1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into simpler forms suitable for subsequent 11 // analysis and transformation. 12 // 13 // If the trip count of a loop is computable, this pass also makes the following 14 // changes: 15 // 1. The exit condition for the loop is canonicalized to compare the 16 // induction value against the exit value. This turns loops like: 17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 18 // 2. Any use outside of the loop of an expression derived from the indvar 19 // is changed to compute the derived value outside of the loop, eliminating 20 // the dependence on the exit value of the induction variable. If the only 21 // purpose of the loop is to compute the exit value of some derived 22 // expression, this transformation will make the loop dead. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/None.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/ADT/iterator_range.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Analysis/ScalarEvolution.h" 41 #include "llvm/Analysis/ScalarEvolutionExpander.h" 42 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/TargetTransformInfo.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/ConstantRange.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PassManager.h" 63 #include "llvm/IR/PatternMatch.h" 64 #include "llvm/IR/Type.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/User.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/IR/ValueHandle.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/MathExtras.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/Scalar.h" 78 #include "llvm/Transforms/Scalar/LoopPassManager.h" 79 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 80 #include "llvm/Transforms/Utils/LoopUtils.h" 81 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 82 #include <cassert> 83 #include <cstdint> 84 #include <utility> 85 86 using namespace llvm; 87 88 #define DEBUG_TYPE "indvars" 89 90 STATISTIC(NumWidened , "Number of indvars widened"); 91 STATISTIC(NumReplaced , "Number of exit values replaced"); 92 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 93 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 94 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 95 96 // Trip count verification can be enabled by default under NDEBUG if we 97 // implement a strong expression equivalence checker in SCEV. Until then, we 98 // use the verify-indvars flag, which may assert in some cases. 99 static cl::opt<bool> VerifyIndvars( 100 "verify-indvars", cl::Hidden, 101 cl::desc("Verify the ScalarEvolution result after running indvars")); 102 103 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 104 105 static cl::opt<ReplaceExitVal> ReplaceExitValue( 106 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 107 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 108 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 109 clEnumValN(OnlyCheapRepl, "cheap", 110 "only replace exit value when the cost is cheap"), 111 clEnumValN(AlwaysRepl, "always", 112 "always replace exit value whenever possible"))); 113 114 static cl::opt<bool> UsePostIncrementRanges( 115 "indvars-post-increment-ranges", cl::Hidden, 116 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 117 cl::init(true)); 118 119 static cl::opt<bool> 120 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 121 cl::desc("Disable Linear Function Test Replace optimization")); 122 123 namespace { 124 125 struct RewritePhi; 126 127 class IndVarSimplify { 128 LoopInfo *LI; 129 ScalarEvolution *SE; 130 DominatorTree *DT; 131 const DataLayout &DL; 132 TargetLibraryInfo *TLI; 133 const TargetTransformInfo *TTI; 134 135 SmallVector<WeakTrackingVH, 16> DeadInsts; 136 137 bool isValidRewrite(Value *FromVal, Value *ToVal); 138 139 bool handleFloatingPointIV(Loop *L, PHINode *PH); 140 bool rewriteNonIntegerIVs(Loop *L); 141 142 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 143 144 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 145 bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 146 bool rewriteFirstIterationLoopExitValues(Loop *L); 147 bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const; 148 149 bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 150 PHINode *IndVar, SCEVExpander &Rewriter); 151 152 bool sinkUnusedInvariants(Loop *L); 153 154 public: 155 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 156 const DataLayout &DL, TargetLibraryInfo *TLI, 157 TargetTransformInfo *TTI) 158 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 159 160 bool run(Loop *L); 161 }; 162 163 } // end anonymous namespace 164 165 /// Return true if the SCEV expansion generated by the rewriter can replace the 166 /// original value. SCEV guarantees that it produces the same value, but the way 167 /// it is produced may be illegal IR. Ideally, this function will only be 168 /// called for verification. 169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 170 // If an SCEV expression subsumed multiple pointers, its expansion could 171 // reassociate the GEP changing the base pointer. This is illegal because the 172 // final address produced by a GEP chain must be inbounds relative to its 173 // underlying object. Otherwise basic alias analysis, among other things, 174 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 175 // producing an expression involving multiple pointers. Until then, we must 176 // bail out here. 177 // 178 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 179 // because it understands lcssa phis while SCEV does not. 180 Value *FromPtr = FromVal; 181 Value *ToPtr = ToVal; 182 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 183 FromPtr = GEP->getPointerOperand(); 184 } 185 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 186 ToPtr = GEP->getPointerOperand(); 187 } 188 if (FromPtr != FromVal || ToPtr != ToVal) { 189 // Quickly check the common case 190 if (FromPtr == ToPtr) 191 return true; 192 193 // SCEV may have rewritten an expression that produces the GEP's pointer 194 // operand. That's ok as long as the pointer operand has the same base 195 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 196 // base of a recurrence. This handles the case in which SCEV expansion 197 // converts a pointer type recurrence into a nonrecurrent pointer base 198 // indexed by an integer recurrence. 199 200 // If the GEP base pointer is a vector of pointers, abort. 201 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 202 return false; 203 204 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 205 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 206 if (FromBase == ToBase) 207 return true; 208 209 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 210 << " != " << *ToBase << "\n"); 211 212 return false; 213 } 214 return true; 215 } 216 217 /// Determine the insertion point for this user. By default, insert immediately 218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 220 /// common dominator for the incoming blocks. A nullptr can be returned if no 221 /// viable location is found: it may happen if User is a PHI and Def only comes 222 /// to this PHI from unreachable blocks. 223 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 224 DominatorTree *DT, LoopInfo *LI) { 225 PHINode *PHI = dyn_cast<PHINode>(User); 226 if (!PHI) 227 return User; 228 229 Instruction *InsertPt = nullptr; 230 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 231 if (PHI->getIncomingValue(i) != Def) 232 continue; 233 234 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 235 236 if (!DT->isReachableFromEntry(InsertBB)) 237 continue; 238 239 if (!InsertPt) { 240 InsertPt = InsertBB->getTerminator(); 241 continue; 242 } 243 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 244 InsertPt = InsertBB->getTerminator(); 245 } 246 247 // If we have skipped all inputs, it means that Def only comes to Phi from 248 // unreachable blocks. 249 if (!InsertPt) 250 return nullptr; 251 252 auto *DefI = dyn_cast<Instruction>(Def); 253 if (!DefI) 254 return InsertPt; 255 256 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 257 258 auto *L = LI->getLoopFor(DefI->getParent()); 259 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 260 261 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 262 if (LI->getLoopFor(DTN->getBlock()) == L) 263 return DTN->getBlock()->getTerminator(); 264 265 llvm_unreachable("DefI dominates InsertPt!"); 266 } 267 268 //===----------------------------------------------------------------------===// 269 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 270 //===----------------------------------------------------------------------===// 271 272 /// Convert APF to an integer, if possible. 273 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 274 bool isExact = false; 275 // See if we can convert this to an int64_t 276 uint64_t UIntVal; 277 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 278 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 279 !isExact) 280 return false; 281 IntVal = UIntVal; 282 return true; 283 } 284 285 /// If the loop has floating induction variable then insert corresponding 286 /// integer induction variable if possible. 287 /// For example, 288 /// for(double i = 0; i < 10000; ++i) 289 /// bar(i) 290 /// is converted into 291 /// for(int i = 0; i < 10000; ++i) 292 /// bar((double)i); 293 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 294 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 295 unsigned BackEdge = IncomingEdge^1; 296 297 // Check incoming value. 298 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 299 300 int64_t InitValue; 301 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 302 return false; 303 304 // Check IV increment. Reject this PN if increment operation is not 305 // an add or increment value can not be represented by an integer. 306 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 307 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 308 309 // If this is not an add of the PHI with a constantfp, or if the constant fp 310 // is not an integer, bail out. 311 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 312 int64_t IncValue; 313 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 314 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 315 return false; 316 317 // Check Incr uses. One user is PN and the other user is an exit condition 318 // used by the conditional terminator. 319 Value::user_iterator IncrUse = Incr->user_begin(); 320 Instruction *U1 = cast<Instruction>(*IncrUse++); 321 if (IncrUse == Incr->user_end()) return false; 322 Instruction *U2 = cast<Instruction>(*IncrUse++); 323 if (IncrUse != Incr->user_end()) return false; 324 325 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 326 // only used by a branch, we can't transform it. 327 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 328 if (!Compare) 329 Compare = dyn_cast<FCmpInst>(U2); 330 if (!Compare || !Compare->hasOneUse() || 331 !isa<BranchInst>(Compare->user_back())) 332 return false; 333 334 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 335 336 // We need to verify that the branch actually controls the iteration count 337 // of the loop. If not, the new IV can overflow and no one will notice. 338 // The branch block must be in the loop and one of the successors must be out 339 // of the loop. 340 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 341 if (!L->contains(TheBr->getParent()) || 342 (L->contains(TheBr->getSuccessor(0)) && 343 L->contains(TheBr->getSuccessor(1)))) 344 return false; 345 346 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 347 // transform it. 348 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 349 int64_t ExitValue; 350 if (ExitValueVal == nullptr || 351 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 352 return false; 353 354 // Find new predicate for integer comparison. 355 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 356 switch (Compare->getPredicate()) { 357 default: return false; // Unknown comparison. 358 case CmpInst::FCMP_OEQ: 359 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 360 case CmpInst::FCMP_ONE: 361 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 362 case CmpInst::FCMP_OGT: 363 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 364 case CmpInst::FCMP_OGE: 365 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 366 case CmpInst::FCMP_OLT: 367 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 368 case CmpInst::FCMP_OLE: 369 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 370 } 371 372 // We convert the floating point induction variable to a signed i32 value if 373 // we can. This is only safe if the comparison will not overflow in a way 374 // that won't be trapped by the integer equivalent operations. Check for this 375 // now. 376 // TODO: We could use i64 if it is native and the range requires it. 377 378 // The start/stride/exit values must all fit in signed i32. 379 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 380 return false; 381 382 // If not actually striding (add x, 0.0), avoid touching the code. 383 if (IncValue == 0) 384 return false; 385 386 // Positive and negative strides have different safety conditions. 387 if (IncValue > 0) { 388 // If we have a positive stride, we require the init to be less than the 389 // exit value. 390 if (InitValue >= ExitValue) 391 return false; 392 393 uint32_t Range = uint32_t(ExitValue-InitValue); 394 // Check for infinite loop, either: 395 // while (i <= Exit) or until (i > Exit) 396 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 397 if (++Range == 0) return false; // Range overflows. 398 } 399 400 unsigned Leftover = Range % uint32_t(IncValue); 401 402 // If this is an equality comparison, we require that the strided value 403 // exactly land on the exit value, otherwise the IV condition will wrap 404 // around and do things the fp IV wouldn't. 405 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 406 Leftover != 0) 407 return false; 408 409 // If the stride would wrap around the i32 before exiting, we can't 410 // transform the IV. 411 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 412 return false; 413 } else { 414 // If we have a negative stride, we require the init to be greater than the 415 // exit value. 416 if (InitValue <= ExitValue) 417 return false; 418 419 uint32_t Range = uint32_t(InitValue-ExitValue); 420 // Check for infinite loop, either: 421 // while (i >= Exit) or until (i < Exit) 422 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 423 if (++Range == 0) return false; // Range overflows. 424 } 425 426 unsigned Leftover = Range % uint32_t(-IncValue); 427 428 // If this is an equality comparison, we require that the strided value 429 // exactly land on the exit value, otherwise the IV condition will wrap 430 // around and do things the fp IV wouldn't. 431 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 432 Leftover != 0) 433 return false; 434 435 // If the stride would wrap around the i32 before exiting, we can't 436 // transform the IV. 437 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 438 return false; 439 } 440 441 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 442 443 // Insert new integer induction variable. 444 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 445 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 446 PN->getIncomingBlock(IncomingEdge)); 447 448 Value *NewAdd = 449 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 450 Incr->getName()+".int", Incr); 451 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 452 453 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 454 ConstantInt::get(Int32Ty, ExitValue), 455 Compare->getName()); 456 457 // In the following deletions, PN may become dead and may be deleted. 458 // Use a WeakTrackingVH to observe whether this happens. 459 WeakTrackingVH WeakPH = PN; 460 461 // Delete the old floating point exit comparison. The branch starts using the 462 // new comparison. 463 NewCompare->takeName(Compare); 464 Compare->replaceAllUsesWith(NewCompare); 465 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 466 467 // Delete the old floating point increment. 468 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 469 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 470 471 // If the FP induction variable still has uses, this is because something else 472 // in the loop uses its value. In order to canonicalize the induction 473 // variable, we chose to eliminate the IV and rewrite it in terms of an 474 // int->fp cast. 475 // 476 // We give preference to sitofp over uitofp because it is faster on most 477 // platforms. 478 if (WeakPH) { 479 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 480 &*PN->getParent()->getFirstInsertionPt()); 481 PN->replaceAllUsesWith(Conv); 482 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 483 } 484 return true; 485 } 486 487 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 488 // First step. Check to see if there are any floating-point recurrences. 489 // If there are, change them into integer recurrences, permitting analysis by 490 // the SCEV routines. 491 BasicBlock *Header = L->getHeader(); 492 493 SmallVector<WeakTrackingVH, 8> PHIs; 494 for (PHINode &PN : Header->phis()) 495 PHIs.push_back(&PN); 496 497 bool Changed = false; 498 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 499 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 500 Changed |= handleFloatingPointIV(L, PN); 501 502 // If the loop previously had floating-point IV, ScalarEvolution 503 // may not have been able to compute a trip count. Now that we've done some 504 // re-writing, the trip count may be computable. 505 if (Changed) 506 SE->forgetLoop(L); 507 return Changed; 508 } 509 510 namespace { 511 512 // Collect information about PHI nodes which can be transformed in 513 // rewriteLoopExitValues. 514 struct RewritePhi { 515 PHINode *PN; 516 517 // Ith incoming value. 518 unsigned Ith; 519 520 // Exit value after expansion. 521 Value *Val; 522 523 // High Cost when expansion. 524 bool HighCost; 525 526 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 527 : PN(P), Ith(I), Val(V), HighCost(H) {} 528 }; 529 530 } // end anonymous namespace 531 532 //===----------------------------------------------------------------------===// 533 // rewriteLoopExitValues - Optimize IV users outside the loop. 534 // As a side effect, reduces the amount of IV processing within the loop. 535 //===----------------------------------------------------------------------===// 536 537 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const { 538 SmallPtrSet<const Instruction *, 8> Visited; 539 SmallVector<const Instruction *, 8> WorkList; 540 Visited.insert(I); 541 WorkList.push_back(I); 542 while (!WorkList.empty()) { 543 const Instruction *Curr = WorkList.pop_back_val(); 544 // This use is outside the loop, nothing to do. 545 if (!L->contains(Curr)) 546 continue; 547 // Do we assume it is a "hard" use which will not be eliminated easily? 548 if (Curr->mayHaveSideEffects()) 549 return true; 550 // Otherwise, add all its users to worklist. 551 for (auto U : Curr->users()) { 552 auto *UI = cast<Instruction>(U); 553 if (Visited.insert(UI).second) 554 WorkList.push_back(UI); 555 } 556 } 557 return false; 558 } 559 560 /// Check to see if this loop has a computable loop-invariant execution count. 561 /// If so, this means that we can compute the final value of any expressions 562 /// that are recurrent in the loop, and substitute the exit values from the loop 563 /// into any instructions outside of the loop that use the final values of the 564 /// current expressions. 565 /// 566 /// This is mostly redundant with the regular IndVarSimplify activities that 567 /// happen later, except that it's more powerful in some cases, because it's 568 /// able to brute-force evaluate arbitrary instructions as long as they have 569 /// constant operands at the beginning of the loop. 570 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 571 // Check a pre-condition. 572 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 573 "Indvars did not preserve LCSSA!"); 574 575 SmallVector<BasicBlock*, 8> ExitBlocks; 576 L->getUniqueExitBlocks(ExitBlocks); 577 578 SmallVector<RewritePhi, 8> RewritePhiSet; 579 // Find all values that are computed inside the loop, but used outside of it. 580 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 581 // the exit blocks of the loop to find them. 582 for (BasicBlock *ExitBB : ExitBlocks) { 583 // If there are no PHI nodes in this exit block, then no values defined 584 // inside the loop are used on this path, skip it. 585 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 586 if (!PN) continue; 587 588 unsigned NumPreds = PN->getNumIncomingValues(); 589 590 // Iterate over all of the PHI nodes. 591 BasicBlock::iterator BBI = ExitBB->begin(); 592 while ((PN = dyn_cast<PHINode>(BBI++))) { 593 if (PN->use_empty()) 594 continue; // dead use, don't replace it 595 596 if (!SE->isSCEVable(PN->getType())) 597 continue; 598 599 // It's necessary to tell ScalarEvolution about this explicitly so that 600 // it can walk the def-use list and forget all SCEVs, as it may not be 601 // watching the PHI itself. Once the new exit value is in place, there 602 // may not be a def-use connection between the loop and every instruction 603 // which got a SCEVAddRecExpr for that loop. 604 SE->forgetValue(PN); 605 606 // Iterate over all of the values in all the PHI nodes. 607 for (unsigned i = 0; i != NumPreds; ++i) { 608 // If the value being merged in is not integer or is not defined 609 // in the loop, skip it. 610 Value *InVal = PN->getIncomingValue(i); 611 if (!isa<Instruction>(InVal)) 612 continue; 613 614 // If this pred is for a subloop, not L itself, skip it. 615 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 616 continue; // The Block is in a subloop, skip it. 617 618 // Check that InVal is defined in the loop. 619 Instruction *Inst = cast<Instruction>(InVal); 620 if (!L->contains(Inst)) 621 continue; 622 623 // Okay, this instruction has a user outside of the current loop 624 // and varies predictably *inside* the loop. Evaluate the value it 625 // contains when the loop exits, if possible. 626 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 627 if (!SE->isLoopInvariant(ExitValue, L) || 628 !isSafeToExpand(ExitValue, *SE)) 629 continue; 630 631 // Computing the value outside of the loop brings no benefit if it is 632 // definitely used inside the loop in a way which can not be optimized 633 // away. 634 if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 635 continue; 636 637 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 638 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 639 640 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 641 << '\n' 642 << " LoopVal = " << *Inst << "\n"); 643 644 if (!isValidRewrite(Inst, ExitVal)) { 645 DeadInsts.push_back(ExitVal); 646 continue; 647 } 648 649 #ifndef NDEBUG 650 // If we reuse an instruction from a loop which is neither L nor one of 651 // its containing loops, we end up breaking LCSSA form for this loop by 652 // creating a new use of its instruction. 653 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 654 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 655 if (EVL != L) 656 assert(EVL->contains(L) && "LCSSA breach detected!"); 657 #endif 658 659 // Collect all the candidate PHINodes to be rewritten. 660 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 661 } 662 } 663 } 664 665 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 666 667 bool Changed = false; 668 // Transformation. 669 for (const RewritePhi &Phi : RewritePhiSet) { 670 PHINode *PN = Phi.PN; 671 Value *ExitVal = Phi.Val; 672 673 // Only do the rewrite when the ExitValue can be expanded cheaply. 674 // If LoopCanBeDel is true, rewrite exit value aggressively. 675 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 676 DeadInsts.push_back(ExitVal); 677 continue; 678 } 679 680 Changed = true; 681 ++NumReplaced; 682 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 683 PN->setIncomingValue(Phi.Ith, ExitVal); 684 685 // If this instruction is dead now, delete it. Don't do it now to avoid 686 // invalidating iterators. 687 if (isInstructionTriviallyDead(Inst, TLI)) 688 DeadInsts.push_back(Inst); 689 690 // Replace PN with ExitVal if that is legal and does not break LCSSA. 691 if (PN->getNumIncomingValues() == 1 && 692 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 693 PN->replaceAllUsesWith(ExitVal); 694 PN->eraseFromParent(); 695 } 696 } 697 698 // The insertion point instruction may have been deleted; clear it out 699 // so that the rewriter doesn't trip over it later. 700 Rewriter.clearInsertPoint(); 701 return Changed; 702 } 703 704 //===---------------------------------------------------------------------===// 705 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 706 // they will exit at the first iteration. 707 //===---------------------------------------------------------------------===// 708 709 /// Check to see if this loop has loop invariant conditions which lead to loop 710 /// exits. If so, we know that if the exit path is taken, it is at the first 711 /// loop iteration. This lets us predict exit values of PHI nodes that live in 712 /// loop header. 713 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 714 // Verify the input to the pass is already in LCSSA form. 715 assert(L->isLCSSAForm(*DT)); 716 717 SmallVector<BasicBlock *, 8> ExitBlocks; 718 L->getUniqueExitBlocks(ExitBlocks); 719 720 bool MadeAnyChanges = false; 721 for (auto *ExitBB : ExitBlocks) { 722 // If there are no more PHI nodes in this exit block, then no more 723 // values defined inside the loop are used on this path. 724 for (PHINode &PN : ExitBB->phis()) { 725 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 726 IncomingValIdx != E; ++IncomingValIdx) { 727 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 728 729 // Can we prove that the exit must run on the first iteration if it 730 // runs at all? (i.e. early exits are fine for our purposes, but 731 // traces which lead to this exit being taken on the 2nd iteration 732 // aren't.) Note that this is about whether the exit branch is 733 // executed, not about whether it is taken. 734 if (!L->getLoopLatch() || 735 !DT->dominates(IncomingBB, L->getLoopLatch())) 736 continue; 737 738 // Get condition that leads to the exit path. 739 auto *TermInst = IncomingBB->getTerminator(); 740 741 Value *Cond = nullptr; 742 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 743 // Must be a conditional branch, otherwise the block 744 // should not be in the loop. 745 Cond = BI->getCondition(); 746 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 747 Cond = SI->getCondition(); 748 else 749 continue; 750 751 if (!L->isLoopInvariant(Cond)) 752 continue; 753 754 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 755 756 // Only deal with PHIs in the loop header. 757 if (!ExitVal || ExitVal->getParent() != L->getHeader()) 758 continue; 759 760 // If ExitVal is a PHI on the loop header, then we know its 761 // value along this exit because the exit can only be taken 762 // on the first iteration. 763 auto *LoopPreheader = L->getLoopPreheader(); 764 assert(LoopPreheader && "Invalid loop"); 765 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 766 if (PreheaderIdx != -1) { 767 assert(ExitVal->getParent() == L->getHeader() && 768 "ExitVal must be in loop header"); 769 MadeAnyChanges = true; 770 PN.setIncomingValue(IncomingValIdx, 771 ExitVal->getIncomingValue(PreheaderIdx)); 772 } 773 } 774 } 775 } 776 return MadeAnyChanges; 777 } 778 779 /// Check whether it is possible to delete the loop after rewriting exit 780 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 781 /// aggressively. 782 bool IndVarSimplify::canLoopBeDeleted( 783 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 784 BasicBlock *Preheader = L->getLoopPreheader(); 785 // If there is no preheader, the loop will not be deleted. 786 if (!Preheader) 787 return false; 788 789 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 790 // We obviate multiple ExitingBlocks case for simplicity. 791 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 792 // after exit value rewriting, we can enhance the logic here. 793 SmallVector<BasicBlock *, 4> ExitingBlocks; 794 L->getExitingBlocks(ExitingBlocks); 795 SmallVector<BasicBlock *, 8> ExitBlocks; 796 L->getUniqueExitBlocks(ExitBlocks); 797 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 798 return false; 799 800 BasicBlock *ExitBlock = ExitBlocks[0]; 801 BasicBlock::iterator BI = ExitBlock->begin(); 802 while (PHINode *P = dyn_cast<PHINode>(BI)) { 803 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 804 805 // If the Incoming value of P is found in RewritePhiSet, we know it 806 // could be rewritten to use a loop invariant value in transformation 807 // phase later. Skip it in the loop invariant check below. 808 bool found = false; 809 for (const RewritePhi &Phi : RewritePhiSet) { 810 unsigned i = Phi.Ith; 811 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 812 found = true; 813 break; 814 } 815 } 816 817 Instruction *I; 818 if (!found && (I = dyn_cast<Instruction>(Incoming))) 819 if (!L->hasLoopInvariantOperands(I)) 820 return false; 821 822 ++BI; 823 } 824 825 for (auto *BB : L->blocks()) 826 if (llvm::any_of(*BB, [](Instruction &I) { 827 return I.mayHaveSideEffects(); 828 })) 829 return false; 830 831 return true; 832 } 833 834 //===----------------------------------------------------------------------===// 835 // IV Widening - Extend the width of an IV to cover its widest uses. 836 //===----------------------------------------------------------------------===// 837 838 namespace { 839 840 // Collect information about induction variables that are used by sign/zero 841 // extend operations. This information is recorded by CollectExtend and provides 842 // the input to WidenIV. 843 struct WideIVInfo { 844 PHINode *NarrowIV = nullptr; 845 846 // Widest integer type created [sz]ext 847 Type *WidestNativeType = nullptr; 848 849 // Was a sext user seen before a zext? 850 bool IsSigned = false; 851 }; 852 853 } // end anonymous namespace 854 855 /// Update information about the induction variable that is extended by this 856 /// sign or zero extend operation. This is used to determine the final width of 857 /// the IV before actually widening it. 858 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 859 const TargetTransformInfo *TTI) { 860 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 861 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 862 return; 863 864 Type *Ty = Cast->getType(); 865 uint64_t Width = SE->getTypeSizeInBits(Ty); 866 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 867 return; 868 869 // Check that `Cast` actually extends the induction variable (we rely on this 870 // later). This takes care of cases where `Cast` is extending a truncation of 871 // the narrow induction variable, and thus can end up being narrower than the 872 // "narrow" induction variable. 873 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 874 if (NarrowIVWidth >= Width) 875 return; 876 877 // Cast is either an sext or zext up to this point. 878 // We should not widen an indvar if arithmetics on the wider indvar are more 879 // expensive than those on the narrower indvar. We check only the cost of ADD 880 // because at least an ADD is required to increment the induction variable. We 881 // could compute more comprehensively the cost of all instructions on the 882 // induction variable when necessary. 883 if (TTI && 884 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 885 TTI->getArithmeticInstrCost(Instruction::Add, 886 Cast->getOperand(0)->getType())) { 887 return; 888 } 889 890 if (!WI.WidestNativeType) { 891 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 892 WI.IsSigned = IsSigned; 893 return; 894 } 895 896 // We extend the IV to satisfy the sign of its first user, arbitrarily. 897 if (WI.IsSigned != IsSigned) 898 return; 899 900 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 901 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 902 } 903 904 namespace { 905 906 /// Record a link in the Narrow IV def-use chain along with the WideIV that 907 /// computes the same value as the Narrow IV def. This avoids caching Use* 908 /// pointers. 909 struct NarrowIVDefUse { 910 Instruction *NarrowDef = nullptr; 911 Instruction *NarrowUse = nullptr; 912 Instruction *WideDef = nullptr; 913 914 // True if the narrow def is never negative. Tracking this information lets 915 // us use a sign extension instead of a zero extension or vice versa, when 916 // profitable and legal. 917 bool NeverNegative = false; 918 919 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 920 bool NeverNegative) 921 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 922 NeverNegative(NeverNegative) {} 923 }; 924 925 /// The goal of this transform is to remove sign and zero extends without 926 /// creating any new induction variables. To do this, it creates a new phi of 927 /// the wider type and redirects all users, either removing extends or inserting 928 /// truncs whenever we stop propagating the type. 929 class WidenIV { 930 // Parameters 931 PHINode *OrigPhi; 932 Type *WideType; 933 934 // Context 935 LoopInfo *LI; 936 Loop *L; 937 ScalarEvolution *SE; 938 DominatorTree *DT; 939 940 // Does the module have any calls to the llvm.experimental.guard intrinsic 941 // at all? If not we can avoid scanning instructions looking for guards. 942 bool HasGuards; 943 944 // Result 945 PHINode *WidePhi = nullptr; 946 Instruction *WideInc = nullptr; 947 const SCEV *WideIncExpr = nullptr; 948 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 949 950 SmallPtrSet<Instruction *,16> Widened; 951 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 952 953 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 954 955 // A map tracking the kind of extension used to widen each narrow IV 956 // and narrow IV user. 957 // Key: pointer to a narrow IV or IV user. 958 // Value: the kind of extension used to widen this Instruction. 959 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 960 961 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 962 963 // A map with control-dependent ranges for post increment IV uses. The key is 964 // a pair of IV def and a use of this def denoting the context. The value is 965 // a ConstantRange representing possible values of the def at the given 966 // context. 967 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 968 969 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 970 Instruction *UseI) { 971 DefUserPair Key(Def, UseI); 972 auto It = PostIncRangeInfos.find(Key); 973 return It == PostIncRangeInfos.end() 974 ? Optional<ConstantRange>(None) 975 : Optional<ConstantRange>(It->second); 976 } 977 978 void calculatePostIncRanges(PHINode *OrigPhi); 979 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 980 981 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 982 DefUserPair Key(Def, UseI); 983 auto It = PostIncRangeInfos.find(Key); 984 if (It == PostIncRangeInfos.end()) 985 PostIncRangeInfos.insert({Key, R}); 986 else 987 It->second = R.intersectWith(It->second); 988 } 989 990 public: 991 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 992 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 993 bool HasGuards) 994 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 995 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 996 HasGuards(HasGuards), DeadInsts(DI) { 997 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 998 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 999 } 1000 1001 PHINode *createWideIV(SCEVExpander &Rewriter); 1002 1003 protected: 1004 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1005 Instruction *Use); 1006 1007 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1008 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1009 const SCEVAddRecExpr *WideAR); 1010 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1011 1012 ExtendKind getExtendKind(Instruction *I); 1013 1014 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1015 1016 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1017 1018 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1019 1020 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1021 unsigned OpCode) const; 1022 1023 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1024 1025 bool widenLoopCompare(NarrowIVDefUse DU); 1026 bool widenWithVariantLoadUse(NarrowIVDefUse DU); 1027 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); 1028 1029 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1030 }; 1031 1032 } // end anonymous namespace 1033 1034 /// Perform a quick domtree based check for loop invariance assuming that V is 1035 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 1036 /// purpose. 1037 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 1038 Instruction *Inst = dyn_cast<Instruction>(V); 1039 if (!Inst) 1040 return true; 1041 1042 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1043 } 1044 1045 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1046 bool IsSigned, Instruction *Use) { 1047 // Set the debug location and conservative insertion point. 1048 IRBuilder<> Builder(Use); 1049 // Hoist the insertion point into loop preheaders as far as possible. 1050 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1051 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1052 L = L->getParentLoop()) 1053 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1054 1055 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1056 Builder.CreateZExt(NarrowOper, WideType); 1057 } 1058 1059 /// Instantiate a wide operation to replace a narrow operation. This only needs 1060 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1061 /// 0 for any operation we decide not to clone. 1062 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1063 const SCEVAddRecExpr *WideAR) { 1064 unsigned Opcode = DU.NarrowUse->getOpcode(); 1065 switch (Opcode) { 1066 default: 1067 return nullptr; 1068 case Instruction::Add: 1069 case Instruction::Mul: 1070 case Instruction::UDiv: 1071 case Instruction::Sub: 1072 return cloneArithmeticIVUser(DU, WideAR); 1073 1074 case Instruction::And: 1075 case Instruction::Or: 1076 case Instruction::Xor: 1077 case Instruction::Shl: 1078 case Instruction::LShr: 1079 case Instruction::AShr: 1080 return cloneBitwiseIVUser(DU); 1081 } 1082 } 1083 1084 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1085 Instruction *NarrowUse = DU.NarrowUse; 1086 Instruction *NarrowDef = DU.NarrowDef; 1087 Instruction *WideDef = DU.WideDef; 1088 1089 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1090 1091 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1092 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1093 // invariant and will be folded or hoisted. If it actually comes from a 1094 // widened IV, it should be removed during a future call to widenIVUse. 1095 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1096 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1097 ? WideDef 1098 : createExtendInst(NarrowUse->getOperand(0), WideType, 1099 IsSigned, NarrowUse); 1100 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1101 ? WideDef 1102 : createExtendInst(NarrowUse->getOperand(1), WideType, 1103 IsSigned, NarrowUse); 1104 1105 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1106 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1107 NarrowBO->getName()); 1108 IRBuilder<> Builder(NarrowUse); 1109 Builder.Insert(WideBO); 1110 WideBO->copyIRFlags(NarrowBO); 1111 return WideBO; 1112 } 1113 1114 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1115 const SCEVAddRecExpr *WideAR) { 1116 Instruction *NarrowUse = DU.NarrowUse; 1117 Instruction *NarrowDef = DU.NarrowDef; 1118 Instruction *WideDef = DU.WideDef; 1119 1120 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1121 1122 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1123 1124 // We're trying to find X such that 1125 // 1126 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1127 // 1128 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1129 // and check using SCEV if any of them are correct. 1130 1131 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1132 // correct solution to X. 1133 auto GuessNonIVOperand = [&](bool SignExt) { 1134 const SCEV *WideLHS; 1135 const SCEV *WideRHS; 1136 1137 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1138 if (SignExt) 1139 return SE->getSignExtendExpr(S, Ty); 1140 return SE->getZeroExtendExpr(S, Ty); 1141 }; 1142 1143 if (IVOpIdx == 0) { 1144 WideLHS = SE->getSCEV(WideDef); 1145 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1146 WideRHS = GetExtend(NarrowRHS, WideType); 1147 } else { 1148 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1149 WideLHS = GetExtend(NarrowLHS, WideType); 1150 WideRHS = SE->getSCEV(WideDef); 1151 } 1152 1153 // WideUse is "WideDef `op.wide` X" as described in the comment. 1154 const SCEV *WideUse = nullptr; 1155 1156 switch (NarrowUse->getOpcode()) { 1157 default: 1158 llvm_unreachable("No other possibility!"); 1159 1160 case Instruction::Add: 1161 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1162 break; 1163 1164 case Instruction::Mul: 1165 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1166 break; 1167 1168 case Instruction::UDiv: 1169 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1170 break; 1171 1172 case Instruction::Sub: 1173 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1174 break; 1175 } 1176 1177 return WideUse == WideAR; 1178 }; 1179 1180 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1181 if (!GuessNonIVOperand(SignExtend)) { 1182 SignExtend = !SignExtend; 1183 if (!GuessNonIVOperand(SignExtend)) 1184 return nullptr; 1185 } 1186 1187 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1188 ? WideDef 1189 : createExtendInst(NarrowUse->getOperand(0), WideType, 1190 SignExtend, NarrowUse); 1191 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1192 ? WideDef 1193 : createExtendInst(NarrowUse->getOperand(1), WideType, 1194 SignExtend, NarrowUse); 1195 1196 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1197 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1198 NarrowBO->getName()); 1199 1200 IRBuilder<> Builder(NarrowUse); 1201 Builder.Insert(WideBO); 1202 WideBO->copyIRFlags(NarrowBO); 1203 return WideBO; 1204 } 1205 1206 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1207 auto It = ExtendKindMap.find(I); 1208 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1209 return It->second; 1210 } 1211 1212 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1213 unsigned OpCode) const { 1214 if (OpCode == Instruction::Add) 1215 return SE->getAddExpr(LHS, RHS); 1216 if (OpCode == Instruction::Sub) 1217 return SE->getMinusSCEV(LHS, RHS); 1218 if (OpCode == Instruction::Mul) 1219 return SE->getMulExpr(LHS, RHS); 1220 1221 llvm_unreachable("Unsupported opcode."); 1222 } 1223 1224 /// No-wrap operations can transfer sign extension of their result to their 1225 /// operands. Generate the SCEV value for the widened operation without 1226 /// actually modifying the IR yet. If the expression after extending the 1227 /// operands is an AddRec for this loop, return the AddRec and the kind of 1228 /// extension used. 1229 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1230 // Handle the common case of add<nsw/nuw> 1231 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1232 // Only Add/Sub/Mul instructions supported yet. 1233 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1234 OpCode != Instruction::Mul) 1235 return {nullptr, Unknown}; 1236 1237 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1238 // if extending the other will lead to a recurrence. 1239 const unsigned ExtendOperIdx = 1240 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1241 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1242 1243 const SCEV *ExtendOperExpr = nullptr; 1244 const OverflowingBinaryOperator *OBO = 1245 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1246 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1247 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1248 ExtendOperExpr = SE->getSignExtendExpr( 1249 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1250 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1251 ExtendOperExpr = SE->getZeroExtendExpr( 1252 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1253 else 1254 return {nullptr, Unknown}; 1255 1256 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1257 // flags. This instruction may be guarded by control flow that the no-wrap 1258 // behavior depends on. Non-control-equivalent instructions can be mapped to 1259 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1260 // semantics to those operations. 1261 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1262 const SCEV *rhs = ExtendOperExpr; 1263 1264 // Let's swap operands to the initial order for the case of non-commutative 1265 // operations, like SUB. See PR21014. 1266 if (ExtendOperIdx == 0) 1267 std::swap(lhs, rhs); 1268 const SCEVAddRecExpr *AddRec = 1269 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1270 1271 if (!AddRec || AddRec->getLoop() != L) 1272 return {nullptr, Unknown}; 1273 1274 return {AddRec, ExtKind}; 1275 } 1276 1277 /// Is this instruction potentially interesting for further simplification after 1278 /// widening it's type? In other words, can the extend be safely hoisted out of 1279 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1280 /// so, return the extended recurrence and the kind of extension used. Otherwise 1281 /// return {nullptr, Unknown}. 1282 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1283 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1284 return {nullptr, Unknown}; 1285 1286 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1287 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1288 SE->getTypeSizeInBits(WideType)) { 1289 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1290 // index. So don't follow this use. 1291 return {nullptr, Unknown}; 1292 } 1293 1294 const SCEV *WideExpr; 1295 ExtendKind ExtKind; 1296 if (DU.NeverNegative) { 1297 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1298 if (isa<SCEVAddRecExpr>(WideExpr)) 1299 ExtKind = SignExtended; 1300 else { 1301 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1302 ExtKind = ZeroExtended; 1303 } 1304 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1305 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1306 ExtKind = SignExtended; 1307 } else { 1308 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1309 ExtKind = ZeroExtended; 1310 } 1311 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1312 if (!AddRec || AddRec->getLoop() != L) 1313 return {nullptr, Unknown}; 1314 return {AddRec, ExtKind}; 1315 } 1316 1317 /// This IV user cannot be widen. Replace this use of the original narrow IV 1318 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1319 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1320 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1321 if (!InsertPt) 1322 return; 1323 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1324 << *DU.NarrowUse << "\n"); 1325 IRBuilder<> Builder(InsertPt); 1326 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1327 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1328 } 1329 1330 /// If the narrow use is a compare instruction, then widen the compare 1331 // (and possibly the other operand). The extend operation is hoisted into the 1332 // loop preheader as far as possible. 1333 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1334 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1335 if (!Cmp) 1336 return false; 1337 1338 // We can legally widen the comparison in the following two cases: 1339 // 1340 // - The signedness of the IV extension and comparison match 1341 // 1342 // - The narrow IV is always positive (and thus its sign extension is equal 1343 // to its zero extension). For instance, let's say we're zero extending 1344 // %narrow for the following use 1345 // 1346 // icmp slt i32 %narrow, %val ... (A) 1347 // 1348 // and %narrow is always positive. Then 1349 // 1350 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1351 // == icmp slt i32 zext(%narrow), sext(%val) 1352 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1353 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1354 return false; 1355 1356 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1357 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1358 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1359 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1360 1361 // Widen the compare instruction. 1362 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1363 if (!InsertPt) 1364 return false; 1365 IRBuilder<> Builder(InsertPt); 1366 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1367 1368 // Widen the other operand of the compare, if necessary. 1369 if (CastWidth < IVWidth) { 1370 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1371 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1372 } 1373 return true; 1374 } 1375 1376 /// If the narrow use is an instruction whose two operands are the defining 1377 /// instruction of DU and a load instruction, then we have the following: 1378 /// if the load is hoisted outside the loop, then we do not reach this function 1379 /// as scalar evolution analysis works fine in widenIVUse with variables 1380 /// hoisted outside the loop and efficient code is subsequently generated by 1381 /// not emitting truncate instructions. But when the load is not hoisted 1382 /// (whether due to limitation in alias analysis or due to a true legality), 1383 /// then scalar evolution can not proceed with loop variant values and 1384 /// inefficient code is generated. This function handles the non-hoisted load 1385 /// special case by making the optimization generate the same type of code for 1386 /// hoisted and non-hoisted load (widen use and eliminate sign extend 1387 /// instruction). This special case is important especially when the induction 1388 /// variables are affecting addressing mode in code generation. 1389 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { 1390 Instruction *NarrowUse = DU.NarrowUse; 1391 Instruction *NarrowDef = DU.NarrowDef; 1392 Instruction *WideDef = DU.WideDef; 1393 1394 // Handle the common case of add<nsw/nuw> 1395 const unsigned OpCode = NarrowUse->getOpcode(); 1396 // Only Add/Sub/Mul instructions are supported. 1397 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1398 OpCode != Instruction::Mul) 1399 return false; 1400 1401 // The operand that is not defined by NarrowDef of DU. Let's call it the 1402 // other operand. 1403 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; 1404 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && 1405 "bad DU"); 1406 1407 const SCEV *ExtendOperExpr = nullptr; 1408 const OverflowingBinaryOperator *OBO = 1409 cast<OverflowingBinaryOperator>(NarrowUse); 1410 ExtendKind ExtKind = getExtendKind(NarrowDef); 1411 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1412 ExtendOperExpr = SE->getSignExtendExpr( 1413 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1414 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1415 ExtendOperExpr = SE->getZeroExtendExpr( 1416 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1417 else 1418 return false; 1419 1420 // We are interested in the other operand being a load instruction. 1421 // But, we should look into relaxing this restriction later on. 1422 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); 1423 if (I && I->getOpcode() != Instruction::Load) 1424 return false; 1425 1426 // Verifying that Defining operand is an AddRec 1427 const SCEV *Op1 = SE->getSCEV(WideDef); 1428 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1429 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1430 return false; 1431 // Verifying that other operand is an Extend. 1432 if (ExtKind == SignExtended) { 1433 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) 1434 return false; 1435 } else { 1436 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) 1437 return false; 1438 } 1439 1440 if (ExtKind == SignExtended) { 1441 for (Use &U : NarrowUse->uses()) { 1442 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1443 if (!User || User->getType() != WideType) 1444 return false; 1445 } 1446 } else { // ExtKind == ZeroExtended 1447 for (Use &U : NarrowUse->uses()) { 1448 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1449 if (!User || User->getType() != WideType) 1450 return false; 1451 } 1452 } 1453 1454 return true; 1455 } 1456 1457 /// Special Case for widening with variant Loads (see 1458 /// WidenIV::widenWithVariantLoadUse). This is the code generation part. 1459 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { 1460 Instruction *NarrowUse = DU.NarrowUse; 1461 Instruction *NarrowDef = DU.NarrowDef; 1462 Instruction *WideDef = DU.WideDef; 1463 1464 ExtendKind ExtKind = getExtendKind(NarrowDef); 1465 1466 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1467 1468 // Generating a widening use instruction. 1469 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1470 ? WideDef 1471 : createExtendInst(NarrowUse->getOperand(0), WideType, 1472 ExtKind, NarrowUse); 1473 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1474 ? WideDef 1475 : createExtendInst(NarrowUse->getOperand(1), WideType, 1476 ExtKind, NarrowUse); 1477 1478 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1479 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1480 NarrowBO->getName()); 1481 IRBuilder<> Builder(NarrowUse); 1482 Builder.Insert(WideBO); 1483 WideBO->copyIRFlags(NarrowBO); 1484 1485 if (ExtKind == SignExtended) 1486 ExtendKindMap[NarrowUse] = SignExtended; 1487 else 1488 ExtendKindMap[NarrowUse] = ZeroExtended; 1489 1490 // Update the Use. 1491 if (ExtKind == SignExtended) { 1492 for (Use &U : NarrowUse->uses()) { 1493 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1494 if (User && User->getType() == WideType) { 1495 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1496 << *WideBO << "\n"); 1497 ++NumElimExt; 1498 User->replaceAllUsesWith(WideBO); 1499 DeadInsts.emplace_back(User); 1500 } 1501 } 1502 } else { // ExtKind == ZeroExtended 1503 for (Use &U : NarrowUse->uses()) { 1504 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1505 if (User && User->getType() == WideType) { 1506 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1507 << *WideBO << "\n"); 1508 ++NumElimExt; 1509 User->replaceAllUsesWith(WideBO); 1510 DeadInsts.emplace_back(User); 1511 } 1512 } 1513 } 1514 } 1515 1516 /// Determine whether an individual user of the narrow IV can be widened. If so, 1517 /// return the wide clone of the user. 1518 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1519 assert(ExtendKindMap.count(DU.NarrowDef) && 1520 "Should already know the kind of extension used to widen NarrowDef"); 1521 1522 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1523 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1524 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1525 // For LCSSA phis, sink the truncate outside the loop. 1526 // After SimplifyCFG most loop exit targets have a single predecessor. 1527 // Otherwise fall back to a truncate within the loop. 1528 if (UsePhi->getNumOperands() != 1) 1529 truncateIVUse(DU, DT, LI); 1530 else { 1531 // Widening the PHI requires us to insert a trunc. The logical place 1532 // for this trunc is in the same BB as the PHI. This is not possible if 1533 // the BB is terminated by a catchswitch. 1534 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1535 return nullptr; 1536 1537 PHINode *WidePhi = 1538 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1539 UsePhi); 1540 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1541 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1542 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1543 UsePhi->replaceAllUsesWith(Trunc); 1544 DeadInsts.emplace_back(UsePhi); 1545 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1546 << *WidePhi << "\n"); 1547 } 1548 return nullptr; 1549 } 1550 } 1551 1552 // This narrow use can be widened by a sext if it's non-negative or its narrow 1553 // def was widended by a sext. Same for zext. 1554 auto canWidenBySExt = [&]() { 1555 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1556 }; 1557 auto canWidenByZExt = [&]() { 1558 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1559 }; 1560 1561 // Our raison d'etre! Eliminate sign and zero extension. 1562 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1563 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1564 Value *NewDef = DU.WideDef; 1565 if (DU.NarrowUse->getType() != WideType) { 1566 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1567 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1568 if (CastWidth < IVWidth) { 1569 // The cast isn't as wide as the IV, so insert a Trunc. 1570 IRBuilder<> Builder(DU.NarrowUse); 1571 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1572 } 1573 else { 1574 // A wider extend was hidden behind a narrower one. This may induce 1575 // another round of IV widening in which the intermediate IV becomes 1576 // dead. It should be very rare. 1577 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1578 << " not wide enough to subsume " << *DU.NarrowUse 1579 << "\n"); 1580 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1581 NewDef = DU.NarrowUse; 1582 } 1583 } 1584 if (NewDef != DU.NarrowUse) { 1585 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1586 << " replaced by " << *DU.WideDef << "\n"); 1587 ++NumElimExt; 1588 DU.NarrowUse->replaceAllUsesWith(NewDef); 1589 DeadInsts.emplace_back(DU.NarrowUse); 1590 } 1591 // Now that the extend is gone, we want to expose it's uses for potential 1592 // further simplification. We don't need to directly inform SimplifyIVUsers 1593 // of the new users, because their parent IV will be processed later as a 1594 // new loop phi. If we preserved IVUsers analysis, we would also want to 1595 // push the uses of WideDef here. 1596 1597 // No further widening is needed. The deceased [sz]ext had done it for us. 1598 return nullptr; 1599 } 1600 1601 // Does this user itself evaluate to a recurrence after widening? 1602 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1603 if (!WideAddRec.first) 1604 WideAddRec = getWideRecurrence(DU); 1605 1606 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1607 if (!WideAddRec.first) { 1608 // If use is a loop condition, try to promote the condition instead of 1609 // truncating the IV first. 1610 if (widenLoopCompare(DU)) 1611 return nullptr; 1612 1613 // We are here about to generate a truncate instruction that may hurt 1614 // performance because the scalar evolution expression computed earlier 1615 // in WideAddRec.first does not indicate a polynomial induction expression. 1616 // In that case, look at the operands of the use instruction to determine 1617 // if we can still widen the use instead of truncating its operand. 1618 if (widenWithVariantLoadUse(DU)) { 1619 widenWithVariantLoadUseCodegen(DU); 1620 return nullptr; 1621 } 1622 1623 // This user does not evaluate to a recurrence after widening, so don't 1624 // follow it. Instead insert a Trunc to kill off the original use, 1625 // eventually isolating the original narrow IV so it can be removed. 1626 truncateIVUse(DU, DT, LI); 1627 return nullptr; 1628 } 1629 // Assume block terminators cannot evaluate to a recurrence. We can't to 1630 // insert a Trunc after a terminator if there happens to be a critical edge. 1631 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1632 "SCEV is not expected to evaluate a block terminator"); 1633 1634 // Reuse the IV increment that SCEVExpander created as long as it dominates 1635 // NarrowUse. 1636 Instruction *WideUse = nullptr; 1637 if (WideAddRec.first == WideIncExpr && 1638 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1639 WideUse = WideInc; 1640 else { 1641 WideUse = cloneIVUser(DU, WideAddRec.first); 1642 if (!WideUse) 1643 return nullptr; 1644 } 1645 // Evaluation of WideAddRec ensured that the narrow expression could be 1646 // extended outside the loop without overflow. This suggests that the wide use 1647 // evaluates to the same expression as the extended narrow use, but doesn't 1648 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1649 // where it fails, we simply throw away the newly created wide use. 1650 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1651 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1652 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1653 << "\n"); 1654 DeadInsts.emplace_back(WideUse); 1655 return nullptr; 1656 } 1657 1658 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1659 // Returning WideUse pushes it on the worklist. 1660 return WideUse; 1661 } 1662 1663 /// Add eligible users of NarrowDef to NarrowIVUsers. 1664 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1665 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1666 bool NonNegativeDef = 1667 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1668 SE->getConstant(NarrowSCEV->getType(), 0)); 1669 for (User *U : NarrowDef->users()) { 1670 Instruction *NarrowUser = cast<Instruction>(U); 1671 1672 // Handle data flow merges and bizarre phi cycles. 1673 if (!Widened.insert(NarrowUser).second) 1674 continue; 1675 1676 bool NonNegativeUse = false; 1677 if (!NonNegativeDef) { 1678 // We might have a control-dependent range information for this context. 1679 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1680 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1681 } 1682 1683 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1684 NonNegativeDef || NonNegativeUse); 1685 } 1686 } 1687 1688 /// Process a single induction variable. First use the SCEVExpander to create a 1689 /// wide induction variable that evaluates to the same recurrence as the 1690 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1691 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1692 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1693 /// 1694 /// It would be simpler to delete uses as they are processed, but we must avoid 1695 /// invalidating SCEV expressions. 1696 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1697 // Is this phi an induction variable? 1698 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1699 if (!AddRec) 1700 return nullptr; 1701 1702 // Widen the induction variable expression. 1703 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1704 ? SE->getSignExtendExpr(AddRec, WideType) 1705 : SE->getZeroExtendExpr(AddRec, WideType); 1706 1707 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1708 "Expect the new IV expression to preserve its type"); 1709 1710 // Can the IV be extended outside the loop without overflow? 1711 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1712 if (!AddRec || AddRec->getLoop() != L) 1713 return nullptr; 1714 1715 // An AddRec must have loop-invariant operands. Since this AddRec is 1716 // materialized by a loop header phi, the expression cannot have any post-loop 1717 // operands, so they must dominate the loop header. 1718 assert( 1719 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1720 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1721 "Loop header phi recurrence inputs do not dominate the loop"); 1722 1723 // Iterate over IV uses (including transitive ones) looking for IV increments 1724 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1725 // the increment calculate control-dependent range information basing on 1726 // dominating conditions inside of the loop (e.g. a range check inside of the 1727 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1728 // 1729 // Control-dependent range information is later used to prove that a narrow 1730 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1731 // this on demand because when pushNarrowIVUsers needs this information some 1732 // of the dominating conditions might be already widened. 1733 if (UsePostIncrementRanges) 1734 calculatePostIncRanges(OrigPhi); 1735 1736 // The rewriter provides a value for the desired IV expression. This may 1737 // either find an existing phi or materialize a new one. Either way, we 1738 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1739 // of the phi-SCC dominates the loop entry. 1740 Instruction *InsertPt = &L->getHeader()->front(); 1741 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1742 1743 // Remembering the WideIV increment generated by SCEVExpander allows 1744 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1745 // employ a general reuse mechanism because the call above is the only call to 1746 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1747 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1748 WideInc = 1749 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1750 WideIncExpr = SE->getSCEV(WideInc); 1751 // Propagate the debug location associated with the original loop increment 1752 // to the new (widened) increment. 1753 auto *OrigInc = 1754 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1755 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1756 } 1757 1758 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1759 ++NumWidened; 1760 1761 // Traverse the def-use chain using a worklist starting at the original IV. 1762 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1763 1764 Widened.insert(OrigPhi); 1765 pushNarrowIVUsers(OrigPhi, WidePhi); 1766 1767 while (!NarrowIVUsers.empty()) { 1768 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1769 1770 // Process a def-use edge. This may replace the use, so don't hold a 1771 // use_iterator across it. 1772 Instruction *WideUse = widenIVUse(DU, Rewriter); 1773 1774 // Follow all def-use edges from the previous narrow use. 1775 if (WideUse) 1776 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1777 1778 // widenIVUse may have removed the def-use edge. 1779 if (DU.NarrowDef->use_empty()) 1780 DeadInsts.emplace_back(DU.NarrowDef); 1781 } 1782 1783 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1784 // evaluate the same recurrence, we can just copy the debug info over. 1785 SmallVector<DbgValueInst *, 1> DbgValues; 1786 llvm::findDbgValues(DbgValues, OrigPhi); 1787 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1788 ValueAsMetadata::get(WidePhi)); 1789 for (auto &DbgValue : DbgValues) 1790 DbgValue->setOperand(0, MDPhi); 1791 return WidePhi; 1792 } 1793 1794 /// Calculates control-dependent range for the given def at the given context 1795 /// by looking at dominating conditions inside of the loop 1796 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1797 Instruction *NarrowUser) { 1798 using namespace llvm::PatternMatch; 1799 1800 Value *NarrowDefLHS; 1801 const APInt *NarrowDefRHS; 1802 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1803 m_APInt(NarrowDefRHS))) || 1804 !NarrowDefRHS->isNonNegative()) 1805 return; 1806 1807 auto UpdateRangeFromCondition = [&] (Value *Condition, 1808 bool TrueDest) { 1809 CmpInst::Predicate Pred; 1810 Value *CmpRHS; 1811 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1812 m_Value(CmpRHS)))) 1813 return; 1814 1815 CmpInst::Predicate P = 1816 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1817 1818 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1819 auto CmpConstrainedLHSRange = 1820 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1821 auto NarrowDefRange = 1822 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1823 1824 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1825 }; 1826 1827 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1828 if (!HasGuards) 1829 return; 1830 1831 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1832 Ctx->getParent()->rend())) { 1833 Value *C = nullptr; 1834 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1835 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1836 } 1837 }; 1838 1839 UpdateRangeFromGuards(NarrowUser); 1840 1841 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1842 // If NarrowUserBB is statically unreachable asking dominator queries may 1843 // yield surprising results. (e.g. the block may not have a dom tree node) 1844 if (!DT->isReachableFromEntry(NarrowUserBB)) 1845 return; 1846 1847 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1848 L->contains(DTB->getBlock()); 1849 DTB = DTB->getIDom()) { 1850 auto *BB = DTB->getBlock(); 1851 auto *TI = BB->getTerminator(); 1852 UpdateRangeFromGuards(TI); 1853 1854 auto *BI = dyn_cast<BranchInst>(TI); 1855 if (!BI || !BI->isConditional()) 1856 continue; 1857 1858 auto *TrueSuccessor = BI->getSuccessor(0); 1859 auto *FalseSuccessor = BI->getSuccessor(1); 1860 1861 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1862 return BBE.isSingleEdge() && 1863 DT->dominates(BBE, NarrowUser->getParent()); 1864 }; 1865 1866 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1867 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1868 1869 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1870 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1871 } 1872 } 1873 1874 /// Calculates PostIncRangeInfos map for the given IV 1875 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1876 SmallPtrSet<Instruction *, 16> Visited; 1877 SmallVector<Instruction *, 6> Worklist; 1878 Worklist.push_back(OrigPhi); 1879 Visited.insert(OrigPhi); 1880 1881 while (!Worklist.empty()) { 1882 Instruction *NarrowDef = Worklist.pop_back_val(); 1883 1884 for (Use &U : NarrowDef->uses()) { 1885 auto *NarrowUser = cast<Instruction>(U.getUser()); 1886 1887 // Don't go looking outside the current loop. 1888 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1889 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1890 continue; 1891 1892 if (!Visited.insert(NarrowUser).second) 1893 continue; 1894 1895 Worklist.push_back(NarrowUser); 1896 1897 calculatePostIncRange(NarrowDef, NarrowUser); 1898 } 1899 } 1900 } 1901 1902 //===----------------------------------------------------------------------===// 1903 // Live IV Reduction - Minimize IVs live across the loop. 1904 //===----------------------------------------------------------------------===// 1905 1906 //===----------------------------------------------------------------------===// 1907 // Simplification of IV users based on SCEV evaluation. 1908 //===----------------------------------------------------------------------===// 1909 1910 namespace { 1911 1912 class IndVarSimplifyVisitor : public IVVisitor { 1913 ScalarEvolution *SE; 1914 const TargetTransformInfo *TTI; 1915 PHINode *IVPhi; 1916 1917 public: 1918 WideIVInfo WI; 1919 1920 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1921 const TargetTransformInfo *TTI, 1922 const DominatorTree *DTree) 1923 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1924 DT = DTree; 1925 WI.NarrowIV = IVPhi; 1926 } 1927 1928 // Implement the interface used by simplifyUsersOfIV. 1929 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1930 }; 1931 1932 } // end anonymous namespace 1933 1934 /// Iteratively perform simplification on a worklist of IV users. Each 1935 /// successive simplification may push more users which may themselves be 1936 /// candidates for simplification. 1937 /// 1938 /// Sign/Zero extend elimination is interleaved with IV simplification. 1939 bool IndVarSimplify::simplifyAndExtend(Loop *L, 1940 SCEVExpander &Rewriter, 1941 LoopInfo *LI) { 1942 SmallVector<WideIVInfo, 8> WideIVs; 1943 1944 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1945 Intrinsic::getName(Intrinsic::experimental_guard)); 1946 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1947 1948 SmallVector<PHINode*, 8> LoopPhis; 1949 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1950 LoopPhis.push_back(cast<PHINode>(I)); 1951 } 1952 // Each round of simplification iterates through the SimplifyIVUsers worklist 1953 // for all current phis, then determines whether any IVs can be 1954 // widened. Widening adds new phis to LoopPhis, inducing another round of 1955 // simplification on the wide IVs. 1956 bool Changed = false; 1957 while (!LoopPhis.empty()) { 1958 // Evaluate as many IV expressions as possible before widening any IVs. This 1959 // forces SCEV to set no-wrap flags before evaluating sign/zero 1960 // extension. The first time SCEV attempts to normalize sign/zero extension, 1961 // the result becomes final. So for the most predictable results, we delay 1962 // evaluation of sign/zero extend evaluation until needed, and avoid running 1963 // other SCEV based analysis prior to simplifyAndExtend. 1964 do { 1965 PHINode *CurrIV = LoopPhis.pop_back_val(); 1966 1967 // Information about sign/zero extensions of CurrIV. 1968 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1969 1970 Changed |= 1971 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1972 1973 if (Visitor.WI.WidestNativeType) { 1974 WideIVs.push_back(Visitor.WI); 1975 } 1976 } while(!LoopPhis.empty()); 1977 1978 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1979 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1980 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1981 Changed = true; 1982 LoopPhis.push_back(WidePhi); 1983 } 1984 } 1985 } 1986 return Changed; 1987 } 1988 1989 //===----------------------------------------------------------------------===// 1990 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1991 //===----------------------------------------------------------------------===// 1992 1993 /// Return true if this loop's backedge taken count expression can be safely and 1994 /// cheaply expanded into an instruction sequence that can be used by 1995 /// linearFunctionTestReplace. 1996 /// 1997 /// TODO: This fails for pointer-type loop counters with greater than one byte 1998 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1999 /// we could skip this check in the case that the LFTR loop counter (chosen by 2000 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 2001 /// the loop test to an inequality test by checking the target data's alignment 2002 /// of element types (given that the initial pointer value originates from or is 2003 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 2004 /// However, we don't yet have a strong motivation for converting loop tests 2005 /// into inequality tests. 2006 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 2007 SCEVExpander &Rewriter) { 2008 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2009 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 2010 BackedgeTakenCount->isZero()) 2011 return false; 2012 2013 if (!L->getExitingBlock()) 2014 return false; 2015 2016 // Can't rewrite non-branch yet. 2017 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 2018 return false; 2019 2020 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 2021 return false; 2022 2023 return true; 2024 } 2025 2026 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 2027 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 2028 Instruction *IncI = dyn_cast<Instruction>(IncV); 2029 if (!IncI) 2030 return nullptr; 2031 2032 switch (IncI->getOpcode()) { 2033 case Instruction::Add: 2034 case Instruction::Sub: 2035 break; 2036 case Instruction::GetElementPtr: 2037 // An IV counter must preserve its type. 2038 if (IncI->getNumOperands() == 2) 2039 break; 2040 LLVM_FALLTHROUGH; 2041 default: 2042 return nullptr; 2043 } 2044 2045 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 2046 if (Phi && Phi->getParent() == L->getHeader()) { 2047 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 2048 return Phi; 2049 return nullptr; 2050 } 2051 if (IncI->getOpcode() == Instruction::GetElementPtr) 2052 return nullptr; 2053 2054 // Allow add/sub to be commuted. 2055 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 2056 if (Phi && Phi->getParent() == L->getHeader()) { 2057 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 2058 return Phi; 2059 } 2060 return nullptr; 2061 } 2062 2063 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 2064 static ICmpInst *getLoopTest(Loop *L) { 2065 assert(L->getExitingBlock() && "expected loop exit"); 2066 2067 BasicBlock *LatchBlock = L->getLoopLatch(); 2068 // Don't bother with LFTR if the loop is not properly simplified. 2069 if (!LatchBlock) 2070 return nullptr; 2071 2072 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2073 assert(BI && "expected exit branch"); 2074 2075 return dyn_cast<ICmpInst>(BI->getCondition()); 2076 } 2077 2078 /// linearFunctionTestReplace policy. Return true unless we can show that the 2079 /// current exit test is already sufficiently canonical. 2080 static bool needsLFTR(Loop *L, DominatorTree *DT) { 2081 // Do LFTR to simplify the exit condition to an ICMP. 2082 ICmpInst *Cond = getLoopTest(L); 2083 if (!Cond) 2084 return true; 2085 2086 // Do LFTR to simplify the exit ICMP to EQ/NE 2087 ICmpInst::Predicate Pred = Cond->getPredicate(); 2088 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 2089 return true; 2090 2091 // Look for a loop invariant RHS 2092 Value *LHS = Cond->getOperand(0); 2093 Value *RHS = Cond->getOperand(1); 2094 if (!isLoopInvariant(RHS, L, DT)) { 2095 if (!isLoopInvariant(LHS, L, DT)) 2096 return true; 2097 std::swap(LHS, RHS); 2098 } 2099 // Look for a simple IV counter LHS 2100 PHINode *Phi = dyn_cast<PHINode>(LHS); 2101 if (!Phi) 2102 Phi = getLoopPhiForCounter(LHS, L, DT); 2103 2104 if (!Phi) 2105 return true; 2106 2107 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 2108 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2109 if (Idx < 0) 2110 return true; 2111 2112 // Do LFTR if the exit condition's IV is *not* a simple counter. 2113 Value *IncV = Phi->getIncomingValue(Idx); 2114 return Phi != getLoopPhiForCounter(IncV, L, DT); 2115 } 2116 2117 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 2118 /// down to checking that all operands are constant and listing instructions 2119 /// that may hide undef. 2120 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 2121 unsigned Depth) { 2122 if (isa<Constant>(V)) 2123 return !isa<UndefValue>(V); 2124 2125 if (Depth >= 6) 2126 return false; 2127 2128 // Conservatively handle non-constant non-instructions. For example, Arguments 2129 // may be undef. 2130 Instruction *I = dyn_cast<Instruction>(V); 2131 if (!I) 2132 return false; 2133 2134 // Load and return values may be undef. 2135 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 2136 return false; 2137 2138 // Optimistically handle other instructions. 2139 for (Value *Op : I->operands()) { 2140 if (!Visited.insert(Op).second) 2141 continue; 2142 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 2143 return false; 2144 } 2145 return true; 2146 } 2147 2148 /// Return true if the given value is concrete. We must prove that undef can 2149 /// never reach it. 2150 /// 2151 /// TODO: If we decide that this is a good approach to checking for undef, we 2152 /// may factor it into a common location. 2153 static bool hasConcreteDef(Value *V) { 2154 SmallPtrSet<Value*, 8> Visited; 2155 Visited.insert(V); 2156 return hasConcreteDefImpl(V, Visited, 0); 2157 } 2158 2159 /// Return true if this IV has any uses other than the (soon to be rewritten) 2160 /// loop exit test. 2161 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 2162 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2163 Value *IncV = Phi->getIncomingValue(LatchIdx); 2164 2165 for (User *U : Phi->users()) 2166 if (U != Cond && U != IncV) return false; 2167 2168 for (User *U : IncV->users()) 2169 if (U != Cond && U != Phi) return false; 2170 return true; 2171 } 2172 2173 /// Find an affine IV in canonical form. 2174 /// 2175 /// BECount may be an i8* pointer type. The pointer difference is already 2176 /// valid count without scaling the address stride, so it remains a pointer 2177 /// expression as far as SCEV is concerned. 2178 /// 2179 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 2180 /// 2181 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 2182 /// 2183 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 2184 /// This is difficult in general for SCEV because of potential overflow. But we 2185 /// could at least handle constant BECounts. 2186 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2187 ScalarEvolution *SE, DominatorTree *DT) { 2188 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2189 2190 Value *Cond = 2191 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2192 2193 // Loop over all of the PHI nodes, looking for a simple counter. 2194 PHINode *BestPhi = nullptr; 2195 const SCEV *BestInit = nullptr; 2196 BasicBlock *LatchBlock = L->getLoopLatch(); 2197 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2198 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2199 2200 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2201 PHINode *Phi = cast<PHINode>(I); 2202 if (!SE->isSCEVable(Phi->getType())) 2203 continue; 2204 2205 // Avoid comparing an integer IV against a pointer Limit. 2206 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2207 continue; 2208 2209 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2210 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2211 continue; 2212 2213 // AR may be a pointer type, while BECount is an integer type. 2214 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2215 // AR may not be a narrower type, or we may never exit. 2216 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2217 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2218 continue; 2219 2220 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2221 if (!Step || !Step->isOne()) 2222 continue; 2223 2224 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2225 Value *IncV = Phi->getIncomingValue(LatchIdx); 2226 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2227 continue; 2228 2229 // Avoid reusing a potentially undef value to compute other values that may 2230 // have originally had a concrete definition. 2231 if (!hasConcreteDef(Phi)) { 2232 // We explicitly allow unknown phis as long as they are already used by 2233 // the loop test. In this case we assume that performing LFTR could not 2234 // increase the number of undef users. 2235 if (ICmpInst *Cond = getLoopTest(L)) { 2236 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2237 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2238 continue; 2239 } 2240 } 2241 } 2242 const SCEV *Init = AR->getStart(); 2243 2244 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2245 // Don't force a live loop counter if another IV can be used. 2246 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2247 continue; 2248 2249 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2250 // also prefers integer to pointer IVs. 2251 if (BestInit->isZero() != Init->isZero()) { 2252 if (BestInit->isZero()) 2253 continue; 2254 } 2255 // If two IVs both count from zero or both count from nonzero then the 2256 // narrower is likely a dead phi that has been widened. Use the wider phi 2257 // to allow the other to be eliminated. 2258 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2259 continue; 2260 } 2261 BestPhi = Phi; 2262 BestInit = Init; 2263 } 2264 return BestPhi; 2265 } 2266 2267 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2268 /// the new loop test. 2269 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2270 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2271 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2272 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2273 const SCEV *IVInit = AR->getStart(); 2274 2275 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2276 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2277 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2278 // the existing GEPs whenever possible. 2279 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2280 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2281 // signed value. IVCount on the other hand represents the loop trip count, 2282 // which is an unsigned value. FindLoopCounter only allows induction 2283 // variables that have a positive unit stride of one. This means we don't 2284 // have to handle the case of negative offsets (yet) and just need to zero 2285 // extend IVCount. 2286 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2287 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2288 2289 // Expand the code for the iteration count. 2290 assert(SE->isLoopInvariant(IVOffset, L) && 2291 "Computed iteration count is not loop invariant!"); 2292 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2293 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2294 2295 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2296 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2297 // We could handle pointer IVs other than i8*, but we need to compensate for 2298 // gep index scaling. See canExpandBackedgeTakenCount comments. 2299 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2300 cast<PointerType>(GEPBase->getType()) 2301 ->getElementType())->isOne() && 2302 "unit stride pointer IV must be i8*"); 2303 2304 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2305 return Builder.CreateGEP(GEPBase->getType()->getPointerElementType(), 2306 GEPBase, GEPOffset, "lftr.limit"); 2307 } else { 2308 // In any other case, convert both IVInit and IVCount to integers before 2309 // comparing. This may result in SCEV expansion of pointers, but in practice 2310 // SCEV will fold the pointer arithmetic away as such: 2311 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2312 // 2313 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2314 // for simple memset-style loops. 2315 // 2316 // IVInit integer and IVCount pointer would only occur if a canonical IV 2317 // were generated on top of case #2, which is not expected. 2318 2319 const SCEV *IVLimit = nullptr; 2320 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2321 // For non-zero Start, compute IVCount here. 2322 if (AR->getStart()->isZero()) 2323 IVLimit = IVCount; 2324 else { 2325 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2326 const SCEV *IVInit = AR->getStart(); 2327 2328 // For integer IVs, truncate the IV before computing IVInit + BECount. 2329 if (SE->getTypeSizeInBits(IVInit->getType()) 2330 > SE->getTypeSizeInBits(IVCount->getType())) 2331 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2332 2333 IVLimit = SE->getAddExpr(IVInit, IVCount); 2334 } 2335 // Expand the code for the iteration count. 2336 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2337 IRBuilder<> Builder(BI); 2338 assert(SE->isLoopInvariant(IVLimit, L) && 2339 "Computed iteration count is not loop invariant!"); 2340 // Ensure that we generate the same type as IndVar, or a smaller integer 2341 // type. In the presence of null pointer values, we have an integer type 2342 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2343 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2344 IndVar->getType() : IVCount->getType(); 2345 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2346 } 2347 } 2348 2349 /// This method rewrites the exit condition of the loop to be a canonical != 2350 /// comparison against the incremented loop induction variable. This pass is 2351 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2352 /// determine a loop-invariant trip count of the loop, which is actually a much 2353 /// broader range than just linear tests. 2354 bool IndVarSimplify:: 2355 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 2356 PHINode *IndVar, SCEVExpander &Rewriter) { 2357 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2358 2359 // Initialize CmpIndVar and IVCount to their preincremented values. 2360 Value *CmpIndVar = IndVar; 2361 const SCEV *IVCount = BackedgeTakenCount; 2362 2363 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2364 2365 // If the exiting block is the same as the backedge block, we prefer to 2366 // compare against the post-incremented value, otherwise we must compare 2367 // against the preincremented value. 2368 if (L->getExitingBlock() == L->getLoopLatch()) { 2369 // Add one to the "backedge-taken" count to get the trip count. 2370 // This addition may overflow, which is valid as long as the comparison is 2371 // truncated to BackedgeTakenCount->getType(). 2372 IVCount = SE->getAddExpr(BackedgeTakenCount, 2373 SE->getOne(BackedgeTakenCount->getType())); 2374 // The BackedgeTaken expression contains the number of times that the 2375 // backedge branches to the loop header. This is one less than the 2376 // number of times the loop executes, so use the incremented indvar. 2377 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2378 } 2379 2380 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2381 assert(ExitCnt->getType()->isPointerTy() == 2382 IndVar->getType()->isPointerTy() && 2383 "genLoopLimit missed a cast"); 2384 2385 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2386 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2387 ICmpInst::Predicate P; 2388 if (L->contains(BI->getSuccessor(0))) 2389 P = ICmpInst::ICMP_NE; 2390 else 2391 P = ICmpInst::ICMP_EQ; 2392 2393 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2394 << " LHS:" << *CmpIndVar << '\n' 2395 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2396 << "\n" 2397 << " RHS:\t" << *ExitCnt << "\n" 2398 << " IVCount:\t" << *IVCount << "\n"); 2399 2400 IRBuilder<> Builder(BI); 2401 2402 // The new loop exit condition should reuse the debug location of the 2403 // original loop exit condition. 2404 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2405 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2406 2407 // LFTR can ignore IV overflow and truncate to the width of 2408 // BECount. This avoids materializing the add(zext(add)) expression. 2409 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2410 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2411 if (CmpIndVarSize > ExitCntSize) { 2412 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2413 const SCEV *ARStart = AR->getStart(); 2414 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2415 // For constant IVCount, avoid truncation. 2416 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2417 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2418 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2419 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2420 // above such that IVCount is now zero. 2421 if (IVCount != BackedgeTakenCount && Count == 0) { 2422 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2423 ++Count; 2424 } 2425 else 2426 Count = Count.zext(CmpIndVarSize); 2427 APInt NewLimit; 2428 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2429 NewLimit = Start - Count; 2430 else 2431 NewLimit = Start + Count; 2432 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2433 2434 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2435 } else { 2436 // We try to extend trip count first. If that doesn't work we truncate IV. 2437 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2438 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2439 // one of the two holds, extend the trip count, otherwise we truncate IV. 2440 bool Extended = false; 2441 const SCEV *IV = SE->getSCEV(CmpIndVar); 2442 const SCEV *ZExtTrunc = 2443 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2444 ExitCnt->getType()), 2445 CmpIndVar->getType()); 2446 2447 if (ZExtTrunc == IV) { 2448 Extended = true; 2449 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2450 "wide.trip.count"); 2451 } else { 2452 const SCEV *SExtTrunc = 2453 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2454 ExitCnt->getType()), 2455 CmpIndVar->getType()); 2456 if (SExtTrunc == IV) { 2457 Extended = true; 2458 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2459 "wide.trip.count"); 2460 } 2461 } 2462 2463 if (!Extended) 2464 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2465 "lftr.wideiv"); 2466 } 2467 } 2468 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2469 Value *OrigCond = BI->getCondition(); 2470 // It's tempting to use replaceAllUsesWith here to fully replace the old 2471 // comparison, but that's not immediately safe, since users of the old 2472 // comparison may not be dominated by the new comparison. Instead, just 2473 // update the branch to use the new comparison; in the common case this 2474 // will make old comparison dead. 2475 BI->setCondition(Cond); 2476 DeadInsts.push_back(OrigCond); 2477 2478 ++NumLFTR; 2479 return true; 2480 } 2481 2482 //===----------------------------------------------------------------------===// 2483 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2484 //===----------------------------------------------------------------------===// 2485 2486 /// If there's a single exit block, sink any loop-invariant values that 2487 /// were defined in the preheader but not used inside the loop into the 2488 /// exit block to reduce register pressure in the loop. 2489 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2490 BasicBlock *ExitBlock = L->getExitBlock(); 2491 if (!ExitBlock) return false; 2492 2493 BasicBlock *Preheader = L->getLoopPreheader(); 2494 if (!Preheader) return false; 2495 2496 bool MadeAnyChanges = false; 2497 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2498 BasicBlock::iterator I(Preheader->getTerminator()); 2499 while (I != Preheader->begin()) { 2500 --I; 2501 // New instructions were inserted at the end of the preheader. 2502 if (isa<PHINode>(I)) 2503 break; 2504 2505 // Don't move instructions which might have side effects, since the side 2506 // effects need to complete before instructions inside the loop. Also don't 2507 // move instructions which might read memory, since the loop may modify 2508 // memory. Note that it's okay if the instruction might have undefined 2509 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2510 // block. 2511 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2512 continue; 2513 2514 // Skip debug info intrinsics. 2515 if (isa<DbgInfoIntrinsic>(I)) 2516 continue; 2517 2518 // Skip eh pad instructions. 2519 if (I->isEHPad()) 2520 continue; 2521 2522 // Don't sink alloca: we never want to sink static alloca's out of the 2523 // entry block, and correctly sinking dynamic alloca's requires 2524 // checks for stacksave/stackrestore intrinsics. 2525 // FIXME: Refactor this check somehow? 2526 if (isa<AllocaInst>(I)) 2527 continue; 2528 2529 // Determine if there is a use in or before the loop (direct or 2530 // otherwise). 2531 bool UsedInLoop = false; 2532 for (Use &U : I->uses()) { 2533 Instruction *User = cast<Instruction>(U.getUser()); 2534 BasicBlock *UseBB = User->getParent(); 2535 if (PHINode *P = dyn_cast<PHINode>(User)) { 2536 unsigned i = 2537 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2538 UseBB = P->getIncomingBlock(i); 2539 } 2540 if (UseBB == Preheader || L->contains(UseBB)) { 2541 UsedInLoop = true; 2542 break; 2543 } 2544 } 2545 2546 // If there is, the def must remain in the preheader. 2547 if (UsedInLoop) 2548 continue; 2549 2550 // Otherwise, sink it to the exit block. 2551 Instruction *ToMove = &*I; 2552 bool Done = false; 2553 2554 if (I != Preheader->begin()) { 2555 // Skip debug info intrinsics. 2556 do { 2557 --I; 2558 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2559 2560 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2561 Done = true; 2562 } else { 2563 Done = true; 2564 } 2565 2566 MadeAnyChanges = true; 2567 ToMove->moveBefore(*ExitBlock, InsertPt); 2568 if (Done) break; 2569 InsertPt = ToMove->getIterator(); 2570 } 2571 2572 return MadeAnyChanges; 2573 } 2574 2575 //===----------------------------------------------------------------------===// 2576 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2577 //===----------------------------------------------------------------------===// 2578 2579 bool IndVarSimplify::run(Loop *L) { 2580 // We need (and expect!) the incoming loop to be in LCSSA. 2581 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2582 "LCSSA required to run indvars!"); 2583 bool Changed = false; 2584 2585 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2586 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2587 // canonicalization can be a pessimization without LSR to "clean up" 2588 // afterwards. 2589 // - We depend on having a preheader; in particular, 2590 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2591 // and we're in trouble if we can't find the induction variable even when 2592 // we've manually inserted one. 2593 // - LFTR relies on having a single backedge. 2594 if (!L->isLoopSimplifyForm()) 2595 return false; 2596 2597 // If there are any floating-point recurrences, attempt to 2598 // transform them to use integer recurrences. 2599 Changed |= rewriteNonIntegerIVs(L); 2600 2601 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2602 2603 // Create a rewriter object which we'll use to transform the code with. 2604 SCEVExpander Rewriter(*SE, DL, "indvars"); 2605 #ifndef NDEBUG 2606 Rewriter.setDebugType(DEBUG_TYPE); 2607 #endif 2608 2609 // Eliminate redundant IV users. 2610 // 2611 // Simplification works best when run before other consumers of SCEV. We 2612 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2613 // other expressions involving loop IVs have been evaluated. This helps SCEV 2614 // set no-wrap flags before normalizing sign/zero extension. 2615 Rewriter.disableCanonicalMode(); 2616 Changed |= simplifyAndExtend(L, Rewriter, LI); 2617 2618 // Check to see if this loop has a computable loop-invariant execution count. 2619 // If so, this means that we can compute the final value of any expressions 2620 // that are recurrent in the loop, and substitute the exit values from the 2621 // loop into any instructions outside of the loop that use the final values of 2622 // the current expressions. 2623 // 2624 if (ReplaceExitValue != NeverRepl && 2625 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2626 Changed |= rewriteLoopExitValues(L, Rewriter); 2627 2628 // Eliminate redundant IV cycles. 2629 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2630 2631 // If we have a trip count expression, rewrite the loop's exit condition 2632 // using it. We can currently only handle loops with a single exit. 2633 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2634 needsLFTR(L, DT)) { 2635 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2636 if (IndVar) { 2637 // Check preconditions for proper SCEVExpander operation. SCEV does not 2638 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2639 // pass that uses the SCEVExpander must do it. This does not work well for 2640 // loop passes because SCEVExpander makes assumptions about all loops, 2641 // while LoopPassManager only forces the current loop to be simplified. 2642 // 2643 // FIXME: SCEV expansion has no way to bail out, so the caller must 2644 // explicitly check any assumptions made by SCEV. Brittle. 2645 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2646 if (!AR || AR->getLoop()->getLoopPreheader()) 2647 Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2648 Rewriter); 2649 } 2650 } 2651 // Clear the rewriter cache, because values that are in the rewriter's cache 2652 // can be deleted in the loop below, causing the AssertingVH in the cache to 2653 // trigger. 2654 Rewriter.clear(); 2655 2656 // Now that we're done iterating through lists, clean up any instructions 2657 // which are now dead. 2658 while (!DeadInsts.empty()) 2659 if (Instruction *Inst = 2660 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2661 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2662 2663 // The Rewriter may not be used from this point on. 2664 2665 // Loop-invariant instructions in the preheader that aren't used in the 2666 // loop may be sunk below the loop to reduce register pressure. 2667 Changed |= sinkUnusedInvariants(L); 2668 2669 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2670 // trip count and therefore can further simplify exit values in addition to 2671 // rewriteLoopExitValues. 2672 Changed |= rewriteFirstIterationLoopExitValues(L); 2673 2674 // Clean up dead instructions. 2675 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2676 2677 // Check a post-condition. 2678 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2679 "Indvars did not preserve LCSSA!"); 2680 2681 // Verify that LFTR, and any other change have not interfered with SCEV's 2682 // ability to compute trip count. 2683 #ifndef NDEBUG 2684 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2685 SE->forgetLoop(L); 2686 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2687 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2688 SE->getTypeSizeInBits(NewBECount->getType())) 2689 NewBECount = SE->getTruncateOrNoop(NewBECount, 2690 BackedgeTakenCount->getType()); 2691 else 2692 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2693 NewBECount->getType()); 2694 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2695 } 2696 #endif 2697 2698 return Changed; 2699 } 2700 2701 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2702 LoopStandardAnalysisResults &AR, 2703 LPMUpdater &) { 2704 Function *F = L.getHeader()->getParent(); 2705 const DataLayout &DL = F->getParent()->getDataLayout(); 2706 2707 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2708 if (!IVS.run(&L)) 2709 return PreservedAnalyses::all(); 2710 2711 auto PA = getLoopPassPreservedAnalyses(); 2712 PA.preserveSet<CFGAnalyses>(); 2713 return PA; 2714 } 2715 2716 namespace { 2717 2718 struct IndVarSimplifyLegacyPass : public LoopPass { 2719 static char ID; // Pass identification, replacement for typeid 2720 2721 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2722 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2723 } 2724 2725 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2726 if (skipLoop(L)) 2727 return false; 2728 2729 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2730 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2731 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2732 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2733 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2734 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2735 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2736 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2737 2738 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2739 return IVS.run(L); 2740 } 2741 2742 void getAnalysisUsage(AnalysisUsage &AU) const override { 2743 AU.setPreservesCFG(); 2744 getLoopAnalysisUsage(AU); 2745 } 2746 }; 2747 2748 } // end anonymous namespace 2749 2750 char IndVarSimplifyLegacyPass::ID = 0; 2751 2752 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2753 "Induction Variable Simplification", false, false) 2754 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2755 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2756 "Induction Variable Simplification", false, false) 2757 2758 Pass *llvm::createIndVarSimplifyPass() { 2759 return new IndVarSimplifyLegacyPass(); 2760 } 2761