1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // This transformation makes the following changes to each loop with an 15 // identifiable induction variable: 16 // 1. All loops are transformed to have a SINGLE canonical induction variable 17 // which starts at zero and steps by one. 18 // 2. The canonical induction variable is guaranteed to be the first PHI node 19 // in the loop header block. 20 // 3. The canonical induction variable is guaranteed to be in a wide enough 21 // type so that IV expressions need not be (directly) zero-extended or 22 // sign-extended. 23 // 4. Any pointer arithmetic recurrences are raised to use array subscripts. 24 // 25 // If the trip count of a loop is computable, this pass also makes the following 26 // changes: 27 // 1. The exit condition for the loop is canonicalized to compare the 28 // induction value against the exit value. This turns loops like: 29 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 30 // 2. Any use outside of the loop of an expression derived from the indvar 31 // is changed to compute the derived value outside of the loop, eliminating 32 // the dependence on the exit value of the induction variable. If the only 33 // purpose of the loop is to compute the exit value of some derived 34 // expression, this transformation will make the loop dead. 35 // 36 // This transformation should be followed by strength reduction after all of the 37 // desired loop transformations have been performed. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #define DEBUG_TYPE "indvars" 42 #include "llvm/Transforms/Scalar.h" 43 #include "llvm/BasicBlock.h" 44 #include "llvm/Constants.h" 45 #include "llvm/Instructions.h" 46 #include "llvm/IntrinsicInst.h" 47 #include "llvm/LLVMContext.h" 48 #include "llvm/Type.h" 49 #include "llvm/Analysis/Dominators.h" 50 #include "llvm/Analysis/IVUsers.h" 51 #include "llvm/Analysis/ScalarEvolutionExpander.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Support/CFG.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Utils/Local.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/ADT/SmallVector.h" 61 #include "llvm/ADT/Statistic.h" 62 #include "llvm/ADT/STLExtras.h" 63 using namespace llvm; 64 65 STATISTIC(NumRemoved , "Number of aux indvars removed"); 66 STATISTIC(NumInserted, "Number of canonical indvars added"); 67 STATISTIC(NumReplaced, "Number of exit values replaced"); 68 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 69 70 namespace { 71 class IndVarSimplify : public LoopPass { 72 IVUsers *IU; 73 LoopInfo *LI; 74 ScalarEvolution *SE; 75 DominatorTree *DT; 76 bool Changed; 77 public: 78 79 static char ID; // Pass identification, replacement for typeid 80 IndVarSimplify() : LoopPass(ID) {} 81 82 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 83 84 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 85 AU.addRequired<DominatorTree>(); 86 AU.addRequired<LoopInfo>(); 87 AU.addRequired<ScalarEvolution>(); 88 AU.addRequiredID(LoopSimplifyID); 89 AU.addRequiredID(LCSSAID); 90 AU.addRequired<IVUsers>(); 91 AU.addPreserved<ScalarEvolution>(); 92 AU.addPreservedID(LoopSimplifyID); 93 AU.addPreservedID(LCSSAID); 94 AU.addPreserved<IVUsers>(); 95 AU.setPreservesCFG(); 96 } 97 98 private: 99 100 void EliminateIVComparisons(); 101 void EliminateIVRemainders(); 102 void RewriteNonIntegerIVs(Loop *L); 103 104 ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 105 PHINode *IndVar, 106 BasicBlock *ExitingBlock, 107 BranchInst *BI, 108 SCEVExpander &Rewriter); 109 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 110 111 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter); 112 113 void SinkUnusedInvariants(Loop *L); 114 115 void HandleFloatingPointIV(Loop *L, PHINode *PH); 116 }; 117 } 118 119 char IndVarSimplify::ID = 0; 120 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 121 "Canonicalize Induction Variables", false, false) 122 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 123 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 124 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 125 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 126 INITIALIZE_PASS_DEPENDENCY(LCSSA) 127 INITIALIZE_PASS_DEPENDENCY(IVUsers) 128 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 129 "Canonicalize Induction Variables", false, false) 130 131 Pass *llvm::createIndVarSimplifyPass() { 132 return new IndVarSimplify(); 133 } 134 135 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 136 /// loop to be a canonical != comparison against the incremented loop induction 137 /// variable. This pass is able to rewrite the exit tests of any loop where the 138 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 139 /// is actually a much broader range than just linear tests. 140 ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L, 141 const SCEV *BackedgeTakenCount, 142 PHINode *IndVar, 143 BasicBlock *ExitingBlock, 144 BranchInst *BI, 145 SCEVExpander &Rewriter) { 146 // Special case: If the backedge-taken count is a UDiv, it's very likely a 147 // UDiv that ScalarEvolution produced in order to compute a precise 148 // expression, rather than a UDiv from the user's code. If we can't find a 149 // UDiv in the code with some simple searching, assume the former and forego 150 // rewriting the loop. 151 if (isa<SCEVUDivExpr>(BackedgeTakenCount)) { 152 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 153 if (!OrigCond) return 0; 154 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 155 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 156 if (R != BackedgeTakenCount) { 157 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 158 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 159 if (L != BackedgeTakenCount) 160 return 0; 161 } 162 } 163 164 // If the exiting block is not the same as the backedge block, we must compare 165 // against the preincremented value, otherwise we prefer to compare against 166 // the post-incremented value. 167 Value *CmpIndVar; 168 const SCEV *RHS = BackedgeTakenCount; 169 if (ExitingBlock == L->getLoopLatch()) { 170 // Add one to the "backedge-taken" count to get the trip count. 171 // If this addition may overflow, we have to be more pessimistic and 172 // cast the induction variable before doing the add. 173 const SCEV *Zero = SE->getConstant(BackedgeTakenCount->getType(), 0); 174 const SCEV *N = 175 SE->getAddExpr(BackedgeTakenCount, 176 SE->getConstant(BackedgeTakenCount->getType(), 1)); 177 if ((isa<SCEVConstant>(N) && !N->isZero()) || 178 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { 179 // No overflow. Cast the sum. 180 RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType()); 181 } else { 182 // Potential overflow. Cast before doing the add. 183 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount, 184 IndVar->getType()); 185 RHS = SE->getAddExpr(RHS, 186 SE->getConstant(IndVar->getType(), 1)); 187 } 188 189 // The BackedgeTaken expression contains the number of times that the 190 // backedge branches to the loop header. This is one less than the 191 // number of times the loop executes, so use the incremented indvar. 192 CmpIndVar = IndVar->getIncomingValueForBlock(ExitingBlock); 193 } else { 194 // We have to use the preincremented value... 195 RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount, 196 IndVar->getType()); 197 CmpIndVar = IndVar; 198 } 199 200 // Expand the code for the iteration count. 201 assert(RHS->isLoopInvariant(L) && 202 "Computed iteration count is not loop invariant!"); 203 Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI); 204 205 // Insert a new icmp_ne or icmp_eq instruction before the branch. 206 ICmpInst::Predicate Opcode; 207 if (L->contains(BI->getSuccessor(0))) 208 Opcode = ICmpInst::ICMP_NE; 209 else 210 Opcode = ICmpInst::ICMP_EQ; 211 212 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 213 << " LHS:" << *CmpIndVar << '\n' 214 << " op:\t" 215 << (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 216 << " RHS:\t" << *RHS << "\n"); 217 218 ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond"); 219 220 Value *OrigCond = BI->getCondition(); 221 // It's tempting to use replaceAllUsesWith here to fully replace the old 222 // comparison, but that's not immediately safe, since users of the old 223 // comparison may not be dominated by the new comparison. Instead, just 224 // update the branch to use the new comparison; in the common case this 225 // will make old comparison dead. 226 BI->setCondition(Cond); 227 RecursivelyDeleteTriviallyDeadInstructions(OrigCond); 228 229 ++NumLFTR; 230 Changed = true; 231 return Cond; 232 } 233 234 /// RewriteLoopExitValues - Check to see if this loop has a computable 235 /// loop-invariant execution count. If so, this means that we can compute the 236 /// final value of any expressions that are recurrent in the loop, and 237 /// substitute the exit values from the loop into any instructions outside of 238 /// the loop that use the final values of the current expressions. 239 /// 240 /// This is mostly redundant with the regular IndVarSimplify activities that 241 /// happen later, except that it's more powerful in some cases, because it's 242 /// able to brute-force evaluate arbitrary instructions as long as they have 243 /// constant operands at the beginning of the loop. 244 void IndVarSimplify::RewriteLoopExitValues(Loop *L, 245 SCEVExpander &Rewriter) { 246 // Verify the input to the pass in already in LCSSA form. 247 assert(L->isLCSSAForm(*DT)); 248 249 SmallVector<BasicBlock*, 8> ExitBlocks; 250 L->getUniqueExitBlocks(ExitBlocks); 251 252 // Find all values that are computed inside the loop, but used outside of it. 253 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 254 // the exit blocks of the loop to find them. 255 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 256 BasicBlock *ExitBB = ExitBlocks[i]; 257 258 // If there are no PHI nodes in this exit block, then no values defined 259 // inside the loop are used on this path, skip it. 260 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 261 if (!PN) continue; 262 263 unsigned NumPreds = PN->getNumIncomingValues(); 264 265 // Iterate over all of the PHI nodes. 266 BasicBlock::iterator BBI = ExitBB->begin(); 267 while ((PN = dyn_cast<PHINode>(BBI++))) { 268 if (PN->use_empty()) 269 continue; // dead use, don't replace it 270 271 // SCEV only supports integer expressions for now. 272 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 273 continue; 274 275 // It's necessary to tell ScalarEvolution about this explicitly so that 276 // it can walk the def-use list and forget all SCEVs, as it may not be 277 // watching the PHI itself. Once the new exit value is in place, there 278 // may not be a def-use connection between the loop and every instruction 279 // which got a SCEVAddRecExpr for that loop. 280 SE->forgetValue(PN); 281 282 // Iterate over all of the values in all the PHI nodes. 283 for (unsigned i = 0; i != NumPreds; ++i) { 284 // If the value being merged in is not integer or is not defined 285 // in the loop, skip it. 286 Value *InVal = PN->getIncomingValue(i); 287 if (!isa<Instruction>(InVal)) 288 continue; 289 290 // If this pred is for a subloop, not L itself, skip it. 291 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 292 continue; // The Block is in a subloop, skip it. 293 294 // Check that InVal is defined in the loop. 295 Instruction *Inst = cast<Instruction>(InVal); 296 if (!L->contains(Inst)) 297 continue; 298 299 // Okay, this instruction has a user outside of the current loop 300 // and varies predictably *inside* the loop. Evaluate the value it 301 // contains when the loop exits, if possible. 302 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 303 if (!ExitValue->isLoopInvariant(L)) 304 continue; 305 306 Changed = true; 307 ++NumReplaced; 308 309 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 310 311 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 312 << " LoopVal = " << *Inst << "\n"); 313 314 PN->setIncomingValue(i, ExitVal); 315 316 // If this instruction is dead now, delete it. 317 RecursivelyDeleteTriviallyDeadInstructions(Inst); 318 319 if (NumPreds == 1) { 320 // Completely replace a single-pred PHI. This is safe, because the 321 // NewVal won't be variant in the loop, so we don't need an LCSSA phi 322 // node anymore. 323 PN->replaceAllUsesWith(ExitVal); 324 RecursivelyDeleteTriviallyDeadInstructions(PN); 325 } 326 } 327 if (NumPreds != 1) { 328 // Clone the PHI and delete the original one. This lets IVUsers and 329 // any other maps purge the original user from their records. 330 PHINode *NewPN = cast<PHINode>(PN->clone()); 331 NewPN->takeName(PN); 332 NewPN->insertBefore(PN); 333 PN->replaceAllUsesWith(NewPN); 334 PN->eraseFromParent(); 335 } 336 } 337 } 338 339 // The insertion point instruction may have been deleted; clear it out 340 // so that the rewriter doesn't trip over it later. 341 Rewriter.clearInsertPoint(); 342 } 343 344 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 345 // First step. Check to see if there are any floating-point recurrences. 346 // If there are, change them into integer recurrences, permitting analysis by 347 // the SCEV routines. 348 // 349 BasicBlock *Header = L->getHeader(); 350 351 SmallVector<WeakVH, 8> PHIs; 352 for (BasicBlock::iterator I = Header->begin(); 353 PHINode *PN = dyn_cast<PHINode>(I); ++I) 354 PHIs.push_back(PN); 355 356 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 357 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 358 HandleFloatingPointIV(L, PN); 359 360 // If the loop previously had floating-point IV, ScalarEvolution 361 // may not have been able to compute a trip count. Now that we've done some 362 // re-writing, the trip count may be computable. 363 if (Changed) 364 SE->forgetLoop(L); 365 } 366 367 void IndVarSimplify::EliminateIVComparisons() { 368 SmallVector<WeakVH, 16> DeadInsts; 369 370 // Look for ICmp users. 371 for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) { 372 IVStrideUse &UI = *I; 373 ICmpInst *ICmp = dyn_cast<ICmpInst>(UI.getUser()); 374 if (!ICmp) continue; 375 376 bool Swapped = UI.getOperandValToReplace() == ICmp->getOperand(1); 377 ICmpInst::Predicate Pred = ICmp->getPredicate(); 378 if (Swapped) Pred = ICmpInst::getSwappedPredicate(Pred); 379 380 // Get the SCEVs for the ICmp operands. 381 const SCEV *S = IU->getReplacementExpr(UI); 382 const SCEV *X = SE->getSCEV(ICmp->getOperand(!Swapped)); 383 384 // Simplify unnecessary loops away. 385 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 386 S = SE->getSCEVAtScope(S, ICmpLoop); 387 X = SE->getSCEVAtScope(X, ICmpLoop); 388 389 // If the condition is always true or always false, replace it with 390 // a constant value. 391 if (SE->isKnownPredicate(Pred, S, X)) 392 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 393 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) 394 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 395 else 396 continue; 397 398 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 399 DeadInsts.push_back(ICmp); 400 } 401 402 // Now that we're done iterating through lists, clean up any instructions 403 // which are now dead. 404 while (!DeadInsts.empty()) 405 if (Instruction *Inst = 406 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 407 RecursivelyDeleteTriviallyDeadInstructions(Inst); 408 } 409 410 void IndVarSimplify::EliminateIVRemainders() { 411 SmallVector<WeakVH, 16> DeadInsts; 412 413 // Look for SRem and URem users. 414 for (IVUsers::iterator I = IU->begin(), E = IU->end(); I != E; ++I) { 415 IVStrideUse &UI = *I; 416 BinaryOperator *Rem = dyn_cast<BinaryOperator>(UI.getUser()); 417 if (!Rem) continue; 418 419 bool isSigned = Rem->getOpcode() == Instruction::SRem; 420 if (!isSigned && Rem->getOpcode() != Instruction::URem) 421 continue; 422 423 // We're only interested in the case where we know something about 424 // the numerator. 425 if (UI.getOperandValToReplace() != Rem->getOperand(0)) 426 continue; 427 428 // Get the SCEVs for the ICmp operands. 429 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 430 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 431 432 // Simplify unnecessary loops away. 433 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 434 S = SE->getSCEVAtScope(S, ICmpLoop); 435 X = SE->getSCEVAtScope(X, ICmpLoop); 436 437 // i % n --> i if i is in [0,n). 438 if ((!isSigned || SE->isKnownNonNegative(S)) && 439 SE->isKnownPredicate(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 440 S, X)) 441 Rem->replaceAllUsesWith(Rem->getOperand(0)); 442 else { 443 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 444 const SCEV *LessOne = 445 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); 446 if ((!isSigned || SE->isKnownNonNegative(LessOne)) && 447 SE->isKnownPredicate(isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 448 LessOne, X)) { 449 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 450 Rem->getOperand(0), Rem->getOperand(1), 451 "tmp"); 452 SelectInst *Sel = 453 SelectInst::Create(ICmp, 454 ConstantInt::get(Rem->getType(), 0), 455 Rem->getOperand(0), "tmp", Rem); 456 Rem->replaceAllUsesWith(Sel); 457 } else 458 continue; 459 } 460 461 // Inform IVUsers about the new users. 462 if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0))) 463 IU->AddUsersIfInteresting(I); 464 465 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 466 DeadInsts.push_back(Rem); 467 } 468 469 // Now that we're done iterating through lists, clean up any instructions 470 // which are now dead. 471 while (!DeadInsts.empty()) 472 if (Instruction *Inst = 473 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 474 RecursivelyDeleteTriviallyDeadInstructions(Inst); 475 } 476 477 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 478 // If LoopSimplify form is not available, stay out of trouble. Some notes: 479 // - LSR currently only supports LoopSimplify-form loops. Indvars' 480 // canonicalization can be a pessimization without LSR to "clean up" 481 // afterwards. 482 // - We depend on having a preheader; in particular, 483 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 484 // and we're in trouble if we can't find the induction variable even when 485 // we've manually inserted one. 486 if (!L->isLoopSimplifyForm()) 487 return false; 488 489 IU = &getAnalysis<IVUsers>(); 490 LI = &getAnalysis<LoopInfo>(); 491 SE = &getAnalysis<ScalarEvolution>(); 492 DT = &getAnalysis<DominatorTree>(); 493 Changed = false; 494 495 // If there are any floating-point recurrences, attempt to 496 // transform them to use integer recurrences. 497 RewriteNonIntegerIVs(L); 498 499 BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null 500 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 501 502 // Create a rewriter object which we'll use to transform the code with. 503 SCEVExpander Rewriter(*SE); 504 505 // Check to see if this loop has a computable loop-invariant execution count. 506 // If so, this means that we can compute the final value of any expressions 507 // that are recurrent in the loop, and substitute the exit values from the 508 // loop into any instructions outside of the loop that use the final values of 509 // the current expressions. 510 // 511 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 512 RewriteLoopExitValues(L, Rewriter); 513 514 // Simplify ICmp IV users. 515 EliminateIVComparisons(); 516 517 // Simplify SRem and URem IV users. 518 EliminateIVRemainders(); 519 520 // Compute the type of the largest recurrence expression, and decide whether 521 // a canonical induction variable should be inserted. 522 const Type *LargestType = 0; 523 bool NeedCannIV = false; 524 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 525 LargestType = BackedgeTakenCount->getType(); 526 LargestType = SE->getEffectiveSCEVType(LargestType); 527 // If we have a known trip count and a single exit block, we'll be 528 // rewriting the loop exit test condition below, which requires a 529 // canonical induction variable. 530 if (ExitingBlock) 531 NeedCannIV = true; 532 } 533 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) { 534 const Type *Ty = 535 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType()); 536 if (!LargestType || 537 SE->getTypeSizeInBits(Ty) > 538 SE->getTypeSizeInBits(LargestType)) 539 LargestType = Ty; 540 NeedCannIV = true; 541 } 542 543 // Now that we know the largest of the induction variable expressions 544 // in this loop, insert a canonical induction variable of the largest size. 545 PHINode *IndVar = 0; 546 if (NeedCannIV) { 547 // Check to see if the loop already has any canonical-looking induction 548 // variables. If any are present and wider than the planned canonical 549 // induction variable, temporarily remove them, so that the Rewriter 550 // doesn't attempt to reuse them. 551 SmallVector<PHINode *, 2> OldCannIVs; 552 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) { 553 if (SE->getTypeSizeInBits(OldCannIV->getType()) > 554 SE->getTypeSizeInBits(LargestType)) 555 OldCannIV->removeFromParent(); 556 else 557 break; 558 OldCannIVs.push_back(OldCannIV); 559 } 560 561 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType); 562 563 ++NumInserted; 564 Changed = true; 565 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n'); 566 567 // Now that the official induction variable is established, reinsert 568 // any old canonical-looking variables after it so that the IR remains 569 // consistent. They will be deleted as part of the dead-PHI deletion at 570 // the end of the pass. 571 while (!OldCannIVs.empty()) { 572 PHINode *OldCannIV = OldCannIVs.pop_back_val(); 573 OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI()); 574 } 575 } 576 577 // If we have a trip count expression, rewrite the loop's exit condition 578 // using it. We can currently only handle loops with a single exit. 579 ICmpInst *NewICmp = 0; 580 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 581 !BackedgeTakenCount->isZero() && 582 ExitingBlock) { 583 assert(NeedCannIV && 584 "LinearFunctionTestReplace requires a canonical induction variable"); 585 // Can't rewrite non-branch yet. 586 if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) 587 NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 588 ExitingBlock, BI, Rewriter); 589 } 590 591 // Rewrite IV-derived expressions. Clears the rewriter cache. 592 RewriteIVExpressions(L, Rewriter); 593 594 // The Rewriter may not be used from this point on. 595 596 // Loop-invariant instructions in the preheader that aren't used in the 597 // loop may be sunk below the loop to reduce register pressure. 598 SinkUnusedInvariants(L); 599 600 // For completeness, inform IVUsers of the IV use in the newly-created 601 // loop exit test instruction. 602 if (NewICmp) 603 IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0))); 604 605 // Clean up dead instructions. 606 Changed |= DeleteDeadPHIs(L->getHeader()); 607 // Check a post-condition. 608 assert(L->isLCSSAForm(*DT) && "Indvars did not leave the loop in lcssa form!"); 609 return Changed; 610 } 611 612 // FIXME: It is an extremely bad idea to indvar substitute anything more 613 // complex than affine induction variables. Doing so will put expensive 614 // polynomial evaluations inside of the loop, and the str reduction pass 615 // currently can only reduce affine polynomials. For now just disable 616 // indvar subst on anything more complex than an affine addrec, unless 617 // it can be expanded to a trivial value. 618 static bool isSafe(const SCEV *S, const Loop *L) { 619 // Loop-invariant values are safe. 620 if (S->isLoopInvariant(L)) return true; 621 622 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how 623 // to transform them into efficient code. 624 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 625 return AR->isAffine(); 626 627 // An add is safe it all its operands are safe. 628 if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) { 629 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(), 630 E = Commutative->op_end(); I != E; ++I) 631 if (!isSafe(*I, L)) return false; 632 return true; 633 } 634 635 // A cast is safe if its operand is. 636 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 637 return isSafe(C->getOperand(), L); 638 639 // A udiv is safe if its operands are. 640 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S)) 641 return isSafe(UD->getLHS(), L) && 642 isSafe(UD->getRHS(), L); 643 644 // SCEVUnknown is always safe. 645 if (isa<SCEVUnknown>(S)) 646 return true; 647 648 // Nothing else is safe. 649 return false; 650 } 651 652 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) { 653 SmallVector<WeakVH, 16> DeadInsts; 654 655 // Rewrite all induction variable expressions in terms of the canonical 656 // induction variable. 657 // 658 // If there were induction variables of other sizes or offsets, manually 659 // add the offsets to the primary induction variable and cast, avoiding 660 // the need for the code evaluation methods to insert induction variables 661 // of different sizes. 662 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) { 663 Value *Op = UI->getOperandValToReplace(); 664 const Type *UseTy = Op->getType(); 665 Instruction *User = UI->getUser(); 666 667 // Compute the final addrec to expand into code. 668 const SCEV *AR = IU->getReplacementExpr(*UI); 669 670 // Evaluate the expression out of the loop, if possible. 671 if (!L->contains(UI->getUser())) { 672 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop()); 673 if (ExitVal->isLoopInvariant(L)) 674 AR = ExitVal; 675 } 676 677 // FIXME: It is an extremely bad idea to indvar substitute anything more 678 // complex than affine induction variables. Doing so will put expensive 679 // polynomial evaluations inside of the loop, and the str reduction pass 680 // currently can only reduce affine polynomials. For now just disable 681 // indvar subst on anything more complex than an affine addrec, unless 682 // it can be expanded to a trivial value. 683 if (!isSafe(AR, L)) 684 continue; 685 686 // Determine the insertion point for this user. By default, insert 687 // immediately before the user. The SCEVExpander class will automatically 688 // hoist loop invariants out of the loop. For PHI nodes, there may be 689 // multiple uses, so compute the nearest common dominator for the 690 // incoming blocks. 691 Instruction *InsertPt = User; 692 if (PHINode *PHI = dyn_cast<PHINode>(InsertPt)) 693 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 694 if (PHI->getIncomingValue(i) == Op) { 695 if (InsertPt == User) 696 InsertPt = PHI->getIncomingBlock(i)->getTerminator(); 697 else 698 InsertPt = 699 DT->findNearestCommonDominator(InsertPt->getParent(), 700 PHI->getIncomingBlock(i)) 701 ->getTerminator(); 702 } 703 704 // Now expand it into actual Instructions and patch it into place. 705 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt); 706 707 // Inform ScalarEvolution that this value is changing. The change doesn't 708 // affect its value, but it does potentially affect which use lists the 709 // value will be on after the replacement, which affects ScalarEvolution's 710 // ability to walk use lists and drop dangling pointers when a value is 711 // deleted. 712 SE->forgetValue(User); 713 714 // Patch the new value into place. 715 if (Op->hasName()) 716 NewVal->takeName(Op); 717 User->replaceUsesOfWith(Op, NewVal); 718 UI->setOperandValToReplace(NewVal); 719 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n' 720 << " into = " << *NewVal << "\n"); 721 ++NumRemoved; 722 Changed = true; 723 724 // The old value may be dead now. 725 DeadInsts.push_back(Op); 726 } 727 728 // Clear the rewriter cache, because values that are in the rewriter's cache 729 // can be deleted in the loop below, causing the AssertingVH in the cache to 730 // trigger. 731 Rewriter.clear(); 732 // Now that we're done iterating through lists, clean up any instructions 733 // which are now dead. 734 while (!DeadInsts.empty()) 735 if (Instruction *Inst = 736 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 737 RecursivelyDeleteTriviallyDeadInstructions(Inst); 738 } 739 740 /// If there's a single exit block, sink any loop-invariant values that 741 /// were defined in the preheader but not used inside the loop into the 742 /// exit block to reduce register pressure in the loop. 743 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 744 BasicBlock *ExitBlock = L->getExitBlock(); 745 if (!ExitBlock) return; 746 747 BasicBlock *Preheader = L->getLoopPreheader(); 748 if (!Preheader) return; 749 750 Instruction *InsertPt = ExitBlock->getFirstNonPHI(); 751 BasicBlock::iterator I = Preheader->getTerminator(); 752 while (I != Preheader->begin()) { 753 --I; 754 // New instructions were inserted at the end of the preheader. 755 if (isa<PHINode>(I)) 756 break; 757 758 // Don't move instructions which might have side effects, since the side 759 // effects need to complete before instructions inside the loop. Also don't 760 // move instructions which might read memory, since the loop may modify 761 // memory. Note that it's okay if the instruction might have undefined 762 // behavior: LoopSimplify guarantees that the preheader dominates the exit 763 // block. 764 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 765 continue; 766 767 // Skip debug info intrinsics. 768 if (isa<DbgInfoIntrinsic>(I)) 769 continue; 770 771 // Don't sink static AllocaInsts out of the entry block, which would 772 // turn them into dynamic allocas! 773 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) 774 if (AI->isStaticAlloca()) 775 continue; 776 777 // Determine if there is a use in or before the loop (direct or 778 // otherwise). 779 bool UsedInLoop = false; 780 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 781 UI != UE; ++UI) { 782 User *U = *UI; 783 BasicBlock *UseBB = cast<Instruction>(U)->getParent(); 784 if (PHINode *P = dyn_cast<PHINode>(U)) { 785 unsigned i = 786 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); 787 UseBB = P->getIncomingBlock(i); 788 } 789 if (UseBB == Preheader || L->contains(UseBB)) { 790 UsedInLoop = true; 791 break; 792 } 793 } 794 795 // If there is, the def must remain in the preheader. 796 if (UsedInLoop) 797 continue; 798 799 // Otherwise, sink it to the exit block. 800 Instruction *ToMove = I; 801 bool Done = false; 802 803 if (I != Preheader->begin()) { 804 // Skip debug info intrinsics. 805 do { 806 --I; 807 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 808 809 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 810 Done = true; 811 } else { 812 Done = true; 813 } 814 815 ToMove->moveBefore(InsertPt); 816 if (Done) break; 817 InsertPt = ToMove; 818 } 819 } 820 821 /// ConvertToSInt - Convert APF to an integer, if possible. 822 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 823 bool isExact = false; 824 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) 825 return false; 826 // See if we can convert this to an int64_t 827 uint64_t UIntVal; 828 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 829 &isExact) != APFloat::opOK || !isExact) 830 return false; 831 IntVal = UIntVal; 832 return true; 833 } 834 835 /// HandleFloatingPointIV - If the loop has floating induction variable 836 /// then insert corresponding integer induction variable if possible. 837 /// For example, 838 /// for(double i = 0; i < 10000; ++i) 839 /// bar(i) 840 /// is converted into 841 /// for(int i = 0; i < 10000; ++i) 842 /// bar((double)i); 843 /// 844 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 845 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 846 unsigned BackEdge = IncomingEdge^1; 847 848 // Check incoming value. 849 ConstantFP *InitValueVal = 850 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 851 852 int64_t InitValue; 853 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 854 return; 855 856 // Check IV increment. Reject this PN if increment operation is not 857 // an add or increment value can not be represented by an integer. 858 BinaryOperator *Incr = 859 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 860 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; 861 862 // If this is not an add of the PHI with a constantfp, or if the constant fp 863 // is not an integer, bail out. 864 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 865 int64_t IncValue; 866 if (IncValueVal == 0 || Incr->getOperand(0) != PN || 867 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 868 return; 869 870 // Check Incr uses. One user is PN and the other user is an exit condition 871 // used by the conditional terminator. 872 Value::use_iterator IncrUse = Incr->use_begin(); 873 Instruction *U1 = cast<Instruction>(*IncrUse++); 874 if (IncrUse == Incr->use_end()) return; 875 Instruction *U2 = cast<Instruction>(*IncrUse++); 876 if (IncrUse != Incr->use_end()) return; 877 878 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 879 // only used by a branch, we can't transform it. 880 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 881 if (!Compare) 882 Compare = dyn_cast<FCmpInst>(U2); 883 if (Compare == 0 || !Compare->hasOneUse() || 884 !isa<BranchInst>(Compare->use_back())) 885 return; 886 887 BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); 888 889 // We need to verify that the branch actually controls the iteration count 890 // of the loop. If not, the new IV can overflow and no one will notice. 891 // The branch block must be in the loop and one of the successors must be out 892 // of the loop. 893 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 894 if (!L->contains(TheBr->getParent()) || 895 (L->contains(TheBr->getSuccessor(0)) && 896 L->contains(TheBr->getSuccessor(1)))) 897 return; 898 899 900 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 901 // transform it. 902 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 903 int64_t ExitValue; 904 if (ExitValueVal == 0 || 905 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 906 return; 907 908 // Find new predicate for integer comparison. 909 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 910 switch (Compare->getPredicate()) { 911 default: return; // Unknown comparison. 912 case CmpInst::FCMP_OEQ: 913 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 914 case CmpInst::FCMP_ONE: 915 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 916 case CmpInst::FCMP_OGT: 917 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 918 case CmpInst::FCMP_OGE: 919 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 920 case CmpInst::FCMP_OLT: 921 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 922 case CmpInst::FCMP_OLE: 923 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 924 } 925 926 // We convert the floating point induction variable to a signed i32 value if 927 // we can. This is only safe if the comparison will not overflow in a way 928 // that won't be trapped by the integer equivalent operations. Check for this 929 // now. 930 // TODO: We could use i64 if it is native and the range requires it. 931 932 // The start/stride/exit values must all fit in signed i32. 933 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 934 return; 935 936 // If not actually striding (add x, 0.0), avoid touching the code. 937 if (IncValue == 0) 938 return; 939 940 // Positive and negative strides have different safety conditions. 941 if (IncValue > 0) { 942 // If we have a positive stride, we require the init to be less than the 943 // exit value and an equality or less than comparison. 944 if (InitValue >= ExitValue || 945 NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE) 946 return; 947 948 uint32_t Range = uint32_t(ExitValue-InitValue); 949 if (NewPred == CmpInst::ICMP_SLE) { 950 // Normalize SLE -> SLT, check for infinite loop. 951 if (++Range == 0) return; // Range overflows. 952 } 953 954 unsigned Leftover = Range % uint32_t(IncValue); 955 956 // If this is an equality comparison, we require that the strided value 957 // exactly land on the exit value, otherwise the IV condition will wrap 958 // around and do things the fp IV wouldn't. 959 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 960 Leftover != 0) 961 return; 962 963 // If the stride would wrap around the i32 before exiting, we can't 964 // transform the IV. 965 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 966 return; 967 968 } else { 969 // If we have a negative stride, we require the init to be greater than the 970 // exit value and an equality or greater than comparison. 971 if (InitValue >= ExitValue || 972 NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE) 973 return; 974 975 uint32_t Range = uint32_t(InitValue-ExitValue); 976 if (NewPred == CmpInst::ICMP_SGE) { 977 // Normalize SGE -> SGT, check for infinite loop. 978 if (++Range == 0) return; // Range overflows. 979 } 980 981 unsigned Leftover = Range % uint32_t(-IncValue); 982 983 // If this is an equality comparison, we require that the strided value 984 // exactly land on the exit value, otherwise the IV condition will wrap 985 // around and do things the fp IV wouldn't. 986 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 987 Leftover != 0) 988 return; 989 990 // If the stride would wrap around the i32 before exiting, we can't 991 // transform the IV. 992 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 993 return; 994 } 995 996 const IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 997 998 // Insert new integer induction variable. 999 PHINode *NewPHI = PHINode::Create(Int32Ty, PN->getName()+".int", PN); 1000 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 1001 PN->getIncomingBlock(IncomingEdge)); 1002 1003 Value *NewAdd = 1004 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 1005 Incr->getName()+".int", Incr); 1006 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 1007 1008 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 1009 ConstantInt::get(Int32Ty, ExitValue), 1010 Compare->getName()); 1011 1012 // In the following deletions, PN may become dead and may be deleted. 1013 // Use a WeakVH to observe whether this happens. 1014 WeakVH WeakPH = PN; 1015 1016 // Delete the old floating point exit comparison. The branch starts using the 1017 // new comparison. 1018 NewCompare->takeName(Compare); 1019 Compare->replaceAllUsesWith(NewCompare); 1020 RecursivelyDeleteTriviallyDeadInstructions(Compare); 1021 1022 // Delete the old floating point increment. 1023 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 1024 RecursivelyDeleteTriviallyDeadInstructions(Incr); 1025 1026 // If the FP induction variable still has uses, this is because something else 1027 // in the loop uses its value. In order to canonicalize the induction 1028 // variable, we chose to eliminate the IV and rewrite it in terms of an 1029 // int->fp cast. 1030 // 1031 // We give preference to sitofp over uitofp because it is faster on most 1032 // platforms. 1033 if (WeakPH) { 1034 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 1035 PN->getParent()->getFirstNonPHI()); 1036 PN->replaceAllUsesWith(Conv); 1037 RecursivelyDeleteTriviallyDeadInstructions(PN); 1038 } 1039 1040 // Add a new IVUsers entry for the newly-created integer PHI. 1041 IU->AddUsersIfInteresting(NewPHI); 1042 } 1043