xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 77efb73c672762ce28cfff793db414ce05e3c46a)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/MemorySSA.h"
42 #include "llvm/Analysis/MemorySSAUpdater.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/ConstantRange.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/PassManager.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Scalar/LoopPassManager.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/LoopUtils.h"
85 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
86 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
87 #include <cassert>
88 #include <cstdint>
89 #include <utility>
90 
91 using namespace llvm;
92 
93 #define DEBUG_TYPE "indvars"
94 
95 STATISTIC(NumWidened     , "Number of indvars widened");
96 STATISTIC(NumReplaced    , "Number of exit values replaced");
97 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
98 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
99 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
100 
101 // Trip count verification can be enabled by default under NDEBUG if we
102 // implement a strong expression equivalence checker in SCEV. Until then, we
103 // use the verify-indvars flag, which may assert in some cases.
104 static cl::opt<bool> VerifyIndvars(
105     "verify-indvars", cl::Hidden,
106     cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
107              "effect in release builds. (Note: this adds additional SCEV "
108              "queries potentially changing the analysis result)"));
109 
110 static cl::opt<ReplaceExitVal> ReplaceExitValue(
111     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
112     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
113     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
114                clEnumValN(OnlyCheapRepl, "cheap",
115                           "only replace exit value when the cost is cheap"),
116                clEnumValN(NoHardUse, "noharduse",
117                           "only replace exit values when loop def likely dead"),
118                clEnumValN(AlwaysRepl, "always",
119                           "always replace exit value whenever possible")));
120 
121 static cl::opt<bool> UsePostIncrementRanges(
122   "indvars-post-increment-ranges", cl::Hidden,
123   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
124   cl::init(true));
125 
126 static cl::opt<bool>
127 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
128             cl::desc("Disable Linear Function Test Replace optimization"));
129 
130 static cl::opt<bool>
131 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
132                 cl::desc("Predicate conditions in read only loops"));
133 
134 static cl::opt<bool>
135 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
136                 cl::desc("Allow widening of indvars to eliminate s/zext"));
137 
138 namespace {
139 
140 struct RewritePhi;
141 
142 class IndVarSimplify {
143   LoopInfo *LI;
144   ScalarEvolution *SE;
145   DominatorTree *DT;
146   const DataLayout &DL;
147   TargetLibraryInfo *TLI;
148   const TargetTransformInfo *TTI;
149   std::unique_ptr<MemorySSAUpdater> MSSAU;
150 
151   SmallVector<WeakTrackingVH, 16> DeadInsts;
152   bool WidenIndVars;
153 
154   bool handleFloatingPointIV(Loop *L, PHINode *PH);
155   bool rewriteNonIntegerIVs(Loop *L);
156 
157   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
158   /// Try to eliminate loop exits based on analyzeable exit counts
159   bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
160   /// Try to form loop invariant tests for loop exits by changing how many
161   /// iterations of the loop run when that is unobservable.
162   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
163 
164   bool rewriteFirstIterationLoopExitValues(Loop *L);
165 
166   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
167                                  const SCEV *ExitCount,
168                                  PHINode *IndVar, SCEVExpander &Rewriter);
169 
170   bool sinkUnusedInvariants(Loop *L);
171 
172 public:
173   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
174                  const DataLayout &DL, TargetLibraryInfo *TLI,
175                  TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
176       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
177         WidenIndVars(WidenIndVars) {
178     if (MSSA)
179       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
180   }
181 
182   bool run(Loop *L);
183 };
184 
185 } // end anonymous namespace
186 
187 //===----------------------------------------------------------------------===//
188 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
189 //===----------------------------------------------------------------------===//
190 
191 /// Convert APF to an integer, if possible.
192 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
193   bool isExact = false;
194   // See if we can convert this to an int64_t
195   uint64_t UIntVal;
196   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
197                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
198       !isExact)
199     return false;
200   IntVal = UIntVal;
201   return true;
202 }
203 
204 /// If the loop has floating induction variable then insert corresponding
205 /// integer induction variable if possible.
206 /// For example,
207 /// for(double i = 0; i < 10000; ++i)
208 ///   bar(i)
209 /// is converted into
210 /// for(int i = 0; i < 10000; ++i)
211 ///   bar((double)i);
212 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
213   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
214   unsigned BackEdge     = IncomingEdge^1;
215 
216   // Check incoming value.
217   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
218 
219   int64_t InitValue;
220   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
221     return false;
222 
223   // Check IV increment. Reject this PN if increment operation is not
224   // an add or increment value can not be represented by an integer.
225   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
226   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
227 
228   // If this is not an add of the PHI with a constantfp, or if the constant fp
229   // is not an integer, bail out.
230   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
231   int64_t IncValue;
232   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
233       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
234     return false;
235 
236   // Check Incr uses. One user is PN and the other user is an exit condition
237   // used by the conditional terminator.
238   Value::user_iterator IncrUse = Incr->user_begin();
239   Instruction *U1 = cast<Instruction>(*IncrUse++);
240   if (IncrUse == Incr->user_end()) return false;
241   Instruction *U2 = cast<Instruction>(*IncrUse++);
242   if (IncrUse != Incr->user_end()) return false;
243 
244   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
245   // only used by a branch, we can't transform it.
246   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
247   if (!Compare)
248     Compare = dyn_cast<FCmpInst>(U2);
249   if (!Compare || !Compare->hasOneUse() ||
250       !isa<BranchInst>(Compare->user_back()))
251     return false;
252 
253   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
254 
255   // We need to verify that the branch actually controls the iteration count
256   // of the loop.  If not, the new IV can overflow and no one will notice.
257   // The branch block must be in the loop and one of the successors must be out
258   // of the loop.
259   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
260   if (!L->contains(TheBr->getParent()) ||
261       (L->contains(TheBr->getSuccessor(0)) &&
262        L->contains(TheBr->getSuccessor(1))))
263     return false;
264 
265   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
266   // transform it.
267   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
268   int64_t ExitValue;
269   if (ExitValueVal == nullptr ||
270       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
271     return false;
272 
273   // Find new predicate for integer comparison.
274   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
275   switch (Compare->getPredicate()) {
276   default: return false;  // Unknown comparison.
277   case CmpInst::FCMP_OEQ:
278   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
279   case CmpInst::FCMP_ONE:
280   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
281   case CmpInst::FCMP_OGT:
282   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
283   case CmpInst::FCMP_OGE:
284   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
285   case CmpInst::FCMP_OLT:
286   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
287   case CmpInst::FCMP_OLE:
288   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
289   }
290 
291   // We convert the floating point induction variable to a signed i32 value if
292   // we can.  This is only safe if the comparison will not overflow in a way
293   // that won't be trapped by the integer equivalent operations.  Check for this
294   // now.
295   // TODO: We could use i64 if it is native and the range requires it.
296 
297   // The start/stride/exit values must all fit in signed i32.
298   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
299     return false;
300 
301   // If not actually striding (add x, 0.0), avoid touching the code.
302   if (IncValue == 0)
303     return false;
304 
305   // Positive and negative strides have different safety conditions.
306   if (IncValue > 0) {
307     // If we have a positive stride, we require the init to be less than the
308     // exit value.
309     if (InitValue >= ExitValue)
310       return false;
311 
312     uint32_t Range = uint32_t(ExitValue-InitValue);
313     // Check for infinite loop, either:
314     // while (i <= Exit) or until (i > Exit)
315     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
316       if (++Range == 0) return false;  // Range overflows.
317     }
318 
319     unsigned Leftover = Range % uint32_t(IncValue);
320 
321     // If this is an equality comparison, we require that the strided value
322     // exactly land on the exit value, otherwise the IV condition will wrap
323     // around and do things the fp IV wouldn't.
324     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
325         Leftover != 0)
326       return false;
327 
328     // If the stride would wrap around the i32 before exiting, we can't
329     // transform the IV.
330     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
331       return false;
332   } else {
333     // If we have a negative stride, we require the init to be greater than the
334     // exit value.
335     if (InitValue <= ExitValue)
336       return false;
337 
338     uint32_t Range = uint32_t(InitValue-ExitValue);
339     // Check for infinite loop, either:
340     // while (i >= Exit) or until (i < Exit)
341     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
342       if (++Range == 0) return false;  // Range overflows.
343     }
344 
345     unsigned Leftover = Range % uint32_t(-IncValue);
346 
347     // If this is an equality comparison, we require that the strided value
348     // exactly land on the exit value, otherwise the IV condition will wrap
349     // around and do things the fp IV wouldn't.
350     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
351         Leftover != 0)
352       return false;
353 
354     // If the stride would wrap around the i32 before exiting, we can't
355     // transform the IV.
356     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
357       return false;
358   }
359 
360   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
361 
362   // Insert new integer induction variable.
363   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
364   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
365                       PN->getIncomingBlock(IncomingEdge));
366 
367   Value *NewAdd =
368     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
369                               Incr->getName()+".int", Incr);
370   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
371 
372   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
373                                       ConstantInt::get(Int32Ty, ExitValue),
374                                       Compare->getName());
375 
376   // In the following deletions, PN may become dead and may be deleted.
377   // Use a WeakTrackingVH to observe whether this happens.
378   WeakTrackingVH WeakPH = PN;
379 
380   // Delete the old floating point exit comparison.  The branch starts using the
381   // new comparison.
382   NewCompare->takeName(Compare);
383   Compare->replaceAllUsesWith(NewCompare);
384   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
385 
386   // Delete the old floating point increment.
387   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
388   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
389 
390   // If the FP induction variable still has uses, this is because something else
391   // in the loop uses its value.  In order to canonicalize the induction
392   // variable, we chose to eliminate the IV and rewrite it in terms of an
393   // int->fp cast.
394   //
395   // We give preference to sitofp over uitofp because it is faster on most
396   // platforms.
397   if (WeakPH) {
398     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
399                                  &*PN->getParent()->getFirstInsertionPt());
400     PN->replaceAllUsesWith(Conv);
401     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
402   }
403   return true;
404 }
405 
406 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
407   // First step.  Check to see if there are any floating-point recurrences.
408   // If there are, change them into integer recurrences, permitting analysis by
409   // the SCEV routines.
410   BasicBlock *Header = L->getHeader();
411 
412   SmallVector<WeakTrackingVH, 8> PHIs;
413   for (PHINode &PN : Header->phis())
414     PHIs.push_back(&PN);
415 
416   bool Changed = false;
417   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
418     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
419       Changed |= handleFloatingPointIV(L, PN);
420 
421   // If the loop previously had floating-point IV, ScalarEvolution
422   // may not have been able to compute a trip count. Now that we've done some
423   // re-writing, the trip count may be computable.
424   if (Changed)
425     SE->forgetLoop(L);
426   return Changed;
427 }
428 
429 //===---------------------------------------------------------------------===//
430 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
431 // they will exit at the first iteration.
432 //===---------------------------------------------------------------------===//
433 
434 /// Check to see if this loop has loop invariant conditions which lead to loop
435 /// exits. If so, we know that if the exit path is taken, it is at the first
436 /// loop iteration. This lets us predict exit values of PHI nodes that live in
437 /// loop header.
438 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
439   // Verify the input to the pass is already in LCSSA form.
440   assert(L->isLCSSAForm(*DT));
441 
442   SmallVector<BasicBlock *, 8> ExitBlocks;
443   L->getUniqueExitBlocks(ExitBlocks);
444 
445   bool MadeAnyChanges = false;
446   for (auto *ExitBB : ExitBlocks) {
447     // If there are no more PHI nodes in this exit block, then no more
448     // values defined inside the loop are used on this path.
449     for (PHINode &PN : ExitBB->phis()) {
450       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
451            IncomingValIdx != E; ++IncomingValIdx) {
452         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
453 
454         // Can we prove that the exit must run on the first iteration if it
455         // runs at all?  (i.e. early exits are fine for our purposes, but
456         // traces which lead to this exit being taken on the 2nd iteration
457         // aren't.)  Note that this is about whether the exit branch is
458         // executed, not about whether it is taken.
459         if (!L->getLoopLatch() ||
460             !DT->dominates(IncomingBB, L->getLoopLatch()))
461           continue;
462 
463         // Get condition that leads to the exit path.
464         auto *TermInst = IncomingBB->getTerminator();
465 
466         Value *Cond = nullptr;
467         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
468           // Must be a conditional branch, otherwise the block
469           // should not be in the loop.
470           Cond = BI->getCondition();
471         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
472           Cond = SI->getCondition();
473         else
474           continue;
475 
476         if (!L->isLoopInvariant(Cond))
477           continue;
478 
479         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
480 
481         // Only deal with PHIs in the loop header.
482         if (!ExitVal || ExitVal->getParent() != L->getHeader())
483           continue;
484 
485         // If ExitVal is a PHI on the loop header, then we know its
486         // value along this exit because the exit can only be taken
487         // on the first iteration.
488         auto *LoopPreheader = L->getLoopPreheader();
489         assert(LoopPreheader && "Invalid loop");
490         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
491         if (PreheaderIdx != -1) {
492           assert(ExitVal->getParent() == L->getHeader() &&
493                  "ExitVal must be in loop header");
494           MadeAnyChanges = true;
495           PN.setIncomingValue(IncomingValIdx,
496                               ExitVal->getIncomingValue(PreheaderIdx));
497         }
498       }
499     }
500   }
501   return MadeAnyChanges;
502 }
503 
504 //===----------------------------------------------------------------------===//
505 //  IV Widening - Extend the width of an IV to cover its widest uses.
506 //===----------------------------------------------------------------------===//
507 
508 /// Update information about the induction variable that is extended by this
509 /// sign or zero extend operation. This is used to determine the final width of
510 /// the IV before actually widening it.
511 static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
512                         ScalarEvolution *SE,
513                         const TargetTransformInfo *TTI) {
514   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
515   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
516     return;
517 
518   Type *Ty = Cast->getType();
519   uint64_t Width = SE->getTypeSizeInBits(Ty);
520   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
521     return;
522 
523   // Check that `Cast` actually extends the induction variable (we rely on this
524   // later).  This takes care of cases where `Cast` is extending a truncation of
525   // the narrow induction variable, and thus can end up being narrower than the
526   // "narrow" induction variable.
527   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
528   if (NarrowIVWidth >= Width)
529     return;
530 
531   // Cast is either an sext or zext up to this point.
532   // We should not widen an indvar if arithmetics on the wider indvar are more
533   // expensive than those on the narrower indvar. We check only the cost of ADD
534   // because at least an ADD is required to increment the induction variable. We
535   // could compute more comprehensively the cost of all instructions on the
536   // induction variable when necessary.
537   if (TTI &&
538       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
539           TTI->getArithmeticInstrCost(Instruction::Add,
540                                       Cast->getOperand(0)->getType())) {
541     return;
542   }
543 
544   if (!WI.WidestNativeType) {
545     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
546     WI.IsSigned = IsSigned;
547     return;
548   }
549 
550   // We extend the IV to satisfy the sign of its first user, arbitrarily.
551   if (WI.IsSigned != IsSigned)
552     return;
553 
554   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
555     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
556 }
557 
558 //===----------------------------------------------------------------------===//
559 //  Live IV Reduction - Minimize IVs live across the loop.
560 //===----------------------------------------------------------------------===//
561 
562 //===----------------------------------------------------------------------===//
563 //  Simplification of IV users based on SCEV evaluation.
564 //===----------------------------------------------------------------------===//
565 
566 namespace {
567 
568 class IndVarSimplifyVisitor : public IVVisitor {
569   ScalarEvolution *SE;
570   const TargetTransformInfo *TTI;
571   PHINode *IVPhi;
572 
573 public:
574   WideIVInfo WI;
575 
576   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
577                         const TargetTransformInfo *TTI,
578                         const DominatorTree *DTree)
579     : SE(SCEV), TTI(TTI), IVPhi(IV) {
580     DT = DTree;
581     WI.NarrowIV = IVPhi;
582   }
583 
584   // Implement the interface used by simplifyUsersOfIV.
585   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
586 };
587 
588 } // end anonymous namespace
589 
590 /// Iteratively perform simplification on a worklist of IV users. Each
591 /// successive simplification may push more users which may themselves be
592 /// candidates for simplification.
593 ///
594 /// Sign/Zero extend elimination is interleaved with IV simplification.
595 bool IndVarSimplify::simplifyAndExtend(Loop *L,
596                                        SCEVExpander &Rewriter,
597                                        LoopInfo *LI) {
598   SmallVector<WideIVInfo, 8> WideIVs;
599 
600   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
601           Intrinsic::getName(Intrinsic::experimental_guard));
602   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
603 
604   SmallVector<PHINode*, 8> LoopPhis;
605   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
606     LoopPhis.push_back(cast<PHINode>(I));
607   }
608   // Each round of simplification iterates through the SimplifyIVUsers worklist
609   // for all current phis, then determines whether any IVs can be
610   // widened. Widening adds new phis to LoopPhis, inducing another round of
611   // simplification on the wide IVs.
612   bool Changed = false;
613   while (!LoopPhis.empty()) {
614     // Evaluate as many IV expressions as possible before widening any IVs. This
615     // forces SCEV to set no-wrap flags before evaluating sign/zero
616     // extension. The first time SCEV attempts to normalize sign/zero extension,
617     // the result becomes final. So for the most predictable results, we delay
618     // evaluation of sign/zero extend evaluation until needed, and avoid running
619     // other SCEV based analysis prior to simplifyAndExtend.
620     do {
621       PHINode *CurrIV = LoopPhis.pop_back_val();
622 
623       // Information about sign/zero extensions of CurrIV.
624       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
625 
626       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
627                                    &Visitor);
628 
629       if (Visitor.WI.WidestNativeType) {
630         WideIVs.push_back(Visitor.WI);
631       }
632     } while(!LoopPhis.empty());
633 
634     // Continue if we disallowed widening.
635     if (!WidenIndVars)
636       continue;
637 
638     for (; !WideIVs.empty(); WideIVs.pop_back()) {
639       unsigned ElimExt;
640       unsigned Widened;
641       if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
642                                           DT, DeadInsts, ElimExt, Widened,
643                                           HasGuards, UsePostIncrementRanges)) {
644         NumElimExt += ElimExt;
645         NumWidened += Widened;
646         Changed = true;
647         LoopPhis.push_back(WidePhi);
648       }
649     }
650   }
651   return Changed;
652 }
653 
654 //===----------------------------------------------------------------------===//
655 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
656 //===----------------------------------------------------------------------===//
657 
658 /// Given an Value which is hoped to be part of an add recurance in the given
659 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
660 /// that this is less general than SCEVs AddRec checking.
661 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
662   Instruction *IncI = dyn_cast<Instruction>(IncV);
663   if (!IncI)
664     return nullptr;
665 
666   switch (IncI->getOpcode()) {
667   case Instruction::Add:
668   case Instruction::Sub:
669     break;
670   case Instruction::GetElementPtr:
671     // An IV counter must preserve its type.
672     if (IncI->getNumOperands() == 2)
673       break;
674     LLVM_FALLTHROUGH;
675   default:
676     return nullptr;
677   }
678 
679   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
680   if (Phi && Phi->getParent() == L->getHeader()) {
681     if (L->isLoopInvariant(IncI->getOperand(1)))
682       return Phi;
683     return nullptr;
684   }
685   if (IncI->getOpcode() == Instruction::GetElementPtr)
686     return nullptr;
687 
688   // Allow add/sub to be commuted.
689   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
690   if (Phi && Phi->getParent() == L->getHeader()) {
691     if (L->isLoopInvariant(IncI->getOperand(0)))
692       return Phi;
693   }
694   return nullptr;
695 }
696 
697 /// Whether the current loop exit test is based on this value.  Currently this
698 /// is limited to a direct use in the loop condition.
699 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
700   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
701   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
702   // TODO: Allow non-icmp loop test.
703   if (!ICmp)
704     return false;
705 
706   // TODO: Allow indirect use.
707   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
708 }
709 
710 /// linearFunctionTestReplace policy. Return true unless we can show that the
711 /// current exit test is already sufficiently canonical.
712 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
713   assert(L->getLoopLatch() && "Must be in simplified form");
714 
715   // Avoid converting a constant or loop invariant test back to a runtime
716   // test.  This is critical for when SCEV's cached ExitCount is less precise
717   // than the current IR (such as after we've proven a particular exit is
718   // actually dead and thus the BE count never reaches our ExitCount.)
719   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
720   if (L->isLoopInvariant(BI->getCondition()))
721     return false;
722 
723   // Do LFTR to simplify the exit condition to an ICMP.
724   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
725   if (!Cond)
726     return true;
727 
728   // Do LFTR to simplify the exit ICMP to EQ/NE
729   ICmpInst::Predicate Pred = Cond->getPredicate();
730   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
731     return true;
732 
733   // Look for a loop invariant RHS
734   Value *LHS = Cond->getOperand(0);
735   Value *RHS = Cond->getOperand(1);
736   if (!L->isLoopInvariant(RHS)) {
737     if (!L->isLoopInvariant(LHS))
738       return true;
739     std::swap(LHS, RHS);
740   }
741   // Look for a simple IV counter LHS
742   PHINode *Phi = dyn_cast<PHINode>(LHS);
743   if (!Phi)
744     Phi = getLoopPhiForCounter(LHS, L);
745 
746   if (!Phi)
747     return true;
748 
749   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
750   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
751   if (Idx < 0)
752     return true;
753 
754   // Do LFTR if the exit condition's IV is *not* a simple counter.
755   Value *IncV = Phi->getIncomingValue(Idx);
756   return Phi != getLoopPhiForCounter(IncV, L);
757 }
758 
759 /// Return true if undefined behavior would provable be executed on the path to
760 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
761 /// anything about whether OnPathTo is actually executed or whether Root is
762 /// actually poison.  This can be used to assess whether a new use of Root can
763 /// be added at a location which is control equivalent with OnPathTo (such as
764 /// immediately before it) without introducing UB which didn't previously
765 /// exist.  Note that a false result conveys no information.
766 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
767                                           Instruction *OnPathTo,
768                                           DominatorTree *DT) {
769   // Basic approach is to assume Root is poison, propagate poison forward
770   // through all users we can easily track, and then check whether any of those
771   // users are provable UB and must execute before out exiting block might
772   // exit.
773 
774   // The set of all recursive users we've visited (which are assumed to all be
775   // poison because of said visit)
776   SmallSet<const Value *, 16> KnownPoison;
777   SmallVector<const Instruction*, 16> Worklist;
778   Worklist.push_back(Root);
779   while (!Worklist.empty()) {
780     const Instruction *I = Worklist.pop_back_val();
781 
782     // If we know this must trigger UB on a path leading our target.
783     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
784       return true;
785 
786     // If we can't analyze propagation through this instruction, just skip it
787     // and transitive users.  Safe as false is a conservative result.
788     if (!propagatesPoison(cast<Operator>(I)) && I != Root)
789       continue;
790 
791     if (KnownPoison.insert(I).second)
792       for (const User *User : I->users())
793         Worklist.push_back(cast<Instruction>(User));
794   }
795 
796   // Might be non-UB, or might have a path we couldn't prove must execute on
797   // way to exiting bb.
798   return false;
799 }
800 
801 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
802 /// down to checking that all operands are constant and listing instructions
803 /// that may hide undef.
804 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
805                                unsigned Depth) {
806   if (isa<Constant>(V))
807     return !isa<UndefValue>(V);
808 
809   if (Depth >= 6)
810     return false;
811 
812   // Conservatively handle non-constant non-instructions. For example, Arguments
813   // may be undef.
814   Instruction *I = dyn_cast<Instruction>(V);
815   if (!I)
816     return false;
817 
818   // Load and return values may be undef.
819   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
820     return false;
821 
822   // Optimistically handle other instructions.
823   for (Value *Op : I->operands()) {
824     if (!Visited.insert(Op).second)
825       continue;
826     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
827       return false;
828   }
829   return true;
830 }
831 
832 /// Return true if the given value is concrete. We must prove that undef can
833 /// never reach it.
834 ///
835 /// TODO: If we decide that this is a good approach to checking for undef, we
836 /// may factor it into a common location.
837 static bool hasConcreteDef(Value *V) {
838   SmallPtrSet<Value*, 8> Visited;
839   Visited.insert(V);
840   return hasConcreteDefImpl(V, Visited, 0);
841 }
842 
843 /// Return true if this IV has any uses other than the (soon to be rewritten)
844 /// loop exit test.
845 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
846   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
847   Value *IncV = Phi->getIncomingValue(LatchIdx);
848 
849   for (User *U : Phi->users())
850     if (U != Cond && U != IncV) return false;
851 
852   for (User *U : IncV->users())
853     if (U != Cond && U != Phi) return false;
854   return true;
855 }
856 
857 /// Return true if the given phi is a "counter" in L.  A counter is an
858 /// add recurance (of integer or pointer type) with an arbitrary start, and a
859 /// step of 1.  Note that L must have exactly one latch.
860 static bool isLoopCounter(PHINode* Phi, Loop *L,
861                           ScalarEvolution *SE) {
862   assert(Phi->getParent() == L->getHeader());
863   assert(L->getLoopLatch());
864 
865   if (!SE->isSCEVable(Phi->getType()))
866     return false;
867 
868   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
869   if (!AR || AR->getLoop() != L || !AR->isAffine())
870     return false;
871 
872   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
873   if (!Step || !Step->isOne())
874     return false;
875 
876   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
877   Value *IncV = Phi->getIncomingValue(LatchIdx);
878   return (getLoopPhiForCounter(IncV, L) == Phi);
879 }
880 
881 /// Search the loop header for a loop counter (anadd rec w/step of one)
882 /// suitable for use by LFTR.  If multiple counters are available, select the
883 /// "best" one based profitable heuristics.
884 ///
885 /// BECount may be an i8* pointer type. The pointer difference is already
886 /// valid count without scaling the address stride, so it remains a pointer
887 /// expression as far as SCEV is concerned.
888 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
889                                 const SCEV *BECount,
890                                 ScalarEvolution *SE, DominatorTree *DT) {
891   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
892 
893   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
894 
895   // Loop over all of the PHI nodes, looking for a simple counter.
896   PHINode *BestPhi = nullptr;
897   const SCEV *BestInit = nullptr;
898   BasicBlock *LatchBlock = L->getLoopLatch();
899   assert(LatchBlock && "Must be in simplified form");
900   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
901 
902   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
903     PHINode *Phi = cast<PHINode>(I);
904     if (!isLoopCounter(Phi, L, SE))
905       continue;
906 
907     // Avoid comparing an integer IV against a pointer Limit.
908     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
909       continue;
910 
911     const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
912 
913     // AR may be a pointer type, while BECount is an integer type.
914     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
915     // AR may not be a narrower type, or we may never exit.
916     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
917     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
918       continue;
919 
920     // Avoid reusing a potentially undef value to compute other values that may
921     // have originally had a concrete definition.
922     if (!hasConcreteDef(Phi)) {
923       // We explicitly allow unknown phis as long as they are already used by
924       // the loop exit test.  This is legal since performing LFTR could not
925       // increase the number of undef users.
926       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
927       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
928           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
929         continue;
930     }
931 
932     // Avoid introducing undefined behavior due to poison which didn't exist in
933     // the original program.  (Annoyingly, the rules for poison and undef
934     // propagation are distinct, so this does NOT cover the undef case above.)
935     // We have to ensure that we don't introduce UB by introducing a use on an
936     // iteration where said IV produces poison.  Our strategy here differs for
937     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
938     // see code in linearFunctionTestReplace.  For pointers, we restrict
939     // transforms as there is no good way to reinfer inbounds once lost.
940     if (!Phi->getType()->isIntegerTy() &&
941         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
942       continue;
943 
944     const SCEV *Init = AR->getStart();
945 
946     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
947       // Don't force a live loop counter if another IV can be used.
948       if (AlmostDeadIV(Phi, LatchBlock, Cond))
949         continue;
950 
951       // Prefer to count-from-zero. This is a more "canonical" counter form. It
952       // also prefers integer to pointer IVs.
953       if (BestInit->isZero() != Init->isZero()) {
954         if (BestInit->isZero())
955           continue;
956       }
957       // If two IVs both count from zero or both count from nonzero then the
958       // narrower is likely a dead phi that has been widened. Use the wider phi
959       // to allow the other to be eliminated.
960       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
961         continue;
962     }
963     BestPhi = Phi;
964     BestInit = Init;
965   }
966   return BestPhi;
967 }
968 
969 /// Insert an IR expression which computes the value held by the IV IndVar
970 /// (which must be an loop counter w/unit stride) after the backedge of loop L
971 /// is taken ExitCount times.
972 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
973                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
974                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
975   assert(isLoopCounter(IndVar, L, SE));
976   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
977   const SCEV *IVInit = AR->getStart();
978 
979   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
980   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
981   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
982   // the existing GEPs whenever possible.
983   if (IndVar->getType()->isPointerTy() &&
984       !ExitCount->getType()->isPointerTy()) {
985     // IVOffset will be the new GEP offset that is interpreted by GEP as a
986     // signed value. ExitCount on the other hand represents the loop trip count,
987     // which is an unsigned value. FindLoopCounter only allows induction
988     // variables that have a positive unit stride of one. This means we don't
989     // have to handle the case of negative offsets (yet) and just need to zero
990     // extend ExitCount.
991     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
992     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
993     if (UsePostInc)
994       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
995 
996     // Expand the code for the iteration count.
997     assert(SE->isLoopInvariant(IVOffset, L) &&
998            "Computed iteration count is not loop invariant!");
999 
1000     // We could handle pointer IVs other than i8*, but we need to compensate for
1001     // gep index scaling.
1002     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1003                              cast<PointerType>(IndVar->getType())
1004                                  ->getElementType())->isOne() &&
1005            "unit stride pointer IV must be i8*");
1006 
1007     const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
1008     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1009     return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
1010   } else {
1011     // In any other case, convert both IVInit and ExitCount to integers before
1012     // comparing. This may result in SCEV expansion of pointers, but in practice
1013     // SCEV will fold the pointer arithmetic away as such:
1014     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1015     //
1016     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1017     // for simple memset-style loops.
1018     //
1019     // IVInit integer and ExitCount pointer would only occur if a canonical IV
1020     // were generated on top of case #2, which is not expected.
1021 
1022     assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1023     // For unit stride, IVCount = Start + ExitCount with 2's complement
1024     // overflow.
1025 
1026     // For integer IVs, truncate the IV before computing IVInit + BECount,
1027     // unless we know apriori that the limit must be a constant when evaluated
1028     // in the bitwidth of the IV.  We prefer (potentially) keeping a truncate
1029     // of the IV in the loop over a (potentially) expensive expansion of the
1030     // widened exit count add(zext(add)) expression.
1031     if (SE->getTypeSizeInBits(IVInit->getType())
1032         > SE->getTypeSizeInBits(ExitCount->getType())) {
1033       if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
1034         ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
1035       else
1036         IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
1037     }
1038 
1039     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
1040 
1041     if (UsePostInc)
1042       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
1043 
1044     // Expand the code for the iteration count.
1045     assert(SE->isLoopInvariant(IVLimit, L) &&
1046            "Computed iteration count is not loop invariant!");
1047     // Ensure that we generate the same type as IndVar, or a smaller integer
1048     // type. In the presence of null pointer values, we have an integer type
1049     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1050     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
1051       IndVar->getType() : ExitCount->getType();
1052     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1053     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1054   }
1055 }
1056 
1057 /// This method rewrites the exit condition of the loop to be a canonical !=
1058 /// comparison against the incremented loop induction variable.  This pass is
1059 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1060 /// determine a loop-invariant trip count of the loop, which is actually a much
1061 /// broader range than just linear tests.
1062 bool IndVarSimplify::
1063 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
1064                           const SCEV *ExitCount,
1065                           PHINode *IndVar, SCEVExpander &Rewriter) {
1066   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
1067   assert(isLoopCounter(IndVar, L, SE));
1068   Instruction * const IncVar =
1069     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
1070 
1071   // Initialize CmpIndVar to the preincremented IV.
1072   Value *CmpIndVar = IndVar;
1073   bool UsePostInc = false;
1074 
1075   // If the exiting block is the same as the backedge block, we prefer to
1076   // compare against the post-incremented value, otherwise we must compare
1077   // against the preincremented value.
1078   if (ExitingBB == L->getLoopLatch()) {
1079     // For pointer IVs, we chose to not strip inbounds which requires us not
1080     // to add a potentially UB introducing use.  We need to either a) show
1081     // the loop test we're modifying is already in post-inc form, or b) show
1082     // that adding a use must not introduce UB.
1083     bool SafeToPostInc =
1084         IndVar->getType()->isIntegerTy() ||
1085         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
1086         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
1087     if (SafeToPostInc) {
1088       UsePostInc = true;
1089       CmpIndVar = IncVar;
1090     }
1091   }
1092 
1093   // It may be necessary to drop nowrap flags on the incrementing instruction
1094   // if either LFTR moves from a pre-inc check to a post-inc check (in which
1095   // case the increment might have previously been poison on the last iteration
1096   // only) or if LFTR switches to a different IV that was previously dynamically
1097   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
1098   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
1099   // check), because the pre-inc addrec flags may be adopted from the original
1100   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
1101   // TODO: This handling is inaccurate for one case: If we switch to a
1102   // dynamically dead IV that wraps on the first loop iteration only, which is
1103   // not covered by the post-inc addrec. (If the new IV was not dynamically
1104   // dead, it could not be poison on the first iteration in the first place.)
1105   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
1106     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
1107     if (BO->hasNoUnsignedWrap())
1108       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
1109     if (BO->hasNoSignedWrap())
1110       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
1111   }
1112 
1113   Value *ExitCnt = genLoopLimit(
1114       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1115   assert(ExitCnt->getType()->isPointerTy() ==
1116              IndVar->getType()->isPointerTy() &&
1117          "genLoopLimit missed a cast");
1118 
1119   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1120   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1121   ICmpInst::Predicate P;
1122   if (L->contains(BI->getSuccessor(0)))
1123     P = ICmpInst::ICMP_NE;
1124   else
1125     P = ICmpInst::ICMP_EQ;
1126 
1127   IRBuilder<> Builder(BI);
1128 
1129   // The new loop exit condition should reuse the debug location of the
1130   // original loop exit condition.
1131   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
1132     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
1133 
1134   // For integer IVs, if we evaluated the limit in the narrower bitwidth to
1135   // avoid the expensive expansion of the limit expression in the wider type,
1136   // emit a truncate to narrow the IV to the ExitCount type.  This is safe
1137   // since we know (from the exit count bitwidth), that we can't self-wrap in
1138   // the narrower type.
1139   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1140   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1141   if (CmpIndVarSize > ExitCntSize) {
1142     assert(!CmpIndVar->getType()->isPointerTy() &&
1143            !ExitCnt->getType()->isPointerTy());
1144 
1145     // Before resorting to actually inserting the truncate, use the same
1146     // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
1147     // the other side of the comparison instead.  We still evaluate the limit
1148     // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
1149     // a truncate within in.
1150     bool Extended = false;
1151     const SCEV *IV = SE->getSCEV(CmpIndVar);
1152     const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
1153                                                   ExitCnt->getType());
1154     const SCEV *ZExtTrunc =
1155       SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
1156 
1157     if (ZExtTrunc == IV) {
1158       Extended = true;
1159       ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
1160                                    "wide.trip.count");
1161     } else {
1162       const SCEV *SExtTrunc =
1163         SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
1164       if (SExtTrunc == IV) {
1165         Extended = true;
1166         ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
1167                                      "wide.trip.count");
1168       }
1169     }
1170 
1171     if (Extended) {
1172       bool Discard;
1173       L->makeLoopInvariant(ExitCnt, Discard);
1174     } else
1175       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1176                                       "lftr.wideiv");
1177   }
1178   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1179                     << "      LHS:" << *CmpIndVar << '\n'
1180                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
1181                     << "\n"
1182                     << "      RHS:\t" << *ExitCnt << "\n"
1183                     << "ExitCount:\t" << *ExitCount << "\n"
1184                     << "  was: " << *BI->getCondition() << "\n");
1185 
1186   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1187   Value *OrigCond = BI->getCondition();
1188   // It's tempting to use replaceAllUsesWith here to fully replace the old
1189   // comparison, but that's not immediately safe, since users of the old
1190   // comparison may not be dominated by the new comparison. Instead, just
1191   // update the branch to use the new comparison; in the common case this
1192   // will make old comparison dead.
1193   BI->setCondition(Cond);
1194   DeadInsts.emplace_back(OrigCond);
1195 
1196   ++NumLFTR;
1197   return true;
1198 }
1199 
1200 //===----------------------------------------------------------------------===//
1201 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1202 //===----------------------------------------------------------------------===//
1203 
1204 /// If there's a single exit block, sink any loop-invariant values that
1205 /// were defined in the preheader but not used inside the loop into the
1206 /// exit block to reduce register pressure in the loop.
1207 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1208   BasicBlock *ExitBlock = L->getExitBlock();
1209   if (!ExitBlock) return false;
1210 
1211   BasicBlock *Preheader = L->getLoopPreheader();
1212   if (!Preheader) return false;
1213 
1214   bool MadeAnyChanges = false;
1215   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
1216   BasicBlock::iterator I(Preheader->getTerminator());
1217   while (I != Preheader->begin()) {
1218     --I;
1219     // New instructions were inserted at the end of the preheader.
1220     if (isa<PHINode>(I))
1221       break;
1222 
1223     // Don't move instructions which might have side effects, since the side
1224     // effects need to complete before instructions inside the loop.  Also don't
1225     // move instructions which might read memory, since the loop may modify
1226     // memory. Note that it's okay if the instruction might have undefined
1227     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1228     // block.
1229     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1230       continue;
1231 
1232     // Skip debug info intrinsics.
1233     if (isa<DbgInfoIntrinsic>(I))
1234       continue;
1235 
1236     // Skip eh pad instructions.
1237     if (I->isEHPad())
1238       continue;
1239 
1240     // Don't sink alloca: we never want to sink static alloca's out of the
1241     // entry block, and correctly sinking dynamic alloca's requires
1242     // checks for stacksave/stackrestore intrinsics.
1243     // FIXME: Refactor this check somehow?
1244     if (isa<AllocaInst>(I))
1245       continue;
1246 
1247     // Determine if there is a use in or before the loop (direct or
1248     // otherwise).
1249     bool UsedInLoop = false;
1250     for (Use &U : I->uses()) {
1251       Instruction *User = cast<Instruction>(U.getUser());
1252       BasicBlock *UseBB = User->getParent();
1253       if (PHINode *P = dyn_cast<PHINode>(User)) {
1254         unsigned i =
1255           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1256         UseBB = P->getIncomingBlock(i);
1257       }
1258       if (UseBB == Preheader || L->contains(UseBB)) {
1259         UsedInLoop = true;
1260         break;
1261       }
1262     }
1263 
1264     // If there is, the def must remain in the preheader.
1265     if (UsedInLoop)
1266       continue;
1267 
1268     // Otherwise, sink it to the exit block.
1269     Instruction *ToMove = &*I;
1270     bool Done = false;
1271 
1272     if (I != Preheader->begin()) {
1273       // Skip debug info intrinsics.
1274       do {
1275         --I;
1276       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1277 
1278       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1279         Done = true;
1280     } else {
1281       Done = true;
1282     }
1283 
1284     MadeAnyChanges = true;
1285     ToMove->moveBefore(*ExitBlock, InsertPt);
1286     if (Done) break;
1287     InsertPt = ToMove->getIterator();
1288   }
1289 
1290   return MadeAnyChanges;
1291 }
1292 
1293 enum ExitCondAnalysisResult {
1294   CanBeRemoved,
1295   CanBeReplacedWithInvariant,
1296   CannotOptimize
1297 };
1298 
1299 /// If the condition of BI is trivially true during at least first MaxIter
1300 /// iterations, return CanBeRemoved.
1301 /// If the condition is equivalent to loop-invariant condition expressed as
1302 /// 'InvariantLHS `InvariantPred` InvariantRHS', fill them into respective
1303 /// output parameters and return CanBeReplacedWithInvariant.
1304 /// Otherwise, return CannotOptimize.
1305 static ExitCondAnalysisResult
1306 analyzeCond(const Loop *L, BranchInst *BI, ScalarEvolution *SE,
1307             bool ProvingLoopExit, const SCEV *MaxIter,
1308             ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
1309             const SCEV *&InvariantRHS) {
1310   ICmpInst::Predicate Pred;
1311   Value *LHS, *RHS;
1312   using namespace PatternMatch;
1313   BasicBlock *TrueSucc, *FalseSucc;
1314   if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
1315                       m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc))))
1316     return CannotOptimize;
1317 
1318   assert((L->contains(TrueSucc) != L->contains(FalseSucc)) &&
1319          "Not a loop exit!");
1320 
1321   // 'LHS pred RHS' should now mean that we stay in loop.
1322   if (L->contains(FalseSucc))
1323     Pred = CmpInst::getInversePredicate(Pred);
1324 
1325   // If we are proving loop exit, invert the predicate.
1326   if (ProvingLoopExit)
1327     Pred = CmpInst::getInversePredicate(Pred);
1328 
1329   const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
1330   const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
1331   // Can we prove it to be trivially true?
1332   if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI))
1333     return CanBeRemoved;
1334 
1335   if (ProvingLoopExit)
1336     return CannotOptimize;
1337 
1338   // Check if there is a loop-invariant predicate equivalent to our check.
1339   if (!SE->isLoopInvariantExitCondDuringFirstIterations(
1340            Pred, LHSS, RHSS, L, BI, MaxIter, InvariantPred, InvariantLHS,
1341            InvariantRHS))
1342     return CannotOptimize;
1343 
1344   // Can we prove it to be trivially true?
1345   if (SE->isKnownPredicateAt(InvariantPred, InvariantLHS, InvariantRHS, BI))
1346     return CanBeRemoved;
1347   return CanBeReplacedWithInvariant;
1348 }
1349 
1350 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
1351   SmallVector<BasicBlock*, 16> ExitingBlocks;
1352   L->getExitingBlocks(ExitingBlocks);
1353 
1354   // Remove all exits which aren't both rewriteable and execute on every
1355   // iteration.
1356   auto NewEnd = llvm::remove_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1357     // If our exitting block exits multiple loops, we can only rewrite the
1358     // innermost one.  Otherwise, we're changing how many times the innermost
1359     // loop runs before it exits.
1360     if (LI->getLoopFor(ExitingBB) != L)
1361       return true;
1362 
1363     // Can't rewrite non-branch yet.
1364     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1365     if (!BI)
1366       return true;
1367 
1368     // If already constant, nothing to do.
1369     if (isa<Constant>(BI->getCondition()))
1370       return true;
1371 
1372     // Likewise, the loop latch must be dominated by the exiting BB.
1373     if (!DT->dominates(ExitingBB, L->getLoopLatch()))
1374       return true;
1375 
1376     return false;
1377   });
1378   ExitingBlocks.erase(NewEnd, ExitingBlocks.end());
1379 
1380   if (ExitingBlocks.empty())
1381     return false;
1382 
1383   // Get a symbolic upper bound on the loop backedge taken count.
1384   const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L);
1385   if (isa<SCEVCouldNotCompute>(MaxExitCount))
1386     return false;
1387 
1388   // Visit our exit blocks in order of dominance. We know from the fact that
1389   // all exits must dominate the latch, so there is a total dominance order
1390   // between them.
1391   llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
1392                // std::sort sorts in ascending order, so we want the inverse of
1393                // the normal dominance relation.
1394                if (A == B) return false;
1395                if (DT->properlyDominates(A, B))
1396                  return true;
1397                else {
1398                  assert(DT->properlyDominates(B, A) &&
1399                         "expected total dominance order!");
1400                  return false;
1401                }
1402   });
1403 #ifdef ASSERT
1404   for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
1405     assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
1406   }
1407 #endif
1408 
1409   auto ReplaceExitCond = [&](BranchInst *BI, Value *NewCond) {
1410     auto *OldCond = BI->getCondition();
1411     BI->setCondition(NewCond);
1412     if (OldCond->use_empty())
1413       DeadInsts.emplace_back(OldCond);
1414   };
1415 
1416   auto FoldExit = [&](BasicBlock *ExitingBB, bool IsTaken) {
1417     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1418     bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1419     auto *OldCond = BI->getCondition();
1420     auto *NewCond = ConstantInt::get(OldCond->getType(),
1421                                      IsTaken ? ExitIfTrue : !ExitIfTrue);
1422     ReplaceExitCond(BI, NewCond);
1423   };
1424 
1425   auto ReplaceWithInvariantCond = [&](
1426       BasicBlock *ExitingBB, ICmpInst::Predicate InvariantPred,
1427       const SCEV *InvariantLHS, const SCEV *InvariantRHS) {
1428     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1429     Rewriter.setInsertPoint(BI);
1430     auto *LHSV = Rewriter.expandCodeFor(InvariantLHS);
1431     auto *RHSV = Rewriter.expandCodeFor(InvariantRHS);
1432     IRBuilder<> Builder(BI);
1433     auto *NewCond = Builder.CreateICmp(InvariantPred, LHSV, RHSV,
1434                                        BI->getCondition()->getName());
1435     ReplaceExitCond(BI, NewCond);
1436   };
1437 
1438   bool Changed = false;
1439   bool SkipLastIter = false;
1440   SmallSet<const SCEV*, 8> DominatingExitCounts;
1441   for (BasicBlock *ExitingBB : ExitingBlocks) {
1442     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1443     if (isa<SCEVCouldNotCompute>(ExitCount)) {
1444       // Okay, we do not know the exit count here. Can we at least prove that it
1445       // will remain the same within iteration space?
1446       auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1447       auto OptimizeCond = [this, L, BI, ExitingBB, MaxExitCount, &FoldExit,
1448                            &ReplaceWithInvariantCond](bool Inverted,
1449                                                       bool SkipLastIter) {
1450         const SCEV *MaxIter = MaxExitCount;
1451         if (SkipLastIter) {
1452           const SCEV *One = SE->getOne(MaxIter->getType());
1453           MaxIter = SE->getMinusSCEV(MaxIter, One);
1454         }
1455         ICmpInst::Predicate InvariantPred;
1456         const SCEV *InvariantLHS, *InvariantRHS;
1457         switch (analyzeCond(L, BI, SE, Inverted, MaxIter, InvariantPred,
1458                             InvariantLHS, InvariantRHS)) {
1459         case CanBeRemoved:
1460           FoldExit(ExitingBB, Inverted);
1461           return true;
1462         case CanBeReplacedWithInvariant: {
1463           ReplaceWithInvariantCond(ExitingBB, InvariantPred, InvariantLHS,
1464                                    InvariantRHS);
1465           return true;
1466         }
1467         case CannotOptimize:
1468           return false;
1469         }
1470         llvm_unreachable("Unknown case!");
1471       };
1472 
1473       // TODO: We might have proved that we can skip the last iteration for
1474       // this check. In this case, we only want to check the condition on the
1475       // pre-last iteration (MaxExitCount - 1). However, there is a nasty
1476       // corner case:
1477       //
1478       //   for (i = len; i != 0; i--) { ... check (i ult X) ... }
1479       //
1480       // If we could not prove that len != 0, then we also could not prove that
1481       // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
1482       // OptimizeCond will likely not prove anything for it, even if it could
1483       // prove the same fact for len.
1484       //
1485       // As a temporary solution, we query both last and pre-last iterations in
1486       // hope that we will be able to prove triviality for at least one of
1487       // them. We can stop querying MaxExitCount for this case once SCEV
1488       // understands that (MaxExitCount - 1) will not overflow here.
1489       if (OptimizeCond(false, false) || OptimizeCond(true, false))
1490         Changed = true;
1491       else if (SkipLastIter)
1492         if (OptimizeCond(false, true) || OptimizeCond(true, true))
1493           Changed = true;
1494       continue;
1495     }
1496 
1497     if (MaxExitCount == ExitCount)
1498       // If the loop has more than 1 iteration, all further checks will be
1499       // executed 1 iteration less.
1500       SkipLastIter = true;
1501 
1502     // If we know we'd exit on the first iteration, rewrite the exit to
1503     // reflect this.  This does not imply the loop must exit through this
1504     // exit; there may be an earlier one taken on the first iteration.
1505     // TODO: Given we know the backedge can't be taken, we should go ahead
1506     // and break it.  Or at least, kill all the header phis and simplify.
1507     if (ExitCount->isZero()) {
1508       FoldExit(ExitingBB, true);
1509       Changed = true;
1510       continue;
1511     }
1512 
1513     // If we end up with a pointer exit count, bail.  Note that we can end up
1514     // with a pointer exit count for one exiting block, and not for another in
1515     // the same loop.
1516     if (!ExitCount->getType()->isIntegerTy() ||
1517         !MaxExitCount->getType()->isIntegerTy())
1518       continue;
1519 
1520     Type *WiderType =
1521       SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
1522     ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
1523     MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
1524     assert(MaxExitCount->getType() == ExitCount->getType());
1525 
1526     // Can we prove that some other exit must be taken strictly before this
1527     // one?
1528     if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
1529                                      MaxExitCount, ExitCount)) {
1530       FoldExit(ExitingBB, false);
1531       Changed = true;
1532       continue;
1533     }
1534 
1535     // As we run, keep track of which exit counts we've encountered.  If we
1536     // find a duplicate, we've found an exit which would have exited on the
1537     // exiting iteration, but (from the visit order) strictly follows another
1538     // which does the same and is thus dead.
1539     if (!DominatingExitCounts.insert(ExitCount).second) {
1540       FoldExit(ExitingBB, false);
1541       Changed = true;
1542       continue;
1543     }
1544 
1545     // TODO: There might be another oppurtunity to leverage SCEV's reasoning
1546     // here.  If we kept track of the min of dominanting exits so far, we could
1547     // discharge exits with EC >= MDEC. This is less powerful than the existing
1548     // transform (since later exits aren't considered), but potentially more
1549     // powerful for any case where SCEV can prove a >=u b, but neither a == b
1550     // or a >u b.  Such a case is not currently known.
1551   }
1552   return Changed;
1553 }
1554 
1555 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1556   SmallVector<BasicBlock*, 16> ExitingBlocks;
1557   L->getExitingBlocks(ExitingBlocks);
1558 
1559   // Finally, see if we can rewrite our exit conditions into a loop invariant
1560   // form. If we have a read-only loop, and we can tell that we must exit down
1561   // a path which does not need any of the values computed within the loop, we
1562   // can rewrite the loop to exit on the first iteration.  Note that this
1563   // doesn't either a) tell us the loop exits on the first iteration (unless
1564   // *all* exits are predicateable) or b) tell us *which* exit might be taken.
1565   // This transformation looks a lot like a restricted form of dead loop
1566   // elimination, but restricted to read-only loops and without neccesssarily
1567   // needing to kill the loop entirely.
1568   if (!LoopPredication)
1569     return false;
1570 
1571   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1572     return false;
1573 
1574   // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
1575   // through *explicit* control flow.  We have to eliminate the possibility of
1576   // implicit exits (see below) before we know it's truly exact.
1577   const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1578   if (isa<SCEVCouldNotCompute>(ExactBTC) ||
1579       !SE->isLoopInvariant(ExactBTC, L) ||
1580       !isSafeToExpand(ExactBTC, *SE))
1581     return false;
1582 
1583   // If we end up with a pointer exit count, bail.  It may be unsized.
1584   if (!ExactBTC->getType()->isIntegerTy())
1585     return false;
1586 
1587   auto BadExit = [&](BasicBlock *ExitingBB) {
1588     // If our exiting block exits multiple loops, we can only rewrite the
1589     // innermost one.  Otherwise, we're changing how many times the innermost
1590     // loop runs before it exits.
1591     if (LI->getLoopFor(ExitingBB) != L)
1592       return true;
1593 
1594     // Can't rewrite non-branch yet.
1595     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1596     if (!BI)
1597       return true;
1598 
1599     // If already constant, nothing to do.
1600     if (isa<Constant>(BI->getCondition()))
1601       return true;
1602 
1603     // If the exit block has phis, we need to be able to compute the values
1604     // within the loop which contains them.  This assumes trivially lcssa phis
1605     // have already been removed; TODO: generalize
1606     BasicBlock *ExitBlock =
1607     BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
1608     if (!ExitBlock->phis().empty())
1609       return true;
1610 
1611     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1612     assert(!isa<SCEVCouldNotCompute>(ExactBTC) && "implied by having exact trip count");
1613     if (!SE->isLoopInvariant(ExitCount, L) ||
1614         !isSafeToExpand(ExitCount, *SE))
1615       return true;
1616 
1617     // If we end up with a pointer exit count, bail.  It may be unsized.
1618     if (!ExitCount->getType()->isIntegerTy())
1619       return true;
1620 
1621     return false;
1622   };
1623 
1624   // If we have any exits which can't be predicated themselves, than we can't
1625   // predicate any exit which isn't guaranteed to execute before it.  Consider
1626   // two exits (a) and (b) which would both exit on the same iteration.  If we
1627   // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
1628   // we could convert a loop from exiting through (a) to one exiting through
1629   // (b).  Note that this problem exists only for exits with the same exit
1630   // count, and we could be more aggressive when exit counts are known inequal.
1631   llvm::sort(ExitingBlocks,
1632             [&](BasicBlock *A, BasicBlock *B) {
1633               // std::sort sorts in ascending order, so we want the inverse of
1634               // the normal dominance relation, plus a tie breaker for blocks
1635               // unordered by dominance.
1636               if (DT->properlyDominates(A, B)) return true;
1637               if (DT->properlyDominates(B, A)) return false;
1638               return A->getName() < B->getName();
1639             });
1640   // Check to see if our exit blocks are a total order (i.e. a linear chain of
1641   // exits before the backedge).  If they aren't, reasoning about reachability
1642   // is complicated and we choose not to for now.
1643   for (unsigned i = 1; i < ExitingBlocks.size(); i++)
1644     if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
1645       return false;
1646 
1647   // Given our sorted total order, we know that exit[j] must be evaluated
1648   // after all exit[i] such j > i.
1649   for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1650     if (BadExit(ExitingBlocks[i])) {
1651       ExitingBlocks.resize(i);
1652       break;
1653     }
1654 
1655   if (ExitingBlocks.empty())
1656     return false;
1657 
1658   // We rely on not being able to reach an exiting block on a later iteration
1659   // then it's statically compute exit count.  The implementaton of
1660   // getExitCount currently has this invariant, but assert it here so that
1661   // breakage is obvious if this ever changes..
1662   assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1663         return DT->dominates(ExitingBB, L->getLoopLatch());
1664       }));
1665 
1666   // At this point, ExitingBlocks consists of only those blocks which are
1667   // predicatable.  Given that, we know we have at least one exit we can
1668   // predicate if the loop is doesn't have side effects and doesn't have any
1669   // implicit exits (because then our exact BTC isn't actually exact).
1670   // @Reviewers - As structured, this is O(I^2) for loop nests.  Any
1671   // suggestions on how to improve this?  I can obviously bail out for outer
1672   // loops, but that seems less than ideal.  MemorySSA can find memory writes,
1673   // is that enough for *all* side effects?
1674   for (BasicBlock *BB : L->blocks())
1675     for (auto &I : *BB)
1676       // TODO:isGuaranteedToTransfer
1677       if (I.mayHaveSideEffects() || I.mayThrow())
1678         return false;
1679 
1680   bool Changed = false;
1681   // Finally, do the actual predication for all predicatable blocks.  A couple
1682   // of notes here:
1683   // 1) We don't bother to constant fold dominated exits with identical exit
1684   //    counts; that's simply a form of CSE/equality propagation and we leave
1685   //    it for dedicated passes.
1686   // 2) We insert the comparison at the branch.  Hoisting introduces additional
1687   //    legality constraints and we leave that to dedicated logic.  We want to
1688   //    predicate even if we can't insert a loop invariant expression as
1689   //    peeling or unrolling will likely reduce the cost of the otherwise loop
1690   //    varying check.
1691   Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
1692   IRBuilder<> B(L->getLoopPreheader()->getTerminator());
1693   Value *ExactBTCV = nullptr; // Lazily generated if needed.
1694   for (BasicBlock *ExitingBB : ExitingBlocks) {
1695     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1696 
1697     auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1698     Value *NewCond;
1699     if (ExitCount == ExactBTC) {
1700       NewCond = L->contains(BI->getSuccessor(0)) ?
1701         B.getFalse() : B.getTrue();
1702     } else {
1703       Value *ECV = Rewriter.expandCodeFor(ExitCount);
1704       if (!ExactBTCV)
1705         ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
1706       Value *RHS = ExactBTCV;
1707       if (ECV->getType() != RHS->getType()) {
1708         Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1709         ECV = B.CreateZExt(ECV, WiderTy);
1710         RHS = B.CreateZExt(RHS, WiderTy);
1711       }
1712       auto Pred = L->contains(BI->getSuccessor(0)) ?
1713         ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1714       NewCond = B.CreateICmp(Pred, ECV, RHS);
1715     }
1716     Value *OldCond = BI->getCondition();
1717     BI->setCondition(NewCond);
1718     if (OldCond->use_empty())
1719       DeadInsts.emplace_back(OldCond);
1720     Changed = true;
1721   }
1722 
1723   return Changed;
1724 }
1725 
1726 //===----------------------------------------------------------------------===//
1727 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1728 //===----------------------------------------------------------------------===//
1729 
1730 bool IndVarSimplify::run(Loop *L) {
1731   // We need (and expect!) the incoming loop to be in LCSSA.
1732   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1733          "LCSSA required to run indvars!");
1734 
1735   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1736   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1737   //    canonicalization can be a pessimization without LSR to "clean up"
1738   //    afterwards.
1739   //  - We depend on having a preheader; in particular,
1740   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1741   //    and we're in trouble if we can't find the induction variable even when
1742   //    we've manually inserted one.
1743   //  - LFTR relies on having a single backedge.
1744   if (!L->isLoopSimplifyForm())
1745     return false;
1746 
1747 #ifndef NDEBUG
1748   // Used below for a consistency check only
1749   // Note: Since the result returned by ScalarEvolution may depend on the order
1750   // in which previous results are added to its cache, the call to
1751   // getBackedgeTakenCount() may change following SCEV queries.
1752   const SCEV *BackedgeTakenCount;
1753   if (VerifyIndvars)
1754     BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1755 #endif
1756 
1757   bool Changed = false;
1758   // If there are any floating-point recurrences, attempt to
1759   // transform them to use integer recurrences.
1760   Changed |= rewriteNonIntegerIVs(L);
1761 
1762   // Create a rewriter object which we'll use to transform the code with.
1763   SCEVExpander Rewriter(*SE, DL, "indvars");
1764 #ifndef NDEBUG
1765   Rewriter.setDebugType(DEBUG_TYPE);
1766 #endif
1767 
1768   // Eliminate redundant IV users.
1769   //
1770   // Simplification works best when run before other consumers of SCEV. We
1771   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1772   // other expressions involving loop IVs have been evaluated. This helps SCEV
1773   // set no-wrap flags before normalizing sign/zero extension.
1774   Rewriter.disableCanonicalMode();
1775   Changed |= simplifyAndExtend(L, Rewriter, LI);
1776 
1777   // Check to see if we can compute the final value of any expressions
1778   // that are recurrent in the loop, and substitute the exit values from the
1779   // loop into any instructions outside of the loop that use the final values
1780   // of the current expressions.
1781   if (ReplaceExitValue != NeverRepl) {
1782     if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
1783                                              ReplaceExitValue, DeadInsts)) {
1784       NumReplaced += Rewrites;
1785       Changed = true;
1786     }
1787   }
1788 
1789   // Eliminate redundant IV cycles.
1790   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1791 
1792   // Try to eliminate loop exits based on analyzeable exit counts
1793   if (optimizeLoopExits(L, Rewriter))  {
1794     Changed = true;
1795     // Given we've changed exit counts, notify SCEV
1796     SE->forgetLoop(L);
1797   }
1798 
1799   // Try to form loop invariant tests for loop exits by changing how many
1800   // iterations of the loop run when that is unobservable.
1801   if (predicateLoopExits(L, Rewriter)) {
1802     Changed = true;
1803     // Given we've changed exit counts, notify SCEV
1804     SE->forgetLoop(L);
1805   }
1806 
1807   // If we have a trip count expression, rewrite the loop's exit condition
1808   // using it.
1809   if (!DisableLFTR) {
1810     BasicBlock *PreHeader = L->getLoopPreheader();
1811     BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
1812 
1813     SmallVector<BasicBlock*, 16> ExitingBlocks;
1814     L->getExitingBlocks(ExitingBlocks);
1815     for (BasicBlock *ExitingBB : ExitingBlocks) {
1816       // Can't rewrite non-branch yet.
1817       if (!isa<BranchInst>(ExitingBB->getTerminator()))
1818         continue;
1819 
1820       // If our exitting block exits multiple loops, we can only rewrite the
1821       // innermost one.  Otherwise, we're changing how many times the innermost
1822       // loop runs before it exits.
1823       if (LI->getLoopFor(ExitingBB) != L)
1824         continue;
1825 
1826       if (!needsLFTR(L, ExitingBB))
1827         continue;
1828 
1829       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1830       if (isa<SCEVCouldNotCompute>(ExitCount))
1831         continue;
1832 
1833       // This was handled above, but as we form SCEVs, we can sometimes refine
1834       // existing ones; this allows exit counts to be folded to zero which
1835       // weren't when optimizeLoopExits saw them.  Arguably, we should iterate
1836       // until stable to handle cases like this better.
1837       if (ExitCount->isZero())
1838         continue;
1839 
1840       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
1841       if (!IndVar)
1842         continue;
1843 
1844       // Avoid high cost expansions.  Note: This heuristic is questionable in
1845       // that our definition of "high cost" is not exactly principled.
1846       if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
1847                                        TTI, PreHeaderBR))
1848         continue;
1849 
1850       // Check preconditions for proper SCEVExpander operation. SCEV does not
1851       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
1852       // any pass that uses the SCEVExpander must do it. This does not work
1853       // well for loop passes because SCEVExpander makes assumptions about
1854       // all loops, while LoopPassManager only forces the current loop to be
1855       // simplified.
1856       //
1857       // FIXME: SCEV expansion has no way to bail out, so the caller must
1858       // explicitly check any assumptions made by SCEV. Brittle.
1859       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
1860       if (!AR || AR->getLoop()->getLoopPreheader())
1861         Changed |= linearFunctionTestReplace(L, ExitingBB,
1862                                              ExitCount, IndVar,
1863                                              Rewriter);
1864     }
1865   }
1866   // Clear the rewriter cache, because values that are in the rewriter's cache
1867   // can be deleted in the loop below, causing the AssertingVH in the cache to
1868   // trigger.
1869   Rewriter.clear();
1870 
1871   // Now that we're done iterating through lists, clean up any instructions
1872   // which are now dead.
1873   while (!DeadInsts.empty())
1874     if (Instruction *Inst =
1875             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
1876       Changed |=
1877           RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
1878 
1879   // The Rewriter may not be used from this point on.
1880 
1881   // Loop-invariant instructions in the preheader that aren't used in the
1882   // loop may be sunk below the loop to reduce register pressure.
1883   Changed |= sinkUnusedInvariants(L);
1884 
1885   // rewriteFirstIterationLoopExitValues does not rely on the computation of
1886   // trip count and therefore can further simplify exit values in addition to
1887   // rewriteLoopExitValues.
1888   Changed |= rewriteFirstIterationLoopExitValues(L);
1889 
1890   // Clean up dead instructions.
1891   Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
1892 
1893   // Check a post-condition.
1894   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1895          "Indvars did not preserve LCSSA!");
1896 
1897   // Verify that LFTR, and any other change have not interfered with SCEV's
1898   // ability to compute trip count.  We may have *changed* the exit count, but
1899   // only by reducing it.
1900 #ifndef NDEBUG
1901   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1902     SE->forgetLoop(L);
1903     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1904     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1905         SE->getTypeSizeInBits(NewBECount->getType()))
1906       NewBECount = SE->getTruncateOrNoop(NewBECount,
1907                                          BackedgeTakenCount->getType());
1908     else
1909       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1910                                                  NewBECount->getType());
1911     assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
1912                                  NewBECount) && "indvars must preserve SCEV");
1913   }
1914   if (VerifyMemorySSA && MSSAU)
1915     MSSAU->getMemorySSA()->verifyMemorySSA();
1916 #endif
1917 
1918   return Changed;
1919 }
1920 
1921 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
1922                                           LoopStandardAnalysisResults &AR,
1923                                           LPMUpdater &) {
1924   Function *F = L.getHeader()->getParent();
1925   const DataLayout &DL = F->getParent()->getDataLayout();
1926 
1927   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
1928                      WidenIndVars && AllowIVWidening);
1929   if (!IVS.run(&L))
1930     return PreservedAnalyses::all();
1931 
1932   auto PA = getLoopPassPreservedAnalyses();
1933   PA.preserveSet<CFGAnalyses>();
1934   if (AR.MSSA)
1935     PA.preserve<MemorySSAAnalysis>();
1936   return PA;
1937 }
1938 
1939 namespace {
1940 
1941 struct IndVarSimplifyLegacyPass : public LoopPass {
1942   static char ID; // Pass identification, replacement for typeid
1943 
1944   IndVarSimplifyLegacyPass() : LoopPass(ID) {
1945     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
1946   }
1947 
1948   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1949     if (skipLoop(L))
1950       return false;
1951 
1952     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1953     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1954     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1955     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1956     auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
1957     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
1958     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
1959     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1960     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
1961     MemorySSA *MSSA = nullptr;
1962     if (MSSAAnalysis)
1963       MSSA = &MSSAAnalysis->getMSSA();
1964 
1965     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
1966     return IVS.run(L);
1967   }
1968 
1969   void getAnalysisUsage(AnalysisUsage &AU) const override {
1970     AU.setPreservesCFG();
1971     AU.addPreserved<MemorySSAWrapperPass>();
1972     getLoopAnalysisUsage(AU);
1973   }
1974 };
1975 
1976 } // end anonymous namespace
1977 
1978 char IndVarSimplifyLegacyPass::ID = 0;
1979 
1980 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
1981                       "Induction Variable Simplification", false, false)
1982 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1983 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
1984                     "Induction Variable Simplification", false, false)
1985 
1986 Pass *llvm::createIndVarSimplifyPass() {
1987   return new IndVarSimplifyLegacyPass();
1988 }
1989