xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 75ad8c5d63107f1c32b9ee79e57c4cf10a5d5670)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/iterator_range.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/ScalarEvolutionExpander.h"
42 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/TargetTransformInfo.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/ConstantRange.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/IR/ValueHandle.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/Scalar.h"
78 #include "llvm/Transforms/Scalar/LoopPassManager.h"
79 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
80 #include "llvm/Transforms/Utils/LoopUtils.h"
81 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
82 #include <cassert>
83 #include <cstdint>
84 #include <utility>
85 
86 using namespace llvm;
87 
88 #define DEBUG_TYPE "indvars"
89 
90 STATISTIC(NumWidened     , "Number of indvars widened");
91 STATISTIC(NumReplaced    , "Number of exit values replaced");
92 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
93 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
94 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
95 
96 // Trip count verification can be enabled by default under NDEBUG if we
97 // implement a strong expression equivalence checker in SCEV. Until then, we
98 // use the verify-indvars flag, which may assert in some cases.
99 static cl::opt<bool> VerifyIndvars(
100   "verify-indvars", cl::Hidden,
101   cl::desc("Verify the ScalarEvolution result after running indvars"));
102 
103 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
104 
105 static cl::opt<ReplaceExitVal> ReplaceExitValue(
106     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
107     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
108     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
109                clEnumValN(OnlyCheapRepl, "cheap",
110                           "only replace exit value when the cost is cheap"),
111                clEnumValN(AlwaysRepl, "always",
112                           "always replace exit value whenever possible")));
113 
114 static cl::opt<bool> UsePostIncrementRanges(
115   "indvars-post-increment-ranges", cl::Hidden,
116   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
117   cl::init(true));
118 
119 static cl::opt<bool>
120 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
121             cl::desc("Disable Linear Function Test Replace optimization"));
122 
123 namespace {
124 
125 struct RewritePhi;
126 
127 class IndVarSimplify {
128   LoopInfo *LI;
129   ScalarEvolution *SE;
130   DominatorTree *DT;
131   const DataLayout &DL;
132   TargetLibraryInfo *TLI;
133   const TargetTransformInfo *TTI;
134 
135   SmallVector<WeakTrackingVH, 16> DeadInsts;
136 
137   bool isValidRewrite(Value *FromVal, Value *ToVal);
138 
139   bool handleFloatingPointIV(Loop *L, PHINode *PH);
140   bool rewriteNonIntegerIVs(Loop *L);
141 
142   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
143 
144   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
145   bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
146   bool rewriteFirstIterationLoopExitValues(Loop *L);
147   bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const;
148 
149   bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
150                                  PHINode *IndVar, SCEVExpander &Rewriter);
151 
152   bool sinkUnusedInvariants(Loop *L);
153 
154 public:
155   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
156                  const DataLayout &DL, TargetLibraryInfo *TLI,
157                  TargetTransformInfo *TTI)
158       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
159 
160   bool run(Loop *L);
161 };
162 
163 } // end anonymous namespace
164 
165 /// Return true if the SCEV expansion generated by the rewriter can replace the
166 /// original value. SCEV guarantees that it produces the same value, but the way
167 /// it is produced may be illegal IR.  Ideally, this function will only be
168 /// called for verification.
169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
170   // If an SCEV expression subsumed multiple pointers, its expansion could
171   // reassociate the GEP changing the base pointer. This is illegal because the
172   // final address produced by a GEP chain must be inbounds relative to its
173   // underlying object. Otherwise basic alias analysis, among other things,
174   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
175   // producing an expression involving multiple pointers. Until then, we must
176   // bail out here.
177   //
178   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
179   // because it understands lcssa phis while SCEV does not.
180   Value *FromPtr = FromVal;
181   Value *ToPtr = ToVal;
182   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
183     FromPtr = GEP->getPointerOperand();
184   }
185   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
186     ToPtr = GEP->getPointerOperand();
187   }
188   if (FromPtr != FromVal || ToPtr != ToVal) {
189     // Quickly check the common case
190     if (FromPtr == ToPtr)
191       return true;
192 
193     // SCEV may have rewritten an expression that produces the GEP's pointer
194     // operand. That's ok as long as the pointer operand has the same base
195     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
196     // base of a recurrence. This handles the case in which SCEV expansion
197     // converts a pointer type recurrence into a nonrecurrent pointer base
198     // indexed by an integer recurrence.
199 
200     // If the GEP base pointer is a vector of pointers, abort.
201     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
202       return false;
203 
204     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
205     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
206     if (FromBase == ToBase)
207       return true;
208 
209     LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
210                       << " != " << *ToBase << "\n");
211 
212     return false;
213   }
214   return true;
215 }
216 
217 /// Determine the insertion point for this user. By default, insert immediately
218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
220 /// common dominator for the incoming blocks. A nullptr can be returned if no
221 /// viable location is found: it may happen if User is a PHI and Def only comes
222 /// to this PHI from unreachable blocks.
223 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
224                                           DominatorTree *DT, LoopInfo *LI) {
225   PHINode *PHI = dyn_cast<PHINode>(User);
226   if (!PHI)
227     return User;
228 
229   Instruction *InsertPt = nullptr;
230   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
231     if (PHI->getIncomingValue(i) != Def)
232       continue;
233 
234     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
235 
236     if (!DT->isReachableFromEntry(InsertBB))
237       continue;
238 
239     if (!InsertPt) {
240       InsertPt = InsertBB->getTerminator();
241       continue;
242     }
243     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
244     InsertPt = InsertBB->getTerminator();
245   }
246 
247   // If we have skipped all inputs, it means that Def only comes to Phi from
248   // unreachable blocks.
249   if (!InsertPt)
250     return nullptr;
251 
252   auto *DefI = dyn_cast<Instruction>(Def);
253   if (!DefI)
254     return InsertPt;
255 
256   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
257 
258   auto *L = LI->getLoopFor(DefI->getParent());
259   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
260 
261   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
262     if (LI->getLoopFor(DTN->getBlock()) == L)
263       return DTN->getBlock()->getTerminator();
264 
265   llvm_unreachable("DefI dominates InsertPt!");
266 }
267 
268 //===----------------------------------------------------------------------===//
269 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
270 //===----------------------------------------------------------------------===//
271 
272 /// Convert APF to an integer, if possible.
273 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
274   bool isExact = false;
275   // See if we can convert this to an int64_t
276   uint64_t UIntVal;
277   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
278                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
279       !isExact)
280     return false;
281   IntVal = UIntVal;
282   return true;
283 }
284 
285 /// If the loop has floating induction variable then insert corresponding
286 /// integer induction variable if possible.
287 /// For example,
288 /// for(double i = 0; i < 10000; ++i)
289 ///   bar(i)
290 /// is converted into
291 /// for(int i = 0; i < 10000; ++i)
292 ///   bar((double)i);
293 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
294   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
295   unsigned BackEdge     = IncomingEdge^1;
296 
297   // Check incoming value.
298   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
299 
300   int64_t InitValue;
301   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
302     return false;
303 
304   // Check IV increment. Reject this PN if increment operation is not
305   // an add or increment value can not be represented by an integer.
306   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
307   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
308 
309   // If this is not an add of the PHI with a constantfp, or if the constant fp
310   // is not an integer, bail out.
311   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
312   int64_t IncValue;
313   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
314       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
315     return false;
316 
317   // Check Incr uses. One user is PN and the other user is an exit condition
318   // used by the conditional terminator.
319   Value::user_iterator IncrUse = Incr->user_begin();
320   Instruction *U1 = cast<Instruction>(*IncrUse++);
321   if (IncrUse == Incr->user_end()) return false;
322   Instruction *U2 = cast<Instruction>(*IncrUse++);
323   if (IncrUse != Incr->user_end()) return false;
324 
325   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
326   // only used by a branch, we can't transform it.
327   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
328   if (!Compare)
329     Compare = dyn_cast<FCmpInst>(U2);
330   if (!Compare || !Compare->hasOneUse() ||
331       !isa<BranchInst>(Compare->user_back()))
332     return false;
333 
334   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
335 
336   // We need to verify that the branch actually controls the iteration count
337   // of the loop.  If not, the new IV can overflow and no one will notice.
338   // The branch block must be in the loop and one of the successors must be out
339   // of the loop.
340   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
341   if (!L->contains(TheBr->getParent()) ||
342       (L->contains(TheBr->getSuccessor(0)) &&
343        L->contains(TheBr->getSuccessor(1))))
344     return false;
345 
346   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
347   // transform it.
348   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
349   int64_t ExitValue;
350   if (ExitValueVal == nullptr ||
351       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
352     return false;
353 
354   // Find new predicate for integer comparison.
355   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
356   switch (Compare->getPredicate()) {
357   default: return false;  // Unknown comparison.
358   case CmpInst::FCMP_OEQ:
359   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
360   case CmpInst::FCMP_ONE:
361   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
362   case CmpInst::FCMP_OGT:
363   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
364   case CmpInst::FCMP_OGE:
365   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
366   case CmpInst::FCMP_OLT:
367   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
368   case CmpInst::FCMP_OLE:
369   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
370   }
371 
372   // We convert the floating point induction variable to a signed i32 value if
373   // we can.  This is only safe if the comparison will not overflow in a way
374   // that won't be trapped by the integer equivalent operations.  Check for this
375   // now.
376   // TODO: We could use i64 if it is native and the range requires it.
377 
378   // The start/stride/exit values must all fit in signed i32.
379   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
380     return false;
381 
382   // If not actually striding (add x, 0.0), avoid touching the code.
383   if (IncValue == 0)
384     return false;
385 
386   // Positive and negative strides have different safety conditions.
387   if (IncValue > 0) {
388     // If we have a positive stride, we require the init to be less than the
389     // exit value.
390     if (InitValue >= ExitValue)
391       return false;
392 
393     uint32_t Range = uint32_t(ExitValue-InitValue);
394     // Check for infinite loop, either:
395     // while (i <= Exit) or until (i > Exit)
396     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
397       if (++Range == 0) return false;  // Range overflows.
398     }
399 
400     unsigned Leftover = Range % uint32_t(IncValue);
401 
402     // If this is an equality comparison, we require that the strided value
403     // exactly land on the exit value, otherwise the IV condition will wrap
404     // around and do things the fp IV wouldn't.
405     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
406         Leftover != 0)
407       return false;
408 
409     // If the stride would wrap around the i32 before exiting, we can't
410     // transform the IV.
411     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
412       return false;
413   } else {
414     // If we have a negative stride, we require the init to be greater than the
415     // exit value.
416     if (InitValue <= ExitValue)
417       return false;
418 
419     uint32_t Range = uint32_t(InitValue-ExitValue);
420     // Check for infinite loop, either:
421     // while (i >= Exit) or until (i < Exit)
422     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
423       if (++Range == 0) return false;  // Range overflows.
424     }
425 
426     unsigned Leftover = Range % uint32_t(-IncValue);
427 
428     // If this is an equality comparison, we require that the strided value
429     // exactly land on the exit value, otherwise the IV condition will wrap
430     // around and do things the fp IV wouldn't.
431     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
432         Leftover != 0)
433       return false;
434 
435     // If the stride would wrap around the i32 before exiting, we can't
436     // transform the IV.
437     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
438       return false;
439   }
440 
441   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
442 
443   // Insert new integer induction variable.
444   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
445   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
446                       PN->getIncomingBlock(IncomingEdge));
447 
448   Value *NewAdd =
449     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
450                               Incr->getName()+".int", Incr);
451   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
452 
453   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
454                                       ConstantInt::get(Int32Ty, ExitValue),
455                                       Compare->getName());
456 
457   // In the following deletions, PN may become dead and may be deleted.
458   // Use a WeakTrackingVH to observe whether this happens.
459   WeakTrackingVH WeakPH = PN;
460 
461   // Delete the old floating point exit comparison.  The branch starts using the
462   // new comparison.
463   NewCompare->takeName(Compare);
464   Compare->replaceAllUsesWith(NewCompare);
465   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
466 
467   // Delete the old floating point increment.
468   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
469   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
470 
471   // If the FP induction variable still has uses, this is because something else
472   // in the loop uses its value.  In order to canonicalize the induction
473   // variable, we chose to eliminate the IV and rewrite it in terms of an
474   // int->fp cast.
475   //
476   // We give preference to sitofp over uitofp because it is faster on most
477   // platforms.
478   if (WeakPH) {
479     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
480                                  &*PN->getParent()->getFirstInsertionPt());
481     PN->replaceAllUsesWith(Conv);
482     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
483   }
484   return true;
485 }
486 
487 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
488   // First step.  Check to see if there are any floating-point recurrences.
489   // If there are, change them into integer recurrences, permitting analysis by
490   // the SCEV routines.
491   BasicBlock *Header = L->getHeader();
492 
493   SmallVector<WeakTrackingVH, 8> PHIs;
494   for (PHINode &PN : Header->phis())
495     PHIs.push_back(&PN);
496 
497   bool Changed = false;
498   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
499     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
500       Changed |= handleFloatingPointIV(L, PN);
501 
502   // If the loop previously had floating-point IV, ScalarEvolution
503   // may not have been able to compute a trip count. Now that we've done some
504   // re-writing, the trip count may be computable.
505   if (Changed)
506     SE->forgetLoop(L);
507   return Changed;
508 }
509 
510 namespace {
511 
512 // Collect information about PHI nodes which can be transformed in
513 // rewriteLoopExitValues.
514 struct RewritePhi {
515   PHINode *PN;
516 
517   // Ith incoming value.
518   unsigned Ith;
519 
520   // Exit value after expansion.
521   Value *Val;
522 
523   // High Cost when expansion.
524   bool HighCost;
525 
526   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
527       : PN(P), Ith(I), Val(V), HighCost(H) {}
528 };
529 
530 } // end anonymous namespace
531 
532 //===----------------------------------------------------------------------===//
533 // rewriteLoopExitValues - Optimize IV users outside the loop.
534 // As a side effect, reduces the amount of IV processing within the loop.
535 //===----------------------------------------------------------------------===//
536 
537 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const {
538   SmallPtrSet<const Instruction *, 8> Visited;
539   SmallVector<const Instruction *, 8> WorkList;
540   Visited.insert(I);
541   WorkList.push_back(I);
542   while (!WorkList.empty()) {
543     const Instruction *Curr = WorkList.pop_back_val();
544     // This use is outside the loop, nothing to do.
545     if (!L->contains(Curr))
546       continue;
547     // Do we assume it is a "hard" use which will not be eliminated easily?
548     if (Curr->mayHaveSideEffects())
549       return true;
550     // Otherwise, add all its users to worklist.
551     for (auto U : Curr->users()) {
552       auto *UI = cast<Instruction>(U);
553       if (Visited.insert(UI).second)
554         WorkList.push_back(UI);
555     }
556   }
557   return false;
558 }
559 
560 /// Check to see if this loop has a computable loop-invariant execution count.
561 /// If so, this means that we can compute the final value of any expressions
562 /// that are recurrent in the loop, and substitute the exit values from the loop
563 /// into any instructions outside of the loop that use the final values of the
564 /// current expressions.
565 ///
566 /// This is mostly redundant with the regular IndVarSimplify activities that
567 /// happen later, except that it's more powerful in some cases, because it's
568 /// able to brute-force evaluate arbitrary instructions as long as they have
569 /// constant operands at the beginning of the loop.
570 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
571   // Check a pre-condition.
572   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
573          "Indvars did not preserve LCSSA!");
574 
575   SmallVector<BasicBlock*, 8> ExitBlocks;
576   L->getUniqueExitBlocks(ExitBlocks);
577 
578   SmallVector<RewritePhi, 8> RewritePhiSet;
579   // Find all values that are computed inside the loop, but used outside of it.
580   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
581   // the exit blocks of the loop to find them.
582   for (BasicBlock *ExitBB : ExitBlocks) {
583     // If there are no PHI nodes in this exit block, then no values defined
584     // inside the loop are used on this path, skip it.
585     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
586     if (!PN) continue;
587 
588     unsigned NumPreds = PN->getNumIncomingValues();
589 
590     // Iterate over all of the PHI nodes.
591     BasicBlock::iterator BBI = ExitBB->begin();
592     while ((PN = dyn_cast<PHINode>(BBI++))) {
593       if (PN->use_empty())
594         continue; // dead use, don't replace it
595 
596       if (!SE->isSCEVable(PN->getType()))
597         continue;
598 
599       // It's necessary to tell ScalarEvolution about this explicitly so that
600       // it can walk the def-use list and forget all SCEVs, as it may not be
601       // watching the PHI itself. Once the new exit value is in place, there
602       // may not be a def-use connection between the loop and every instruction
603       // which got a SCEVAddRecExpr for that loop.
604       SE->forgetValue(PN);
605 
606       // Iterate over all of the values in all the PHI nodes.
607       for (unsigned i = 0; i != NumPreds; ++i) {
608         // If the value being merged in is not integer or is not defined
609         // in the loop, skip it.
610         Value *InVal = PN->getIncomingValue(i);
611         if (!isa<Instruction>(InVal))
612           continue;
613 
614         // If this pred is for a subloop, not L itself, skip it.
615         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
616           continue; // The Block is in a subloop, skip it.
617 
618         // Check that InVal is defined in the loop.
619         Instruction *Inst = cast<Instruction>(InVal);
620         if (!L->contains(Inst))
621           continue;
622 
623         // Okay, this instruction has a user outside of the current loop
624         // and varies predictably *inside* the loop.  Evaluate the value it
625         // contains when the loop exits, if possible.
626         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
627         if (!SE->isLoopInvariant(ExitValue, L) ||
628             !isSafeToExpand(ExitValue, *SE))
629           continue;
630 
631         // Computing the value outside of the loop brings no benefit if it is
632         // definitely used inside the loop in a way which can not be optimized
633         // away.
634         if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst))
635           continue;
636 
637         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
638         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
639 
640         LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
641                           << '\n'
642                           << "  LoopVal = " << *Inst << "\n");
643 
644         if (!isValidRewrite(Inst, ExitVal)) {
645           DeadInsts.push_back(ExitVal);
646           continue;
647         }
648 
649 #ifndef NDEBUG
650         // If we reuse an instruction from a loop which is neither L nor one of
651         // its containing loops, we end up breaking LCSSA form for this loop by
652         // creating a new use of its instruction.
653         if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
654           if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
655             if (EVL != L)
656               assert(EVL->contains(L) && "LCSSA breach detected!");
657 #endif
658 
659         // Collect all the candidate PHINodes to be rewritten.
660         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
661       }
662     }
663   }
664 
665   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
666 
667   bool Changed = false;
668   // Transformation.
669   for (const RewritePhi &Phi : RewritePhiSet) {
670     PHINode *PN = Phi.PN;
671     Value *ExitVal = Phi.Val;
672 
673     // Only do the rewrite when the ExitValue can be expanded cheaply.
674     // If LoopCanBeDel is true, rewrite exit value aggressively.
675     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
676       DeadInsts.push_back(ExitVal);
677       continue;
678     }
679 
680     Changed = true;
681     ++NumReplaced;
682     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
683     PN->setIncomingValue(Phi.Ith, ExitVal);
684 
685     // If this instruction is dead now, delete it. Don't do it now to avoid
686     // invalidating iterators.
687     if (isInstructionTriviallyDead(Inst, TLI))
688       DeadInsts.push_back(Inst);
689 
690     // Replace PN with ExitVal if that is legal and does not break LCSSA.
691     if (PN->getNumIncomingValues() == 1 &&
692         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
693       PN->replaceAllUsesWith(ExitVal);
694       PN->eraseFromParent();
695     }
696   }
697 
698   // The insertion point instruction may have been deleted; clear it out
699   // so that the rewriter doesn't trip over it later.
700   Rewriter.clearInsertPoint();
701   return Changed;
702 }
703 
704 //===---------------------------------------------------------------------===//
705 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
706 // they will exit at the first iteration.
707 //===---------------------------------------------------------------------===//
708 
709 /// Check to see if this loop has loop invariant conditions which lead to loop
710 /// exits. If so, we know that if the exit path is taken, it is at the first
711 /// loop iteration. This lets us predict exit values of PHI nodes that live in
712 /// loop header.
713 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
714   // Verify the input to the pass is already in LCSSA form.
715   assert(L->isLCSSAForm(*DT));
716 
717   SmallVector<BasicBlock *, 8> ExitBlocks;
718   L->getUniqueExitBlocks(ExitBlocks);
719 
720   bool MadeAnyChanges = false;
721   for (auto *ExitBB : ExitBlocks) {
722     // If there are no more PHI nodes in this exit block, then no more
723     // values defined inside the loop are used on this path.
724     for (PHINode &PN : ExitBB->phis()) {
725       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
726            IncomingValIdx != E; ++IncomingValIdx) {
727         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
728 
729         // Can we prove that the exit must run on the first iteration if it
730         // runs at all?  (i.e. early exits are fine for our purposes, but
731         // traces which lead to this exit being taken on the 2nd iteration
732         // aren't.)  Note that this is about whether the exit branch is
733         // executed, not about whether it is taken.
734         if (!L->getLoopLatch() ||
735             !DT->dominates(IncomingBB, L->getLoopLatch()))
736           continue;
737 
738         // Get condition that leads to the exit path.
739         auto *TermInst = IncomingBB->getTerminator();
740 
741         Value *Cond = nullptr;
742         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
743           // Must be a conditional branch, otherwise the block
744           // should not be in the loop.
745           Cond = BI->getCondition();
746         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
747           Cond = SI->getCondition();
748         else
749           continue;
750 
751         if (!L->isLoopInvariant(Cond))
752           continue;
753 
754         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
755 
756         // Only deal with PHIs in the loop header.
757         if (!ExitVal || ExitVal->getParent() != L->getHeader())
758           continue;
759 
760         // If ExitVal is a PHI on the loop header, then we know its
761         // value along this exit because the exit can only be taken
762         // on the first iteration.
763         auto *LoopPreheader = L->getLoopPreheader();
764         assert(LoopPreheader && "Invalid loop");
765         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
766         if (PreheaderIdx != -1) {
767           assert(ExitVal->getParent() == L->getHeader() &&
768                  "ExitVal must be in loop header");
769           MadeAnyChanges = true;
770           PN.setIncomingValue(IncomingValIdx,
771                               ExitVal->getIncomingValue(PreheaderIdx));
772         }
773       }
774     }
775   }
776   return MadeAnyChanges;
777 }
778 
779 /// Check whether it is possible to delete the loop after rewriting exit
780 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
781 /// aggressively.
782 bool IndVarSimplify::canLoopBeDeleted(
783     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
784   BasicBlock *Preheader = L->getLoopPreheader();
785   // If there is no preheader, the loop will not be deleted.
786   if (!Preheader)
787     return false;
788 
789   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
790   // We obviate multiple ExitingBlocks case for simplicity.
791   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
792   // after exit value rewriting, we can enhance the logic here.
793   SmallVector<BasicBlock *, 4> ExitingBlocks;
794   L->getExitingBlocks(ExitingBlocks);
795   SmallVector<BasicBlock *, 8> ExitBlocks;
796   L->getUniqueExitBlocks(ExitBlocks);
797   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
798     return false;
799 
800   BasicBlock *ExitBlock = ExitBlocks[0];
801   BasicBlock::iterator BI = ExitBlock->begin();
802   while (PHINode *P = dyn_cast<PHINode>(BI)) {
803     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
804 
805     // If the Incoming value of P is found in RewritePhiSet, we know it
806     // could be rewritten to use a loop invariant value in transformation
807     // phase later. Skip it in the loop invariant check below.
808     bool found = false;
809     for (const RewritePhi &Phi : RewritePhiSet) {
810       unsigned i = Phi.Ith;
811       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
812         found = true;
813         break;
814       }
815     }
816 
817     Instruction *I;
818     if (!found && (I = dyn_cast<Instruction>(Incoming)))
819       if (!L->hasLoopInvariantOperands(I))
820         return false;
821 
822     ++BI;
823   }
824 
825   for (auto *BB : L->blocks())
826     if (llvm::any_of(*BB, [](Instruction &I) {
827           return I.mayHaveSideEffects();
828         }))
829       return false;
830 
831   return true;
832 }
833 
834 //===----------------------------------------------------------------------===//
835 //  IV Widening - Extend the width of an IV to cover its widest uses.
836 //===----------------------------------------------------------------------===//
837 
838 namespace {
839 
840 // Collect information about induction variables that are used by sign/zero
841 // extend operations. This information is recorded by CollectExtend and provides
842 // the input to WidenIV.
843 struct WideIVInfo {
844   PHINode *NarrowIV = nullptr;
845 
846   // Widest integer type created [sz]ext
847   Type *WidestNativeType = nullptr;
848 
849   // Was a sext user seen before a zext?
850   bool IsSigned = false;
851 };
852 
853 } // end anonymous namespace
854 
855 /// Update information about the induction variable that is extended by this
856 /// sign or zero extend operation. This is used to determine the final width of
857 /// the IV before actually widening it.
858 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
859                         const TargetTransformInfo *TTI) {
860   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
861   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
862     return;
863 
864   Type *Ty = Cast->getType();
865   uint64_t Width = SE->getTypeSizeInBits(Ty);
866   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
867     return;
868 
869   // Check that `Cast` actually extends the induction variable (we rely on this
870   // later).  This takes care of cases where `Cast` is extending a truncation of
871   // the narrow induction variable, and thus can end up being narrower than the
872   // "narrow" induction variable.
873   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
874   if (NarrowIVWidth >= Width)
875     return;
876 
877   // Cast is either an sext or zext up to this point.
878   // We should not widen an indvar if arithmetics on the wider indvar are more
879   // expensive than those on the narrower indvar. We check only the cost of ADD
880   // because at least an ADD is required to increment the induction variable. We
881   // could compute more comprehensively the cost of all instructions on the
882   // induction variable when necessary.
883   if (TTI &&
884       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
885           TTI->getArithmeticInstrCost(Instruction::Add,
886                                       Cast->getOperand(0)->getType())) {
887     return;
888   }
889 
890   if (!WI.WidestNativeType) {
891     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
892     WI.IsSigned = IsSigned;
893     return;
894   }
895 
896   // We extend the IV to satisfy the sign of its first user, arbitrarily.
897   if (WI.IsSigned != IsSigned)
898     return;
899 
900   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
901     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
902 }
903 
904 namespace {
905 
906 /// Record a link in the Narrow IV def-use chain along with the WideIV that
907 /// computes the same value as the Narrow IV def.  This avoids caching Use*
908 /// pointers.
909 struct NarrowIVDefUse {
910   Instruction *NarrowDef = nullptr;
911   Instruction *NarrowUse = nullptr;
912   Instruction *WideDef = nullptr;
913 
914   // True if the narrow def is never negative.  Tracking this information lets
915   // us use a sign extension instead of a zero extension or vice versa, when
916   // profitable and legal.
917   bool NeverNegative = false;
918 
919   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
920                  bool NeverNegative)
921       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
922         NeverNegative(NeverNegative) {}
923 };
924 
925 /// The goal of this transform is to remove sign and zero extends without
926 /// creating any new induction variables. To do this, it creates a new phi of
927 /// the wider type and redirects all users, either removing extends or inserting
928 /// truncs whenever we stop propagating the type.
929 class WidenIV {
930   // Parameters
931   PHINode *OrigPhi;
932   Type *WideType;
933 
934   // Context
935   LoopInfo        *LI;
936   Loop            *L;
937   ScalarEvolution *SE;
938   DominatorTree   *DT;
939 
940   // Does the module have any calls to the llvm.experimental.guard intrinsic
941   // at all? If not we can avoid scanning instructions looking for guards.
942   bool HasGuards;
943 
944   // Result
945   PHINode *WidePhi = nullptr;
946   Instruction *WideInc = nullptr;
947   const SCEV *WideIncExpr = nullptr;
948   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
949 
950   SmallPtrSet<Instruction *,16> Widened;
951   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
952 
953   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
954 
955   // A map tracking the kind of extension used to widen each narrow IV
956   // and narrow IV user.
957   // Key: pointer to a narrow IV or IV user.
958   // Value: the kind of extension used to widen this Instruction.
959   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
960 
961   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
962 
963   // A map with control-dependent ranges for post increment IV uses. The key is
964   // a pair of IV def and a use of this def denoting the context. The value is
965   // a ConstantRange representing possible values of the def at the given
966   // context.
967   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
968 
969   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
970                                               Instruction *UseI) {
971     DefUserPair Key(Def, UseI);
972     auto It = PostIncRangeInfos.find(Key);
973     return It == PostIncRangeInfos.end()
974                ? Optional<ConstantRange>(None)
975                : Optional<ConstantRange>(It->second);
976   }
977 
978   void calculatePostIncRanges(PHINode *OrigPhi);
979   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
980 
981   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
982     DefUserPair Key(Def, UseI);
983     auto It = PostIncRangeInfos.find(Key);
984     if (It == PostIncRangeInfos.end())
985       PostIncRangeInfos.insert({Key, R});
986     else
987       It->second = R.intersectWith(It->second);
988   }
989 
990 public:
991   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
992           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
993           bool HasGuards)
994       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
995         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
996         HasGuards(HasGuards), DeadInsts(DI) {
997     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
998     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
999   }
1000 
1001   PHINode *createWideIV(SCEVExpander &Rewriter);
1002 
1003 protected:
1004   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1005                           Instruction *Use);
1006 
1007   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1008   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1009                                      const SCEVAddRecExpr *WideAR);
1010   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1011 
1012   ExtendKind getExtendKind(Instruction *I);
1013 
1014   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1015 
1016   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1017 
1018   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1019 
1020   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1021                               unsigned OpCode) const;
1022 
1023   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1024 
1025   bool widenLoopCompare(NarrowIVDefUse DU);
1026   bool widenWithVariantLoadUse(NarrowIVDefUse DU);
1027   void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
1028 
1029   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1030 };
1031 
1032 } // end anonymous namespace
1033 
1034 /// Perform a quick domtree based check for loop invariance assuming that V is
1035 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
1036 /// purpose.
1037 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
1038   Instruction *Inst = dyn_cast<Instruction>(V);
1039   if (!Inst)
1040     return true;
1041 
1042   return DT->properlyDominates(Inst->getParent(), L->getHeader());
1043 }
1044 
1045 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1046                                  bool IsSigned, Instruction *Use) {
1047   // Set the debug location and conservative insertion point.
1048   IRBuilder<> Builder(Use);
1049   // Hoist the insertion point into loop preheaders as far as possible.
1050   for (const Loop *L = LI->getLoopFor(Use->getParent());
1051        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
1052        L = L->getParentLoop())
1053     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1054 
1055   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1056                     Builder.CreateZExt(NarrowOper, WideType);
1057 }
1058 
1059 /// Instantiate a wide operation to replace a narrow operation. This only needs
1060 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1061 /// 0 for any operation we decide not to clone.
1062 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1063                                   const SCEVAddRecExpr *WideAR) {
1064   unsigned Opcode = DU.NarrowUse->getOpcode();
1065   switch (Opcode) {
1066   default:
1067     return nullptr;
1068   case Instruction::Add:
1069   case Instruction::Mul:
1070   case Instruction::UDiv:
1071   case Instruction::Sub:
1072     return cloneArithmeticIVUser(DU, WideAR);
1073 
1074   case Instruction::And:
1075   case Instruction::Or:
1076   case Instruction::Xor:
1077   case Instruction::Shl:
1078   case Instruction::LShr:
1079   case Instruction::AShr:
1080     return cloneBitwiseIVUser(DU);
1081   }
1082 }
1083 
1084 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1085   Instruction *NarrowUse = DU.NarrowUse;
1086   Instruction *NarrowDef = DU.NarrowDef;
1087   Instruction *WideDef = DU.WideDef;
1088 
1089   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1090 
1091   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1092   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1093   // invariant and will be folded or hoisted. If it actually comes from a
1094   // widened IV, it should be removed during a future call to widenIVUse.
1095   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1096   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1097                    ? WideDef
1098                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1099                                       IsSigned, NarrowUse);
1100   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1101                    ? WideDef
1102                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1103                                       IsSigned, NarrowUse);
1104 
1105   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1106   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1107                                         NarrowBO->getName());
1108   IRBuilder<> Builder(NarrowUse);
1109   Builder.Insert(WideBO);
1110   WideBO->copyIRFlags(NarrowBO);
1111   return WideBO;
1112 }
1113 
1114 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1115                                             const SCEVAddRecExpr *WideAR) {
1116   Instruction *NarrowUse = DU.NarrowUse;
1117   Instruction *NarrowDef = DU.NarrowDef;
1118   Instruction *WideDef = DU.WideDef;
1119 
1120   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1121 
1122   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1123 
1124   // We're trying to find X such that
1125   //
1126   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1127   //
1128   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1129   // and check using SCEV if any of them are correct.
1130 
1131   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1132   // correct solution to X.
1133   auto GuessNonIVOperand = [&](bool SignExt) {
1134     const SCEV *WideLHS;
1135     const SCEV *WideRHS;
1136 
1137     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1138       if (SignExt)
1139         return SE->getSignExtendExpr(S, Ty);
1140       return SE->getZeroExtendExpr(S, Ty);
1141     };
1142 
1143     if (IVOpIdx == 0) {
1144       WideLHS = SE->getSCEV(WideDef);
1145       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1146       WideRHS = GetExtend(NarrowRHS, WideType);
1147     } else {
1148       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1149       WideLHS = GetExtend(NarrowLHS, WideType);
1150       WideRHS = SE->getSCEV(WideDef);
1151     }
1152 
1153     // WideUse is "WideDef `op.wide` X" as described in the comment.
1154     const SCEV *WideUse = nullptr;
1155 
1156     switch (NarrowUse->getOpcode()) {
1157     default:
1158       llvm_unreachable("No other possibility!");
1159 
1160     case Instruction::Add:
1161       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1162       break;
1163 
1164     case Instruction::Mul:
1165       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1166       break;
1167 
1168     case Instruction::UDiv:
1169       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1170       break;
1171 
1172     case Instruction::Sub:
1173       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1174       break;
1175     }
1176 
1177     return WideUse == WideAR;
1178   };
1179 
1180   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1181   if (!GuessNonIVOperand(SignExtend)) {
1182     SignExtend = !SignExtend;
1183     if (!GuessNonIVOperand(SignExtend))
1184       return nullptr;
1185   }
1186 
1187   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1188                    ? WideDef
1189                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1190                                       SignExtend, NarrowUse);
1191   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1192                    ? WideDef
1193                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1194                                       SignExtend, NarrowUse);
1195 
1196   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1197   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1198                                         NarrowBO->getName());
1199 
1200   IRBuilder<> Builder(NarrowUse);
1201   Builder.Insert(WideBO);
1202   WideBO->copyIRFlags(NarrowBO);
1203   return WideBO;
1204 }
1205 
1206 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1207   auto It = ExtendKindMap.find(I);
1208   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1209   return It->second;
1210 }
1211 
1212 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1213                                      unsigned OpCode) const {
1214   if (OpCode == Instruction::Add)
1215     return SE->getAddExpr(LHS, RHS);
1216   if (OpCode == Instruction::Sub)
1217     return SE->getMinusSCEV(LHS, RHS);
1218   if (OpCode == Instruction::Mul)
1219     return SE->getMulExpr(LHS, RHS);
1220 
1221   llvm_unreachable("Unsupported opcode.");
1222 }
1223 
1224 /// No-wrap operations can transfer sign extension of their result to their
1225 /// operands. Generate the SCEV value for the widened operation without
1226 /// actually modifying the IR yet. If the expression after extending the
1227 /// operands is an AddRec for this loop, return the AddRec and the kind of
1228 /// extension used.
1229 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1230   // Handle the common case of add<nsw/nuw>
1231   const unsigned OpCode = DU.NarrowUse->getOpcode();
1232   // Only Add/Sub/Mul instructions supported yet.
1233   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1234       OpCode != Instruction::Mul)
1235     return {nullptr, Unknown};
1236 
1237   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1238   // if extending the other will lead to a recurrence.
1239   const unsigned ExtendOperIdx =
1240       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1241   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1242 
1243   const SCEV *ExtendOperExpr = nullptr;
1244   const OverflowingBinaryOperator *OBO =
1245     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1246   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1247   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1248     ExtendOperExpr = SE->getSignExtendExpr(
1249       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1250   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1251     ExtendOperExpr = SE->getZeroExtendExpr(
1252       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1253   else
1254     return {nullptr, Unknown};
1255 
1256   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1257   // flags. This instruction may be guarded by control flow that the no-wrap
1258   // behavior depends on. Non-control-equivalent instructions can be mapped to
1259   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1260   // semantics to those operations.
1261   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1262   const SCEV *rhs = ExtendOperExpr;
1263 
1264   // Let's swap operands to the initial order for the case of non-commutative
1265   // operations, like SUB. See PR21014.
1266   if (ExtendOperIdx == 0)
1267     std::swap(lhs, rhs);
1268   const SCEVAddRecExpr *AddRec =
1269       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1270 
1271   if (!AddRec || AddRec->getLoop() != L)
1272     return {nullptr, Unknown};
1273 
1274   return {AddRec, ExtKind};
1275 }
1276 
1277 /// Is this instruction potentially interesting for further simplification after
1278 /// widening it's type? In other words, can the extend be safely hoisted out of
1279 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1280 /// so, return the extended recurrence and the kind of extension used. Otherwise
1281 /// return {nullptr, Unknown}.
1282 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1283   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1284     return {nullptr, Unknown};
1285 
1286   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1287   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1288       SE->getTypeSizeInBits(WideType)) {
1289     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1290     // index. So don't follow this use.
1291     return {nullptr, Unknown};
1292   }
1293 
1294   const SCEV *WideExpr;
1295   ExtendKind ExtKind;
1296   if (DU.NeverNegative) {
1297     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1298     if (isa<SCEVAddRecExpr>(WideExpr))
1299       ExtKind = SignExtended;
1300     else {
1301       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1302       ExtKind = ZeroExtended;
1303     }
1304   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1305     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1306     ExtKind = SignExtended;
1307   } else {
1308     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1309     ExtKind = ZeroExtended;
1310   }
1311   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1312   if (!AddRec || AddRec->getLoop() != L)
1313     return {nullptr, Unknown};
1314   return {AddRec, ExtKind};
1315 }
1316 
1317 /// This IV user cannot be widen. Replace this use of the original narrow IV
1318 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1319 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1320   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1321   if (!InsertPt)
1322     return;
1323   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1324                     << *DU.NarrowUse << "\n");
1325   IRBuilder<> Builder(InsertPt);
1326   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1327   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1328 }
1329 
1330 /// If the narrow use is a compare instruction, then widen the compare
1331 //  (and possibly the other operand).  The extend operation is hoisted into the
1332 // loop preheader as far as possible.
1333 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1334   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1335   if (!Cmp)
1336     return false;
1337 
1338   // We can legally widen the comparison in the following two cases:
1339   //
1340   //  - The signedness of the IV extension and comparison match
1341   //
1342   //  - The narrow IV is always positive (and thus its sign extension is equal
1343   //    to its zero extension).  For instance, let's say we're zero extending
1344   //    %narrow for the following use
1345   //
1346   //      icmp slt i32 %narrow, %val   ... (A)
1347   //
1348   //    and %narrow is always positive.  Then
1349   //
1350   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1351   //          == icmp slt i32 zext(%narrow), sext(%val)
1352   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1353   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1354     return false;
1355 
1356   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1357   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1358   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1359   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1360 
1361   // Widen the compare instruction.
1362   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1363   if (!InsertPt)
1364     return false;
1365   IRBuilder<> Builder(InsertPt);
1366   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1367 
1368   // Widen the other operand of the compare, if necessary.
1369   if (CastWidth < IVWidth) {
1370     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1371     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1372   }
1373   return true;
1374 }
1375 
1376 /// If the narrow use is an instruction whose two operands are the defining
1377 /// instruction of DU and a load instruction, then we have the following:
1378 /// if the load is hoisted outside the loop, then we do not reach this function
1379 /// as scalar evolution analysis works fine in widenIVUse with variables
1380 /// hoisted outside the loop and efficient code is subsequently generated by
1381 /// not emitting truncate instructions. But when the load is not hoisted
1382 /// (whether due to limitation in alias analysis or due to a true legality),
1383 /// then scalar evolution can not proceed with loop variant values and
1384 /// inefficient code is generated. This function handles the non-hoisted load
1385 /// special case by making the optimization generate the same type of code for
1386 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1387 /// instruction). This special case is important especially when the induction
1388 /// variables are affecting addressing mode in code generation.
1389 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
1390   Instruction *NarrowUse = DU.NarrowUse;
1391   Instruction *NarrowDef = DU.NarrowDef;
1392   Instruction *WideDef = DU.WideDef;
1393 
1394   // Handle the common case of add<nsw/nuw>
1395   const unsigned OpCode = NarrowUse->getOpcode();
1396   // Only Add/Sub/Mul instructions are supported.
1397   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1398       OpCode != Instruction::Mul)
1399     return false;
1400 
1401   // The operand that is not defined by NarrowDef of DU. Let's call it the
1402   // other operand.
1403   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
1404   assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
1405          "bad DU");
1406 
1407   const SCEV *ExtendOperExpr = nullptr;
1408   const OverflowingBinaryOperator *OBO =
1409     cast<OverflowingBinaryOperator>(NarrowUse);
1410   ExtendKind ExtKind = getExtendKind(NarrowDef);
1411   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1412     ExtendOperExpr = SE->getSignExtendExpr(
1413       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1414   else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1415     ExtendOperExpr = SE->getZeroExtendExpr(
1416       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1417   else
1418     return false;
1419 
1420   // We are interested in the other operand being a load instruction.
1421   // But, we should look into relaxing this restriction later on.
1422   auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
1423   if (I && I->getOpcode() != Instruction::Load)
1424     return false;
1425 
1426   // Verifying that Defining operand is an AddRec
1427   const SCEV *Op1 = SE->getSCEV(WideDef);
1428   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1429   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1430     return false;
1431   // Verifying that other operand is an Extend.
1432   if (ExtKind == SignExtended) {
1433     if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
1434       return false;
1435   } else {
1436     if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
1437       return false;
1438   }
1439 
1440   if (ExtKind == SignExtended) {
1441     for (Use &U : NarrowUse->uses()) {
1442       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1443       if (!User || User->getType() != WideType)
1444         return false;
1445     }
1446   } else { // ExtKind == ZeroExtended
1447     for (Use &U : NarrowUse->uses()) {
1448       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1449       if (!User || User->getType() != WideType)
1450         return false;
1451     }
1452   }
1453 
1454   return true;
1455 }
1456 
1457 /// Special Case for widening with variant Loads (see
1458 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1459 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
1460   Instruction *NarrowUse = DU.NarrowUse;
1461   Instruction *NarrowDef = DU.NarrowDef;
1462   Instruction *WideDef = DU.WideDef;
1463 
1464   ExtendKind ExtKind = getExtendKind(NarrowDef);
1465 
1466   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1467 
1468   // Generating a widening use instruction.
1469   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1470                    ? WideDef
1471                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1472                                       ExtKind, NarrowUse);
1473   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1474                    ? WideDef
1475                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1476                                       ExtKind, NarrowUse);
1477 
1478   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1479   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1480                                         NarrowBO->getName());
1481   IRBuilder<> Builder(NarrowUse);
1482   Builder.Insert(WideBO);
1483   WideBO->copyIRFlags(NarrowBO);
1484 
1485   if (ExtKind == SignExtended)
1486     ExtendKindMap[NarrowUse] = SignExtended;
1487   else
1488     ExtendKindMap[NarrowUse] = ZeroExtended;
1489 
1490   // Update the Use.
1491   if (ExtKind == SignExtended) {
1492     for (Use &U : NarrowUse->uses()) {
1493       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1494       if (User && User->getType() == WideType) {
1495         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1496                           << *WideBO << "\n");
1497         ++NumElimExt;
1498         User->replaceAllUsesWith(WideBO);
1499         DeadInsts.emplace_back(User);
1500       }
1501     }
1502   } else { // ExtKind == ZeroExtended
1503     for (Use &U : NarrowUse->uses()) {
1504       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1505       if (User && User->getType() == WideType) {
1506         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1507                           << *WideBO << "\n");
1508         ++NumElimExt;
1509         User->replaceAllUsesWith(WideBO);
1510         DeadInsts.emplace_back(User);
1511       }
1512     }
1513   }
1514 }
1515 
1516 /// Determine whether an individual user of the narrow IV can be widened. If so,
1517 /// return the wide clone of the user.
1518 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1519   assert(ExtendKindMap.count(DU.NarrowDef) &&
1520          "Should already know the kind of extension used to widen NarrowDef");
1521 
1522   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1523   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1524     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1525       // For LCSSA phis, sink the truncate outside the loop.
1526       // After SimplifyCFG most loop exit targets have a single predecessor.
1527       // Otherwise fall back to a truncate within the loop.
1528       if (UsePhi->getNumOperands() != 1)
1529         truncateIVUse(DU, DT, LI);
1530       else {
1531         // Widening the PHI requires us to insert a trunc.  The logical place
1532         // for this trunc is in the same BB as the PHI.  This is not possible if
1533         // the BB is terminated by a catchswitch.
1534         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1535           return nullptr;
1536 
1537         PHINode *WidePhi =
1538           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1539                           UsePhi);
1540         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1541         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1542         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1543         UsePhi->replaceAllUsesWith(Trunc);
1544         DeadInsts.emplace_back(UsePhi);
1545         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1546                           << *WidePhi << "\n");
1547       }
1548       return nullptr;
1549     }
1550   }
1551 
1552   // This narrow use can be widened by a sext if it's non-negative or its narrow
1553   // def was widended by a sext. Same for zext.
1554   auto canWidenBySExt = [&]() {
1555     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1556   };
1557   auto canWidenByZExt = [&]() {
1558     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1559   };
1560 
1561   // Our raison d'etre! Eliminate sign and zero extension.
1562   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1563       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1564     Value *NewDef = DU.WideDef;
1565     if (DU.NarrowUse->getType() != WideType) {
1566       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1567       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1568       if (CastWidth < IVWidth) {
1569         // The cast isn't as wide as the IV, so insert a Trunc.
1570         IRBuilder<> Builder(DU.NarrowUse);
1571         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1572       }
1573       else {
1574         // A wider extend was hidden behind a narrower one. This may induce
1575         // another round of IV widening in which the intermediate IV becomes
1576         // dead. It should be very rare.
1577         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1578                           << " not wide enough to subsume " << *DU.NarrowUse
1579                           << "\n");
1580         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1581         NewDef = DU.NarrowUse;
1582       }
1583     }
1584     if (NewDef != DU.NarrowUse) {
1585       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1586                         << " replaced by " << *DU.WideDef << "\n");
1587       ++NumElimExt;
1588       DU.NarrowUse->replaceAllUsesWith(NewDef);
1589       DeadInsts.emplace_back(DU.NarrowUse);
1590     }
1591     // Now that the extend is gone, we want to expose it's uses for potential
1592     // further simplification. We don't need to directly inform SimplifyIVUsers
1593     // of the new users, because their parent IV will be processed later as a
1594     // new loop phi. If we preserved IVUsers analysis, we would also want to
1595     // push the uses of WideDef here.
1596 
1597     // No further widening is needed. The deceased [sz]ext had done it for us.
1598     return nullptr;
1599   }
1600 
1601   // Does this user itself evaluate to a recurrence after widening?
1602   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1603   if (!WideAddRec.first)
1604     WideAddRec = getWideRecurrence(DU);
1605 
1606   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1607   if (!WideAddRec.first) {
1608     // If use is a loop condition, try to promote the condition instead of
1609     // truncating the IV first.
1610     if (widenLoopCompare(DU))
1611       return nullptr;
1612 
1613     // We are here about to generate a truncate instruction that may hurt
1614     // performance because the scalar evolution expression computed earlier
1615     // in WideAddRec.first does not indicate a polynomial induction expression.
1616     // In that case, look at the operands of the use instruction to determine
1617     // if we can still widen the use instead of truncating its operand.
1618     if (widenWithVariantLoadUse(DU)) {
1619       widenWithVariantLoadUseCodegen(DU);
1620       return nullptr;
1621     }
1622 
1623     // This user does not evaluate to a recurrence after widening, so don't
1624     // follow it. Instead insert a Trunc to kill off the original use,
1625     // eventually isolating the original narrow IV so it can be removed.
1626     truncateIVUse(DU, DT, LI);
1627     return nullptr;
1628   }
1629   // Assume block terminators cannot evaluate to a recurrence. We can't to
1630   // insert a Trunc after a terminator if there happens to be a critical edge.
1631   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1632          "SCEV is not expected to evaluate a block terminator");
1633 
1634   // Reuse the IV increment that SCEVExpander created as long as it dominates
1635   // NarrowUse.
1636   Instruction *WideUse = nullptr;
1637   if (WideAddRec.first == WideIncExpr &&
1638       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1639     WideUse = WideInc;
1640   else {
1641     WideUse = cloneIVUser(DU, WideAddRec.first);
1642     if (!WideUse)
1643       return nullptr;
1644   }
1645   // Evaluation of WideAddRec ensured that the narrow expression could be
1646   // extended outside the loop without overflow. This suggests that the wide use
1647   // evaluates to the same expression as the extended narrow use, but doesn't
1648   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1649   // where it fails, we simply throw away the newly created wide use.
1650   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1651     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1652                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1653                       << "\n");
1654     DeadInsts.emplace_back(WideUse);
1655     return nullptr;
1656   }
1657 
1658   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1659   // Returning WideUse pushes it on the worklist.
1660   return WideUse;
1661 }
1662 
1663 /// Add eligible users of NarrowDef to NarrowIVUsers.
1664 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1665   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1666   bool NonNegativeDef =
1667       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1668                            SE->getConstant(NarrowSCEV->getType(), 0));
1669   for (User *U : NarrowDef->users()) {
1670     Instruction *NarrowUser = cast<Instruction>(U);
1671 
1672     // Handle data flow merges and bizarre phi cycles.
1673     if (!Widened.insert(NarrowUser).second)
1674       continue;
1675 
1676     bool NonNegativeUse = false;
1677     if (!NonNegativeDef) {
1678       // We might have a control-dependent range information for this context.
1679       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1680         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1681     }
1682 
1683     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1684                                NonNegativeDef || NonNegativeUse);
1685   }
1686 }
1687 
1688 /// Process a single induction variable. First use the SCEVExpander to create a
1689 /// wide induction variable that evaluates to the same recurrence as the
1690 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1691 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1692 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1693 ///
1694 /// It would be simpler to delete uses as they are processed, but we must avoid
1695 /// invalidating SCEV expressions.
1696 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1697   // Is this phi an induction variable?
1698   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1699   if (!AddRec)
1700     return nullptr;
1701 
1702   // Widen the induction variable expression.
1703   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1704                                ? SE->getSignExtendExpr(AddRec, WideType)
1705                                : SE->getZeroExtendExpr(AddRec, WideType);
1706 
1707   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1708          "Expect the new IV expression to preserve its type");
1709 
1710   // Can the IV be extended outside the loop without overflow?
1711   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1712   if (!AddRec || AddRec->getLoop() != L)
1713     return nullptr;
1714 
1715   // An AddRec must have loop-invariant operands. Since this AddRec is
1716   // materialized by a loop header phi, the expression cannot have any post-loop
1717   // operands, so they must dominate the loop header.
1718   assert(
1719       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1720       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1721       "Loop header phi recurrence inputs do not dominate the loop");
1722 
1723   // Iterate over IV uses (including transitive ones) looking for IV increments
1724   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1725   // the increment calculate control-dependent range information basing on
1726   // dominating conditions inside of the loop (e.g. a range check inside of the
1727   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1728   //
1729   // Control-dependent range information is later used to prove that a narrow
1730   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1731   // this on demand because when pushNarrowIVUsers needs this information some
1732   // of the dominating conditions might be already widened.
1733   if (UsePostIncrementRanges)
1734     calculatePostIncRanges(OrigPhi);
1735 
1736   // The rewriter provides a value for the desired IV expression. This may
1737   // either find an existing phi or materialize a new one. Either way, we
1738   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1739   // of the phi-SCC dominates the loop entry.
1740   Instruction *InsertPt = &L->getHeader()->front();
1741   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1742 
1743   // Remembering the WideIV increment generated by SCEVExpander allows
1744   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1745   // employ a general reuse mechanism because the call above is the only call to
1746   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1747   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1748     WideInc =
1749       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1750     WideIncExpr = SE->getSCEV(WideInc);
1751     // Propagate the debug location associated with the original loop increment
1752     // to the new (widened) increment.
1753     auto *OrigInc =
1754       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1755     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1756   }
1757 
1758   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1759   ++NumWidened;
1760 
1761   // Traverse the def-use chain using a worklist starting at the original IV.
1762   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1763 
1764   Widened.insert(OrigPhi);
1765   pushNarrowIVUsers(OrigPhi, WidePhi);
1766 
1767   while (!NarrowIVUsers.empty()) {
1768     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1769 
1770     // Process a def-use edge. This may replace the use, so don't hold a
1771     // use_iterator across it.
1772     Instruction *WideUse = widenIVUse(DU, Rewriter);
1773 
1774     // Follow all def-use edges from the previous narrow use.
1775     if (WideUse)
1776       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1777 
1778     // widenIVUse may have removed the def-use edge.
1779     if (DU.NarrowDef->use_empty())
1780       DeadInsts.emplace_back(DU.NarrowDef);
1781   }
1782 
1783   // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1784   // evaluate the same recurrence, we can just copy the debug info over.
1785   SmallVector<DbgValueInst *, 1> DbgValues;
1786   llvm::findDbgValues(DbgValues, OrigPhi);
1787   auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1788                                      ValueAsMetadata::get(WidePhi));
1789   for (auto &DbgValue : DbgValues)
1790     DbgValue->setOperand(0, MDPhi);
1791   return WidePhi;
1792 }
1793 
1794 /// Calculates control-dependent range for the given def at the given context
1795 /// by looking at dominating conditions inside of the loop
1796 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1797                                     Instruction *NarrowUser) {
1798   using namespace llvm::PatternMatch;
1799 
1800   Value *NarrowDefLHS;
1801   const APInt *NarrowDefRHS;
1802   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1803                                  m_APInt(NarrowDefRHS))) ||
1804       !NarrowDefRHS->isNonNegative())
1805     return;
1806 
1807   auto UpdateRangeFromCondition = [&] (Value *Condition,
1808                                        bool TrueDest) {
1809     CmpInst::Predicate Pred;
1810     Value *CmpRHS;
1811     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1812                                  m_Value(CmpRHS))))
1813       return;
1814 
1815     CmpInst::Predicate P =
1816             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1817 
1818     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1819     auto CmpConstrainedLHSRange =
1820             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1821     auto NarrowDefRange =
1822             CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1823 
1824     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1825   };
1826 
1827   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1828     if (!HasGuards)
1829       return;
1830 
1831     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1832                                      Ctx->getParent()->rend())) {
1833       Value *C = nullptr;
1834       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1835         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1836     }
1837   };
1838 
1839   UpdateRangeFromGuards(NarrowUser);
1840 
1841   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1842   // If NarrowUserBB is statically unreachable asking dominator queries may
1843   // yield surprising results. (e.g. the block may not have a dom tree node)
1844   if (!DT->isReachableFromEntry(NarrowUserBB))
1845     return;
1846 
1847   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1848        L->contains(DTB->getBlock());
1849        DTB = DTB->getIDom()) {
1850     auto *BB = DTB->getBlock();
1851     auto *TI = BB->getTerminator();
1852     UpdateRangeFromGuards(TI);
1853 
1854     auto *BI = dyn_cast<BranchInst>(TI);
1855     if (!BI || !BI->isConditional())
1856       continue;
1857 
1858     auto *TrueSuccessor = BI->getSuccessor(0);
1859     auto *FalseSuccessor = BI->getSuccessor(1);
1860 
1861     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1862       return BBE.isSingleEdge() &&
1863              DT->dominates(BBE, NarrowUser->getParent());
1864     };
1865 
1866     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1867       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1868 
1869     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1870       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1871   }
1872 }
1873 
1874 /// Calculates PostIncRangeInfos map for the given IV
1875 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1876   SmallPtrSet<Instruction *, 16> Visited;
1877   SmallVector<Instruction *, 6> Worklist;
1878   Worklist.push_back(OrigPhi);
1879   Visited.insert(OrigPhi);
1880 
1881   while (!Worklist.empty()) {
1882     Instruction *NarrowDef = Worklist.pop_back_val();
1883 
1884     for (Use &U : NarrowDef->uses()) {
1885       auto *NarrowUser = cast<Instruction>(U.getUser());
1886 
1887       // Don't go looking outside the current loop.
1888       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1889       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1890         continue;
1891 
1892       if (!Visited.insert(NarrowUser).second)
1893         continue;
1894 
1895       Worklist.push_back(NarrowUser);
1896 
1897       calculatePostIncRange(NarrowDef, NarrowUser);
1898     }
1899   }
1900 }
1901 
1902 //===----------------------------------------------------------------------===//
1903 //  Live IV Reduction - Minimize IVs live across the loop.
1904 //===----------------------------------------------------------------------===//
1905 
1906 //===----------------------------------------------------------------------===//
1907 //  Simplification of IV users based on SCEV evaluation.
1908 //===----------------------------------------------------------------------===//
1909 
1910 namespace {
1911 
1912 class IndVarSimplifyVisitor : public IVVisitor {
1913   ScalarEvolution *SE;
1914   const TargetTransformInfo *TTI;
1915   PHINode *IVPhi;
1916 
1917 public:
1918   WideIVInfo WI;
1919 
1920   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1921                         const TargetTransformInfo *TTI,
1922                         const DominatorTree *DTree)
1923     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1924     DT = DTree;
1925     WI.NarrowIV = IVPhi;
1926   }
1927 
1928   // Implement the interface used by simplifyUsersOfIV.
1929   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1930 };
1931 
1932 } // end anonymous namespace
1933 
1934 /// Iteratively perform simplification on a worklist of IV users. Each
1935 /// successive simplification may push more users which may themselves be
1936 /// candidates for simplification.
1937 ///
1938 /// Sign/Zero extend elimination is interleaved with IV simplification.
1939 bool IndVarSimplify::simplifyAndExtend(Loop *L,
1940                                        SCEVExpander &Rewriter,
1941                                        LoopInfo *LI) {
1942   SmallVector<WideIVInfo, 8> WideIVs;
1943 
1944   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1945           Intrinsic::getName(Intrinsic::experimental_guard));
1946   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1947 
1948   SmallVector<PHINode*, 8> LoopPhis;
1949   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1950     LoopPhis.push_back(cast<PHINode>(I));
1951   }
1952   // Each round of simplification iterates through the SimplifyIVUsers worklist
1953   // for all current phis, then determines whether any IVs can be
1954   // widened. Widening adds new phis to LoopPhis, inducing another round of
1955   // simplification on the wide IVs.
1956   bool Changed = false;
1957   while (!LoopPhis.empty()) {
1958     // Evaluate as many IV expressions as possible before widening any IVs. This
1959     // forces SCEV to set no-wrap flags before evaluating sign/zero
1960     // extension. The first time SCEV attempts to normalize sign/zero extension,
1961     // the result becomes final. So for the most predictable results, we delay
1962     // evaluation of sign/zero extend evaluation until needed, and avoid running
1963     // other SCEV based analysis prior to simplifyAndExtend.
1964     do {
1965       PHINode *CurrIV = LoopPhis.pop_back_val();
1966 
1967       // Information about sign/zero extensions of CurrIV.
1968       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1969 
1970       Changed |=
1971           simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1972 
1973       if (Visitor.WI.WidestNativeType) {
1974         WideIVs.push_back(Visitor.WI);
1975       }
1976     } while(!LoopPhis.empty());
1977 
1978     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1979       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1980       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1981         Changed = true;
1982         LoopPhis.push_back(WidePhi);
1983       }
1984     }
1985   }
1986   return Changed;
1987 }
1988 
1989 //===----------------------------------------------------------------------===//
1990 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1991 //===----------------------------------------------------------------------===//
1992 
1993 /// Return true if this loop's backedge taken count expression can be safely and
1994 /// cheaply expanded into an instruction sequence that can be used by
1995 /// linearFunctionTestReplace.
1996 ///
1997 /// TODO: This fails for pointer-type loop counters with greater than one byte
1998 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1999 /// we could skip this check in the case that the LFTR loop counter (chosen by
2000 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
2001 /// the loop test to an inequality test by checking the target data's alignment
2002 /// of element types (given that the initial pointer value originates from or is
2003 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
2004 /// However, we don't yet have a strong motivation for converting loop tests
2005 /// into inequality tests.
2006 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
2007                                         SCEVExpander &Rewriter) {
2008   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2009   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
2010       BackedgeTakenCount->isZero())
2011     return false;
2012 
2013   if (!L->getExitingBlock())
2014     return false;
2015 
2016   // Can't rewrite non-branch yet.
2017   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
2018     return false;
2019 
2020   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
2021     return false;
2022 
2023   return true;
2024 }
2025 
2026 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
2027 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
2028   Instruction *IncI = dyn_cast<Instruction>(IncV);
2029   if (!IncI)
2030     return nullptr;
2031 
2032   switch (IncI->getOpcode()) {
2033   case Instruction::Add:
2034   case Instruction::Sub:
2035     break;
2036   case Instruction::GetElementPtr:
2037     // An IV counter must preserve its type.
2038     if (IncI->getNumOperands() == 2)
2039       break;
2040     LLVM_FALLTHROUGH;
2041   default:
2042     return nullptr;
2043   }
2044 
2045   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
2046   if (Phi && Phi->getParent() == L->getHeader()) {
2047     if (isLoopInvariant(IncI->getOperand(1), L, DT))
2048       return Phi;
2049     return nullptr;
2050   }
2051   if (IncI->getOpcode() == Instruction::GetElementPtr)
2052     return nullptr;
2053 
2054   // Allow add/sub to be commuted.
2055   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
2056   if (Phi && Phi->getParent() == L->getHeader()) {
2057     if (isLoopInvariant(IncI->getOperand(0), L, DT))
2058       return Phi;
2059   }
2060   return nullptr;
2061 }
2062 
2063 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
2064 static ICmpInst *getLoopTest(Loop *L) {
2065   assert(L->getExitingBlock() && "expected loop exit");
2066 
2067   BasicBlock *LatchBlock = L->getLoopLatch();
2068   // Don't bother with LFTR if the loop is not properly simplified.
2069   if (!LatchBlock)
2070     return nullptr;
2071 
2072   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
2073   assert(BI && "expected exit branch");
2074 
2075   return dyn_cast<ICmpInst>(BI->getCondition());
2076 }
2077 
2078 /// linearFunctionTestReplace policy. Return true unless we can show that the
2079 /// current exit test is already sufficiently canonical.
2080 static bool needsLFTR(Loop *L, DominatorTree *DT) {
2081   // Do LFTR to simplify the exit condition to an ICMP.
2082   ICmpInst *Cond = getLoopTest(L);
2083   if (!Cond)
2084     return true;
2085 
2086   // Do LFTR to simplify the exit ICMP to EQ/NE
2087   ICmpInst::Predicate Pred = Cond->getPredicate();
2088   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
2089     return true;
2090 
2091   // Look for a loop invariant RHS
2092   Value *LHS = Cond->getOperand(0);
2093   Value *RHS = Cond->getOperand(1);
2094   if (!isLoopInvariant(RHS, L, DT)) {
2095     if (!isLoopInvariant(LHS, L, DT))
2096       return true;
2097     std::swap(LHS, RHS);
2098   }
2099   // Look for a simple IV counter LHS
2100   PHINode *Phi = dyn_cast<PHINode>(LHS);
2101   if (!Phi)
2102     Phi = getLoopPhiForCounter(LHS, L, DT);
2103 
2104   if (!Phi)
2105     return true;
2106 
2107   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2108   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
2109   if (Idx < 0)
2110     return true;
2111 
2112   // Do LFTR if the exit condition's IV is *not* a simple counter.
2113   Value *IncV = Phi->getIncomingValue(Idx);
2114   return Phi != getLoopPhiForCounter(IncV, L, DT);
2115 }
2116 
2117 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2118 /// down to checking that all operands are constant and listing instructions
2119 /// that may hide undef.
2120 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
2121                                unsigned Depth) {
2122   if (isa<Constant>(V))
2123     return !isa<UndefValue>(V);
2124 
2125   if (Depth >= 6)
2126     return false;
2127 
2128   // Conservatively handle non-constant non-instructions. For example, Arguments
2129   // may be undef.
2130   Instruction *I = dyn_cast<Instruction>(V);
2131   if (!I)
2132     return false;
2133 
2134   // Load and return values may be undef.
2135   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
2136     return false;
2137 
2138   // Optimistically handle other instructions.
2139   for (Value *Op : I->operands()) {
2140     if (!Visited.insert(Op).second)
2141       continue;
2142     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
2143       return false;
2144   }
2145   return true;
2146 }
2147 
2148 /// Return true if the given value is concrete. We must prove that undef can
2149 /// never reach it.
2150 ///
2151 /// TODO: If we decide that this is a good approach to checking for undef, we
2152 /// may factor it into a common location.
2153 static bool hasConcreteDef(Value *V) {
2154   SmallPtrSet<Value*, 8> Visited;
2155   Visited.insert(V);
2156   return hasConcreteDefImpl(V, Visited, 0);
2157 }
2158 
2159 /// Return true if this IV has any uses other than the (soon to be rewritten)
2160 /// loop exit test.
2161 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2162   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2163   Value *IncV = Phi->getIncomingValue(LatchIdx);
2164 
2165   for (User *U : Phi->users())
2166     if (U != Cond && U != IncV) return false;
2167 
2168   for (User *U : IncV->users())
2169     if (U != Cond && U != Phi) return false;
2170   return true;
2171 }
2172 
2173 /// Find an affine IV in canonical form.
2174 ///
2175 /// BECount may be an i8* pointer type. The pointer difference is already
2176 /// valid count without scaling the address stride, so it remains a pointer
2177 /// expression as far as SCEV is concerned.
2178 ///
2179 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
2180 ///
2181 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
2182 ///
2183 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
2184 /// This is difficult in general for SCEV because of potential overflow. But we
2185 /// could at least handle constant BECounts.
2186 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
2187                                 ScalarEvolution *SE, DominatorTree *DT) {
2188   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2189 
2190   Value *Cond =
2191     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
2192 
2193   // Loop over all of the PHI nodes, looking for a simple counter.
2194   PHINode *BestPhi = nullptr;
2195   const SCEV *BestInit = nullptr;
2196   BasicBlock *LatchBlock = L->getLoopLatch();
2197   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
2198   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2199 
2200   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2201     PHINode *Phi = cast<PHINode>(I);
2202     if (!SE->isSCEVable(Phi->getType()))
2203       continue;
2204 
2205     // Avoid comparing an integer IV against a pointer Limit.
2206     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2207       continue;
2208 
2209     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2210     if (!AR || AR->getLoop() != L || !AR->isAffine())
2211       continue;
2212 
2213     // AR may be a pointer type, while BECount is an integer type.
2214     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2215     // AR may not be a narrower type, or we may never exit.
2216     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2217     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2218       continue;
2219 
2220     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2221     if (!Step || !Step->isOne())
2222       continue;
2223 
2224     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2225     Value *IncV = Phi->getIncomingValue(LatchIdx);
2226     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
2227       continue;
2228 
2229     // Avoid reusing a potentially undef value to compute other values that may
2230     // have originally had a concrete definition.
2231     if (!hasConcreteDef(Phi)) {
2232       // We explicitly allow unknown phis as long as they are already used by
2233       // the loop test. In this case we assume that performing LFTR could not
2234       // increase the number of undef users.
2235       if (ICmpInst *Cond = getLoopTest(L)) {
2236         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) &&
2237             Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
2238           continue;
2239         }
2240       }
2241     }
2242     const SCEV *Init = AR->getStart();
2243 
2244     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2245       // Don't force a live loop counter if another IV can be used.
2246       if (AlmostDeadIV(Phi, LatchBlock, Cond))
2247         continue;
2248 
2249       // Prefer to count-from-zero. This is a more "canonical" counter form. It
2250       // also prefers integer to pointer IVs.
2251       if (BestInit->isZero() != Init->isZero()) {
2252         if (BestInit->isZero())
2253           continue;
2254       }
2255       // If two IVs both count from zero or both count from nonzero then the
2256       // narrower is likely a dead phi that has been widened. Use the wider phi
2257       // to allow the other to be eliminated.
2258       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2259         continue;
2260     }
2261     BestPhi = Phi;
2262     BestInit = Init;
2263   }
2264   return BestPhi;
2265 }
2266 
2267 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
2268 /// the new loop test.
2269 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
2270                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
2271   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2272   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
2273   const SCEV *IVInit = AR->getStart();
2274 
2275   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
2276   // finds a valid pointer IV. Sign extend BECount in order to materialize a
2277   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2278   // the existing GEPs whenever possible.
2279   if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
2280     // IVOffset will be the new GEP offset that is interpreted by GEP as a
2281     // signed value. IVCount on the other hand represents the loop trip count,
2282     // which is an unsigned value. FindLoopCounter only allows induction
2283     // variables that have a positive unit stride of one. This means we don't
2284     // have to handle the case of negative offsets (yet) and just need to zero
2285     // extend IVCount.
2286     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2287     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
2288 
2289     // Expand the code for the iteration count.
2290     assert(SE->isLoopInvariant(IVOffset, L) &&
2291            "Computed iteration count is not loop invariant!");
2292     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2293     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
2294 
2295     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
2296     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
2297     // We could handle pointer IVs other than i8*, but we need to compensate for
2298     // gep index scaling. See canExpandBackedgeTakenCount comments.
2299     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2300                              cast<PointerType>(GEPBase->getType())
2301                                  ->getElementType())->isOne() &&
2302            "unit stride pointer IV must be i8*");
2303 
2304     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2305     return Builder.CreateGEP(GEPBase->getType()->getPointerElementType(),
2306                              GEPBase, GEPOffset, "lftr.limit");
2307   } else {
2308     // In any other case, convert both IVInit and IVCount to integers before
2309     // comparing. This may result in SCEV expansion of pointers, but in practice
2310     // SCEV will fold the pointer arithmetic away as such:
2311     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2312     //
2313     // Valid Cases: (1) both integers is most common; (2) both may be pointers
2314     // for simple memset-style loops.
2315     //
2316     // IVInit integer and IVCount pointer would only occur if a canonical IV
2317     // were generated on top of case #2, which is not expected.
2318 
2319     const SCEV *IVLimit = nullptr;
2320     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
2321     // For non-zero Start, compute IVCount here.
2322     if (AR->getStart()->isZero())
2323       IVLimit = IVCount;
2324     else {
2325       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2326       const SCEV *IVInit = AR->getStart();
2327 
2328       // For integer IVs, truncate the IV before computing IVInit + BECount.
2329       if (SE->getTypeSizeInBits(IVInit->getType())
2330           > SE->getTypeSizeInBits(IVCount->getType()))
2331         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
2332 
2333       IVLimit = SE->getAddExpr(IVInit, IVCount);
2334     }
2335     // Expand the code for the iteration count.
2336     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2337     IRBuilder<> Builder(BI);
2338     assert(SE->isLoopInvariant(IVLimit, L) &&
2339            "Computed iteration count is not loop invariant!");
2340     // Ensure that we generate the same type as IndVar, or a smaller integer
2341     // type. In the presence of null pointer values, we have an integer type
2342     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2343     Type *LimitTy = IVCount->getType()->isPointerTy() ?
2344       IndVar->getType() : IVCount->getType();
2345     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2346   }
2347 }
2348 
2349 /// This method rewrites the exit condition of the loop to be a canonical !=
2350 /// comparison against the incremented loop induction variable.  This pass is
2351 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2352 /// determine a loop-invariant trip count of the loop, which is actually a much
2353 /// broader range than just linear tests.
2354 bool IndVarSimplify::
2355 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
2356                           PHINode *IndVar, SCEVExpander &Rewriter) {
2357   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
2358 
2359   // Initialize CmpIndVar and IVCount to their preincremented values.
2360   Value *CmpIndVar = IndVar;
2361   const SCEV *IVCount = BackedgeTakenCount;
2362 
2363   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2364 
2365   // If the exiting block is the same as the backedge block, we prefer to
2366   // compare against the post-incremented value, otherwise we must compare
2367   // against the preincremented value.
2368   if (L->getExitingBlock() == L->getLoopLatch()) {
2369     // Add one to the "backedge-taken" count to get the trip count.
2370     // This addition may overflow, which is valid as long as the comparison is
2371     // truncated to BackedgeTakenCount->getType().
2372     IVCount = SE->getAddExpr(BackedgeTakenCount,
2373                              SE->getOne(BackedgeTakenCount->getType()));
2374     // The BackedgeTaken expression contains the number of times that the
2375     // backedge branches to the loop header.  This is one less than the
2376     // number of times the loop executes, so use the incremented indvar.
2377     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
2378   }
2379 
2380   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
2381   assert(ExitCnt->getType()->isPointerTy() ==
2382              IndVar->getType()->isPointerTy() &&
2383          "genLoopLimit missed a cast");
2384 
2385   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2386   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2387   ICmpInst::Predicate P;
2388   if (L->contains(BI->getSuccessor(0)))
2389     P = ICmpInst::ICMP_NE;
2390   else
2391     P = ICmpInst::ICMP_EQ;
2392 
2393   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2394                     << "      LHS:" << *CmpIndVar << '\n'
2395                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
2396                     << "\n"
2397                     << "      RHS:\t" << *ExitCnt << "\n"
2398                     << "  IVCount:\t" << *IVCount << "\n");
2399 
2400   IRBuilder<> Builder(BI);
2401 
2402   // The new loop exit condition should reuse the debug location of the
2403   // original loop exit condition.
2404   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2405     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2406 
2407   // LFTR can ignore IV overflow and truncate to the width of
2408   // BECount. This avoids materializing the add(zext(add)) expression.
2409   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2410   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2411   if (CmpIndVarSize > ExitCntSize) {
2412     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2413     const SCEV *ARStart = AR->getStart();
2414     const SCEV *ARStep = AR->getStepRecurrence(*SE);
2415     // For constant IVCount, avoid truncation.
2416     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2417       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2418       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2419       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2420       // above such that IVCount is now zero.
2421       if (IVCount != BackedgeTakenCount && Count == 0) {
2422         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2423         ++Count;
2424       }
2425       else
2426         Count = Count.zext(CmpIndVarSize);
2427       APInt NewLimit;
2428       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2429         NewLimit = Start - Count;
2430       else
2431         NewLimit = Start + Count;
2432       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2433 
2434       LLVM_DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2435     } else {
2436       // We try to extend trip count first. If that doesn't work we truncate IV.
2437       // Zext(trunc(IV)) == IV implies equivalence of the following two:
2438       // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2439       // one of the two holds, extend the trip count, otherwise we truncate IV.
2440       bool Extended = false;
2441       const SCEV *IV = SE->getSCEV(CmpIndVar);
2442       const SCEV *ZExtTrunc =
2443            SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2444                                                      ExitCnt->getType()),
2445                                  CmpIndVar->getType());
2446 
2447       if (ZExtTrunc == IV) {
2448         Extended = true;
2449         ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2450                                      "wide.trip.count");
2451       } else {
2452         const SCEV *SExtTrunc =
2453           SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2454                                                     ExitCnt->getType()),
2455                                 CmpIndVar->getType());
2456         if (SExtTrunc == IV) {
2457           Extended = true;
2458           ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2459                                        "wide.trip.count");
2460         }
2461       }
2462 
2463       if (!Extended)
2464         CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2465                                         "lftr.wideiv");
2466     }
2467   }
2468   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2469   Value *OrigCond = BI->getCondition();
2470   // It's tempting to use replaceAllUsesWith here to fully replace the old
2471   // comparison, but that's not immediately safe, since users of the old
2472   // comparison may not be dominated by the new comparison. Instead, just
2473   // update the branch to use the new comparison; in the common case this
2474   // will make old comparison dead.
2475   BI->setCondition(Cond);
2476   DeadInsts.push_back(OrigCond);
2477 
2478   ++NumLFTR;
2479   return true;
2480 }
2481 
2482 //===----------------------------------------------------------------------===//
2483 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2484 //===----------------------------------------------------------------------===//
2485 
2486 /// If there's a single exit block, sink any loop-invariant values that
2487 /// were defined in the preheader but not used inside the loop into the
2488 /// exit block to reduce register pressure in the loop.
2489 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2490   BasicBlock *ExitBlock = L->getExitBlock();
2491   if (!ExitBlock) return false;
2492 
2493   BasicBlock *Preheader = L->getLoopPreheader();
2494   if (!Preheader) return false;
2495 
2496   bool MadeAnyChanges = false;
2497   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2498   BasicBlock::iterator I(Preheader->getTerminator());
2499   while (I != Preheader->begin()) {
2500     --I;
2501     // New instructions were inserted at the end of the preheader.
2502     if (isa<PHINode>(I))
2503       break;
2504 
2505     // Don't move instructions which might have side effects, since the side
2506     // effects need to complete before instructions inside the loop.  Also don't
2507     // move instructions which might read memory, since the loop may modify
2508     // memory. Note that it's okay if the instruction might have undefined
2509     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2510     // block.
2511     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2512       continue;
2513 
2514     // Skip debug info intrinsics.
2515     if (isa<DbgInfoIntrinsic>(I))
2516       continue;
2517 
2518     // Skip eh pad instructions.
2519     if (I->isEHPad())
2520       continue;
2521 
2522     // Don't sink alloca: we never want to sink static alloca's out of the
2523     // entry block, and correctly sinking dynamic alloca's requires
2524     // checks for stacksave/stackrestore intrinsics.
2525     // FIXME: Refactor this check somehow?
2526     if (isa<AllocaInst>(I))
2527       continue;
2528 
2529     // Determine if there is a use in or before the loop (direct or
2530     // otherwise).
2531     bool UsedInLoop = false;
2532     for (Use &U : I->uses()) {
2533       Instruction *User = cast<Instruction>(U.getUser());
2534       BasicBlock *UseBB = User->getParent();
2535       if (PHINode *P = dyn_cast<PHINode>(User)) {
2536         unsigned i =
2537           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2538         UseBB = P->getIncomingBlock(i);
2539       }
2540       if (UseBB == Preheader || L->contains(UseBB)) {
2541         UsedInLoop = true;
2542         break;
2543       }
2544     }
2545 
2546     // If there is, the def must remain in the preheader.
2547     if (UsedInLoop)
2548       continue;
2549 
2550     // Otherwise, sink it to the exit block.
2551     Instruction *ToMove = &*I;
2552     bool Done = false;
2553 
2554     if (I != Preheader->begin()) {
2555       // Skip debug info intrinsics.
2556       do {
2557         --I;
2558       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2559 
2560       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2561         Done = true;
2562     } else {
2563       Done = true;
2564     }
2565 
2566     MadeAnyChanges = true;
2567     ToMove->moveBefore(*ExitBlock, InsertPt);
2568     if (Done) break;
2569     InsertPt = ToMove->getIterator();
2570   }
2571 
2572   return MadeAnyChanges;
2573 }
2574 
2575 //===----------------------------------------------------------------------===//
2576 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2577 //===----------------------------------------------------------------------===//
2578 
2579 bool IndVarSimplify::run(Loop *L) {
2580   // We need (and expect!) the incoming loop to be in LCSSA.
2581   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2582          "LCSSA required to run indvars!");
2583   bool Changed = false;
2584 
2585   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2586   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2587   //    canonicalization can be a pessimization without LSR to "clean up"
2588   //    afterwards.
2589   //  - We depend on having a preheader; in particular,
2590   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2591   //    and we're in trouble if we can't find the induction variable even when
2592   //    we've manually inserted one.
2593   //  - LFTR relies on having a single backedge.
2594   if (!L->isLoopSimplifyForm())
2595     return false;
2596 
2597   // If there are any floating-point recurrences, attempt to
2598   // transform them to use integer recurrences.
2599   Changed |= rewriteNonIntegerIVs(L);
2600 
2601   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2602 
2603   // Create a rewriter object which we'll use to transform the code with.
2604   SCEVExpander Rewriter(*SE, DL, "indvars");
2605 #ifndef NDEBUG
2606   Rewriter.setDebugType(DEBUG_TYPE);
2607 #endif
2608 
2609   // Eliminate redundant IV users.
2610   //
2611   // Simplification works best when run before other consumers of SCEV. We
2612   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2613   // other expressions involving loop IVs have been evaluated. This helps SCEV
2614   // set no-wrap flags before normalizing sign/zero extension.
2615   Rewriter.disableCanonicalMode();
2616   Changed |= simplifyAndExtend(L, Rewriter, LI);
2617 
2618   // Check to see if this loop has a computable loop-invariant execution count.
2619   // If so, this means that we can compute the final value of any expressions
2620   // that are recurrent in the loop, and substitute the exit values from the
2621   // loop into any instructions outside of the loop that use the final values of
2622   // the current expressions.
2623   //
2624   if (ReplaceExitValue != NeverRepl &&
2625       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2626     Changed |= rewriteLoopExitValues(L, Rewriter);
2627 
2628   // Eliminate redundant IV cycles.
2629   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2630 
2631   // If we have a trip count expression, rewrite the loop's exit condition
2632   // using it.  We can currently only handle loops with a single exit.
2633   if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) &&
2634       needsLFTR(L, DT)) {
2635     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2636     if (IndVar) {
2637       // Check preconditions for proper SCEVExpander operation. SCEV does not
2638       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2639       // pass that uses the SCEVExpander must do it. This does not work well for
2640       // loop passes because SCEVExpander makes assumptions about all loops,
2641       // while LoopPassManager only forces the current loop to be simplified.
2642       //
2643       // FIXME: SCEV expansion has no way to bail out, so the caller must
2644       // explicitly check any assumptions made by SCEV. Brittle.
2645       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2646       if (!AR || AR->getLoop()->getLoopPreheader())
2647         Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2648                                              Rewriter);
2649     }
2650   }
2651   // Clear the rewriter cache, because values that are in the rewriter's cache
2652   // can be deleted in the loop below, causing the AssertingVH in the cache to
2653   // trigger.
2654   Rewriter.clear();
2655 
2656   // Now that we're done iterating through lists, clean up any instructions
2657   // which are now dead.
2658   while (!DeadInsts.empty())
2659     if (Instruction *Inst =
2660             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2661       Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2662 
2663   // The Rewriter may not be used from this point on.
2664 
2665   // Loop-invariant instructions in the preheader that aren't used in the
2666   // loop may be sunk below the loop to reduce register pressure.
2667   Changed |= sinkUnusedInvariants(L);
2668 
2669   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2670   // trip count and therefore can further simplify exit values in addition to
2671   // rewriteLoopExitValues.
2672   Changed |= rewriteFirstIterationLoopExitValues(L);
2673 
2674   // Clean up dead instructions.
2675   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2676 
2677   // Check a post-condition.
2678   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2679          "Indvars did not preserve LCSSA!");
2680 
2681   // Verify that LFTR, and any other change have not interfered with SCEV's
2682   // ability to compute trip count.
2683 #ifndef NDEBUG
2684   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2685     SE->forgetLoop(L);
2686     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2687     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2688         SE->getTypeSizeInBits(NewBECount->getType()))
2689       NewBECount = SE->getTruncateOrNoop(NewBECount,
2690                                          BackedgeTakenCount->getType());
2691     else
2692       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2693                                                  NewBECount->getType());
2694     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2695   }
2696 #endif
2697 
2698   return Changed;
2699 }
2700 
2701 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2702                                           LoopStandardAnalysisResults &AR,
2703                                           LPMUpdater &) {
2704   Function *F = L.getHeader()->getParent();
2705   const DataLayout &DL = F->getParent()->getDataLayout();
2706 
2707   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2708   if (!IVS.run(&L))
2709     return PreservedAnalyses::all();
2710 
2711   auto PA = getLoopPassPreservedAnalyses();
2712   PA.preserveSet<CFGAnalyses>();
2713   return PA;
2714 }
2715 
2716 namespace {
2717 
2718 struct IndVarSimplifyLegacyPass : public LoopPass {
2719   static char ID; // Pass identification, replacement for typeid
2720 
2721   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2722     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2723   }
2724 
2725   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2726     if (skipLoop(L))
2727       return false;
2728 
2729     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2730     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2731     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2732     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2733     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2734     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2735     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2736     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2737 
2738     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2739     return IVS.run(L);
2740   }
2741 
2742   void getAnalysisUsage(AnalysisUsage &AU) const override {
2743     AU.setPreservesCFG();
2744     getLoopAnalysisUsage(AU);
2745   }
2746 };
2747 
2748 } // end anonymous namespace
2749 
2750 char IndVarSimplifyLegacyPass::ID = 0;
2751 
2752 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2753                       "Induction Variable Simplification", false, false)
2754 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2755 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2756                     "Induction Variable Simplification", false, false)
2757 
2758 Pass *llvm::createIndVarSimplifyPass() {
2759   return new IndVarSimplifyLegacyPass();
2760 }
2761