)->getType())) {
864     return;
865   }
866 
867   if (!WI.WidestNativeType) {
868     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
869     WI.IsSigned = IsSigned;
870     return;
871   }
872 
873   // We extend the IV to satisfy the sign of its first user, arbitrarily.
874   if (WI.IsSigned != IsSigned)
875     return;
876 
877   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
878     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
879 }
880 
881 namespace {
882 
883 /// Record a link in the Narrow IV def-use chain along with the WideIV that
884 /// computes the same value as the Narrow IV def.  This avoids caching Use*
885 /// pointers.
886 struct NarrowIVDefUse {
887   Instruction *NarrowDef = nullptr;
888   Instruction *NarrowUse = nullptr;
889   Instruction *WideDef = nullptr;
890 
891   // True if the narrow def is never negative.  Tracking this information lets
892   // us use a sign extension instead of a zero extension or vice versa, when
893   // profitable and legal.
894   bool NeverNegative = false;
895 
896   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
897                  bool NeverNegative)
898       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
899         NeverNegative(NeverNegative) {}
900 };
901 
902 /// The goal of this transform is to remove sign and zero extends without
903 /// creating any new induction variables. To do this, it creates a new phi of
904 /// the wider type and redirects all users, either removing extends or inserting
905 /// truncs whenever we stop propagating the type.
906 ///
907 class WidenIV {
908   // Parameters
909   PHINode *OrigPhi;
910   Type *WideType;
911   bool IsSigned;
912 
913   // Context
914   LoopInfo        *LI;
915   Loop            *L;
916   ScalarEvolution *SE;
917   DominatorTree   *DT;
918 
919   // Result
920   PHINode *WidePhi;
921   Instruction *WideInc;
922   const SCEV *WideIncExpr;
923   SmallVectorImpl<WeakVH> &DeadInsts;
924 
925   SmallPtrSet<Instruction*,16> Widened;
926   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
927 
928 public:
929   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
930           ScalarEvolution *SEv, DominatorTree *DTree,
931           SmallVectorImpl<WeakVH> &DI) :
932     OrigPhi(WI.NarrowIV),
933     WideType(WI.WidestNativeType),
934     IsSigned(WI.IsSigned),
935     LI(LInfo),
936     L(LI->getLoopFor(OrigPhi->getParent())),
937     SE(SEv),
938     DT(DTree),
939     WidePhi(nullptr),
940     WideInc(nullptr),
941     WideIncExpr(nullptr),
942     DeadInsts(DI) {
943     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
944   }
945 
946   PHINode *createWideIV(SCEVExpander &Rewriter);
947 
948 protected:
949   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
950                           Instruction *Use);
951 
952   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
953   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
954                                      const SCEVAddRecExpr *WideAR);
955   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
956 
957   const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse);
958 
959   const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU);
960 
961   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
962                               unsigned OpCode) const;
963 
964   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
965 
966   bool widenLoopCompare(NarrowIVDefUse DU);
967 
968   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
969 };
970 } // anonymous namespace
971 
972 /// Perform a quick domtree based check for loop invariance assuming that V is
973 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
974 /// purpose.
975 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
976   Instruction *Inst = dyn_cast<Instruction>(V);
977   if (!Inst)
978     return true;
979 
980   return DT->properlyDominates(Inst->getParent(), L->getHeader());
981 }
982 
983 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
984                                  bool IsSigned, Instruction *Use) {
985   // Set the debug location and conservative insertion point.
986   IRBuilder<> Builder(Use);
987   // Hoist the insertion point into loop preheaders as far as possible.
988   for (const Loop *L = LI->getLoopFor(Use->getParent());
989        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
990        L = L->getParentLoop())
991     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
992 
993   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
994                     Builder.CreateZExt(NarrowOper, WideType);
995 }
996 
997 /// Instantiate a wide operation to replace a narrow operation. This only needs
998 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
999 /// 0 for any operation we decide not to clone.
1000 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1001                                   const SCEVAddRecExpr *WideAR) {
1002   unsigned Opcode = DU.NarrowUse->getOpcode();
1003   switch (Opcode) {
1004   default:
1005     return nullptr;
1006   case Instruction::Add:
1007   case Instruction::Mul:
1008   case Instruction::UDiv:
1009   case Instruction::Sub:
1010     return cloneArithmeticIVUser(DU, WideAR);
1011 
1012   case Instruction::And:
1013   case Instruction::Or:
1014   case Instruction::Xor:
1015   case Instruction::Shl:
1016   case Instruction::LShr:
1017   case Instruction::AShr:
1018     return cloneBitwiseIVUser(DU);
1019   }
1020 }
1021 
1022 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1023   Instruction *NarrowUse = DU.NarrowUse;
1024   Instruction *NarrowDef = DU.NarrowDef;
1025   Instruction *WideDef = DU.WideDef;
1026 
1027   DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1028 
1029   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1030   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1031   // invariant and will be folded or hoisted. If it actually comes from a
1032   // widened IV, it should be removed during a future call to widenIVUse.
1033   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1034                    ? WideDef
1035                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1036                                       IsSigned, NarrowUse);
1037   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1038                    ? WideDef
1039                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1040                                       IsSigned, NarrowUse);
1041 
1042   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1043   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1044                                         NarrowBO->getName());
1045   IRBuilder<> Builder(NarrowUse);
1046   Builder.Insert(WideBO);
1047   WideBO->copyIRFlags(NarrowBO);
1048   return WideBO;
1049 }
1050 
1051 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1052                                             const SCEVAddRecExpr *WideAR) {
1053   Instruction *NarrowUse = DU.NarrowUse;
1054   Instruction *NarrowDef = DU.NarrowDef;
1055   Instruction *WideDef = DU.WideDef;
1056 
1057   DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1058 
1059   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1060 
1061   // We're trying to find X such that
1062   //
1063   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1064   //
1065   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1066   // and check using SCEV if any of them are correct.
1067 
1068   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1069   // correct solution to X.
1070   auto GuessNonIVOperand = [&](bool SignExt) {
1071     const SCEV *WideLHS;
1072     const SCEV *WideRHS;
1073 
1074     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1075       if (SignExt)
1076         return SE->getSignExtendExpr(S, Ty);
1077       return SE->getZeroExtendExpr(S, Ty);
1078     };
1079 
1080     if (IVOpIdx == 0) {
1081       WideLHS = SE->getSCEV(WideDef);
1082       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1083       WideRHS = GetExtend(NarrowRHS, WideType);
1084     } else {
1085       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1086       WideLHS = GetExtend(NarrowLHS, WideType);
1087       WideRHS = SE->getSCEV(WideDef);
1088     }
1089 
1090     // WideUse is "WideDef `op.wide` X" as described in the comment.
1091     const SCEV *WideUse = nullptr;
1092 
1093     switch (NarrowUse->getOpcode()) {
1094     default:
1095       llvm_unreachable("No other possibility!");
1096 
1097     case Instruction::Add:
1098       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1099       break;
1100 
1101     case Instruction::Mul:
1102       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1103       break;
1104 
1105     case Instruction::UDiv:
1106       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1107       break;
1108 
1109     case Instruction::Sub:
1110       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1111       break;
1112     }
1113 
1114     return WideUse == WideAR;
1115   };
1116 
1117   bool SignExtend = IsSigned;
1118   if (!GuessNonIVOperand(SignExtend)) {
1119     SignExtend = !SignExtend;
1120     if (!GuessNonIVOperand(SignExtend))
1121       return nullptr;
1122   }
1123 
1124   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1125                    ? WideDef
1126                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1127                                       SignExtend, NarrowUse);
1128   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1129                    ? WideDef
1130                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1131                                       SignExtend, NarrowUse);
1132 
1133   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1134   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1135                                         NarrowBO->getName());
1136 
1137   IRBuilder<> Builder(NarrowUse);
1138   Builder.Insert(WideBO);
1139   WideBO->copyIRFlags(NarrowBO);
1140   return WideBO;
1141 }
1142 
1143 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1144                                      unsigned OpCode) const {
1145   if (OpCode == Instruction::Add)
1146     return SE->getAddExpr(LHS, RHS);
1147   if (OpCode == Instruction::Sub)
1148     return SE->getMinusSCEV(LHS, RHS);
1149   if (OpCode == Instruction::Mul)
1150     return SE->getMulExpr(LHS, RHS);
1151 
1152   llvm_unreachable("Unsupported opcode.");
1153 }
1154 
1155 /// No-wrap operations can transfer sign extension of their result to their
1156 /// operands. Generate the SCEV value for the widened operation without
1157 /// actually modifying the IR yet. If the expression after extending the
1158 /// operands is an AddRec for this loop, return it.
1159 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1160 
1161   // Handle the common case of add<nsw/nuw>
1162   const unsigned OpCode = DU.NarrowUse->getOpcode();
1163   // Only Add/Sub/Mul instructions supported yet.
1164   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1165       OpCode != Instruction::Mul)
1166     return nullptr;
1167 
1168   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1169   // if extending the other will lead to a recurrence.
1170   const unsigned ExtendOperIdx =
1171       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1172   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1173 
1174   const SCEV *ExtendOperExpr = nullptr;
1175   const OverflowingBinaryOperator *OBO =
1176     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1177   if (IsSigned && OBO->hasNoSignedWrap())
1178     ExtendOperExpr = SE->getSignExtendExpr(
1179       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1180   else if(!IsSigned && OBO->hasNoUnsignedWrap())
1181     ExtendOperExpr = SE->getZeroExtendExpr(
1182       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1183   else
1184     return nullptr;
1185 
1186   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1187   // flags. This instruction may be guarded by control flow that the no-wrap
1188   // behavior depends on. Non-control-equivalent instructions can be mapped to
1189   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1190   // semantics to those operations.
1191   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1192   const SCEV *rhs = ExtendOperExpr;
1193 
1194   // Let's swap operands to the initial order for the case of non-commutative
1195   // operations, like SUB. See PR21014.
1196   if (ExtendOperIdx == 0)
1197     std::swap(lhs, rhs);
1198   const SCEVAddRecExpr *AddRec =
1199       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1200 
1201   if (!AddRec || AddRec->getLoop() != L)
1202     return nullptr;
1203   return AddRec;
1204 }
1205 
1206 /// Is this instruction potentially interesting for further simplification after
1207 /// widening it's type? In other words, can the extend be safely hoisted out of
1208 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1209 /// so, return the sign or zero extended recurrence. Otherwise return NULL.
1210 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) {
1211   if (!SE->isSCEVable(NarrowUse->getType()))
1212     return nullptr;
1213 
1214   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
1215   if (SE->getTypeSizeInBits(NarrowExpr->getType())
1216       >= SE->getTypeSizeInBits(WideType)) {
1217     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1218     // index. So don't follow this use.
1219     return nullptr;
1220   }
1221 
1222   const SCEV *WideExpr = IsSigned ?
1223     SE->getSignExtendExpr(NarrowExpr, WideType) :
1224     SE->getZeroExtendExpr(NarrowExpr, WideType);
1225   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1226   if (!AddRec || AddRec->getLoop() != L)
1227     return nullptr;
1228   return AddRec;
1229 }
1230 
1231 /// This IV user cannot be widen. Replace this use of the original narrow IV
1232 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1233 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1234   DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
1235         << " for user " << *DU.NarrowUse << "\n");
1236   IRBuilder<> Builder(
1237       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1238   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1239   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1240 }
1241 
1242 /// If the narrow use is a compare instruction, then widen the compare
1243 //  (and possibly the other operand).  The extend operation is hoisted into the
1244 // loop preheader as far as possible.
1245 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1246   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1247   if (!Cmp)
1248     return false;
1249 
1250   // We can legally widen the comparison in the following two cases:
1251   //
1252   //  - The signedness of the IV extension and comparison match
1253   //
1254   //  - The narrow IV is always positive (and thus its sign extension is equal
1255   //    to its zero extension).  For instance, let's say we're zero extending
1256   //    %narrow for the following use
1257   //
1258   //      icmp slt i32 %narrow, %val   ... (A)
1259   //
1260   //    and %narrow is always positive.  Then
1261   //
1262   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1263   //          == icmp slt i32 zext(%narrow), sext(%val)
1264 
1265   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1266     return false;
1267 
1268   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1269   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1270   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1271   assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
1272 
1273   // Widen the compare instruction.
1274   IRBuilder<> Builder(
1275       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1276   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1277 
1278   // Widen the other operand of the compare, if necessary.
1279   if (CastWidth < IVWidth) {
1280     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1281     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1282   }
1283   return true;
1284 }
1285 
1286 /// Determine whether an individual user of the narrow IV can be widened. If so,
1287 /// return the wide clone of the user.
1288 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1289 
1290   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1291   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1292     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1293       // For LCSSA phis, sink the truncate outside the loop.
1294       // After SimplifyCFG most loop exit targets have a single predecessor.
1295       // Otherwise fall back to a truncate within the loop.
1296       if (UsePhi->getNumOperands() != 1)
1297         truncateIVUse(DU, DT, LI);
1298       else {
1299         PHINode *WidePhi =
1300           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1301                           UsePhi);
1302         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1303         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1304         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1305         UsePhi->replaceAllUsesWith(Trunc);
1306         DeadInsts.emplace_back(UsePhi);
1307         DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1308               << " to " << *WidePhi << "\n");
1309       }
1310       return nullptr;
1311     }
1312   }
1313   // Our raison d'etre! Eliminate sign and zero extension.
1314   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1315     Value *NewDef = DU.WideDef;
1316     if (DU.NarrowUse->getType() != WideType) {
1317       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1318       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1319       if (CastWidth < IVWidth) {
1320         // The cast isn't as wide as the IV, so insert a Trunc.
1321         IRBuilder<> Builder(DU.NarrowUse);
1322         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1323       }
1324       else {
1325         // A wider extend was hidden behind a narrower one. This may induce
1326         // another round of IV widening in which the intermediate IV becomes
1327         // dead. It should be very rare.
1328         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1329               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1330         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1331         NewDef = DU.NarrowUse;
1332       }
1333     }
1334     if (NewDef != DU.NarrowUse) {
1335       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1336             << " replaced by " << *DU.WideDef << "\n");
1337       ++NumElimExt;
1338       DU.NarrowUse->replaceAllUsesWith(NewDef);
1339       DeadInsts.emplace_back(DU.NarrowUse);
1340     }
1341     // Now that the extend is gone, we want to expose it's uses for potential
1342     // further simplification. We don't need to directly inform SimplifyIVUsers
1343     // of the new users, because their parent IV will be processed later as a
1344     // new loop phi. If we preserved IVUsers analysis, we would also want to
1345     // push the uses of WideDef here.
1346 
1347     // No further widening is needed. The deceased [sz]ext had done it for us.
1348     return nullptr;
1349   }
1350 
1351   // Does this user itself evaluate to a recurrence after widening?
1352   const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse);
1353   if (!WideAddRec)
1354     WideAddRec = getExtendedOperandRecurrence(DU);
1355 
1356   if (!WideAddRec) {
1357     // If use is a loop condition, try to promote the condition instead of
1358     // truncating the IV first.
1359     if (widenLoopCompare(DU))
1360       return nullptr;
1361 
1362     // This user does not evaluate to a recurence after widening, so don't
1363     // follow it. Instead insert a Trunc to kill off the original use,
1364     // eventually isolating the original narrow IV so it can be removed.
1365     truncateIVUse(DU, DT, LI);
1366     return nullptr;
1367   }
1368   // Assume block terminators cannot evaluate to a recurrence. We can't to
1369   // insert a Trunc after a terminator if there happens to be a critical edge.
1370   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1371          "SCEV is not expected to evaluate a block terminator");
1372 
1373   // Reuse the IV increment that SCEVExpander created as long as it dominates
1374   // NarrowUse.
1375   Instruction *WideUse = nullptr;
1376   if (WideAddRec == WideIncExpr
1377       && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1378     WideUse = WideInc;
1379   else {
1380     WideUse = cloneIVUser(DU, WideAddRec);
1381     if (!WideUse)
1382       return nullptr;
1383   }
1384   // Evaluation of WideAddRec ensured that the narrow expression could be
1385   // extended outside the loop without overflow. This suggests that the wide use
1386   // evaluates to the same expression as the extended narrow use, but doesn't
1387   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1388   // where it fails, we simply throw away the newly created wide use.
1389   if (WideAddRec != SE->getSCEV(WideUse)) {
1390     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1391           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1392     DeadInsts.emplace_back(WideUse);
1393     return nullptr;
1394   }
1395 
1396   // Returning WideUse pushes it on the worklist.
1397   return WideUse;
1398 }
1399 
1400 /// Add eligible users of NarrowDef to NarrowIVUsers.
1401 ///
1402 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1403   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1404   bool NeverNegative =
1405       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1406                            SE->getConstant(NarrowSCEV->getType(), 0));
1407   for (User *U : NarrowDef->users()) {
1408     Instruction *NarrowUser = cast<Instruction>(U);
1409 
1410     // Handle data flow merges and bizarre phi cycles.
1411     if (!Widened.insert(NarrowUser).second)
1412       continue;
1413 
1414     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative);
1415   }
1416 }
1417 
1418 /// Process a single induction variable. First use the SCEVExpander to create a
1419 /// wide induction variable that evaluates to the same recurrence as the
1420 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1421 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1422 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1423 ///
1424 /// It would be simpler to delete uses as they are processed, but we must avoid
1425 /// invalidating SCEV expressions.
1426 ///
1427 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1428   // Is this phi an induction variable?
1429   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1430   if (!AddRec)
1431     return nullptr;
1432 
1433   // Widen the induction variable expression.
1434   const SCEV *WideIVExpr = IsSigned ?
1435     SE->getSignExtendExpr(AddRec, WideType) :
1436     SE->getZeroExtendExpr(AddRec, WideType);
1437 
1438   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1439          "Expect the new IV expression to preserve its type");
1440 
1441   // Can the IV be extended outside the loop without overflow?
1442   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1443   if (!AddRec || AddRec->getLoop() != L)
1444     return nullptr;
1445 
1446   // An AddRec must have loop-invariant operands. Since this AddRec is
1447   // materialized by a loop header phi, the expression cannot have any post-loop
1448   // operands, so they must dominate the loop header.
1449   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1450          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1451          && "Loop header phi recurrence inputs do not dominate the loop");
1452 
1453   // The rewriter provides a value for the desired IV expression. This may
1454   // either find an existing phi or materialize a new one. Either way, we
1455   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1456   // of the phi-SCC dominates the loop entry.
1457   Instruction *InsertPt = &L->getHeader()->front();
1458   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1459 
1460   // Remembering the WideIV increment generated by SCEVExpander allows
1461   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1462   // employ a general reuse mechanism because the call above is the only call to
1463   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1464   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1465     WideInc =
1466       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1467     WideIncExpr = SE->getSCEV(WideInc);
1468   }
1469 
1470   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1471   ++NumWidened;
1472 
1473   // Traverse the def-use chain using a worklist starting at the original IV.
1474   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1475 
1476   Widened.insert(OrigPhi);
1477   pushNarrowIVUsers(OrigPhi, WidePhi);
1478 
1479   while (!NarrowIVUsers.empty()) {
1480     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1481 
1482     // Process a def-use edge. This may replace the use, so don't hold a
1483     // use_iterator across it.
1484     Instruction *WideUse = widenIVUse(DU, Rewriter);
1485 
1486     // Follow all def-use edges from the previous narrow use.
1487     if (WideUse)
1488       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1489 
1490     // widenIVUse may have removed the def-use edge.
1491     if (DU.NarrowDef->use_empty())
1492       DeadInsts.emplace_back(DU.NarrowDef);
1493   }
1494   return WidePhi;
1495 }
1496 
1497 //===----------------------------------------------------------------------===//
1498 //  Live IV Reduction - Minimize IVs live across the loop.
1499 //===----------------------------------------------------------------------===//
1500 
1501 
1502 //===----------------------------------------------------------------------===//
1503 //  Simplification of IV users based on SCEV evaluation.
1504 //===----------------------------------------------------------------------===//
1505 
1506 namespace {
1507 class IndVarSimplifyVisitor : public IVVisitor {
1508   ScalarEvolution *SE;
1509   const TargetTransformInfo *TTI;
1510   PHINode *IVPhi;
1511 
1512 public:
1513   WideIVInfo WI;
1514 
1515   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1516                         const TargetTransformInfo *TTI,
1517                         const DominatorTree *DTree)
1518     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1519     DT = DTree;
1520     WI.NarrowIV = IVPhi;
1521     if (ReduceLiveIVs)
1522       setSplitOverflowIntrinsics();
1523   }
1524 
1525   // Implement the interface used by simplifyUsersOfIV.
1526   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1527 };
1528 }
1529 
1530 /// Iteratively perform simplification on a worklist of IV users. Each
1531 /// successive simplification may push more users which may themselves be
1532 /// candidates for simplification.
1533 ///
1534 /// Sign/Zero extend elimination is interleaved with IV simplification.
1535 ///
1536 void IndVarSimplify::simplifyAndExtend(Loop *L,
1537                                        SCEVExpander &Rewriter,
1538                                        LoopInfo *LI) {
1539   SmallVector<WideIVInfo, 8> WideIVs;
1540 
1541   SmallVector<PHINode*, 8> LoopPhis;
1542   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1543     LoopPhis.push_back(cast<PHINode>(I));
1544   }
1545   // Each round of simplification iterates through the SimplifyIVUsers worklist
1546   // for all current phis, then determines whether any IVs can be
1547   // widened. Widening adds new phis to LoopPhis, inducing another round of
1548   // simplification on the wide IVs.
1549   while (!LoopPhis.empty()) {
1550     // Evaluate as many IV expressions as possible before widening any IVs. This
1551     // forces SCEV to set no-wrap flags before evaluating sign/zero
1552     // extension. The first time SCEV attempts to normalize sign/zero extension,
1553     // the result becomes final. So for the most predictable results, we delay
1554     // evaluation of sign/zero extend evaluation until needed, and avoid running
1555     // other SCEV based analysis prior to simplifyAndExtend.
1556     do {
1557       PHINode *CurrIV = LoopPhis.pop_back_val();
1558 
1559       // Information about sign/zero extensions of CurrIV.
1560       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1561 
1562       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor);
1563 
1564       if (Visitor.WI.WidestNativeType) {
1565         WideIVs.push_back(Visitor.WI);
1566       }
1567     } while(!LoopPhis.empty());
1568 
1569     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1570       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1571       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1572         Changed = true;
1573         LoopPhis.push_back(WidePhi);
1574       }
1575     }
1576   }
1577 }
1578 
1579 //===----------------------------------------------------------------------===//
1580 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1581 //===----------------------------------------------------------------------===//
1582 
1583 /// Return true if this loop's backedge taken count expression can be safely and
1584 /// cheaply expanded into an instruction sequence that can be used by
1585 /// linearFunctionTestReplace.
1586 ///
1587 /// TODO: This fails for pointer-type loop counters with greater than one byte
1588 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1589 /// we could skip this check in the case that the LFTR loop counter (chosen by
1590 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1591 /// the loop test to an inequality test by checking the target data's alignment
1592 /// of element types (given that the initial pointer value originates from or is
1593 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1594 /// However, we don't yet have a strong motivation for converting loop tests
1595 /// into inequality tests.
1596 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1597                                         SCEVExpander &Rewriter) {
1598   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1599   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1600       BackedgeTakenCount->isZero())
1601     return false;
1602 
1603   if (!L->getExitingBlock())
1604     return false;
1605 
1606   // Can't rewrite non-branch yet.
1607   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
1608     return false;
1609 
1610   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
1611     return false;
1612 
1613   return true;
1614 }
1615 
1616 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
1617 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1618   Instruction *IncI = dyn_cast<Instruction>(IncV);
1619   if (!IncI)
1620     return nullptr;
1621 
1622   switch (IncI->getOpcode()) {
1623   case Instruction::Add:
1624   case Instruction::Sub:
1625     break;
1626   case Instruction::GetElementPtr:
1627     // An IV counter must preserve its type.
1628     if (IncI->getNumOperands() == 2)
1629       break;
1630   default:
1631     return nullptr;
1632   }
1633 
1634   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1635   if (Phi && Phi->getParent() == L->getHeader()) {
1636     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1637       return Phi;
1638     return nullptr;
1639   }
1640   if (IncI->getOpcode() == Instruction::GetElementPtr)
1641     return nullptr;
1642 
1643   // Allow add/sub to be commuted.
1644   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1645   if (Phi && Phi->getParent() == L->getHeader()) {
1646     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1647       return Phi;
1648   }
1649   return nullptr;
1650 }
1651 
1652 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1653 static ICmpInst *getLoopTest(Loop *L) {
1654   assert(L->getExitingBlock() && "expected loop exit");
1655 
1656   BasicBlock *LatchBlock = L->getLoopLatch();
1657   // Don't bother with LFTR if the loop is not properly simplified.
1658   if (!LatchBlock)
1659     return nullptr;
1660 
1661   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1662   assert(BI && "expected exit branch");
1663 
1664   return dyn_cast<ICmpInst>(BI->getCondition());
1665 }
1666 
1667 /// linearFunctionTestReplace policy. Return true unless we can show that the
1668 /// current exit test is already sufficiently canonical.
1669 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1670   // Do LFTR to simplify the exit condition to an ICMP.
1671   ICmpInst *Cond = getLoopTest(L);
1672   if (!Cond)
1673     return true;
1674 
1675   // Do LFTR to simplify the exit ICMP to EQ/NE
1676   ICmpInst::Predicate Pred = Cond->getPredicate();
1677   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1678     return true;
1679 
1680   // Look for a loop invariant RHS
1681   Value *LHS = Cond->getOperand(0);
1682   Value *RHS = Cond->getOperand(1);
1683   if (!isLoopInvariant(RHS, L, DT)) {
1684     if (!isLoopInvariant(LHS, L, DT))
1685       return true;
1686     std::swap(LHS, RHS);
1687   }
1688   // Look for a simple IV counter LHS
1689   PHINode *Phi = dyn_cast<PHINode>(LHS);
1690   if (!Phi)
1691     Phi = getLoopPhiForCounter(LHS, L, DT);
1692 
1693   if (!Phi)
1694     return true;
1695 
1696   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1697   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1698   if (Idx < 0)
1699     return true;
1700 
1701   // Do LFTR if the exit condition's IV is *not* a simple counter.
1702   Value *IncV = Phi->getIncomingValue(Idx);
1703   return Phi != getLoopPhiForCounter(IncV, L, DT);
1704 }
1705 
1706 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1707 /// down to checking that all operands are constant and listing instructions
1708 /// that may hide undef.
1709 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1710                                unsigned Depth) {
1711   if (isa<Constant>(V))
1712     return !isa<UndefValue>(V);
1713 
1714   if (Depth >= 6)
1715     return false;
1716 
1717   // Conservatively handle non-constant non-instructions. For example, Arguments
1718   // may be undef.
1719   Instruction *I = dyn_cast<Instruction>(V);
1720   if (!I)
1721     return false;
1722 
1723   // Load and return values may be undef.
1724   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1725     return false;
1726 
1727   // Optimistically handle other instructions.
1728   for (Value *Op : I->operands()) {
1729     if (!Visited.insert(Op).second)
1730       continue;
1731     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
1732       return false;
1733   }
1734   return true;
1735 }
1736 
1737 /// Return true if the given value is concrete. We must prove that undef can
1738 /// never reach it.
1739 ///
1740 /// TODO: If we decide that this is a good approach to checking for undef, we
1741 /// may factor it into a common location.
1742 static bool hasConcreteDef(Value *V) {
1743   SmallPtrSet<Value*, 8> Visited;
1744   Visited.insert(V);
1745   return hasConcreteDefImpl(V, Visited, 0);
1746 }
1747 
1748 /// Return true if this IV has any uses other than the (soon to be rewritten)
1749 /// loop exit test.
1750 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1751   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1752   Value *IncV = Phi->getIncomingValue(LatchIdx);
1753 
1754   for (User *U : Phi->users())
1755     if (U != Cond && U != IncV) return false;
1756 
1757   for (User *U : IncV->users())
1758     if (U != Cond && U != Phi) return false;
1759   return true;
1760 }
1761 
1762 /// Find an affine IV in canonical form.
1763 ///
1764 /// BECount may be an i8* pointer type. The pointer difference is already
1765 /// valid count without scaling the address stride, so it remains a pointer
1766 /// expression as far as SCEV is concerned.
1767 ///
1768 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1769 ///
1770 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1771 ///
1772 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1773 /// This is difficult in general for SCEV because of potential overflow. But we
1774 /// could at least handle constant BECounts.
1775 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
1776                                 ScalarEvolution *SE, DominatorTree *DT) {
1777   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1778 
1779   Value *Cond =
1780     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1781 
1782   // Loop over all of the PHI nodes, looking for a simple counter.
1783   PHINode *BestPhi = nullptr;
1784   const SCEV *BestInit = nullptr;
1785   BasicBlock *LatchBlock = L->getLoopLatch();
1786   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1787 
1788   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1789     PHINode *Phi = cast<PHINode>(I);
1790     if (!SE->isSCEVable(Phi->getType()))
1791       continue;
1792 
1793     // Avoid comparing an integer IV against a pointer Limit.
1794     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1795       continue;
1796 
1797     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1798     if (!AR || AR->getLoop() != L || !AR->isAffine())
1799       continue;
1800 
1801     // AR may be a pointer type, while BECount is an integer type.
1802     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1803     // AR may not be a narrower type, or we may never exit.
1804     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1805     if (PhiWidth < BCWidth ||
1806         !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth))
1807       continue;
1808 
1809     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1810     if (!Step || !Step->isOne())
1811       continue;
1812 
1813     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1814     Value *IncV = Phi->getIncomingValue(LatchIdx);
1815     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1816       continue;
1817 
1818     // Avoid reusing a potentially undef value to compute other values that may
1819     // have originally had a concrete definition.
1820     if (!hasConcreteDef(Phi)) {
1821       // We explicitly allow unknown phis as long as they are already used by
1822       // the loop test. In this case we assume that performing LFTR could not
1823       // increase the number of undef users.
1824       if (ICmpInst *Cond = getLoopTest(L)) {
1825         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1826             && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1827           continue;
1828         }
1829       }
1830     }
1831     const SCEV *Init = AR->getStart();
1832 
1833     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1834       // Don't force a live loop counter if another IV can be used.
1835       if (AlmostDeadIV(Phi, LatchBlock, Cond))
1836         continue;
1837 
1838       // Prefer to count-from-zero. This is a more "canonical" counter form. It
1839       // also prefers integer to pointer IVs.
1840       if (BestInit->isZero() != Init->isZero()) {
1841         if (BestInit->isZero())
1842           continue;
1843       }
1844       // If two IVs both count from zero or both count from nonzero then the
1845       // narrower is likely a dead phi that has been widened. Use the wider phi
1846       // to allow the other to be eliminated.
1847       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1848         continue;
1849     }
1850     BestPhi = Phi;
1851     BestInit = Init;
1852   }
1853   return BestPhi;
1854 }
1855 
1856 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
1857 /// the new loop test.
1858 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1859                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
1860   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1861   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1862   const SCEV *IVInit = AR->getStart();
1863 
1864   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1865   // finds a valid pointer IV. Sign extend BECount in order to materialize a
1866   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1867   // the existing GEPs whenever possible.
1868   if (IndVar->getType()->isPointerTy()
1869       && !IVCount->getType()->isPointerTy()) {
1870 
1871     // IVOffset will be the new GEP offset that is interpreted by GEP as a
1872     // signed value. IVCount on the other hand represents the loop trip count,
1873     // which is an unsigned value. FindLoopCounter only allows induction
1874     // variables that have a positive unit stride of one. This means we don't
1875     // have to handle the case of negative offsets (yet) and just need to zero
1876     // extend IVCount.
1877     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1878     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1879 
1880     // Expand the code for the iteration count.
1881     assert(SE->isLoopInvariant(IVOffset, L) &&
1882            "Computed iteration count is not loop invariant!");
1883     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1884     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1885 
1886     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1887     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1888     // We could handle pointer IVs other than i8*, but we need to compensate for
1889     // gep index scaling. See canExpandBackedgeTakenCount comments.
1890     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1891              cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1892            && "unit stride pointer IV must be i8*");
1893 
1894     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1895     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
1896   }
1897   else {
1898     // In any other case, convert both IVInit and IVCount to integers before
1899     // comparing. This may result in SCEV expension of pointers, but in practice
1900     // SCEV will fold the pointer arithmetic away as such:
1901     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1902     //
1903     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1904     // for simple memset-style loops.
1905     //
1906     // IVInit integer and IVCount pointer would only occur if a canonical IV
1907     // were generated on top of case #2, which is not expected.
1908 
1909     const SCEV *IVLimit = nullptr;
1910     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1911     // For non-zero Start, compute IVCount here.
1912     if (AR->getStart()->isZero())
1913       IVLimit = IVCount;
1914     else {
1915       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1916       const SCEV *IVInit = AR->getStart();
1917 
1918       // For integer IVs, truncate the IV before computing IVInit + BECount.
1919       if (SE->getTypeSizeInBits(IVInit->getType())
1920           > SE->getTypeSizeInBits(IVCount->getType()))
1921         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1922 
1923       IVLimit = SE->getAddExpr(IVInit, IVCount);
1924     }
1925     // Expand the code for the iteration count.
1926     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1927     IRBuilder<> Builder(BI);
1928     assert(SE->isLoopInvariant(IVLimit, L) &&
1929            "Computed iteration count is not loop invariant!");
1930     // Ensure that we generate the same type as IndVar, or a smaller integer
1931     // type. In the presence of null pointer values, we have an integer type
1932     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1933     Type *LimitTy = IVCount->getType()->isPointerTy() ?
1934       IndVar->getType() : IVCount->getType();
1935     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1936   }
1937 }
1938 
1939 /// This method rewrites the exit condition of the loop to be a canonical !=
1940 /// comparison against the incremented loop induction variable.  This pass is
1941 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1942 /// determine a loop-invariant trip count of the loop, which is actually a much
1943 /// broader range than just linear tests.
1944 Value *IndVarSimplify::
1945 linearFunctionTestReplace(Loop *L,
1946                           const SCEV *BackedgeTakenCount,
1947                           PHINode *IndVar,
1948                           SCEVExpander &Rewriter) {
1949   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
1950 
1951   // Initialize CmpIndVar and IVCount to their preincremented values.
1952   Value *CmpIndVar = IndVar;
1953   const SCEV *IVCount = BackedgeTakenCount;
1954 
1955   // If the exiting block is the same as the backedge block, we prefer to
1956   // compare against the post-incremented value, otherwise we must compare
1957   // against the preincremented value.
1958   if (L->getExitingBlock() == L->getLoopLatch()) {
1959     // Add one to the "backedge-taken" count to get the trip count.
1960     // This addition may overflow, which is valid as long as the comparison is
1961     // truncated to BackedgeTakenCount->getType().
1962     IVCount = SE->getAddExpr(BackedgeTakenCount,
1963                              SE->getOne(BackedgeTakenCount->getType()));
1964     // The BackedgeTaken expression contains the number of times that the
1965     // backedge branches to the loop header.  This is one less than the
1966     // number of times the loop executes, so use the incremented indvar.
1967     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1968   }
1969 
1970   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1971   assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1972          && "genLoopLimit missed a cast");
1973 
1974   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1975   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1976   ICmpInst::Predicate P;
1977   if (L->contains(BI->getSuccessor(0)))
1978     P = ICmpInst::ICMP_NE;
1979   else
1980     P = ICmpInst::ICMP_EQ;
1981 
1982   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1983                << "      LHS:" << *CmpIndVar << '\n'
1984                << "       op:\t"
1985                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1986                << "      RHS:\t" << *ExitCnt << "\n"
1987                << "  IVCount:\t" << *IVCount << "\n");
1988 
1989   IRBuilder<> Builder(BI);
1990 
1991   // LFTR can ignore IV overflow and truncate to the width of
1992   // BECount. This avoids materializing the add(zext(add)) expression.
1993   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1994   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1995   if (CmpIndVarSize > ExitCntSize) {
1996     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1997     const SCEV *ARStart = AR->getStart();
1998     const SCEV *ARStep = AR->getStepRecurrence(*SE);
1999     // For constant IVCount, avoid truncation.
2000     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2001       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2002       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2003       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2004       // above such that IVCount is now zero.
2005       if (IVCount != BackedgeTakenCount && Count == 0) {
2006         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2007         ++Count;
2008       }
2009       else
2010         Count = Count.zext(CmpIndVarSize);
2011       APInt NewLimit;
2012       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2013         NewLimit = Start - Count;
2014       else
2015         NewLimit = Start + Count;
2016       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2017 
2018       DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2019     } else {
2020       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2021                                       "lftr.wideiv");
2022     }
2023   }
2024   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2025   Value *OrigCond = BI->getCondition();
2026   // It's tempting to use replaceAllUsesWith here to fully replace the old
2027   // comparison, but that's not immediately safe, since users of the old
2028   // comparison may not be dominated by the new comparison. Instead, just
2029   // update the branch to use the new comparison; in the common case this
2030   // will make old comparison dead.
2031   BI->setCondition(Cond);
2032   DeadInsts.push_back(OrigCond);
2033 
2034   ++NumLFTR;
2035   Changed = true;
2036   return Cond;
2037 }
2038 
2039 //===----------------------------------------------------------------------===//
2040 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2041 //===----------------------------------------------------------------------===//
2042 
2043 /// If there's a single exit block, sink any loop-invariant values that
2044 /// were defined in the preheader but not used inside the loop into the
2045 /// exit block to reduce register pressure in the loop.
2046 void IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2047   BasicBlock *ExitBlock = L->getExitBlock();
2048   if (!ExitBlock) return;
2049 
2050   BasicBlock *Preheader = L->getLoopPreheader();
2051   if (!Preheader) return;
2052 
2053   Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt();
2054   BasicBlock::iterator I(Preheader->getTerminator());
2055   while (I != Preheader->begin()) {
2056     --I;
2057     // New instructions were inserted at the end of the preheader.
2058     if (isa<PHINode>(I))
2059       break;
2060 
2061     // Don't move instructions which might have side effects, since the side
2062     // effects need to complete before instructions inside the loop.  Also don't
2063     // move instructions which might read memory, since the loop may modify
2064     // memory. Note that it's okay if the instruction might have undefined
2065     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2066     // block.
2067     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2068       continue;
2069 
2070     // Skip debug info intrinsics.
2071     if (isa<DbgInfoIntrinsic>(I))
2072       continue;
2073 
2074     // Skip eh pad instructions.
2075     if (I->isEHPad())
2076       continue;
2077 
2078     // Don't sink alloca: we never want to sink static alloca's out of the
2079     // entry block, and correctly sinking dynamic alloca's requires
2080     // checks for stacksave/stackrestore intrinsics.
2081     // FIXME: Refactor this check somehow?
2082     if (isa<AllocaInst>(I))
2083       continue;
2084 
2085     // Determine if there is a use in or before the loop (direct or
2086     // otherwise).
2087     bool UsedInLoop = false;
2088     for (Use &U : I->uses()) {
2089       Instruction *User = cast<Instruction>(U.getUser());
2090       BasicBlock *UseBB = User->getParent();
2091       if (PHINode *P = dyn_cast<PHINode>(User)) {
2092         unsigned i =
2093           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2094         UseBB = P->getIncomingBlock(i);
2095       }
2096       if (UseBB == Preheader || L->contains(UseBB)) {
2097         UsedInLoop = true;
2098         break;
2099       }
2100     }
2101 
2102     // If there is, the def must remain in the preheader.
2103     if (UsedInLoop)
2104       continue;
2105 
2106     // Otherwise, sink it to the exit block.
2107     Instruction *ToMove = &*I;
2108     bool Done = false;
2109 
2110     if (I != Preheader->begin()) {
2111       // Skip debug info intrinsics.
2112       do {
2113         --I;
2114       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2115 
2116       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2117         Done = true;
2118     } else {
2119       Done = true;
2120     }
2121 
2122     ToMove->moveBefore(InsertPt);
2123     if (Done) break;
2124     InsertPt = ToMove;
2125   }
2126 }
2127 
2128 //===----------------------------------------------------------------------===//
2129 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2130 //===----------------------------------------------------------------------===//
2131 
2132 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
2133   if (skipOptnoneFunction(L))
2134     return false;
2135 
2136   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2137   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2138   //    canonicalization can be a pessimization without LSR to "clean up"
2139   //    afterwards.
2140   //  - We depend on having a preheader; in particular,
2141   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2142   //    and we're in trouble if we can't find the induction variable even when
2143   //    we've manually inserted one.
2144   if (!L->isLoopSimplifyForm())
2145     return false;
2146 
2147   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2148   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2149   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2150   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2151   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2152   auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2153   TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2154   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2155 
2156   DeadInsts.clear();
2157   Changed = false;
2158 
2159   // If there are any floating-point recurrences, attempt to
2160   // transform them to use integer recurrences.
2161   rewriteNonIntegerIVs(L);
2162 
2163   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2164 
2165   // Create a rewriter object which we'll use to transform the code with.
2166   SCEVExpander Rewriter(*SE, DL, "indvars");
2167 #ifndef NDEBUG
2168   Rewriter.setDebugType(DEBUG_TYPE);
2169 #endif
2170 
2171   // Eliminate redundant IV users.
2172   //
2173   // Simplification works best when run before other consumers of SCEV. We
2174   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2175   // other expressions involving loop IVs have been evaluated. This helps SCEV
2176   // set no-wrap flags before normalizing sign/zero extension.
2177   Rewriter.disableCanonicalMode();
2178   simplifyAndExtend(L, Rewriter, LI);
2179 
2180   // Check to see if this loop has a computable loop-invariant execution count.
2181   // If so, this means that we can compute the final value of any expressions
2182   // that are recurrent in the loop, and substitute the exit values from the
2183   // loop into any instructions outside of the loop that use the final values of
2184   // the current expressions.
2185   //
2186   if (ReplaceExitValue != NeverRepl &&
2187       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2188     rewriteLoopExitValues(L, Rewriter);
2189 
2190   // Eliminate redundant IV cycles.
2191   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2192 
2193   // If we have a trip count expression, rewrite the loop's exit condition
2194   // using it.  We can currently only handle loops with a single exit.
2195   if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) {
2196     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2197     if (IndVar) {
2198       // Check preconditions for proper SCEVExpander operation. SCEV does not
2199       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2200       // pass that uses the SCEVExpander must do it. This does not work well for
2201       // loop passes because SCEVExpander makes assumptions about all loops,
2202       // while LoopPassManager only forces the current loop to be simplified.
2203       //
2204       // FIXME: SCEV expansion has no way to bail out, so the caller must
2205       // explicitly check any assumptions made by SCEV. Brittle.
2206       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2207       if (!AR || AR->getLoop()->getLoopPreheader())
2208         (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2209                                         Rewriter);
2210     }
2211   }
2212   // Clear the rewriter cache, because values that are in the rewriter's cache
2213   // can be deleted in the loop below, causing the AssertingVH in the cache to
2214   // trigger.
2215   Rewriter.clear();
2216 
2217   // Now that we're done iterating through lists, clean up any instructions
2218   // which are now dead.
2219   while (!DeadInsts.empty())
2220     if (Instruction *Inst =
2221             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2222       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2223 
2224   // The Rewriter may not be used from this point on.
2225 
2226   // Loop-invariant instructions in the preheader that aren't used in the
2227   // loop may be sunk below the loop to reduce register pressure.
2228   sinkUnusedInvariants(L);
2229 
2230   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2231   // trip count and therefore can further simplify exit values in addition to
2232   // rewriteLoopExitValues.
2233   rewriteFirstIterationLoopExitValues(L);
2234 
2235   // Clean up dead instructions.
2236   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2237 
2238   // Check a post-condition.
2239   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
2240 
2241   // Verify that LFTR, and any other change have not interfered with SCEV's
2242   // ability to compute trip count.
2243 #ifndef NDEBUG
2244   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2245     SE->forgetLoop(L);
2246     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2247     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2248         SE->getTypeSizeInBits(NewBECount->getType()))
2249       NewBECount = SE->getTruncateOrNoop(NewBECount,
2250                                          BackedgeTakenCount->getType());
2251     else
2252       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2253                                                  NewBECount->getType());
2254     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2255   }
2256 #endif
2257 
2258   return Changed;
2259 }
2260