1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into simpler forms suitable for subsequent 11 // analysis and transformation. 12 // 13 // If the trip count of a loop is computable, this pass also makes the following 14 // changes: 15 // 1. The exit condition for the loop is canonicalized to compare the 16 // induction value against the exit value. This turns loops like: 17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 18 // 2. Any use outside of the loop of an expression derived from the indvar 19 // is changed to compute the derived value outside of the loop, eliminating 20 // the dependence on the exit value of the induction variable. If the only 21 // purpose of the loop is to compute the exit value of some derived 22 // expression, this transformation will make the loop dead. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/MemorySSA.h" 38 #include "llvm/Analysis/MemorySSAUpdater.h" 39 #include "llvm/Analysis/ScalarEvolution.h" 40 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 41 #include "llvm/Analysis/TargetLibraryInfo.h" 42 #include "llvm/Analysis/TargetTransformInfo.h" 43 #include "llvm/Analysis/ValueTracking.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/ConstantRange.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/IRBuilder.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/Intrinsics.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PassManager.h" 61 #include "llvm/IR/PatternMatch.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Use.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/IR/ValueHandle.h" 67 #include "llvm/InitializePasses.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Scalar.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Transforms/Utils/LoopUtils.h" 79 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 80 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 81 #include <cassert> 82 #include <cstdint> 83 #include <utility> 84 85 using namespace llvm; 86 using namespace PatternMatch; 87 88 #define DEBUG_TYPE "indvars" 89 90 STATISTIC(NumWidened , "Number of indvars widened"); 91 STATISTIC(NumReplaced , "Number of exit values replaced"); 92 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 93 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 94 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 95 96 // Trip count verification can be enabled by default under NDEBUG if we 97 // implement a strong expression equivalence checker in SCEV. Until then, we 98 // use the verify-indvars flag, which may assert in some cases. 99 static cl::opt<bool> VerifyIndvars( 100 "verify-indvars", cl::Hidden, 101 cl::desc("Verify the ScalarEvolution result after running indvars. Has no " 102 "effect in release builds. (Note: this adds additional SCEV " 103 "queries potentially changing the analysis result)")); 104 105 static cl::opt<ReplaceExitVal> ReplaceExitValue( 106 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 107 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 108 cl::values( 109 clEnumValN(NeverRepl, "never", "never replace exit value"), 110 clEnumValN(OnlyCheapRepl, "cheap", 111 "only replace exit value when the cost is cheap"), 112 clEnumValN( 113 UnusedIndVarInLoop, "unusedindvarinloop", 114 "only replace exit value when it is an unused " 115 "induction variable in the loop and has cheap replacement cost"), 116 clEnumValN(NoHardUse, "noharduse", 117 "only replace exit values when loop def likely dead"), 118 clEnumValN(AlwaysRepl, "always", 119 "always replace exit value whenever possible"))); 120 121 static cl::opt<bool> UsePostIncrementRanges( 122 "indvars-post-increment-ranges", cl::Hidden, 123 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 124 cl::init(true)); 125 126 static cl::opt<bool> 127 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 128 cl::desc("Disable Linear Function Test Replace optimization")); 129 130 static cl::opt<bool> 131 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), 132 cl::desc("Predicate conditions in read only loops")); 133 134 static cl::opt<bool> 135 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true), 136 cl::desc("Allow widening of indvars to eliminate s/zext")); 137 138 namespace { 139 140 class IndVarSimplify { 141 LoopInfo *LI; 142 ScalarEvolution *SE; 143 DominatorTree *DT; 144 const DataLayout &DL; 145 TargetLibraryInfo *TLI; 146 const TargetTransformInfo *TTI; 147 std::unique_ptr<MemorySSAUpdater> MSSAU; 148 149 SmallVector<WeakTrackingVH, 16> DeadInsts; 150 bool WidenIndVars; 151 152 bool handleFloatingPointIV(Loop *L, PHINode *PH); 153 bool rewriteNonIntegerIVs(Loop *L); 154 155 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 156 /// Try to improve our exit conditions by converting condition from signed 157 /// to unsigned or rotating computation out of the loop. 158 /// (See inline comment about why this is duplicated from simplifyAndExtend) 159 bool canonicalizeExitCondition(Loop *L); 160 /// Try to eliminate loop exits based on analyzeable exit counts 161 bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter); 162 /// Try to form loop invariant tests for loop exits by changing how many 163 /// iterations of the loop run when that is unobservable. 164 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 165 166 bool rewriteFirstIterationLoopExitValues(Loop *L); 167 168 bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 169 const SCEV *ExitCount, 170 PHINode *IndVar, SCEVExpander &Rewriter); 171 172 bool sinkUnusedInvariants(Loop *L); 173 174 public: 175 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 176 const DataLayout &DL, TargetLibraryInfo *TLI, 177 TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars) 178 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI), 179 WidenIndVars(WidenIndVars) { 180 if (MSSA) 181 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 182 } 183 184 bool run(Loop *L); 185 }; 186 187 } // end anonymous namespace 188 189 //===----------------------------------------------------------------------===// 190 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 191 //===----------------------------------------------------------------------===// 192 193 /// Convert APF to an integer, if possible. 194 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 195 bool isExact = false; 196 // See if we can convert this to an int64_t 197 uint64_t UIntVal; 198 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 199 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 200 !isExact) 201 return false; 202 IntVal = UIntVal; 203 return true; 204 } 205 206 /// If the loop has floating induction variable then insert corresponding 207 /// integer induction variable if possible. 208 /// For example, 209 /// for(double i = 0; i < 10000; ++i) 210 /// bar(i) 211 /// is converted into 212 /// for(int i = 0; i < 10000; ++i) 213 /// bar((double)i); 214 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 215 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 216 unsigned BackEdge = IncomingEdge^1; 217 218 // Check incoming value. 219 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 220 221 int64_t InitValue; 222 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 223 return false; 224 225 // Check IV increment. Reject this PN if increment operation is not 226 // an add or increment value can not be represented by an integer. 227 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 228 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 229 230 // If this is not an add of the PHI with a constantfp, or if the constant fp 231 // is not an integer, bail out. 232 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 233 int64_t IncValue; 234 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 235 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 236 return false; 237 238 // Check Incr uses. One user is PN and the other user is an exit condition 239 // used by the conditional terminator. 240 Value::user_iterator IncrUse = Incr->user_begin(); 241 Instruction *U1 = cast<Instruction>(*IncrUse++); 242 if (IncrUse == Incr->user_end()) return false; 243 Instruction *U2 = cast<Instruction>(*IncrUse++); 244 if (IncrUse != Incr->user_end()) return false; 245 246 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 247 // only used by a branch, we can't transform it. 248 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 249 if (!Compare) 250 Compare = dyn_cast<FCmpInst>(U2); 251 if (!Compare || !Compare->hasOneUse() || 252 !isa<BranchInst>(Compare->user_back())) 253 return false; 254 255 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 256 257 // We need to verify that the branch actually controls the iteration count 258 // of the loop. If not, the new IV can overflow and no one will notice. 259 // The branch block must be in the loop and one of the successors must be out 260 // of the loop. 261 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 262 if (!L->contains(TheBr->getParent()) || 263 (L->contains(TheBr->getSuccessor(0)) && 264 L->contains(TheBr->getSuccessor(1)))) 265 return false; 266 267 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 268 // transform it. 269 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 270 int64_t ExitValue; 271 if (ExitValueVal == nullptr || 272 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 273 return false; 274 275 // Find new predicate for integer comparison. 276 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 277 switch (Compare->getPredicate()) { 278 default: return false; // Unknown comparison. 279 case CmpInst::FCMP_OEQ: 280 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 281 case CmpInst::FCMP_ONE: 282 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 283 case CmpInst::FCMP_OGT: 284 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 285 case CmpInst::FCMP_OGE: 286 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 287 case CmpInst::FCMP_OLT: 288 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 289 case CmpInst::FCMP_OLE: 290 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 291 } 292 293 // We convert the floating point induction variable to a signed i32 value if 294 // we can. This is only safe if the comparison will not overflow in a way 295 // that won't be trapped by the integer equivalent operations. Check for this 296 // now. 297 // TODO: We could use i64 if it is native and the range requires it. 298 299 // The start/stride/exit values must all fit in signed i32. 300 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 301 return false; 302 303 // If not actually striding (add x, 0.0), avoid touching the code. 304 if (IncValue == 0) 305 return false; 306 307 // Positive and negative strides have different safety conditions. 308 if (IncValue > 0) { 309 // If we have a positive stride, we require the init to be less than the 310 // exit value. 311 if (InitValue >= ExitValue) 312 return false; 313 314 uint32_t Range = uint32_t(ExitValue-InitValue); 315 // Check for infinite loop, either: 316 // while (i <= Exit) or until (i > Exit) 317 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 318 if (++Range == 0) return false; // Range overflows. 319 } 320 321 unsigned Leftover = Range % uint32_t(IncValue); 322 323 // If this is an equality comparison, we require that the strided value 324 // exactly land on the exit value, otherwise the IV condition will wrap 325 // around and do things the fp IV wouldn't. 326 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 327 Leftover != 0) 328 return false; 329 330 // If the stride would wrap around the i32 before exiting, we can't 331 // transform the IV. 332 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 333 return false; 334 } else { 335 // If we have a negative stride, we require the init to be greater than the 336 // exit value. 337 if (InitValue <= ExitValue) 338 return false; 339 340 uint32_t Range = uint32_t(InitValue-ExitValue); 341 // Check for infinite loop, either: 342 // while (i >= Exit) or until (i < Exit) 343 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 344 if (++Range == 0) return false; // Range overflows. 345 } 346 347 unsigned Leftover = Range % uint32_t(-IncValue); 348 349 // If this is an equality comparison, we require that the strided value 350 // exactly land on the exit value, otherwise the IV condition will wrap 351 // around and do things the fp IV wouldn't. 352 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 353 Leftover != 0) 354 return false; 355 356 // If the stride would wrap around the i32 before exiting, we can't 357 // transform the IV. 358 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 359 return false; 360 } 361 362 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 363 364 // Insert new integer induction variable. 365 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 366 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 367 PN->getIncomingBlock(IncomingEdge)); 368 369 Value *NewAdd = 370 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 371 Incr->getName()+".int", Incr); 372 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 373 374 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 375 ConstantInt::get(Int32Ty, ExitValue), 376 Compare->getName()); 377 378 // In the following deletions, PN may become dead and may be deleted. 379 // Use a WeakTrackingVH to observe whether this happens. 380 WeakTrackingVH WeakPH = PN; 381 382 // Delete the old floating point exit comparison. The branch starts using the 383 // new comparison. 384 NewCompare->takeName(Compare); 385 Compare->replaceAllUsesWith(NewCompare); 386 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get()); 387 388 // Delete the old floating point increment. 389 Incr->replaceAllUsesWith(PoisonValue::get(Incr->getType())); 390 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get()); 391 392 // If the FP induction variable still has uses, this is because something else 393 // in the loop uses its value. In order to canonicalize the induction 394 // variable, we chose to eliminate the IV and rewrite it in terms of an 395 // int->fp cast. 396 // 397 // We give preference to sitofp over uitofp because it is faster on most 398 // platforms. 399 if (WeakPH) { 400 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 401 &*PN->getParent()->getFirstInsertionPt()); 402 PN->replaceAllUsesWith(Conv); 403 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get()); 404 } 405 return true; 406 } 407 408 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 409 // First step. Check to see if there are any floating-point recurrences. 410 // If there are, change them into integer recurrences, permitting analysis by 411 // the SCEV routines. 412 BasicBlock *Header = L->getHeader(); 413 414 SmallVector<WeakTrackingVH, 8> PHIs; 415 for (PHINode &PN : Header->phis()) 416 PHIs.push_back(&PN); 417 418 bool Changed = false; 419 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 420 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 421 Changed |= handleFloatingPointIV(L, PN); 422 423 // If the loop previously had floating-point IV, ScalarEvolution 424 // may not have been able to compute a trip count. Now that we've done some 425 // re-writing, the trip count may be computable. 426 if (Changed) 427 SE->forgetLoop(L); 428 return Changed; 429 } 430 431 //===---------------------------------------------------------------------===// 432 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 433 // they will exit at the first iteration. 434 //===---------------------------------------------------------------------===// 435 436 /// Check to see if this loop has loop invariant conditions which lead to loop 437 /// exits. If so, we know that if the exit path is taken, it is at the first 438 /// loop iteration. This lets us predict exit values of PHI nodes that live in 439 /// loop header. 440 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 441 // Verify the input to the pass is already in LCSSA form. 442 assert(L->isLCSSAForm(*DT)); 443 444 SmallVector<BasicBlock *, 8> ExitBlocks; 445 L->getUniqueExitBlocks(ExitBlocks); 446 447 bool MadeAnyChanges = false; 448 for (auto *ExitBB : ExitBlocks) { 449 // If there are no more PHI nodes in this exit block, then no more 450 // values defined inside the loop are used on this path. 451 for (PHINode &PN : ExitBB->phis()) { 452 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 453 IncomingValIdx != E; ++IncomingValIdx) { 454 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 455 456 // Can we prove that the exit must run on the first iteration if it 457 // runs at all? (i.e. early exits are fine for our purposes, but 458 // traces which lead to this exit being taken on the 2nd iteration 459 // aren't.) Note that this is about whether the exit branch is 460 // executed, not about whether it is taken. 461 if (!L->getLoopLatch() || 462 !DT->dominates(IncomingBB, L->getLoopLatch())) 463 continue; 464 465 // Get condition that leads to the exit path. 466 auto *TermInst = IncomingBB->getTerminator(); 467 468 Value *Cond = nullptr; 469 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 470 // Must be a conditional branch, otherwise the block 471 // should not be in the loop. 472 Cond = BI->getCondition(); 473 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 474 Cond = SI->getCondition(); 475 else 476 continue; 477 478 if (!L->isLoopInvariant(Cond)) 479 continue; 480 481 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 482 483 // Only deal with PHIs in the loop header. 484 if (!ExitVal || ExitVal->getParent() != L->getHeader()) 485 continue; 486 487 // If ExitVal is a PHI on the loop header, then we know its 488 // value along this exit because the exit can only be taken 489 // on the first iteration. 490 auto *LoopPreheader = L->getLoopPreheader(); 491 assert(LoopPreheader && "Invalid loop"); 492 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 493 if (PreheaderIdx != -1) { 494 assert(ExitVal->getParent() == L->getHeader() && 495 "ExitVal must be in loop header"); 496 MadeAnyChanges = true; 497 PN.setIncomingValue(IncomingValIdx, 498 ExitVal->getIncomingValue(PreheaderIdx)); 499 SE->forgetValue(&PN); 500 } 501 } 502 } 503 } 504 return MadeAnyChanges; 505 } 506 507 //===----------------------------------------------------------------------===// 508 // IV Widening - Extend the width of an IV to cover its widest uses. 509 //===----------------------------------------------------------------------===// 510 511 /// Update information about the induction variable that is extended by this 512 /// sign or zero extend operation. This is used to determine the final width of 513 /// the IV before actually widening it. 514 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, 515 ScalarEvolution *SE, 516 const TargetTransformInfo *TTI) { 517 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 518 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 519 return; 520 521 Type *Ty = Cast->getType(); 522 uint64_t Width = SE->getTypeSizeInBits(Ty); 523 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 524 return; 525 526 // Check that `Cast` actually extends the induction variable (we rely on this 527 // later). This takes care of cases where `Cast` is extending a truncation of 528 // the narrow induction variable, and thus can end up being narrower than the 529 // "narrow" induction variable. 530 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 531 if (NarrowIVWidth >= Width) 532 return; 533 534 // Cast is either an sext or zext up to this point. 535 // We should not widen an indvar if arithmetics on the wider indvar are more 536 // expensive than those on the narrower indvar. We check only the cost of ADD 537 // because at least an ADD is required to increment the induction variable. We 538 // could compute more comprehensively the cost of all instructions on the 539 // induction variable when necessary. 540 if (TTI && 541 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 542 TTI->getArithmeticInstrCost(Instruction::Add, 543 Cast->getOperand(0)->getType())) { 544 return; 545 } 546 547 if (!WI.WidestNativeType || 548 Width > SE->getTypeSizeInBits(WI.WidestNativeType)) { 549 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 550 WI.IsSigned = IsSigned; 551 return; 552 } 553 554 // We extend the IV to satisfy the sign of its user(s), or 'signed' 555 // if there are multiple users with both sign- and zero extensions, 556 // in order not to introduce nondeterministic behaviour based on the 557 // unspecified order of a PHI nodes' users-iterator. 558 WI.IsSigned |= IsSigned; 559 } 560 561 //===----------------------------------------------------------------------===// 562 // Live IV Reduction - Minimize IVs live across the loop. 563 //===----------------------------------------------------------------------===// 564 565 //===----------------------------------------------------------------------===// 566 // Simplification of IV users based on SCEV evaluation. 567 //===----------------------------------------------------------------------===// 568 569 namespace { 570 571 class IndVarSimplifyVisitor : public IVVisitor { 572 ScalarEvolution *SE; 573 const TargetTransformInfo *TTI; 574 PHINode *IVPhi; 575 576 public: 577 WideIVInfo WI; 578 579 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 580 const TargetTransformInfo *TTI, 581 const DominatorTree *DTree) 582 : SE(SCEV), TTI(TTI), IVPhi(IV) { 583 DT = DTree; 584 WI.NarrowIV = IVPhi; 585 } 586 587 // Implement the interface used by simplifyUsersOfIV. 588 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 589 }; 590 591 } // end anonymous namespace 592 593 /// Iteratively perform simplification on a worklist of IV users. Each 594 /// successive simplification may push more users which may themselves be 595 /// candidates for simplification. 596 /// 597 /// Sign/Zero extend elimination is interleaved with IV simplification. 598 bool IndVarSimplify::simplifyAndExtend(Loop *L, 599 SCEVExpander &Rewriter, 600 LoopInfo *LI) { 601 SmallVector<WideIVInfo, 8> WideIVs; 602 603 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 604 Intrinsic::getName(Intrinsic::experimental_guard)); 605 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 606 607 SmallVector<PHINode *, 8> LoopPhis; 608 for (PHINode &PN : L->getHeader()->phis()) 609 LoopPhis.push_back(&PN); 610 611 // Each round of simplification iterates through the SimplifyIVUsers worklist 612 // for all current phis, then determines whether any IVs can be 613 // widened. Widening adds new phis to LoopPhis, inducing another round of 614 // simplification on the wide IVs. 615 bool Changed = false; 616 while (!LoopPhis.empty()) { 617 // Evaluate as many IV expressions as possible before widening any IVs. This 618 // forces SCEV to set no-wrap flags before evaluating sign/zero 619 // extension. The first time SCEV attempts to normalize sign/zero extension, 620 // the result becomes final. So for the most predictable results, we delay 621 // evaluation of sign/zero extend evaluation until needed, and avoid running 622 // other SCEV based analysis prior to simplifyAndExtend. 623 do { 624 PHINode *CurrIV = LoopPhis.pop_back_val(); 625 626 // Information about sign/zero extensions of CurrIV. 627 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 628 629 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter, 630 &Visitor); 631 632 if (Visitor.WI.WidestNativeType) { 633 WideIVs.push_back(Visitor.WI); 634 } 635 } while(!LoopPhis.empty()); 636 637 // Continue if we disallowed widening. 638 if (!WidenIndVars) 639 continue; 640 641 for (; !WideIVs.empty(); WideIVs.pop_back()) { 642 unsigned ElimExt; 643 unsigned Widened; 644 if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter, 645 DT, DeadInsts, ElimExt, Widened, 646 HasGuards, UsePostIncrementRanges)) { 647 NumElimExt += ElimExt; 648 NumWidened += Widened; 649 Changed = true; 650 LoopPhis.push_back(WidePhi); 651 } 652 } 653 } 654 return Changed; 655 } 656 657 //===----------------------------------------------------------------------===// 658 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 659 //===----------------------------------------------------------------------===// 660 661 /// Given an Value which is hoped to be part of an add recurance in the given 662 /// loop, return the associated Phi node if so. Otherwise, return null. Note 663 /// that this is less general than SCEVs AddRec checking. 664 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { 665 Instruction *IncI = dyn_cast<Instruction>(IncV); 666 if (!IncI) 667 return nullptr; 668 669 switch (IncI->getOpcode()) { 670 case Instruction::Add: 671 case Instruction::Sub: 672 break; 673 case Instruction::GetElementPtr: 674 // An IV counter must preserve its type. 675 if (IncI->getNumOperands() == 2) 676 break; 677 [[fallthrough]]; 678 default: 679 return nullptr; 680 } 681 682 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 683 if (Phi && Phi->getParent() == L->getHeader()) { 684 if (L->isLoopInvariant(IncI->getOperand(1))) 685 return Phi; 686 return nullptr; 687 } 688 if (IncI->getOpcode() == Instruction::GetElementPtr) 689 return nullptr; 690 691 // Allow add/sub to be commuted. 692 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 693 if (Phi && Phi->getParent() == L->getHeader()) { 694 if (L->isLoopInvariant(IncI->getOperand(0))) 695 return Phi; 696 } 697 return nullptr; 698 } 699 700 /// Whether the current loop exit test is based on this value. Currently this 701 /// is limited to a direct use in the loop condition. 702 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { 703 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 704 ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 705 // TODO: Allow non-icmp loop test. 706 if (!ICmp) 707 return false; 708 709 // TODO: Allow indirect use. 710 return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V; 711 } 712 713 /// linearFunctionTestReplace policy. Return true unless we can show that the 714 /// current exit test is already sufficiently canonical. 715 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { 716 assert(L->getLoopLatch() && "Must be in simplified form"); 717 718 // Avoid converting a constant or loop invariant test back to a runtime 719 // test. This is critical for when SCEV's cached ExitCount is less precise 720 // than the current IR (such as after we've proven a particular exit is 721 // actually dead and thus the BE count never reaches our ExitCount.) 722 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 723 if (L->isLoopInvariant(BI->getCondition())) 724 return false; 725 726 // Do LFTR to simplify the exit condition to an ICMP. 727 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 728 if (!Cond) 729 return true; 730 731 // Do LFTR to simplify the exit ICMP to EQ/NE 732 ICmpInst::Predicate Pred = Cond->getPredicate(); 733 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 734 return true; 735 736 // Look for a loop invariant RHS 737 Value *LHS = Cond->getOperand(0); 738 Value *RHS = Cond->getOperand(1); 739 if (!L->isLoopInvariant(RHS)) { 740 if (!L->isLoopInvariant(LHS)) 741 return true; 742 std::swap(LHS, RHS); 743 } 744 // Look for a simple IV counter LHS 745 PHINode *Phi = dyn_cast<PHINode>(LHS); 746 if (!Phi) 747 Phi = getLoopPhiForCounter(LHS, L); 748 749 if (!Phi) 750 return true; 751 752 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 753 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 754 if (Idx < 0) 755 return true; 756 757 // Do LFTR if the exit condition's IV is *not* a simple counter. 758 Value *IncV = Phi->getIncomingValue(Idx); 759 return Phi != getLoopPhiForCounter(IncV, L); 760 } 761 762 /// Return true if undefined behavior would provable be executed on the path to 763 /// OnPathTo if Root produced a posion result. Note that this doesn't say 764 /// anything about whether OnPathTo is actually executed or whether Root is 765 /// actually poison. This can be used to assess whether a new use of Root can 766 /// be added at a location which is control equivalent with OnPathTo (such as 767 /// immediately before it) without introducing UB which didn't previously 768 /// exist. Note that a false result conveys no information. 769 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, 770 Instruction *OnPathTo, 771 DominatorTree *DT) { 772 // Basic approach is to assume Root is poison, propagate poison forward 773 // through all users we can easily track, and then check whether any of those 774 // users are provable UB and must execute before out exiting block might 775 // exit. 776 777 // The set of all recursive users we've visited (which are assumed to all be 778 // poison because of said visit) 779 SmallSet<const Value *, 16> KnownPoison; 780 SmallVector<const Instruction*, 16> Worklist; 781 Worklist.push_back(Root); 782 while (!Worklist.empty()) { 783 const Instruction *I = Worklist.pop_back_val(); 784 785 // If we know this must trigger UB on a path leading our target. 786 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) 787 return true; 788 789 // If we can't analyze propagation through this instruction, just skip it 790 // and transitive users. Safe as false is a conservative result. 791 if (I != Root && !any_of(I->operands(), [&KnownPoison](const Use &U) { 792 return KnownPoison.contains(U) && propagatesPoison(U); 793 })) 794 continue; 795 796 if (KnownPoison.insert(I).second) 797 for (const User *User : I->users()) 798 Worklist.push_back(cast<Instruction>(User)); 799 } 800 801 // Might be non-UB, or might have a path we couldn't prove must execute on 802 // way to exiting bb. 803 return false; 804 } 805 806 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 807 /// down to checking that all operands are constant and listing instructions 808 /// that may hide undef. 809 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 810 unsigned Depth) { 811 if (isa<Constant>(V)) 812 return !isa<UndefValue>(V); 813 814 if (Depth >= 6) 815 return false; 816 817 // Conservatively handle non-constant non-instructions. For example, Arguments 818 // may be undef. 819 Instruction *I = dyn_cast<Instruction>(V); 820 if (!I) 821 return false; 822 823 // Load and return values may be undef. 824 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 825 return false; 826 827 // Optimistically handle other instructions. 828 for (Value *Op : I->operands()) { 829 if (!Visited.insert(Op).second) 830 continue; 831 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 832 return false; 833 } 834 return true; 835 } 836 837 /// Return true if the given value is concrete. We must prove that undef can 838 /// never reach it. 839 /// 840 /// TODO: If we decide that this is a good approach to checking for undef, we 841 /// may factor it into a common location. 842 static bool hasConcreteDef(Value *V) { 843 SmallPtrSet<Value*, 8> Visited; 844 Visited.insert(V); 845 return hasConcreteDefImpl(V, Visited, 0); 846 } 847 848 /// Return true if this IV has any uses other than the (soon to be rewritten) 849 /// loop exit test. 850 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 851 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 852 Value *IncV = Phi->getIncomingValue(LatchIdx); 853 854 for (User *U : Phi->users()) 855 if (U != Cond && U != IncV) return false; 856 857 for (User *U : IncV->users()) 858 if (U != Cond && U != Phi) return false; 859 return true; 860 } 861 862 /// Return true if the given phi is a "counter" in L. A counter is an 863 /// add recurance (of integer or pointer type) with an arbitrary start, and a 864 /// step of 1. Note that L must have exactly one latch. 865 static bool isLoopCounter(PHINode* Phi, Loop *L, 866 ScalarEvolution *SE) { 867 assert(Phi->getParent() == L->getHeader()); 868 assert(L->getLoopLatch()); 869 870 if (!SE->isSCEVable(Phi->getType())) 871 return false; 872 873 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 874 if (!AR || AR->getLoop() != L || !AR->isAffine()) 875 return false; 876 877 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 878 if (!Step || !Step->isOne()) 879 return false; 880 881 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); 882 Value *IncV = Phi->getIncomingValue(LatchIdx); 883 return (getLoopPhiForCounter(IncV, L) == Phi && 884 isa<SCEVAddRecExpr>(SE->getSCEV(IncV))); 885 } 886 887 /// Search the loop header for a loop counter (anadd rec w/step of one) 888 /// suitable for use by LFTR. If multiple counters are available, select the 889 /// "best" one based profitable heuristics. 890 /// 891 /// BECount may be an i8* pointer type. The pointer difference is already 892 /// valid count without scaling the address stride, so it remains a pointer 893 /// expression as far as SCEV is concerned. 894 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, 895 const SCEV *BECount, 896 ScalarEvolution *SE, DominatorTree *DT) { 897 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 898 899 Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); 900 901 // Loop over all of the PHI nodes, looking for a simple counter. 902 PHINode *BestPhi = nullptr; 903 const SCEV *BestInit = nullptr; 904 BasicBlock *LatchBlock = L->getLoopLatch(); 905 assert(LatchBlock && "Must be in simplified form"); 906 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 907 908 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 909 PHINode *Phi = cast<PHINode>(I); 910 if (!isLoopCounter(Phi, L, SE)) 911 continue; 912 913 // Avoid comparing an integer IV against a pointer Limit. 914 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 915 continue; 916 917 const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 918 919 // AR may be a pointer type, while BECount is an integer type. 920 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 921 // AR may not be a narrower type, or we may never exit. 922 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 923 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 924 continue; 925 926 // Avoid reusing a potentially undef value to compute other values that may 927 // have originally had a concrete definition. 928 if (!hasConcreteDef(Phi)) { 929 // We explicitly allow unknown phis as long as they are already used by 930 // the loop exit test. This is legal since performing LFTR could not 931 // increase the number of undef users. 932 Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock); 933 if (!isLoopExitTestBasedOn(Phi, ExitingBB) && 934 !isLoopExitTestBasedOn(IncPhi, ExitingBB)) 935 continue; 936 } 937 938 // Avoid introducing undefined behavior due to poison which didn't exist in 939 // the original program. (Annoyingly, the rules for poison and undef 940 // propagation are distinct, so this does NOT cover the undef case above.) 941 // We have to ensure that we don't introduce UB by introducing a use on an 942 // iteration where said IV produces poison. Our strategy here differs for 943 // pointers and integer IVs. For integers, we strip and reinfer as needed, 944 // see code in linearFunctionTestReplace. For pointers, we restrict 945 // transforms as there is no good way to reinfer inbounds once lost. 946 if (!Phi->getType()->isIntegerTy() && 947 !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) 948 continue; 949 950 const SCEV *Init = AR->getStart(); 951 952 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 953 // Don't force a live loop counter if another IV can be used. 954 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 955 continue; 956 957 // Prefer to count-from-zero. This is a more "canonical" counter form. It 958 // also prefers integer to pointer IVs. 959 if (BestInit->isZero() != Init->isZero()) { 960 if (BestInit->isZero()) 961 continue; 962 } 963 // If two IVs both count from zero or both count from nonzero then the 964 // narrower is likely a dead phi that has been widened. Use the wider phi 965 // to allow the other to be eliminated. 966 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 967 continue; 968 } 969 BestPhi = Phi; 970 BestInit = Init; 971 } 972 return BestPhi; 973 } 974 975 /// Insert an IR expression which computes the value held by the IV IndVar 976 /// (which must be an loop counter w/unit stride) after the backedge of loop L 977 /// is taken ExitCount times. 978 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, 979 const SCEV *ExitCount, bool UsePostInc, Loop *L, 980 SCEVExpander &Rewriter, ScalarEvolution *SE) { 981 assert(isLoopCounter(IndVar, L, SE)); 982 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 983 const SCEV *IVInit = AR->getStart(); 984 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 985 986 // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter 987 // finds a valid pointer IV. Sign extend ExitCount in order to materialize a 988 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 989 // the existing GEPs whenever possible. 990 if (IndVar->getType()->isPointerTy() && 991 !ExitCount->getType()->isPointerTy()) { 992 // IVOffset will be the new GEP offset that is interpreted by GEP as a 993 // signed value. ExitCount on the other hand represents the loop trip count, 994 // which is an unsigned value. FindLoopCounter only allows induction 995 // variables that have a positive unit stride of one. This means we don't 996 // have to handle the case of negative offsets (yet) and just need to zero 997 // extend ExitCount. 998 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 999 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy); 1000 if (UsePostInc) 1001 IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy)); 1002 1003 // Expand the code for the iteration count. 1004 assert(SE->isLoopInvariant(IVOffset, L) && 1005 "Computed iteration count is not loop invariant!"); 1006 1007 const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset); 1008 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1009 return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI); 1010 } else { 1011 // In any other case, convert both IVInit and ExitCount to integers before 1012 // comparing. This may result in SCEV expansion of pointers, but in practice 1013 // SCEV will fold the pointer arithmetic away as such: 1014 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1015 // 1016 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1017 // for simple memset-style loops. 1018 // 1019 // IVInit integer and ExitCount pointer would only occur if a canonical IV 1020 // were generated on top of case #2, which is not expected. 1021 1022 // For unit stride, IVCount = Start + ExitCount with 2's complement 1023 // overflow. 1024 1025 // For integer IVs, truncate the IV before computing IVInit + BECount, 1026 // unless we know apriori that the limit must be a constant when evaluated 1027 // in the bitwidth of the IV. We prefer (potentially) keeping a truncate 1028 // of the IV in the loop over a (potentially) expensive expansion of the 1029 // widened exit count add(zext(add)) expression. 1030 if (SE->getTypeSizeInBits(IVInit->getType()) 1031 > SE->getTypeSizeInBits(ExitCount->getType())) { 1032 if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount)) 1033 ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType()); 1034 else 1035 IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType()); 1036 } 1037 1038 const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount); 1039 1040 if (UsePostInc) 1041 IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType())); 1042 1043 // Expand the code for the iteration count. 1044 assert(SE->isLoopInvariant(IVLimit, L) && 1045 "Computed iteration count is not loop invariant!"); 1046 // Ensure that we generate the same type as IndVar, or a smaller integer 1047 // type. In the presence of null pointer values, we have an integer type 1048 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1049 Type *LimitTy = ExitCount->getType()->isPointerTy() ? 1050 IndVar->getType() : ExitCount->getType(); 1051 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1052 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1053 } 1054 } 1055 1056 /// This method rewrites the exit condition of the loop to be a canonical != 1057 /// comparison against the incremented loop induction variable. This pass is 1058 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1059 /// determine a loop-invariant trip count of the loop, which is actually a much 1060 /// broader range than just linear tests. 1061 bool IndVarSimplify:: 1062 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 1063 const SCEV *ExitCount, 1064 PHINode *IndVar, SCEVExpander &Rewriter) { 1065 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 1066 assert(isLoopCounter(IndVar, L, SE)); 1067 Instruction * const IncVar = 1068 cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch())); 1069 1070 // Initialize CmpIndVar to the preincremented IV. 1071 Value *CmpIndVar = IndVar; 1072 bool UsePostInc = false; 1073 1074 // If the exiting block is the same as the backedge block, we prefer to 1075 // compare against the post-incremented value, otherwise we must compare 1076 // against the preincremented value. 1077 if (ExitingBB == L->getLoopLatch()) { 1078 // For pointer IVs, we chose to not strip inbounds which requires us not 1079 // to add a potentially UB introducing use. We need to either a) show 1080 // the loop test we're modifying is already in post-inc form, or b) show 1081 // that adding a use must not introduce UB. 1082 bool SafeToPostInc = 1083 IndVar->getType()->isIntegerTy() || 1084 isLoopExitTestBasedOn(IncVar, ExitingBB) || 1085 mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); 1086 if (SafeToPostInc) { 1087 UsePostInc = true; 1088 CmpIndVar = IncVar; 1089 } 1090 } 1091 1092 // It may be necessary to drop nowrap flags on the incrementing instruction 1093 // if either LFTR moves from a pre-inc check to a post-inc check (in which 1094 // case the increment might have previously been poison on the last iteration 1095 // only) or if LFTR switches to a different IV that was previously dynamically 1096 // dead (and as such may be arbitrarily poison). We remove any nowrap flags 1097 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc 1098 // check), because the pre-inc addrec flags may be adopted from the original 1099 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. 1100 // TODO: This handling is inaccurate for one case: If we switch to a 1101 // dynamically dead IV that wraps on the first loop iteration only, which is 1102 // not covered by the post-inc addrec. (If the new IV was not dynamically 1103 // dead, it could not be poison on the first iteration in the first place.) 1104 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { 1105 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); 1106 if (BO->hasNoUnsignedWrap()) 1107 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); 1108 if (BO->hasNoSignedWrap()) 1109 BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); 1110 } 1111 1112 Value *ExitCnt = genLoopLimit( 1113 IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); 1114 assert(ExitCnt->getType()->isPointerTy() == 1115 IndVar->getType()->isPointerTy() && 1116 "genLoopLimit missed a cast"); 1117 1118 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1119 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1120 ICmpInst::Predicate P; 1121 if (L->contains(BI->getSuccessor(0))) 1122 P = ICmpInst::ICMP_NE; 1123 else 1124 P = ICmpInst::ICMP_EQ; 1125 1126 IRBuilder<> Builder(BI); 1127 1128 // The new loop exit condition should reuse the debug location of the 1129 // original loop exit condition. 1130 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 1131 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 1132 1133 // For integer IVs, if we evaluated the limit in the narrower bitwidth to 1134 // avoid the expensive expansion of the limit expression in the wider type, 1135 // emit a truncate to narrow the IV to the ExitCount type. This is safe 1136 // since we know (from the exit count bitwidth), that we can't self-wrap in 1137 // the narrower type. 1138 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1139 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1140 if (CmpIndVarSize > ExitCntSize) { 1141 assert(!CmpIndVar->getType()->isPointerTy() && 1142 !ExitCnt->getType()->isPointerTy()); 1143 1144 // Before resorting to actually inserting the truncate, use the same 1145 // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend 1146 // the other side of the comparison instead. We still evaluate the limit 1147 // in the narrower bitwidth, we just prefer a zext/sext outside the loop to 1148 // a truncate within in. 1149 bool Extended = false; 1150 const SCEV *IV = SE->getSCEV(CmpIndVar); 1151 const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 1152 ExitCnt->getType()); 1153 const SCEV *ZExtTrunc = 1154 SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType()); 1155 1156 if (ZExtTrunc == IV) { 1157 Extended = true; 1158 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 1159 "wide.trip.count"); 1160 } else { 1161 const SCEV *SExtTrunc = 1162 SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType()); 1163 if (SExtTrunc == IV) { 1164 Extended = true; 1165 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 1166 "wide.trip.count"); 1167 } 1168 } 1169 1170 if (Extended) { 1171 bool Discard; 1172 L->makeLoopInvariant(ExitCnt, Discard); 1173 } else 1174 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1175 "lftr.wideiv"); 1176 } 1177 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1178 << " LHS:" << *CmpIndVar << '\n' 1179 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 1180 << "\n" 1181 << " RHS:\t" << *ExitCnt << "\n" 1182 << "ExitCount:\t" << *ExitCount << "\n" 1183 << " was: " << *BI->getCondition() << "\n"); 1184 1185 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1186 Value *OrigCond = BI->getCondition(); 1187 // It's tempting to use replaceAllUsesWith here to fully replace the old 1188 // comparison, but that's not immediately safe, since users of the old 1189 // comparison may not be dominated by the new comparison. Instead, just 1190 // update the branch to use the new comparison; in the common case this 1191 // will make old comparison dead. 1192 BI->setCondition(Cond); 1193 DeadInsts.emplace_back(OrigCond); 1194 1195 ++NumLFTR; 1196 return true; 1197 } 1198 1199 //===----------------------------------------------------------------------===// 1200 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1201 //===----------------------------------------------------------------------===// 1202 1203 /// If there's a single exit block, sink any loop-invariant values that 1204 /// were defined in the preheader but not used inside the loop into the 1205 /// exit block to reduce register pressure in the loop. 1206 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 1207 BasicBlock *ExitBlock = L->getExitBlock(); 1208 if (!ExitBlock) return false; 1209 1210 BasicBlock *Preheader = L->getLoopPreheader(); 1211 if (!Preheader) return false; 1212 1213 bool MadeAnyChanges = false; 1214 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 1215 BasicBlock::iterator I(Preheader->getTerminator()); 1216 while (I != Preheader->begin()) { 1217 --I; 1218 // New instructions were inserted at the end of the preheader. 1219 if (isa<PHINode>(I)) 1220 break; 1221 1222 // Don't move instructions which might have side effects, since the side 1223 // effects need to complete before instructions inside the loop. Also don't 1224 // move instructions which might read memory, since the loop may modify 1225 // memory. Note that it's okay if the instruction might have undefined 1226 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1227 // block. 1228 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1229 continue; 1230 1231 // Skip debug info intrinsics. 1232 if (isa<DbgInfoIntrinsic>(I)) 1233 continue; 1234 1235 // Skip eh pad instructions. 1236 if (I->isEHPad()) 1237 continue; 1238 1239 // Don't sink alloca: we never want to sink static alloca's out of the 1240 // entry block, and correctly sinking dynamic alloca's requires 1241 // checks for stacksave/stackrestore intrinsics. 1242 // FIXME: Refactor this check somehow? 1243 if (isa<AllocaInst>(I)) 1244 continue; 1245 1246 // Determine if there is a use in or before the loop (direct or 1247 // otherwise). 1248 bool UsedInLoop = false; 1249 for (Use &U : I->uses()) { 1250 Instruction *User = cast<Instruction>(U.getUser()); 1251 BasicBlock *UseBB = User->getParent(); 1252 if (PHINode *P = dyn_cast<PHINode>(User)) { 1253 unsigned i = 1254 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1255 UseBB = P->getIncomingBlock(i); 1256 } 1257 if (UseBB == Preheader || L->contains(UseBB)) { 1258 UsedInLoop = true; 1259 break; 1260 } 1261 } 1262 1263 // If there is, the def must remain in the preheader. 1264 if (UsedInLoop) 1265 continue; 1266 1267 // Otherwise, sink it to the exit block. 1268 Instruction *ToMove = &*I; 1269 bool Done = false; 1270 1271 if (I != Preheader->begin()) { 1272 // Skip debug info intrinsics. 1273 do { 1274 --I; 1275 } while (I->isDebugOrPseudoInst() && I != Preheader->begin()); 1276 1277 if (I->isDebugOrPseudoInst() && I == Preheader->begin()) 1278 Done = true; 1279 } else { 1280 Done = true; 1281 } 1282 1283 MadeAnyChanges = true; 1284 ToMove->moveBefore(*ExitBlock, InsertPt); 1285 SE->forgetValue(ToMove); 1286 if (Done) break; 1287 InsertPt = ToMove->getIterator(); 1288 } 1289 1290 return MadeAnyChanges; 1291 } 1292 1293 static void replaceExitCond(BranchInst *BI, Value *NewCond, 1294 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1295 auto *OldCond = BI->getCondition(); 1296 LLVM_DEBUG(dbgs() << "Replacing condition of loop-exiting branch " << *BI 1297 << " with " << *NewCond << "\n"); 1298 BI->setCondition(NewCond); 1299 if (OldCond->use_empty()) 1300 DeadInsts.emplace_back(OldCond); 1301 } 1302 1303 static Constant *createFoldedExitCond(const Loop *L, BasicBlock *ExitingBB, 1304 bool IsTaken) { 1305 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1306 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1307 auto *OldCond = BI->getCondition(); 1308 return ConstantInt::get(OldCond->getType(), 1309 IsTaken ? ExitIfTrue : !ExitIfTrue); 1310 } 1311 1312 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken, 1313 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1314 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1315 auto *NewCond = createFoldedExitCond(L, ExitingBB, IsTaken); 1316 replaceExitCond(BI, NewCond, DeadInsts); 1317 } 1318 1319 static void replaceLoopPHINodesWithPreheaderValues( 1320 LoopInfo *LI, Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1321 ScalarEvolution &SE) { 1322 assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!"); 1323 auto *LoopPreheader = L->getLoopPreheader(); 1324 auto *LoopHeader = L->getHeader(); 1325 SmallVector<Instruction *> Worklist; 1326 for (auto &PN : LoopHeader->phis()) { 1327 auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader); 1328 for (User *U : PN.users()) 1329 Worklist.push_back(cast<Instruction>(U)); 1330 SE.forgetValue(&PN); 1331 PN.replaceAllUsesWith(PreheaderIncoming); 1332 DeadInsts.emplace_back(&PN); 1333 } 1334 1335 // Replacing with the preheader value will often allow IV users to simplify 1336 // (especially if the preheader value is a constant). 1337 SmallPtrSet<Instruction *, 16> Visited; 1338 while (!Worklist.empty()) { 1339 auto *I = cast<Instruction>(Worklist.pop_back_val()); 1340 if (!Visited.insert(I).second) 1341 continue; 1342 1343 // Don't simplify instructions outside the loop. 1344 if (!L->contains(I)) 1345 continue; 1346 1347 Value *Res = simplifyInstruction(I, I->getModule()->getDataLayout()); 1348 if (Res && LI->replacementPreservesLCSSAForm(I, Res)) { 1349 for (User *U : I->users()) 1350 Worklist.push_back(cast<Instruction>(U)); 1351 I->replaceAllUsesWith(Res); 1352 DeadInsts.emplace_back(I); 1353 } 1354 } 1355 } 1356 1357 static Value * 1358 createInvariantCond(const Loop *L, BasicBlock *ExitingBB, 1359 const ScalarEvolution::LoopInvariantPredicate &LIP, 1360 SCEVExpander &Rewriter) { 1361 ICmpInst::Predicate InvariantPred = LIP.Pred; 1362 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1363 Rewriter.setInsertPoint(BI); 1364 auto *LHSV = Rewriter.expandCodeFor(LIP.LHS); 1365 auto *RHSV = Rewriter.expandCodeFor(LIP.RHS); 1366 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1367 if (ExitIfTrue) 1368 InvariantPred = ICmpInst::getInversePredicate(InvariantPred); 1369 IRBuilder<> Builder(BI); 1370 return Builder.CreateICmp(InvariantPred, LHSV, RHSV, 1371 BI->getCondition()->getName()); 1372 } 1373 1374 static bool optimizeLoopExitWithUnknownExitCount( 1375 const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, const SCEV *MaxIter, 1376 bool SkipLastIter, ScalarEvolution *SE, SCEVExpander &Rewriter, 1377 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1378 ICmpInst::Predicate Pred; 1379 Value *LHS, *RHS; 1380 BasicBlock *TrueSucc, *FalseSucc; 1381 if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)), 1382 m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc)))) 1383 return false; 1384 1385 assert((L->contains(TrueSucc) != L->contains(FalseSucc)) && 1386 "Not a loop exit!"); 1387 1388 // 'LHS pred RHS' should now mean that we stay in loop. 1389 if (L->contains(FalseSucc)) 1390 Pred = CmpInst::getInversePredicate(Pred); 1391 1392 const SCEV *LHSS = SE->getSCEVAtScope(LHS, L); 1393 const SCEV *RHSS = SE->getSCEVAtScope(RHS, L); 1394 // Can we prove it to be trivially true or false? 1395 if (auto EV = SE->evaluatePredicateAt(Pred, LHSS, RHSS, BI)) { 1396 foldExit(L, ExitingBB, /*IsTaken*/ !*EV, DeadInsts); 1397 return true; 1398 } 1399 1400 auto *ARTy = LHSS->getType(); 1401 auto *MaxIterTy = MaxIter->getType(); 1402 // If possible, adjust types. 1403 if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy)) 1404 MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy); 1405 else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) { 1406 const SCEV *MinusOne = SE->getMinusOne(ARTy); 1407 auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy); 1408 if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI)) 1409 MaxIter = SE->getTruncateExpr(MaxIter, ARTy); 1410 } 1411 1412 if (SkipLastIter) { 1413 const SCEV *One = SE->getOne(MaxIter->getType()); 1414 MaxIter = SE->getMinusSCEV(MaxIter, One); 1415 } 1416 1417 // Check if there is a loop-invariant predicate equivalent to our check. 1418 auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS, 1419 L, BI, MaxIter); 1420 if (!LIP) 1421 return false; 1422 1423 // Can we prove it to be trivially true? 1424 if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI)) 1425 foldExit(L, ExitingBB, /*IsTaken*/ false, DeadInsts); 1426 else { 1427 auto *NewCond = createInvariantCond(L, ExitingBB, *LIP, Rewriter); 1428 replaceExitCond(BI, NewCond, DeadInsts); 1429 } 1430 1431 return true; 1432 } 1433 1434 bool IndVarSimplify::canonicalizeExitCondition(Loop *L) { 1435 // Note: This is duplicating a particular part on SimplifyIndVars reasoning. 1436 // We need to duplicate it because given icmp zext(small-iv), C, IVUsers 1437 // never reaches the icmp since the zext doesn't fold to an AddRec unless 1438 // it already has flags. The alternative to this would be to extending the 1439 // set of "interesting" IV users to include the icmp, but doing that 1440 // regresses results in practice by querying SCEVs before trip counts which 1441 // rely on them which results in SCEV caching sub-optimal answers. The 1442 // concern about caching sub-optimal results is why we only query SCEVs of 1443 // the loop invariant RHS here. 1444 SmallVector<BasicBlock*, 16> ExitingBlocks; 1445 L->getExitingBlocks(ExitingBlocks); 1446 bool Changed = false; 1447 for (auto *ExitingBB : ExitingBlocks) { 1448 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1449 if (!BI) 1450 continue; 1451 assert(BI->isConditional() && "exit branch must be conditional"); 1452 1453 auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 1454 if (!ICmp || !ICmp->hasOneUse()) 1455 continue; 1456 1457 auto *LHS = ICmp->getOperand(0); 1458 auto *RHS = ICmp->getOperand(1); 1459 // For the range reasoning, avoid computing SCEVs in the loop to avoid 1460 // poisoning cache with sub-optimal results. For the must-execute case, 1461 // this is a neccessary precondition for correctness. 1462 if (!L->isLoopInvariant(RHS)) { 1463 if (!L->isLoopInvariant(LHS)) 1464 continue; 1465 // Same logic applies for the inverse case 1466 std::swap(LHS, RHS); 1467 } 1468 1469 // Match (icmp signed-cond zext, RHS) 1470 Value *LHSOp = nullptr; 1471 if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned()) 1472 continue; 1473 1474 const DataLayout &DL = ExitingBB->getModule()->getDataLayout(); 1475 const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); 1476 const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); 1477 auto FullCR = ConstantRange::getFull(InnerBitWidth); 1478 FullCR = FullCR.zeroExtend(OuterBitWidth); 1479 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); 1480 if (FullCR.contains(RHSCR)) { 1481 // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus 1482 // replace the signed condition with the unsigned version. 1483 ICmp->setPredicate(ICmp->getUnsignedPredicate()); 1484 Changed = true; 1485 // Note: No SCEV invalidation needed. We've changed the predicate, but 1486 // have not changed exit counts, or the values produced by the compare. 1487 continue; 1488 } 1489 } 1490 1491 // Now that we've canonicalized the condition to match the extend, 1492 // see if we can rotate the extend out of the loop. 1493 for (auto *ExitingBB : ExitingBlocks) { 1494 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1495 if (!BI) 1496 continue; 1497 assert(BI->isConditional() && "exit branch must be conditional"); 1498 1499 auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 1500 if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned()) 1501 continue; 1502 1503 bool Swapped = false; 1504 auto *LHS = ICmp->getOperand(0); 1505 auto *RHS = ICmp->getOperand(1); 1506 if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS)) 1507 // Nothing to rotate 1508 continue; 1509 if (L->isLoopInvariant(LHS)) { 1510 // Same logic applies for the inverse case until we actually pick 1511 // which operand of the compare to update. 1512 Swapped = true; 1513 std::swap(LHS, RHS); 1514 } 1515 assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS)); 1516 1517 // Match (icmp unsigned-cond zext, RHS) 1518 // TODO: Extend to handle corresponding sext/signed-cmp case 1519 // TODO: Extend to other invertible functions 1520 Value *LHSOp = nullptr; 1521 if (!match(LHS, m_ZExt(m_Value(LHSOp)))) 1522 continue; 1523 1524 // In general, we only rotate if we can do so without increasing the number 1525 // of instructions. The exception is when we have an zext(add-rec). The 1526 // reason for allowing this exception is that we know we need to get rid 1527 // of the zext for SCEV to be able to compute a trip count for said loops; 1528 // we consider the new trip count valuable enough to increase instruction 1529 // count by one. 1530 if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp))) 1531 continue; 1532 1533 // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS 1534 // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS) 1535 // when zext is loop varying and RHS is loop invariant. This converts 1536 // loop varying work to loop-invariant work. 1537 auto doRotateTransform = [&]() { 1538 assert(ICmp->isUnsigned() && "must have proven unsigned already"); 1539 auto *NewRHS = 1540 CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "", 1541 L->getLoopPreheader()->getTerminator()); 1542 ICmp->setOperand(Swapped ? 1 : 0, LHSOp); 1543 ICmp->setOperand(Swapped ? 0 : 1, NewRHS); 1544 if (LHS->use_empty()) 1545 DeadInsts.push_back(LHS); 1546 }; 1547 1548 1549 const DataLayout &DL = ExitingBB->getModule()->getDataLayout(); 1550 const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); 1551 const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); 1552 auto FullCR = ConstantRange::getFull(InnerBitWidth); 1553 FullCR = FullCR.zeroExtend(OuterBitWidth); 1554 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); 1555 if (FullCR.contains(RHSCR)) { 1556 doRotateTransform(); 1557 Changed = true; 1558 // Note, we are leaving SCEV in an unfortunately imprecise case here 1559 // as rotation tends to reveal information about trip counts not 1560 // previously visible. 1561 continue; 1562 } 1563 } 1564 1565 return Changed; 1566 } 1567 1568 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) { 1569 SmallVector<BasicBlock*, 16> ExitingBlocks; 1570 L->getExitingBlocks(ExitingBlocks); 1571 1572 // Remove all exits which aren't both rewriteable and execute on every 1573 // iteration. 1574 llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1575 // If our exitting block exits multiple loops, we can only rewrite the 1576 // innermost one. Otherwise, we're changing how many times the innermost 1577 // loop runs before it exits. 1578 if (LI->getLoopFor(ExitingBB) != L) 1579 return true; 1580 1581 // Can't rewrite non-branch yet. 1582 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1583 if (!BI) 1584 return true; 1585 1586 // Likewise, the loop latch must be dominated by the exiting BB. 1587 if (!DT->dominates(ExitingBB, L->getLoopLatch())) 1588 return true; 1589 1590 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 1591 // If already constant, nothing to do. However, if this is an 1592 // unconditional exit, we can still replace header phis with their 1593 // preheader value. 1594 if (!L->contains(BI->getSuccessor(CI->isNullValue()))) 1595 replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE); 1596 return true; 1597 } 1598 1599 return false; 1600 }); 1601 1602 if (ExitingBlocks.empty()) 1603 return false; 1604 1605 // Get a symbolic upper bound on the loop backedge taken count. 1606 const SCEV *MaxBECount = SE->getSymbolicMaxBackedgeTakenCount(L); 1607 if (isa<SCEVCouldNotCompute>(MaxBECount)) 1608 return false; 1609 1610 // Visit our exit blocks in order of dominance. We know from the fact that 1611 // all exits must dominate the latch, so there is a total dominance order 1612 // between them. 1613 llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) { 1614 // std::sort sorts in ascending order, so we want the inverse of 1615 // the normal dominance relation. 1616 if (A == B) return false; 1617 if (DT->properlyDominates(A, B)) 1618 return true; 1619 else { 1620 assert(DT->properlyDominates(B, A) && 1621 "expected total dominance order!"); 1622 return false; 1623 } 1624 }); 1625 #ifdef ASSERT 1626 for (unsigned i = 1; i < ExitingBlocks.size(); i++) { 1627 assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])); 1628 } 1629 #endif 1630 1631 bool Changed = false; 1632 bool SkipLastIter = false; 1633 SmallSet<const SCEV *, 8> DominatingExactExitCounts; 1634 for (BasicBlock *ExitingBB : ExitingBlocks) { 1635 const SCEV *ExactExitCount = SE->getExitCount(L, ExitingBB); 1636 const SCEV *MaxExitCount = SE->getExitCount( 1637 L, ExitingBB, ScalarEvolution::ExitCountKind::SymbolicMaximum); 1638 if (isa<SCEVCouldNotCompute>(ExactExitCount)) { 1639 // Okay, we do not know the exit count here. Can we at least prove that it 1640 // will remain the same within iteration space? 1641 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1642 auto OptimizeCond = [&](bool SkipLastIter) { 1643 return optimizeLoopExitWithUnknownExitCount(L, BI, ExitingBB, 1644 MaxBECount, SkipLastIter, 1645 SE, Rewriter, DeadInsts); 1646 }; 1647 1648 // TODO: We might have proved that we can skip the last iteration for 1649 // this check. In this case, we only want to check the condition on the 1650 // pre-last iteration (MaxBECount - 1). However, there is a nasty 1651 // corner case: 1652 // 1653 // for (i = len; i != 0; i--) { ... check (i ult X) ... } 1654 // 1655 // If we could not prove that len != 0, then we also could not prove that 1656 // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then 1657 // OptimizeCond will likely not prove anything for it, even if it could 1658 // prove the same fact for len. 1659 // 1660 // As a temporary solution, we query both last and pre-last iterations in 1661 // hope that we will be able to prove triviality for at least one of 1662 // them. We can stop querying MaxBECount for this case once SCEV 1663 // understands that (MaxBECount - 1) will not overflow here. 1664 if (OptimizeCond(false)) 1665 Changed = true; 1666 else if (SkipLastIter && OptimizeCond(true)) 1667 Changed = true; 1668 if (MaxBECount == MaxExitCount) 1669 // If the loop has more than 1 iteration, all further checks will be 1670 // executed 1 iteration less. 1671 SkipLastIter = true; 1672 continue; 1673 } 1674 1675 if (MaxBECount == MaxExitCount) 1676 // If the loop has more than 1 iteration, all further checks will be 1677 // executed 1 iteration less. 1678 SkipLastIter = true; 1679 1680 // If we know we'd exit on the first iteration, rewrite the exit to 1681 // reflect this. This does not imply the loop must exit through this 1682 // exit; there may be an earlier one taken on the first iteration. 1683 // We know that the backedge can't be taken, so we replace all 1684 // the header PHIs with values coming from the preheader. 1685 if (ExactExitCount->isZero()) { 1686 foldExit(L, ExitingBB, true, DeadInsts); 1687 replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE); 1688 Changed = true; 1689 continue; 1690 } 1691 1692 assert(ExactExitCount->getType()->isIntegerTy() && 1693 MaxBECount->getType()->isIntegerTy() && 1694 "Exit counts must be integers"); 1695 1696 Type *WiderType = 1697 SE->getWiderType(MaxBECount->getType(), ExactExitCount->getType()); 1698 ExactExitCount = SE->getNoopOrZeroExtend(ExactExitCount, WiderType); 1699 MaxBECount = SE->getNoopOrZeroExtend(MaxBECount, WiderType); 1700 assert(MaxBECount->getType() == ExactExitCount->getType()); 1701 1702 // Can we prove that some other exit must be taken strictly before this 1703 // one? 1704 if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, MaxBECount, 1705 ExactExitCount)) { 1706 foldExit(L, ExitingBB, false, DeadInsts); 1707 Changed = true; 1708 continue; 1709 } 1710 1711 // As we run, keep track of which exit counts we've encountered. If we 1712 // find a duplicate, we've found an exit which would have exited on the 1713 // exiting iteration, but (from the visit order) strictly follows another 1714 // which does the same and is thus dead. 1715 if (!DominatingExactExitCounts.insert(ExactExitCount).second) { 1716 foldExit(L, ExitingBB, false, DeadInsts); 1717 Changed = true; 1718 continue; 1719 } 1720 1721 // TODO: There might be another oppurtunity to leverage SCEV's reasoning 1722 // here. If we kept track of the min of dominanting exits so far, we could 1723 // discharge exits with EC >= MDEC. This is less powerful than the existing 1724 // transform (since later exits aren't considered), but potentially more 1725 // powerful for any case where SCEV can prove a >=u b, but neither a == b 1726 // or a >u b. Such a case is not currently known. 1727 } 1728 return Changed; 1729 } 1730 1731 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1732 SmallVector<BasicBlock*, 16> ExitingBlocks; 1733 L->getExitingBlocks(ExitingBlocks); 1734 1735 // Finally, see if we can rewrite our exit conditions into a loop invariant 1736 // form. If we have a read-only loop, and we can tell that we must exit down 1737 // a path which does not need any of the values computed within the loop, we 1738 // can rewrite the loop to exit on the first iteration. Note that this 1739 // doesn't either a) tell us the loop exits on the first iteration (unless 1740 // *all* exits are predicateable) or b) tell us *which* exit might be taken. 1741 // This transformation looks a lot like a restricted form of dead loop 1742 // elimination, but restricted to read-only loops and without neccesssarily 1743 // needing to kill the loop entirely. 1744 if (!LoopPredication) 1745 return false; 1746 1747 // Note: ExactBTC is the exact backedge taken count *iff* the loop exits 1748 // through *explicit* control flow. We have to eliminate the possibility of 1749 // implicit exits (see below) before we know it's truly exact. 1750 const SCEV *ExactBTC = SE->getBackedgeTakenCount(L); 1751 if (isa<SCEVCouldNotCompute>(ExactBTC) || !Rewriter.isSafeToExpand(ExactBTC)) 1752 return false; 1753 1754 assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant"); 1755 assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer"); 1756 1757 auto BadExit = [&](BasicBlock *ExitingBB) { 1758 // If our exiting block exits multiple loops, we can only rewrite the 1759 // innermost one. Otherwise, we're changing how many times the innermost 1760 // loop runs before it exits. 1761 if (LI->getLoopFor(ExitingBB) != L) 1762 return true; 1763 1764 // Can't rewrite non-branch yet. 1765 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1766 if (!BI) 1767 return true; 1768 1769 // If already constant, nothing to do. 1770 if (isa<Constant>(BI->getCondition())) 1771 return true; 1772 1773 // If the exit block has phis, we need to be able to compute the values 1774 // within the loop which contains them. This assumes trivially lcssa phis 1775 // have already been removed; TODO: generalize 1776 BasicBlock *ExitBlock = 1777 BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0); 1778 if (!ExitBlock->phis().empty()) 1779 return true; 1780 1781 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1782 if (isa<SCEVCouldNotCompute>(ExitCount) || 1783 !Rewriter.isSafeToExpand(ExitCount)) 1784 return true; 1785 1786 assert(SE->isLoopInvariant(ExitCount, L) && 1787 "Exit count must be loop invariant"); 1788 assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer"); 1789 return false; 1790 }; 1791 1792 // If we have any exits which can't be predicated themselves, than we can't 1793 // predicate any exit which isn't guaranteed to execute before it. Consider 1794 // two exits (a) and (b) which would both exit on the same iteration. If we 1795 // can predicate (b), but not (a), and (a) preceeds (b) along some path, then 1796 // we could convert a loop from exiting through (a) to one exiting through 1797 // (b). Note that this problem exists only for exits with the same exit 1798 // count, and we could be more aggressive when exit counts are known inequal. 1799 llvm::sort(ExitingBlocks, 1800 [&](BasicBlock *A, BasicBlock *B) { 1801 // std::sort sorts in ascending order, so we want the inverse of 1802 // the normal dominance relation, plus a tie breaker for blocks 1803 // unordered by dominance. 1804 if (DT->properlyDominates(A, B)) return true; 1805 if (DT->properlyDominates(B, A)) return false; 1806 return A->getName() < B->getName(); 1807 }); 1808 // Check to see if our exit blocks are a total order (i.e. a linear chain of 1809 // exits before the backedge). If they aren't, reasoning about reachability 1810 // is complicated and we choose not to for now. 1811 for (unsigned i = 1; i < ExitingBlocks.size(); i++) 1812 if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])) 1813 return false; 1814 1815 // Given our sorted total order, we know that exit[j] must be evaluated 1816 // after all exit[i] such j > i. 1817 for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++) 1818 if (BadExit(ExitingBlocks[i])) { 1819 ExitingBlocks.resize(i); 1820 break; 1821 } 1822 1823 if (ExitingBlocks.empty()) 1824 return false; 1825 1826 // We rely on not being able to reach an exiting block on a later iteration 1827 // then it's statically compute exit count. The implementaton of 1828 // getExitCount currently has this invariant, but assert it here so that 1829 // breakage is obvious if this ever changes.. 1830 assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1831 return DT->dominates(ExitingBB, L->getLoopLatch()); 1832 })); 1833 1834 // At this point, ExitingBlocks consists of only those blocks which are 1835 // predicatable. Given that, we know we have at least one exit we can 1836 // predicate if the loop is doesn't have side effects and doesn't have any 1837 // implicit exits (because then our exact BTC isn't actually exact). 1838 // @Reviewers - As structured, this is O(I^2) for loop nests. Any 1839 // suggestions on how to improve this? I can obviously bail out for outer 1840 // loops, but that seems less than ideal. MemorySSA can find memory writes, 1841 // is that enough for *all* side effects? 1842 for (BasicBlock *BB : L->blocks()) 1843 for (auto &I : *BB) 1844 // TODO:isGuaranteedToTransfer 1845 if (I.mayHaveSideEffects()) 1846 return false; 1847 1848 bool Changed = false; 1849 // Finally, do the actual predication for all predicatable blocks. A couple 1850 // of notes here: 1851 // 1) We don't bother to constant fold dominated exits with identical exit 1852 // counts; that's simply a form of CSE/equality propagation and we leave 1853 // it for dedicated passes. 1854 // 2) We insert the comparison at the branch. Hoisting introduces additional 1855 // legality constraints and we leave that to dedicated logic. We want to 1856 // predicate even if we can't insert a loop invariant expression as 1857 // peeling or unrolling will likely reduce the cost of the otherwise loop 1858 // varying check. 1859 Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator()); 1860 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 1861 Value *ExactBTCV = nullptr; // Lazily generated if needed. 1862 for (BasicBlock *ExitingBB : ExitingBlocks) { 1863 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1864 1865 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1866 Value *NewCond; 1867 if (ExitCount == ExactBTC) { 1868 NewCond = L->contains(BI->getSuccessor(0)) ? 1869 B.getFalse() : B.getTrue(); 1870 } else { 1871 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1872 if (!ExactBTCV) 1873 ExactBTCV = Rewriter.expandCodeFor(ExactBTC); 1874 Value *RHS = ExactBTCV; 1875 if (ECV->getType() != RHS->getType()) { 1876 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1877 ECV = B.CreateZExt(ECV, WiderTy); 1878 RHS = B.CreateZExt(RHS, WiderTy); 1879 } 1880 auto Pred = L->contains(BI->getSuccessor(0)) ? 1881 ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 1882 NewCond = B.CreateICmp(Pred, ECV, RHS); 1883 } 1884 Value *OldCond = BI->getCondition(); 1885 BI->setCondition(NewCond); 1886 if (OldCond->use_empty()) 1887 DeadInsts.emplace_back(OldCond); 1888 Changed = true; 1889 } 1890 1891 return Changed; 1892 } 1893 1894 //===----------------------------------------------------------------------===// 1895 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1896 //===----------------------------------------------------------------------===// 1897 1898 bool IndVarSimplify::run(Loop *L) { 1899 // We need (and expect!) the incoming loop to be in LCSSA. 1900 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1901 "LCSSA required to run indvars!"); 1902 1903 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1904 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1905 // canonicalization can be a pessimization without LSR to "clean up" 1906 // afterwards. 1907 // - We depend on having a preheader; in particular, 1908 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1909 // and we're in trouble if we can't find the induction variable even when 1910 // we've manually inserted one. 1911 // - LFTR relies on having a single backedge. 1912 if (!L->isLoopSimplifyForm()) 1913 return false; 1914 1915 #ifndef NDEBUG 1916 // Used below for a consistency check only 1917 // Note: Since the result returned by ScalarEvolution may depend on the order 1918 // in which previous results are added to its cache, the call to 1919 // getBackedgeTakenCount() may change following SCEV queries. 1920 const SCEV *BackedgeTakenCount; 1921 if (VerifyIndvars) 1922 BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1923 #endif 1924 1925 bool Changed = false; 1926 // If there are any floating-point recurrences, attempt to 1927 // transform them to use integer recurrences. 1928 Changed |= rewriteNonIntegerIVs(L); 1929 1930 // Create a rewriter object which we'll use to transform the code with. 1931 SCEVExpander Rewriter(*SE, DL, "indvars"); 1932 #ifndef NDEBUG 1933 Rewriter.setDebugType(DEBUG_TYPE); 1934 #endif 1935 1936 // Eliminate redundant IV users. 1937 // 1938 // Simplification works best when run before other consumers of SCEV. We 1939 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1940 // other expressions involving loop IVs have been evaluated. This helps SCEV 1941 // set no-wrap flags before normalizing sign/zero extension. 1942 Rewriter.disableCanonicalMode(); 1943 Changed |= simplifyAndExtend(L, Rewriter, LI); 1944 1945 // Check to see if we can compute the final value of any expressions 1946 // that are recurrent in the loop, and substitute the exit values from the 1947 // loop into any instructions outside of the loop that use the final values 1948 // of the current expressions. 1949 if (ReplaceExitValue != NeverRepl) { 1950 if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, 1951 ReplaceExitValue, DeadInsts)) { 1952 NumReplaced += Rewrites; 1953 Changed = true; 1954 } 1955 } 1956 1957 // Eliminate redundant IV cycles. 1958 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI); 1959 1960 // Try to convert exit conditions to unsigned and rotate computation 1961 // out of the loop. Note: Handles invalidation internally if needed. 1962 Changed |= canonicalizeExitCondition(L); 1963 1964 // Try to eliminate loop exits based on analyzeable exit counts 1965 if (optimizeLoopExits(L, Rewriter)) { 1966 Changed = true; 1967 // Given we've changed exit counts, notify SCEV 1968 // Some nested loops may share same folded exit basic block, 1969 // thus we need to notify top most loop. 1970 SE->forgetTopmostLoop(L); 1971 } 1972 1973 // Try to form loop invariant tests for loop exits by changing how many 1974 // iterations of the loop run when that is unobservable. 1975 if (predicateLoopExits(L, Rewriter)) { 1976 Changed = true; 1977 // Given we've changed exit counts, notify SCEV 1978 SE->forgetLoop(L); 1979 } 1980 1981 // If we have a trip count expression, rewrite the loop's exit condition 1982 // using it. 1983 if (!DisableLFTR) { 1984 BasicBlock *PreHeader = L->getLoopPreheader(); 1985 1986 SmallVector<BasicBlock*, 16> ExitingBlocks; 1987 L->getExitingBlocks(ExitingBlocks); 1988 for (BasicBlock *ExitingBB : ExitingBlocks) { 1989 // Can't rewrite non-branch yet. 1990 if (!isa<BranchInst>(ExitingBB->getTerminator())) 1991 continue; 1992 1993 // If our exitting block exits multiple loops, we can only rewrite the 1994 // innermost one. Otherwise, we're changing how many times the innermost 1995 // loop runs before it exits. 1996 if (LI->getLoopFor(ExitingBB) != L) 1997 continue; 1998 1999 if (!needsLFTR(L, ExitingBB)) 2000 continue; 2001 2002 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 2003 if (isa<SCEVCouldNotCompute>(ExitCount)) 2004 continue; 2005 2006 // This was handled above, but as we form SCEVs, we can sometimes refine 2007 // existing ones; this allows exit counts to be folded to zero which 2008 // weren't when optimizeLoopExits saw them. Arguably, we should iterate 2009 // until stable to handle cases like this better. 2010 if (ExitCount->isZero()) 2011 continue; 2012 2013 PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); 2014 if (!IndVar) 2015 continue; 2016 2017 // Avoid high cost expansions. Note: This heuristic is questionable in 2018 // that our definition of "high cost" is not exactly principled. 2019 if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget, 2020 TTI, PreHeader->getTerminator())) 2021 continue; 2022 2023 // Check preconditions for proper SCEVExpander operation. SCEV does not 2024 // express SCEVExpander's dependencies, such as LoopSimplify. Instead 2025 // any pass that uses the SCEVExpander must do it. This does not work 2026 // well for loop passes because SCEVExpander makes assumptions about 2027 // all loops, while LoopPassManager only forces the current loop to be 2028 // simplified. 2029 // 2030 // FIXME: SCEV expansion has no way to bail out, so the caller must 2031 // explicitly check any assumptions made by SCEV. Brittle. 2032 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount); 2033 if (!AR || AR->getLoop()->getLoopPreheader()) 2034 Changed |= linearFunctionTestReplace(L, ExitingBB, 2035 ExitCount, IndVar, 2036 Rewriter); 2037 } 2038 } 2039 // Clear the rewriter cache, because values that are in the rewriter's cache 2040 // can be deleted in the loop below, causing the AssertingVH in the cache to 2041 // trigger. 2042 Rewriter.clear(); 2043 2044 // Now that we're done iterating through lists, clean up any instructions 2045 // which are now dead. 2046 while (!DeadInsts.empty()) { 2047 Value *V = DeadInsts.pop_back_val(); 2048 2049 if (PHINode *PHI = dyn_cast_or_null<PHINode>(V)) 2050 Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get()); 2051 else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 2052 Changed |= 2053 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get()); 2054 } 2055 2056 // The Rewriter may not be used from this point on. 2057 2058 // Loop-invariant instructions in the preheader that aren't used in the 2059 // loop may be sunk below the loop to reduce register pressure. 2060 Changed |= sinkUnusedInvariants(L); 2061 2062 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2063 // trip count and therefore can further simplify exit values in addition to 2064 // rewriteLoopExitValues. 2065 Changed |= rewriteFirstIterationLoopExitValues(L); 2066 2067 // Clean up dead instructions. 2068 Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get()); 2069 2070 // Check a post-condition. 2071 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2072 "Indvars did not preserve LCSSA!"); 2073 2074 // Verify that LFTR, and any other change have not interfered with SCEV's 2075 // ability to compute trip count. We may have *changed* the exit count, but 2076 // only by reducing it. 2077 #ifndef NDEBUG 2078 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2079 SE->forgetLoop(L); 2080 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2081 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2082 SE->getTypeSizeInBits(NewBECount->getType())) 2083 NewBECount = SE->getTruncateOrNoop(NewBECount, 2084 BackedgeTakenCount->getType()); 2085 else 2086 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2087 NewBECount->getType()); 2088 assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount, 2089 NewBECount) && "indvars must preserve SCEV"); 2090 } 2091 if (VerifyMemorySSA && MSSAU) 2092 MSSAU->getMemorySSA()->verifyMemorySSA(); 2093 #endif 2094 2095 return Changed; 2096 } 2097 2098 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2099 LoopStandardAnalysisResults &AR, 2100 LPMUpdater &) { 2101 Function *F = L.getHeader()->getParent(); 2102 const DataLayout &DL = F->getParent()->getDataLayout(); 2103 2104 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA, 2105 WidenIndVars && AllowIVWidening); 2106 if (!IVS.run(&L)) 2107 return PreservedAnalyses::all(); 2108 2109 auto PA = getLoopPassPreservedAnalyses(); 2110 PA.preserveSet<CFGAnalyses>(); 2111 if (AR.MSSA) 2112 PA.preserve<MemorySSAAnalysis>(); 2113 return PA; 2114 } 2115 2116 namespace { 2117 2118 struct IndVarSimplifyLegacyPass : public LoopPass { 2119 static char ID; // Pass identification, replacement for typeid 2120 2121 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2122 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2123 } 2124 2125 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2126 if (skipLoop(L)) 2127 return false; 2128 2129 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2130 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2131 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2132 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2133 auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr; 2134 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2135 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2136 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2137 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 2138 MemorySSA *MSSA = nullptr; 2139 if (MSSAAnalysis) 2140 MSSA = &MSSAAnalysis->getMSSA(); 2141 2142 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening); 2143 return IVS.run(L); 2144 } 2145 2146 void getAnalysisUsage(AnalysisUsage &AU) const override { 2147 AU.setPreservesCFG(); 2148 AU.addPreserved<MemorySSAWrapperPass>(); 2149 getLoopAnalysisUsage(AU); 2150 } 2151 }; 2152 2153 } // end anonymous namespace 2154 2155 char IndVarSimplifyLegacyPass::ID = 0; 2156 2157 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2158 "Induction Variable Simplification", false, false) 2159 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2160 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2161 "Induction Variable Simplification", false, false) 2162 2163 Pass *llvm::createIndVarSimplifyPass() { 2164 return new IndVarSimplifyLegacyPass(); 2165 } 2166