1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Local.h" 53 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "indvars" 57 58 STATISTIC(NumWidened , "Number of indvars widened"); 59 STATISTIC(NumReplaced , "Number of exit values replaced"); 60 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 61 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 62 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 63 64 // Trip count verification can be enabled by default under NDEBUG if we 65 // implement a strong expression equivalence checker in SCEV. Until then, we 66 // use the verify-indvars flag, which may assert in some cases. 67 static cl::opt<bool> VerifyIndvars( 68 "verify-indvars", cl::Hidden, 69 cl::desc("Verify the ScalarEvolution result after running indvars")); 70 71 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 72 cl::desc("Reduce live induction variables.")); 73 74 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 75 76 static cl::opt<ReplaceExitVal> ReplaceExitValue( 77 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 78 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 79 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 80 clEnumValN(OnlyCheapRepl, "cheap", 81 "only replace exit value when the cost is cheap"), 82 clEnumValN(AlwaysRepl, "always", 83 "always replace exit value whenever possible"), 84 clEnumValEnd)); 85 86 namespace { 87 struct RewritePhi; 88 89 class IndVarSimplify : public LoopPass { 90 LoopInfo *LI; 91 ScalarEvolution *SE; 92 DominatorTree *DT; 93 TargetLibraryInfo *TLI; 94 const TargetTransformInfo *TTI; 95 96 SmallVector<WeakVH, 16> DeadInsts; 97 bool Changed; 98 public: 99 100 static char ID; // Pass identification, replacement for typeid 101 IndVarSimplify() 102 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) { 103 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 104 } 105 106 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 107 108 void getAnalysisUsage(AnalysisUsage &AU) const override { 109 AU.addRequired<DominatorTreeWrapperPass>(); 110 AU.addRequired<LoopInfoWrapperPass>(); 111 AU.addRequired<ScalarEvolutionWrapperPass>(); 112 AU.addRequiredID(LoopSimplifyID); 113 AU.addRequiredID(LCSSAID); 114 AU.addPreserved<GlobalsAAWrapperPass>(); 115 AU.addPreserved<ScalarEvolutionWrapperPass>(); 116 AU.addPreservedID(LoopSimplifyID); 117 AU.addPreservedID(LCSSAID); 118 AU.setPreservesCFG(); 119 } 120 121 private: 122 void releaseMemory() override { 123 DeadInsts.clear(); 124 } 125 126 bool isValidRewrite(Value *FromVal, Value *ToVal); 127 128 void handleFloatingPointIV(Loop *L, PHINode *PH); 129 void rewriteNonIntegerIVs(Loop *L); 130 131 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 132 133 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 134 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 135 136 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 137 PHINode *IndVar, SCEVExpander &Rewriter); 138 139 void sinkUnusedInvariants(Loop *L); 140 141 Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 142 Instruction *InsertPt, Type *Ty); 143 }; 144 } 145 146 char IndVarSimplify::ID = 0; 147 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 148 "Induction Variable Simplification", false, false) 149 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 150 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 151 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 152 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 153 INITIALIZE_PASS_DEPENDENCY(LCSSA) 154 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 155 "Induction Variable Simplification", false, false) 156 157 Pass *llvm::createIndVarSimplifyPass() { 158 return new IndVarSimplify(); 159 } 160 161 /// Return true if the SCEV expansion generated by the rewriter can replace the 162 /// original value. SCEV guarantees that it produces the same value, but the way 163 /// it is produced may be illegal IR. Ideally, this function will only be 164 /// called for verification. 165 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 166 // If an SCEV expression subsumed multiple pointers, its expansion could 167 // reassociate the GEP changing the base pointer. This is illegal because the 168 // final address produced by a GEP chain must be inbounds relative to its 169 // underlying object. Otherwise basic alias analysis, among other things, 170 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 171 // producing an expression involving multiple pointers. Until then, we must 172 // bail out here. 173 // 174 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 175 // because it understands lcssa phis while SCEV does not. 176 Value *FromPtr = FromVal; 177 Value *ToPtr = ToVal; 178 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 179 FromPtr = GEP->getPointerOperand(); 180 } 181 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 182 ToPtr = GEP->getPointerOperand(); 183 } 184 if (FromPtr != FromVal || ToPtr != ToVal) { 185 // Quickly check the common case 186 if (FromPtr == ToPtr) 187 return true; 188 189 // SCEV may have rewritten an expression that produces the GEP's pointer 190 // operand. That's ok as long as the pointer operand has the same base 191 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 192 // base of a recurrence. This handles the case in which SCEV expansion 193 // converts a pointer type recurrence into a nonrecurrent pointer base 194 // indexed by an integer recurrence. 195 196 // If the GEP base pointer is a vector of pointers, abort. 197 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 198 return false; 199 200 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 201 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 202 if (FromBase == ToBase) 203 return true; 204 205 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 206 << *FromBase << " != " << *ToBase << "\n"); 207 208 return false; 209 } 210 return true; 211 } 212 213 /// Determine the insertion point for this user. By default, insert immediately 214 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 215 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 216 /// common dominator for the incoming blocks. 217 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 218 DominatorTree *DT) { 219 PHINode *PHI = dyn_cast<PHINode>(User); 220 if (!PHI) 221 return User; 222 223 Instruction *InsertPt = nullptr; 224 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 225 if (PHI->getIncomingValue(i) != Def) 226 continue; 227 228 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 229 if (!InsertPt) { 230 InsertPt = InsertBB->getTerminator(); 231 continue; 232 } 233 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 234 InsertPt = InsertBB->getTerminator(); 235 } 236 assert(InsertPt && "Missing phi operand"); 237 assert((!isa<Instruction>(Def) || 238 DT->dominates(cast<Instruction>(Def), InsertPt)) && 239 "def does not dominate all uses"); 240 return InsertPt; 241 } 242 243 //===----------------------------------------------------------------------===// 244 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 245 //===----------------------------------------------------------------------===// 246 247 /// Convert APF to an integer, if possible. 248 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 249 bool isExact = false; 250 // See if we can convert this to an int64_t 251 uint64_t UIntVal; 252 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 253 &isExact) != APFloat::opOK || !isExact) 254 return false; 255 IntVal = UIntVal; 256 return true; 257 } 258 259 /// If the loop has floating induction variable then insert corresponding 260 /// integer induction variable if possible. 261 /// For example, 262 /// for(double i = 0; i < 10000; ++i) 263 /// bar(i) 264 /// is converted into 265 /// for(int i = 0; i < 10000; ++i) 266 /// bar((double)i); 267 /// 268 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 269 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 270 unsigned BackEdge = IncomingEdge^1; 271 272 // Check incoming value. 273 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 274 275 int64_t InitValue; 276 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 277 return; 278 279 // Check IV increment. Reject this PN if increment operation is not 280 // an add or increment value can not be represented by an integer. 281 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 282 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 283 284 // If this is not an add of the PHI with a constantfp, or if the constant fp 285 // is not an integer, bail out. 286 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 287 int64_t IncValue; 288 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 289 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 290 return; 291 292 // Check Incr uses. One user is PN and the other user is an exit condition 293 // used by the conditional terminator. 294 Value::user_iterator IncrUse = Incr->user_begin(); 295 Instruction *U1 = cast<Instruction>(*IncrUse++); 296 if (IncrUse == Incr->user_end()) return; 297 Instruction *U2 = cast<Instruction>(*IncrUse++); 298 if (IncrUse != Incr->user_end()) return; 299 300 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 301 // only used by a branch, we can't transform it. 302 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 303 if (!Compare) 304 Compare = dyn_cast<FCmpInst>(U2); 305 if (!Compare || !Compare->hasOneUse() || 306 !isa<BranchInst>(Compare->user_back())) 307 return; 308 309 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 310 311 // We need to verify that the branch actually controls the iteration count 312 // of the loop. If not, the new IV can overflow and no one will notice. 313 // The branch block must be in the loop and one of the successors must be out 314 // of the loop. 315 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 316 if (!L->contains(TheBr->getParent()) || 317 (L->contains(TheBr->getSuccessor(0)) && 318 L->contains(TheBr->getSuccessor(1)))) 319 return; 320 321 322 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 323 // transform it. 324 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 325 int64_t ExitValue; 326 if (ExitValueVal == nullptr || 327 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 328 return; 329 330 // Find new predicate for integer comparison. 331 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 332 switch (Compare->getPredicate()) { 333 default: return; // Unknown comparison. 334 case CmpInst::FCMP_OEQ: 335 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 336 case CmpInst::FCMP_ONE: 337 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 338 case CmpInst::FCMP_OGT: 339 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 340 case CmpInst::FCMP_OGE: 341 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 342 case CmpInst::FCMP_OLT: 343 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 344 case CmpInst::FCMP_OLE: 345 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 346 } 347 348 // We convert the floating point induction variable to a signed i32 value if 349 // we can. This is only safe if the comparison will not overflow in a way 350 // that won't be trapped by the integer equivalent operations. Check for this 351 // now. 352 // TODO: We could use i64 if it is native and the range requires it. 353 354 // The start/stride/exit values must all fit in signed i32. 355 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 356 return; 357 358 // If not actually striding (add x, 0.0), avoid touching the code. 359 if (IncValue == 0) 360 return; 361 362 // Positive and negative strides have different safety conditions. 363 if (IncValue > 0) { 364 // If we have a positive stride, we require the init to be less than the 365 // exit value. 366 if (InitValue >= ExitValue) 367 return; 368 369 uint32_t Range = uint32_t(ExitValue-InitValue); 370 // Check for infinite loop, either: 371 // while (i <= Exit) or until (i > Exit) 372 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 373 if (++Range == 0) return; // Range overflows. 374 } 375 376 unsigned Leftover = Range % uint32_t(IncValue); 377 378 // If this is an equality comparison, we require that the strided value 379 // exactly land on the exit value, otherwise the IV condition will wrap 380 // around and do things the fp IV wouldn't. 381 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 382 Leftover != 0) 383 return; 384 385 // If the stride would wrap around the i32 before exiting, we can't 386 // transform the IV. 387 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 388 return; 389 390 } else { 391 // If we have a negative stride, we require the init to be greater than the 392 // exit value. 393 if (InitValue <= ExitValue) 394 return; 395 396 uint32_t Range = uint32_t(InitValue-ExitValue); 397 // Check for infinite loop, either: 398 // while (i >= Exit) or until (i < Exit) 399 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 400 if (++Range == 0) return; // Range overflows. 401 } 402 403 unsigned Leftover = Range % uint32_t(-IncValue); 404 405 // If this is an equality comparison, we require that the strided value 406 // exactly land on the exit value, otherwise the IV condition will wrap 407 // around and do things the fp IV wouldn't. 408 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 409 Leftover != 0) 410 return; 411 412 // If the stride would wrap around the i32 before exiting, we can't 413 // transform the IV. 414 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 415 return; 416 } 417 418 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 419 420 // Insert new integer induction variable. 421 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 422 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 423 PN->getIncomingBlock(IncomingEdge)); 424 425 Value *NewAdd = 426 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 427 Incr->getName()+".int", Incr); 428 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 429 430 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 431 ConstantInt::get(Int32Ty, ExitValue), 432 Compare->getName()); 433 434 // In the following deletions, PN may become dead and may be deleted. 435 // Use a WeakVH to observe whether this happens. 436 WeakVH WeakPH = PN; 437 438 // Delete the old floating point exit comparison. The branch starts using the 439 // new comparison. 440 NewCompare->takeName(Compare); 441 Compare->replaceAllUsesWith(NewCompare); 442 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 443 444 // Delete the old floating point increment. 445 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 446 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 447 448 // If the FP induction variable still has uses, this is because something else 449 // in the loop uses its value. In order to canonicalize the induction 450 // variable, we chose to eliminate the IV and rewrite it in terms of an 451 // int->fp cast. 452 // 453 // We give preference to sitofp over uitofp because it is faster on most 454 // platforms. 455 if (WeakPH) { 456 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 457 &*PN->getParent()->getFirstInsertionPt()); 458 PN->replaceAllUsesWith(Conv); 459 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 460 } 461 Changed = true; 462 } 463 464 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 465 // First step. Check to see if there are any floating-point recurrences. 466 // If there are, change them into integer recurrences, permitting analysis by 467 // the SCEV routines. 468 // 469 BasicBlock *Header = L->getHeader(); 470 471 SmallVector<WeakVH, 8> PHIs; 472 for (BasicBlock::iterator I = Header->begin(); 473 PHINode *PN = dyn_cast<PHINode>(I); ++I) 474 PHIs.push_back(PN); 475 476 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 477 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 478 handleFloatingPointIV(L, PN); 479 480 // If the loop previously had floating-point IV, ScalarEvolution 481 // may not have been able to compute a trip count. Now that we've done some 482 // re-writing, the trip count may be computable. 483 if (Changed) 484 SE->forgetLoop(L); 485 } 486 487 namespace { 488 // Collect information about PHI nodes which can be transformed in 489 // rewriteLoopExitValues. 490 struct RewritePhi { 491 PHINode *PN; 492 unsigned Ith; // Ith incoming value. 493 Value *Val; // Exit value after expansion. 494 bool HighCost; // High Cost when expansion. 495 bool SafePhi; // LCSSASafePhiForRAUW. 496 497 RewritePhi(PHINode *P, unsigned I, Value *V, bool H, bool S) 498 : PN(P), Ith(I), Val(V), HighCost(H), SafePhi(S) {} 499 }; 500 } 501 502 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 503 Loop *L, Instruction *InsertPt, 504 Type *ResultTy) { 505 // Before expanding S into an expensive LLVM expression, see if we can use an 506 // already existing value as the expansion for S. 507 if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L)) 508 if (ExistingValue->getType() == ResultTy) 509 return ExistingValue; 510 511 // We didn't find anything, fall back to using SCEVExpander. 512 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 513 } 514 515 //===----------------------------------------------------------------------===// 516 // rewriteLoopExitValues - Optimize IV users outside the loop. 517 // As a side effect, reduces the amount of IV processing within the loop. 518 //===----------------------------------------------------------------------===// 519 520 /// Check to see if this loop has a computable loop-invariant execution count. 521 /// If so, this means that we can compute the final value of any expressions 522 /// that are recurrent in the loop, and substitute the exit values from the loop 523 /// into any instructions outside of the loop that use the final values of the 524 /// current expressions. 525 /// 526 /// This is mostly redundant with the regular IndVarSimplify activities that 527 /// happen later, except that it's more powerful in some cases, because it's 528 /// able to brute-force evaluate arbitrary instructions as long as they have 529 /// constant operands at the beginning of the loop. 530 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 531 // Verify the input to the pass in already in LCSSA form. 532 assert(L->isLCSSAForm(*DT)); 533 534 SmallVector<BasicBlock*, 8> ExitBlocks; 535 L->getUniqueExitBlocks(ExitBlocks); 536 537 SmallVector<RewritePhi, 8> RewritePhiSet; 538 // Find all values that are computed inside the loop, but used outside of it. 539 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 540 // the exit blocks of the loop to find them. 541 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 542 BasicBlock *ExitBB = ExitBlocks[i]; 543 544 // If there are no PHI nodes in this exit block, then no values defined 545 // inside the loop are used on this path, skip it. 546 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 547 if (!PN) continue; 548 549 unsigned NumPreds = PN->getNumIncomingValues(); 550 551 // We would like to be able to RAUW single-incoming value PHI nodes. We 552 // have to be certain this is safe even when this is an LCSSA PHI node. 553 // While the computed exit value is no longer varying in *this* loop, the 554 // exit block may be an exit block for an outer containing loop as well, 555 // the exit value may be varying in the outer loop, and thus it may still 556 // require an LCSSA PHI node. The safe case is when this is 557 // single-predecessor PHI node (LCSSA) and the exit block containing it is 558 // part of the enclosing loop, or this is the outer most loop of the nest. 559 // In either case the exit value could (at most) be varying in the same 560 // loop body as the phi node itself. Thus if it is in turn used outside of 561 // an enclosing loop it will only be via a separate LCSSA node. 562 bool LCSSASafePhiForRAUW = 563 NumPreds == 1 && 564 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB)); 565 566 // Iterate over all of the PHI nodes. 567 BasicBlock::iterator BBI = ExitBB->begin(); 568 while ((PN = dyn_cast<PHINode>(BBI++))) { 569 if (PN->use_empty()) 570 continue; // dead use, don't replace it 571 572 // SCEV only supports integer expressions for now. 573 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 574 continue; 575 576 // It's necessary to tell ScalarEvolution about this explicitly so that 577 // it can walk the def-use list and forget all SCEVs, as it may not be 578 // watching the PHI itself. Once the new exit value is in place, there 579 // may not be a def-use connection between the loop and every instruction 580 // which got a SCEVAddRecExpr for that loop. 581 SE->forgetValue(PN); 582 583 // Iterate over all of the values in all the PHI nodes. 584 for (unsigned i = 0; i != NumPreds; ++i) { 585 // If the value being merged in is not integer or is not defined 586 // in the loop, skip it. 587 Value *InVal = PN->getIncomingValue(i); 588 if (!isa<Instruction>(InVal)) 589 continue; 590 591 // If this pred is for a subloop, not L itself, skip it. 592 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 593 continue; // The Block is in a subloop, skip it. 594 595 // Check that InVal is defined in the loop. 596 Instruction *Inst = cast<Instruction>(InVal); 597 if (!L->contains(Inst)) 598 continue; 599 600 // Okay, this instruction has a user outside of the current loop 601 // and varies predictably *inside* the loop. Evaluate the value it 602 // contains when the loop exits, if possible. 603 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 604 if (!SE->isLoopInvariant(ExitValue, L) || 605 !isSafeToExpand(ExitValue, *SE)) 606 continue; 607 608 // Computing the value outside of the loop brings no benefit if : 609 // - it is definitely used inside the loop in a way which can not be 610 // optimized away. 611 // - no use outside of the loop can take advantage of hoisting the 612 // computation out of the loop 613 if (ExitValue->getSCEVType()>=scMulExpr) { 614 unsigned NumHardInternalUses = 0; 615 unsigned NumSoftExternalUses = 0; 616 unsigned NumUses = 0; 617 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 618 IB != IE && NumUses <= 6; ++IB) { 619 Instruction *UseInstr = cast<Instruction>(*IB); 620 unsigned Opc = UseInstr->getOpcode(); 621 NumUses++; 622 if (L->contains(UseInstr)) { 623 if (Opc == Instruction::Call || Opc == Instruction::Ret) 624 NumHardInternalUses++; 625 } else { 626 if (Opc == Instruction::PHI) { 627 // Do not count the Phi as a use. LCSSA may have inserted 628 // plenty of trivial ones. 629 NumUses--; 630 for (auto PB = UseInstr->user_begin(), 631 PE = UseInstr->user_end(); 632 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 633 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 634 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 635 NumSoftExternalUses++; 636 } 637 continue; 638 } 639 if (Opc != Instruction::Call && Opc != Instruction::Ret) 640 NumSoftExternalUses++; 641 } 642 } 643 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 644 continue; 645 } 646 647 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 648 Value *ExitVal = 649 expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 650 651 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 652 << " LoopVal = " << *Inst << "\n"); 653 654 if (!isValidRewrite(Inst, ExitVal)) { 655 DeadInsts.push_back(ExitVal); 656 continue; 657 } 658 659 // Collect all the candidate PHINodes to be rewritten. 660 RewritePhiSet.push_back( 661 RewritePhi(PN, i, ExitVal, HighCost, LCSSASafePhiForRAUW)); 662 } 663 } 664 } 665 666 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 667 668 // Transformation. 669 for (const RewritePhi &Phi : RewritePhiSet) { 670 PHINode *PN = Phi.PN; 671 Value *ExitVal = Phi.Val; 672 673 // Only do the rewrite when the ExitValue can be expanded cheaply. 674 // If LoopCanBeDel is true, rewrite exit value aggressively. 675 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 676 DeadInsts.push_back(ExitVal); 677 continue; 678 } 679 680 Changed = true; 681 ++NumReplaced; 682 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 683 PN->setIncomingValue(Phi.Ith, ExitVal); 684 685 // If this instruction is dead now, delete it. Don't do it now to avoid 686 // invalidating iterators. 687 if (isInstructionTriviallyDead(Inst, TLI)) 688 DeadInsts.push_back(Inst); 689 690 // If we determined that this PHI is safe to replace even if an LCSSA 691 // PHI, do so. 692 if (Phi.SafePhi) { 693 PN->replaceAllUsesWith(ExitVal); 694 PN->eraseFromParent(); 695 } 696 } 697 698 // The insertion point instruction may have been deleted; clear it out 699 // so that the rewriter doesn't trip over it later. 700 Rewriter.clearInsertPoint(); 701 } 702 703 /// Check whether it is possible to delete the loop after rewriting exit 704 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 705 /// aggressively. 706 bool IndVarSimplify::canLoopBeDeleted( 707 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 708 709 BasicBlock *Preheader = L->getLoopPreheader(); 710 // If there is no preheader, the loop will not be deleted. 711 if (!Preheader) 712 return false; 713 714 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 715 // We obviate multiple ExitingBlocks case for simplicity. 716 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 717 // after exit value rewriting, we can enhance the logic here. 718 SmallVector<BasicBlock *, 4> ExitingBlocks; 719 L->getExitingBlocks(ExitingBlocks); 720 SmallVector<BasicBlock *, 8> ExitBlocks; 721 L->getUniqueExitBlocks(ExitBlocks); 722 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 723 return false; 724 725 BasicBlock *ExitBlock = ExitBlocks[0]; 726 BasicBlock::iterator BI = ExitBlock->begin(); 727 while (PHINode *P = dyn_cast<PHINode>(BI)) { 728 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 729 730 // If the Incoming value of P is found in RewritePhiSet, we know it 731 // could be rewritten to use a loop invariant value in transformation 732 // phase later. Skip it in the loop invariant check below. 733 bool found = false; 734 for (const RewritePhi &Phi : RewritePhiSet) { 735 unsigned i = Phi.Ith; 736 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 737 found = true; 738 break; 739 } 740 } 741 742 Instruction *I; 743 if (!found && (I = dyn_cast<Instruction>(Incoming))) 744 if (!L->hasLoopInvariantOperands(I)) 745 return false; 746 747 ++BI; 748 } 749 750 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); 751 LI != LE; ++LI) { 752 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end(); BI != BE; 753 ++BI) { 754 if (BI->mayHaveSideEffects()) 755 return false; 756 } 757 } 758 759 return true; 760 } 761 762 //===----------------------------------------------------------------------===// 763 // IV Widening - Extend the width of an IV to cover its widest uses. 764 //===----------------------------------------------------------------------===// 765 766 namespace { 767 // Collect information about induction variables that are used by sign/zero 768 // extend operations. This information is recorded by CollectExtend and provides 769 // the input to WidenIV. 770 struct WideIVInfo { 771 PHINode *NarrowIV = nullptr; 772 Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext 773 bool IsSigned = false; // Was a sext user seen before a zext? 774 }; 775 } 776 777 /// Update information about the induction variable that is extended by this 778 /// sign or zero extend operation. This is used to determine the final width of 779 /// the IV before actually widening it. 780 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 781 const TargetTransformInfo *TTI) { 782 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 783 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 784 return; 785 786 Type *Ty = Cast->getType(); 787 uint64_t Width = SE->getTypeSizeInBits(Ty); 788 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 789 return; 790 791 // Cast is either an sext or zext up to this point. 792 // We should not widen an indvar if arithmetics on the wider indvar are more 793 // expensive than those on the narrower indvar. We check only the cost of ADD 794 // because at least an ADD is required to increment the induction variable. We 795 // could compute more comprehensively the cost of all instructions on the 796 // induction variable when necessary. 797 if (TTI && 798 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 799 TTI->getArithmeticInstrCost(Instruction::Add, 800 Cast->getOperand(0)->getType())) { 801 return; 802 } 803 804 if (!WI.WidestNativeType) { 805 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 806 WI.IsSigned = IsSigned; 807 return; 808 } 809 810 // We extend the IV to satisfy the sign of its first user, arbitrarily. 811 if (WI.IsSigned != IsSigned) 812 return; 813 814 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 815 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 816 } 817 818 namespace { 819 820 /// Record a link in the Narrow IV def-use chain along with the WideIV that 821 /// computes the same value as the Narrow IV def. This avoids caching Use* 822 /// pointers. 823 struct NarrowIVDefUse { 824 Instruction *NarrowDef = nullptr; 825 Instruction *NarrowUse = nullptr; 826 Instruction *WideDef = nullptr; 827 828 // True if the narrow def is never negative. Tracking this information lets 829 // us use a sign extension instead of a zero extension or vice versa, when 830 // profitable and legal. 831 bool NeverNegative = false; 832 833 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 834 bool NeverNegative) 835 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 836 NeverNegative(NeverNegative) {} 837 }; 838 839 /// The goal of this transform is to remove sign and zero extends without 840 /// creating any new induction variables. To do this, it creates a new phi of 841 /// the wider type and redirects all users, either removing extends or inserting 842 /// truncs whenever we stop propagating the type. 843 /// 844 class WidenIV { 845 // Parameters 846 PHINode *OrigPhi; 847 Type *WideType; 848 bool IsSigned; 849 850 // Context 851 LoopInfo *LI; 852 Loop *L; 853 ScalarEvolution *SE; 854 DominatorTree *DT; 855 856 // Result 857 PHINode *WidePhi; 858 Instruction *WideInc; 859 const SCEV *WideIncExpr; 860 SmallVectorImpl<WeakVH> &DeadInsts; 861 862 SmallPtrSet<Instruction*,16> Widened; 863 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 864 865 public: 866 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 867 ScalarEvolution *SEv, DominatorTree *DTree, 868 SmallVectorImpl<WeakVH> &DI) : 869 OrigPhi(WI.NarrowIV), 870 WideType(WI.WidestNativeType), 871 IsSigned(WI.IsSigned), 872 LI(LInfo), 873 L(LI->getLoopFor(OrigPhi->getParent())), 874 SE(SEv), 875 DT(DTree), 876 WidePhi(nullptr), 877 WideInc(nullptr), 878 WideIncExpr(nullptr), 879 DeadInsts(DI) { 880 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 881 } 882 883 PHINode *createWideIV(SCEVExpander &Rewriter); 884 885 protected: 886 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 887 Instruction *Use); 888 889 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 890 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 891 const SCEVAddRecExpr *WideAR); 892 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 893 894 const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse); 895 896 const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU); 897 898 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 899 unsigned OpCode) const; 900 901 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 902 903 bool widenLoopCompare(NarrowIVDefUse DU); 904 905 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 906 }; 907 } // anonymous namespace 908 909 /// Perform a quick domtree based check for loop invariance assuming that V is 910 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 911 /// purpose. 912 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 913 Instruction *Inst = dyn_cast<Instruction>(V); 914 if (!Inst) 915 return true; 916 917 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 918 } 919 920 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 921 bool IsSigned, Instruction *Use) { 922 // Set the debug location and conservative insertion point. 923 IRBuilder<> Builder(Use); 924 // Hoist the insertion point into loop preheaders as far as possible. 925 for (const Loop *L = LI->getLoopFor(Use->getParent()); 926 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 927 L = L->getParentLoop()) 928 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 929 930 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 931 Builder.CreateZExt(NarrowOper, WideType); 932 } 933 934 /// Instantiate a wide operation to replace a narrow operation. This only needs 935 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 936 /// 0 for any operation we decide not to clone. 937 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 938 const SCEVAddRecExpr *WideAR) { 939 unsigned Opcode = DU.NarrowUse->getOpcode(); 940 switch (Opcode) { 941 default: 942 return nullptr; 943 case Instruction::Add: 944 case Instruction::Mul: 945 case Instruction::UDiv: 946 case Instruction::Sub: 947 return cloneArithmeticIVUser(DU, WideAR); 948 949 case Instruction::And: 950 case Instruction::Or: 951 case Instruction::Xor: 952 case Instruction::Shl: 953 case Instruction::LShr: 954 case Instruction::AShr: 955 return cloneBitwiseIVUser(DU); 956 } 957 } 958 959 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 960 Instruction *NarrowUse = DU.NarrowUse; 961 Instruction *NarrowDef = DU.NarrowDef; 962 Instruction *WideDef = DU.WideDef; 963 964 DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 965 966 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 967 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 968 // invariant and will be folded or hoisted. If it actually comes from a 969 // widened IV, it should be removed during a future call to widenIVUse. 970 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 971 ? WideDef 972 : createExtendInst(NarrowUse->getOperand(0), WideType, 973 IsSigned, NarrowUse); 974 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 975 ? WideDef 976 : createExtendInst(NarrowUse->getOperand(1), WideType, 977 IsSigned, NarrowUse); 978 979 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 980 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 981 NarrowBO->getName()); 982 IRBuilder<> Builder(NarrowUse); 983 Builder.Insert(WideBO); 984 WideBO->copyIRFlags(NarrowBO); 985 return WideBO; 986 } 987 988 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 989 const SCEVAddRecExpr *WideAR) { 990 Instruction *NarrowUse = DU.NarrowUse; 991 Instruction *NarrowDef = DU.NarrowDef; 992 Instruction *WideDef = DU.WideDef; 993 994 DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 995 996 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 997 998 // We're trying to find X such that 999 // 1000 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1001 // 1002 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1003 // and check using SCEV if any of them are correct. 1004 1005 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1006 // correct solution to X. 1007 auto GuessNonIVOperand = [&](bool SignExt) { 1008 const SCEV *WideLHS; 1009 const SCEV *WideRHS; 1010 1011 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1012 if (SignExt) 1013 return SE->getSignExtendExpr(S, Ty); 1014 return SE->getZeroExtendExpr(S, Ty); 1015 }; 1016 1017 if (IVOpIdx == 0) { 1018 WideLHS = SE->getSCEV(WideDef); 1019 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1020 WideRHS = GetExtend(NarrowRHS, WideType); 1021 } else { 1022 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1023 WideLHS = GetExtend(NarrowLHS, WideType); 1024 WideRHS = SE->getSCEV(WideDef); 1025 } 1026 1027 // WideUse is "WideDef `op.wide` X" as described in the comment. 1028 const SCEV *WideUse = nullptr; 1029 1030 switch (NarrowUse->getOpcode()) { 1031 default: 1032 llvm_unreachable("No other possibility!"); 1033 1034 case Instruction::Add: 1035 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1036 break; 1037 1038 case Instruction::Mul: 1039 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1040 break; 1041 1042 case Instruction::UDiv: 1043 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1044 break; 1045 1046 case Instruction::Sub: 1047 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1048 break; 1049 } 1050 1051 return WideUse == WideAR; 1052 }; 1053 1054 bool SignExtend = IsSigned; 1055 if (!GuessNonIVOperand(SignExtend)) { 1056 SignExtend = !SignExtend; 1057 if (!GuessNonIVOperand(SignExtend)) 1058 return nullptr; 1059 } 1060 1061 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1062 ? WideDef 1063 : createExtendInst(NarrowUse->getOperand(0), WideType, 1064 SignExtend, NarrowUse); 1065 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1066 ? WideDef 1067 : createExtendInst(NarrowUse->getOperand(1), WideType, 1068 SignExtend, NarrowUse); 1069 1070 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1071 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1072 NarrowBO->getName()); 1073 1074 IRBuilder<> Builder(NarrowUse); 1075 Builder.Insert(WideBO); 1076 WideBO->copyIRFlags(NarrowBO); 1077 return WideBO; 1078 } 1079 1080 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1081 unsigned OpCode) const { 1082 if (OpCode == Instruction::Add) 1083 return SE->getAddExpr(LHS, RHS); 1084 if (OpCode == Instruction::Sub) 1085 return SE->getMinusSCEV(LHS, RHS); 1086 if (OpCode == Instruction::Mul) 1087 return SE->getMulExpr(LHS, RHS); 1088 1089 llvm_unreachable("Unsupported opcode."); 1090 } 1091 1092 /// No-wrap operations can transfer sign extension of their result to their 1093 /// operands. Generate the SCEV value for the widened operation without 1094 /// actually modifying the IR yet. If the expression after extending the 1095 /// operands is an AddRec for this loop, return it. 1096 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1097 1098 // Handle the common case of add<nsw/nuw> 1099 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1100 // Only Add/Sub/Mul instructions supported yet. 1101 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1102 OpCode != Instruction::Mul) 1103 return nullptr; 1104 1105 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1106 // if extending the other will lead to a recurrence. 1107 const unsigned ExtendOperIdx = 1108 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1109 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1110 1111 const SCEV *ExtendOperExpr = nullptr; 1112 const OverflowingBinaryOperator *OBO = 1113 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1114 if (IsSigned && OBO->hasNoSignedWrap()) 1115 ExtendOperExpr = SE->getSignExtendExpr( 1116 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1117 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1118 ExtendOperExpr = SE->getZeroExtendExpr( 1119 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1120 else 1121 return nullptr; 1122 1123 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1124 // flags. This instruction may be guarded by control flow that the no-wrap 1125 // behavior depends on. Non-control-equivalent instructions can be mapped to 1126 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1127 // semantics to those operations. 1128 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1129 const SCEV *rhs = ExtendOperExpr; 1130 1131 // Let's swap operands to the initial order for the case of non-commutative 1132 // operations, like SUB. See PR21014. 1133 if (ExtendOperIdx == 0) 1134 std::swap(lhs, rhs); 1135 const SCEVAddRecExpr *AddRec = 1136 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1137 1138 if (!AddRec || AddRec->getLoop() != L) 1139 return nullptr; 1140 return AddRec; 1141 } 1142 1143 /// Is this instruction potentially interesting for further simplification after 1144 /// widening it's type? In other words, can the extend be safely hoisted out of 1145 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1146 /// so, return the sign or zero extended recurrence. Otherwise return NULL. 1147 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) { 1148 if (!SE->isSCEVable(NarrowUse->getType())) 1149 return nullptr; 1150 1151 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1152 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 1153 >= SE->getTypeSizeInBits(WideType)) { 1154 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1155 // index. So don't follow this use. 1156 return nullptr; 1157 } 1158 1159 const SCEV *WideExpr = IsSigned ? 1160 SE->getSignExtendExpr(NarrowExpr, WideType) : 1161 SE->getZeroExtendExpr(NarrowExpr, WideType); 1162 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1163 if (!AddRec || AddRec->getLoop() != L) 1164 return nullptr; 1165 return AddRec; 1166 } 1167 1168 /// This IV user cannot be widen. Replace this use of the original narrow IV 1169 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1170 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) { 1171 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1172 << " for user " << *DU.NarrowUse << "\n"); 1173 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1174 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1175 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1176 } 1177 1178 /// If the narrow use is a compare instruction, then widen the compare 1179 // (and possibly the other operand). The extend operation is hoisted into the 1180 // loop preheader as far as possible. 1181 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1182 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1183 if (!Cmp) 1184 return false; 1185 1186 // We can legally widen the comparison in the following two cases: 1187 // 1188 // - The signedness of the IV extension and comparison match 1189 // 1190 // - The narrow IV is always positive (and thus its sign extension is equal 1191 // to its zero extension). For instance, let's say we're zero extending 1192 // %narrow for the following use 1193 // 1194 // icmp slt i32 %narrow, %val ... (A) 1195 // 1196 // and %narrow is always positive. Then 1197 // 1198 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1199 // == icmp slt i32 zext(%narrow), sext(%val) 1200 1201 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1202 return false; 1203 1204 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1205 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1206 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1207 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1208 1209 // Widen the compare instruction. 1210 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1211 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1212 1213 // Widen the other operand of the compare, if necessary. 1214 if (CastWidth < IVWidth) { 1215 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1216 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1217 } 1218 return true; 1219 } 1220 1221 /// Determine whether an individual user of the narrow IV can be widened. If so, 1222 /// return the wide clone of the user. 1223 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1224 1225 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1226 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1227 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1228 // For LCSSA phis, sink the truncate outside the loop. 1229 // After SimplifyCFG most loop exit targets have a single predecessor. 1230 // Otherwise fall back to a truncate within the loop. 1231 if (UsePhi->getNumOperands() != 1) 1232 truncateIVUse(DU, DT); 1233 else { 1234 PHINode *WidePhi = 1235 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1236 UsePhi); 1237 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1238 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1239 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1240 UsePhi->replaceAllUsesWith(Trunc); 1241 DeadInsts.emplace_back(UsePhi); 1242 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1243 << " to " << *WidePhi << "\n"); 1244 } 1245 return nullptr; 1246 } 1247 } 1248 // Our raison d'etre! Eliminate sign and zero extension. 1249 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1250 Value *NewDef = DU.WideDef; 1251 if (DU.NarrowUse->getType() != WideType) { 1252 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1253 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1254 if (CastWidth < IVWidth) { 1255 // The cast isn't as wide as the IV, so insert a Trunc. 1256 IRBuilder<> Builder(DU.NarrowUse); 1257 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1258 } 1259 else { 1260 // A wider extend was hidden behind a narrower one. This may induce 1261 // another round of IV widening in which the intermediate IV becomes 1262 // dead. It should be very rare. 1263 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1264 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1265 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1266 NewDef = DU.NarrowUse; 1267 } 1268 } 1269 if (NewDef != DU.NarrowUse) { 1270 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1271 << " replaced by " << *DU.WideDef << "\n"); 1272 ++NumElimExt; 1273 DU.NarrowUse->replaceAllUsesWith(NewDef); 1274 DeadInsts.emplace_back(DU.NarrowUse); 1275 } 1276 // Now that the extend is gone, we want to expose it's uses for potential 1277 // further simplification. We don't need to directly inform SimplifyIVUsers 1278 // of the new users, because their parent IV will be processed later as a 1279 // new loop phi. If we preserved IVUsers analysis, we would also want to 1280 // push the uses of WideDef here. 1281 1282 // No further widening is needed. The deceased [sz]ext had done it for us. 1283 return nullptr; 1284 } 1285 1286 // Does this user itself evaluate to a recurrence after widening? 1287 const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse); 1288 if (!WideAddRec) 1289 WideAddRec = getExtendedOperandRecurrence(DU); 1290 1291 if (!WideAddRec) { 1292 // If use is a loop condition, try to promote the condition instead of 1293 // truncating the IV first. 1294 if (widenLoopCompare(DU)) 1295 return nullptr; 1296 1297 // This user does not evaluate to a recurence after widening, so don't 1298 // follow it. Instead insert a Trunc to kill off the original use, 1299 // eventually isolating the original narrow IV so it can be removed. 1300 truncateIVUse(DU, DT); 1301 return nullptr; 1302 } 1303 // Assume block terminators cannot evaluate to a recurrence. We can't to 1304 // insert a Trunc after a terminator if there happens to be a critical edge. 1305 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1306 "SCEV is not expected to evaluate a block terminator"); 1307 1308 // Reuse the IV increment that SCEVExpander created as long as it dominates 1309 // NarrowUse. 1310 Instruction *WideUse = nullptr; 1311 if (WideAddRec == WideIncExpr 1312 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1313 WideUse = WideInc; 1314 else { 1315 WideUse = cloneIVUser(DU, WideAddRec); 1316 if (!WideUse) 1317 return nullptr; 1318 } 1319 // Evaluation of WideAddRec ensured that the narrow expression could be 1320 // extended outside the loop without overflow. This suggests that the wide use 1321 // evaluates to the same expression as the extended narrow use, but doesn't 1322 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1323 // where it fails, we simply throw away the newly created wide use. 1324 if (WideAddRec != SE->getSCEV(WideUse)) { 1325 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1326 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1327 DeadInsts.emplace_back(WideUse); 1328 return nullptr; 1329 } 1330 1331 // Returning WideUse pushes it on the worklist. 1332 return WideUse; 1333 } 1334 1335 /// Add eligible users of NarrowDef to NarrowIVUsers. 1336 /// 1337 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1338 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1339 bool NeverNegative = 1340 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1341 SE->getConstant(NarrowSCEV->getType(), 0)); 1342 for (User *U : NarrowDef->users()) { 1343 Instruction *NarrowUser = cast<Instruction>(U); 1344 1345 // Handle data flow merges and bizarre phi cycles. 1346 if (!Widened.insert(NarrowUser).second) 1347 continue; 1348 1349 NarrowIVUsers.push_back( 1350 NarrowIVDefUse(NarrowDef, NarrowUser, WideDef, NeverNegative)); 1351 } 1352 } 1353 1354 /// Process a single induction variable. First use the SCEVExpander to create a 1355 /// wide induction variable that evaluates to the same recurrence as the 1356 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1357 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1358 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1359 /// 1360 /// It would be simpler to delete uses as they are processed, but we must avoid 1361 /// invalidating SCEV expressions. 1362 /// 1363 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1364 // Is this phi an induction variable? 1365 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1366 if (!AddRec) 1367 return nullptr; 1368 1369 // Widen the induction variable expression. 1370 const SCEV *WideIVExpr = IsSigned ? 1371 SE->getSignExtendExpr(AddRec, WideType) : 1372 SE->getZeroExtendExpr(AddRec, WideType); 1373 1374 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1375 "Expect the new IV expression to preserve its type"); 1376 1377 // Can the IV be extended outside the loop without overflow? 1378 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1379 if (!AddRec || AddRec->getLoop() != L) 1380 return nullptr; 1381 1382 // An AddRec must have loop-invariant operands. Since this AddRec is 1383 // materialized by a loop header phi, the expression cannot have any post-loop 1384 // operands, so they must dominate the loop header. 1385 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1386 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1387 && "Loop header phi recurrence inputs do not dominate the loop"); 1388 1389 // The rewriter provides a value for the desired IV expression. This may 1390 // either find an existing phi or materialize a new one. Either way, we 1391 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1392 // of the phi-SCC dominates the loop entry. 1393 Instruction *InsertPt = &L->getHeader()->front(); 1394 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1395 1396 // Remembering the WideIV increment generated by SCEVExpander allows 1397 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1398 // employ a general reuse mechanism because the call above is the only call to 1399 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1400 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1401 WideInc = 1402 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1403 WideIncExpr = SE->getSCEV(WideInc); 1404 } 1405 1406 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1407 ++NumWidened; 1408 1409 // Traverse the def-use chain using a worklist starting at the original IV. 1410 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1411 1412 Widened.insert(OrigPhi); 1413 pushNarrowIVUsers(OrigPhi, WidePhi); 1414 1415 while (!NarrowIVUsers.empty()) { 1416 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1417 1418 // Process a def-use edge. This may replace the use, so don't hold a 1419 // use_iterator across it. 1420 Instruction *WideUse = widenIVUse(DU, Rewriter); 1421 1422 // Follow all def-use edges from the previous narrow use. 1423 if (WideUse) 1424 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1425 1426 // widenIVUse may have removed the def-use edge. 1427 if (DU.NarrowDef->use_empty()) 1428 DeadInsts.emplace_back(DU.NarrowDef); 1429 } 1430 return WidePhi; 1431 } 1432 1433 //===----------------------------------------------------------------------===// 1434 // Live IV Reduction - Minimize IVs live across the loop. 1435 //===----------------------------------------------------------------------===// 1436 1437 1438 //===----------------------------------------------------------------------===// 1439 // Simplification of IV users based on SCEV evaluation. 1440 //===----------------------------------------------------------------------===// 1441 1442 namespace { 1443 class IndVarSimplifyVisitor : public IVVisitor { 1444 ScalarEvolution *SE; 1445 const TargetTransformInfo *TTI; 1446 PHINode *IVPhi; 1447 1448 public: 1449 WideIVInfo WI; 1450 1451 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1452 const TargetTransformInfo *TTI, 1453 const DominatorTree *DTree) 1454 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1455 DT = DTree; 1456 WI.NarrowIV = IVPhi; 1457 if (ReduceLiveIVs) 1458 setSplitOverflowIntrinsics(); 1459 } 1460 1461 // Implement the interface used by simplifyUsersOfIV. 1462 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1463 }; 1464 } 1465 1466 /// Iteratively perform simplification on a worklist of IV users. Each 1467 /// successive simplification may push more users which may themselves be 1468 /// candidates for simplification. 1469 /// 1470 /// Sign/Zero extend elimination is interleaved with IV simplification. 1471 /// 1472 void IndVarSimplify::simplifyAndExtend(Loop *L, 1473 SCEVExpander &Rewriter, 1474 LPPassManager &LPM) { 1475 SmallVector<WideIVInfo, 8> WideIVs; 1476 1477 SmallVector<PHINode*, 8> LoopPhis; 1478 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1479 LoopPhis.push_back(cast<PHINode>(I)); 1480 } 1481 // Each round of simplification iterates through the SimplifyIVUsers worklist 1482 // for all current phis, then determines whether any IVs can be 1483 // widened. Widening adds new phis to LoopPhis, inducing another round of 1484 // simplification on the wide IVs. 1485 while (!LoopPhis.empty()) { 1486 // Evaluate as many IV expressions as possible before widening any IVs. This 1487 // forces SCEV to set no-wrap flags before evaluating sign/zero 1488 // extension. The first time SCEV attempts to normalize sign/zero extension, 1489 // the result becomes final. So for the most predictable results, we delay 1490 // evaluation of sign/zero extend evaluation until needed, and avoid running 1491 // other SCEV based analysis prior to simplifyAndExtend. 1492 do { 1493 PHINode *CurrIV = LoopPhis.pop_back_val(); 1494 1495 // Information about sign/zero extensions of CurrIV. 1496 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1497 1498 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, &LPM, DeadInsts, &Visitor); 1499 1500 if (Visitor.WI.WidestNativeType) { 1501 WideIVs.push_back(Visitor.WI); 1502 } 1503 } while(!LoopPhis.empty()); 1504 1505 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1506 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1507 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1508 Changed = true; 1509 LoopPhis.push_back(WidePhi); 1510 } 1511 } 1512 } 1513 } 1514 1515 //===----------------------------------------------------------------------===// 1516 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1517 //===----------------------------------------------------------------------===// 1518 1519 /// Return true if this loop's backedge taken count expression can be safely and 1520 /// cheaply expanded into an instruction sequence that can be used by 1521 /// linearFunctionTestReplace. 1522 /// 1523 /// TODO: This fails for pointer-type loop counters with greater than one byte 1524 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1525 /// we could skip this check in the case that the LFTR loop counter (chosen by 1526 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1527 /// the loop test to an inequality test by checking the target data's alignment 1528 /// of element types (given that the initial pointer value originates from or is 1529 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1530 /// However, we don't yet have a strong motivation for converting loop tests 1531 /// into inequality tests. 1532 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1533 SCEVExpander &Rewriter) { 1534 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1535 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1536 BackedgeTakenCount->isZero()) 1537 return false; 1538 1539 if (!L->getExitingBlock()) 1540 return false; 1541 1542 // Can't rewrite non-branch yet. 1543 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1544 return false; 1545 1546 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1547 return false; 1548 1549 return true; 1550 } 1551 1552 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1553 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1554 Instruction *IncI = dyn_cast<Instruction>(IncV); 1555 if (!IncI) 1556 return nullptr; 1557 1558 switch (IncI->getOpcode()) { 1559 case Instruction::Add: 1560 case Instruction::Sub: 1561 break; 1562 case Instruction::GetElementPtr: 1563 // An IV counter must preserve its type. 1564 if (IncI->getNumOperands() == 2) 1565 break; 1566 default: 1567 return nullptr; 1568 } 1569 1570 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1571 if (Phi && Phi->getParent() == L->getHeader()) { 1572 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1573 return Phi; 1574 return nullptr; 1575 } 1576 if (IncI->getOpcode() == Instruction::GetElementPtr) 1577 return nullptr; 1578 1579 // Allow add/sub to be commuted. 1580 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1581 if (Phi && Phi->getParent() == L->getHeader()) { 1582 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1583 return Phi; 1584 } 1585 return nullptr; 1586 } 1587 1588 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1589 static ICmpInst *getLoopTest(Loop *L) { 1590 assert(L->getExitingBlock() && "expected loop exit"); 1591 1592 BasicBlock *LatchBlock = L->getLoopLatch(); 1593 // Don't bother with LFTR if the loop is not properly simplified. 1594 if (!LatchBlock) 1595 return nullptr; 1596 1597 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1598 assert(BI && "expected exit branch"); 1599 1600 return dyn_cast<ICmpInst>(BI->getCondition()); 1601 } 1602 1603 /// linearFunctionTestReplace policy. Return true unless we can show that the 1604 /// current exit test is already sufficiently canonical. 1605 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1606 // Do LFTR to simplify the exit condition to an ICMP. 1607 ICmpInst *Cond = getLoopTest(L); 1608 if (!Cond) 1609 return true; 1610 1611 // Do LFTR to simplify the exit ICMP to EQ/NE 1612 ICmpInst::Predicate Pred = Cond->getPredicate(); 1613 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1614 return true; 1615 1616 // Look for a loop invariant RHS 1617 Value *LHS = Cond->getOperand(0); 1618 Value *RHS = Cond->getOperand(1); 1619 if (!isLoopInvariant(RHS, L, DT)) { 1620 if (!isLoopInvariant(LHS, L, DT)) 1621 return true; 1622 std::swap(LHS, RHS); 1623 } 1624 // Look for a simple IV counter LHS 1625 PHINode *Phi = dyn_cast<PHINode>(LHS); 1626 if (!Phi) 1627 Phi = getLoopPhiForCounter(LHS, L, DT); 1628 1629 if (!Phi) 1630 return true; 1631 1632 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1633 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1634 if (Idx < 0) 1635 return true; 1636 1637 // Do LFTR if the exit condition's IV is *not* a simple counter. 1638 Value *IncV = Phi->getIncomingValue(Idx); 1639 return Phi != getLoopPhiForCounter(IncV, L, DT); 1640 } 1641 1642 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1643 /// down to checking that all operands are constant and listing instructions 1644 /// that may hide undef. 1645 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1646 unsigned Depth) { 1647 if (isa<Constant>(V)) 1648 return !isa<UndefValue>(V); 1649 1650 if (Depth >= 6) 1651 return false; 1652 1653 // Conservatively handle non-constant non-instructions. For example, Arguments 1654 // may be undef. 1655 Instruction *I = dyn_cast<Instruction>(V); 1656 if (!I) 1657 return false; 1658 1659 // Load and return values may be undef. 1660 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1661 return false; 1662 1663 // Optimistically handle other instructions. 1664 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1665 if (!Visited.insert(*OI).second) 1666 continue; 1667 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1668 return false; 1669 } 1670 return true; 1671 } 1672 1673 /// Return true if the given value is concrete. We must prove that undef can 1674 /// never reach it. 1675 /// 1676 /// TODO: If we decide that this is a good approach to checking for undef, we 1677 /// may factor it into a common location. 1678 static bool hasConcreteDef(Value *V) { 1679 SmallPtrSet<Value*, 8> Visited; 1680 Visited.insert(V); 1681 return hasConcreteDefImpl(V, Visited, 0); 1682 } 1683 1684 /// Return true if this IV has any uses other than the (soon to be rewritten) 1685 /// loop exit test. 1686 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1687 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1688 Value *IncV = Phi->getIncomingValue(LatchIdx); 1689 1690 for (User *U : Phi->users()) 1691 if (U != Cond && U != IncV) return false; 1692 1693 for (User *U : IncV->users()) 1694 if (U != Cond && U != Phi) return false; 1695 return true; 1696 } 1697 1698 /// Find an affine IV in canonical form. 1699 /// 1700 /// BECount may be an i8* pointer type. The pointer difference is already 1701 /// valid count without scaling the address stride, so it remains a pointer 1702 /// expression as far as SCEV is concerned. 1703 /// 1704 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1705 /// 1706 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1707 /// 1708 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1709 /// This is difficult in general for SCEV because of potential overflow. But we 1710 /// could at least handle constant BECounts. 1711 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1712 ScalarEvolution *SE, DominatorTree *DT) { 1713 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1714 1715 Value *Cond = 1716 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1717 1718 // Loop over all of the PHI nodes, looking for a simple counter. 1719 PHINode *BestPhi = nullptr; 1720 const SCEV *BestInit = nullptr; 1721 BasicBlock *LatchBlock = L->getLoopLatch(); 1722 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1723 1724 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1725 PHINode *Phi = cast<PHINode>(I); 1726 if (!SE->isSCEVable(Phi->getType())) 1727 continue; 1728 1729 // Avoid comparing an integer IV against a pointer Limit. 1730 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1731 continue; 1732 1733 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1734 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1735 continue; 1736 1737 // AR may be a pointer type, while BECount is an integer type. 1738 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1739 // AR may not be a narrower type, or we may never exit. 1740 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1741 if (PhiWidth < BCWidth || 1742 !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth)) 1743 continue; 1744 1745 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1746 if (!Step || !Step->isOne()) 1747 continue; 1748 1749 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1750 Value *IncV = Phi->getIncomingValue(LatchIdx); 1751 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1752 continue; 1753 1754 // Avoid reusing a potentially undef value to compute other values that may 1755 // have originally had a concrete definition. 1756 if (!hasConcreteDef(Phi)) { 1757 // We explicitly allow unknown phis as long as they are already used by 1758 // the loop test. In this case we assume that performing LFTR could not 1759 // increase the number of undef users. 1760 if (ICmpInst *Cond = getLoopTest(L)) { 1761 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1762 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1763 continue; 1764 } 1765 } 1766 } 1767 const SCEV *Init = AR->getStart(); 1768 1769 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1770 // Don't force a live loop counter if another IV can be used. 1771 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1772 continue; 1773 1774 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1775 // also prefers integer to pointer IVs. 1776 if (BestInit->isZero() != Init->isZero()) { 1777 if (BestInit->isZero()) 1778 continue; 1779 } 1780 // If two IVs both count from zero or both count from nonzero then the 1781 // narrower is likely a dead phi that has been widened. Use the wider phi 1782 // to allow the other to be eliminated. 1783 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1784 continue; 1785 } 1786 BestPhi = Phi; 1787 BestInit = Init; 1788 } 1789 return BestPhi; 1790 } 1791 1792 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 1793 /// the new loop test. 1794 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1795 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1796 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1797 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1798 const SCEV *IVInit = AR->getStart(); 1799 1800 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1801 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1802 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1803 // the existing GEPs whenever possible. 1804 if (IndVar->getType()->isPointerTy() 1805 && !IVCount->getType()->isPointerTy()) { 1806 1807 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1808 // signed value. IVCount on the other hand represents the loop trip count, 1809 // which is an unsigned value. FindLoopCounter only allows induction 1810 // variables that have a positive unit stride of one. This means we don't 1811 // have to handle the case of negative offsets (yet) and just need to zero 1812 // extend IVCount. 1813 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1814 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1815 1816 // Expand the code for the iteration count. 1817 assert(SE->isLoopInvariant(IVOffset, L) && 1818 "Computed iteration count is not loop invariant!"); 1819 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1820 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1821 1822 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1823 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1824 // We could handle pointer IVs other than i8*, but we need to compensate for 1825 // gep index scaling. See canExpandBackedgeTakenCount comments. 1826 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1827 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1828 && "unit stride pointer IV must be i8*"); 1829 1830 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1831 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1832 } 1833 else { 1834 // In any other case, convert both IVInit and IVCount to integers before 1835 // comparing. This may result in SCEV expension of pointers, but in practice 1836 // SCEV will fold the pointer arithmetic away as such: 1837 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1838 // 1839 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1840 // for simple memset-style loops. 1841 // 1842 // IVInit integer and IVCount pointer would only occur if a canonical IV 1843 // were generated on top of case #2, which is not expected. 1844 1845 const SCEV *IVLimit = nullptr; 1846 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1847 // For non-zero Start, compute IVCount here. 1848 if (AR->getStart()->isZero()) 1849 IVLimit = IVCount; 1850 else { 1851 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1852 const SCEV *IVInit = AR->getStart(); 1853 1854 // For integer IVs, truncate the IV before computing IVInit + BECount. 1855 if (SE->getTypeSizeInBits(IVInit->getType()) 1856 > SE->getTypeSizeInBits(IVCount->getType())) 1857 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1858 1859 IVLimit = SE->getAddExpr(IVInit, IVCount); 1860 } 1861 // Expand the code for the iteration count. 1862 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1863 IRBuilder<> Builder(BI); 1864 assert(SE->isLoopInvariant(IVLimit, L) && 1865 "Computed iteration count is not loop invariant!"); 1866 // Ensure that we generate the same type as IndVar, or a smaller integer 1867 // type. In the presence of null pointer values, we have an integer type 1868 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1869 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1870 IndVar->getType() : IVCount->getType(); 1871 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1872 } 1873 } 1874 1875 /// This method rewrites the exit condition of the loop to be a canonical != 1876 /// comparison against the incremented loop induction variable. This pass is 1877 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1878 /// determine a loop-invariant trip count of the loop, which is actually a much 1879 /// broader range than just linear tests. 1880 Value *IndVarSimplify:: 1881 linearFunctionTestReplace(Loop *L, 1882 const SCEV *BackedgeTakenCount, 1883 PHINode *IndVar, 1884 SCEVExpander &Rewriter) { 1885 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1886 1887 // Initialize CmpIndVar and IVCount to their preincremented values. 1888 Value *CmpIndVar = IndVar; 1889 const SCEV *IVCount = BackedgeTakenCount; 1890 1891 // If the exiting block is the same as the backedge block, we prefer to 1892 // compare against the post-incremented value, otherwise we must compare 1893 // against the preincremented value. 1894 if (L->getExitingBlock() == L->getLoopLatch()) { 1895 // Add one to the "backedge-taken" count to get the trip count. 1896 // This addition may overflow, which is valid as long as the comparison is 1897 // truncated to BackedgeTakenCount->getType(). 1898 IVCount = SE->getAddExpr(BackedgeTakenCount, 1899 SE->getOne(BackedgeTakenCount->getType())); 1900 // The BackedgeTaken expression contains the number of times that the 1901 // backedge branches to the loop header. This is one less than the 1902 // number of times the loop executes, so use the incremented indvar. 1903 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1904 } 1905 1906 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1907 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1908 && "genLoopLimit missed a cast"); 1909 1910 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1911 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1912 ICmpInst::Predicate P; 1913 if (L->contains(BI->getSuccessor(0))) 1914 P = ICmpInst::ICMP_NE; 1915 else 1916 P = ICmpInst::ICMP_EQ; 1917 1918 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1919 << " LHS:" << *CmpIndVar << '\n' 1920 << " op:\t" 1921 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1922 << " RHS:\t" << *ExitCnt << "\n" 1923 << " IVCount:\t" << *IVCount << "\n"); 1924 1925 IRBuilder<> Builder(BI); 1926 1927 // LFTR can ignore IV overflow and truncate to the width of 1928 // BECount. This avoids materializing the add(zext(add)) expression. 1929 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1930 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1931 if (CmpIndVarSize > ExitCntSize) { 1932 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1933 const SCEV *ARStart = AR->getStart(); 1934 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1935 // For constant IVCount, avoid truncation. 1936 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1937 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue(); 1938 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue(); 1939 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1940 // above such that IVCount is now zero. 1941 if (IVCount != BackedgeTakenCount && Count == 0) { 1942 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1943 ++Count; 1944 } 1945 else 1946 Count = Count.zext(CmpIndVarSize); 1947 APInt NewLimit; 1948 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1949 NewLimit = Start - Count; 1950 else 1951 NewLimit = Start + Count; 1952 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1953 1954 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1955 } else { 1956 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1957 "lftr.wideiv"); 1958 } 1959 } 1960 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1961 Value *OrigCond = BI->getCondition(); 1962 // It's tempting to use replaceAllUsesWith here to fully replace the old 1963 // comparison, but that's not immediately safe, since users of the old 1964 // comparison may not be dominated by the new comparison. Instead, just 1965 // update the branch to use the new comparison; in the common case this 1966 // will make old comparison dead. 1967 BI->setCondition(Cond); 1968 DeadInsts.push_back(OrigCond); 1969 1970 ++NumLFTR; 1971 Changed = true; 1972 return Cond; 1973 } 1974 1975 //===----------------------------------------------------------------------===// 1976 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1977 //===----------------------------------------------------------------------===// 1978 1979 /// If there's a single exit block, sink any loop-invariant values that 1980 /// were defined in the preheader but not used inside the loop into the 1981 /// exit block to reduce register pressure in the loop. 1982 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 1983 BasicBlock *ExitBlock = L->getExitBlock(); 1984 if (!ExitBlock) return; 1985 1986 BasicBlock *Preheader = L->getLoopPreheader(); 1987 if (!Preheader) return; 1988 1989 Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt(); 1990 BasicBlock::iterator I(Preheader->getTerminator()); 1991 while (I != Preheader->begin()) { 1992 --I; 1993 // New instructions were inserted at the end of the preheader. 1994 if (isa<PHINode>(I)) 1995 break; 1996 1997 // Don't move instructions which might have side effects, since the side 1998 // effects need to complete before instructions inside the loop. Also don't 1999 // move instructions which might read memory, since the loop may modify 2000 // memory. Note that it's okay if the instruction might have undefined 2001 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2002 // block. 2003 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2004 continue; 2005 2006 // Skip debug info intrinsics. 2007 if (isa<DbgInfoIntrinsic>(I)) 2008 continue; 2009 2010 // Skip eh pad instructions. 2011 if (I->isEHPad()) 2012 continue; 2013 2014 // Don't sink alloca: we never want to sink static alloca's out of the 2015 // entry block, and correctly sinking dynamic alloca's requires 2016 // checks for stacksave/stackrestore intrinsics. 2017 // FIXME: Refactor this check somehow? 2018 if (isa<AllocaInst>(I)) 2019 continue; 2020 2021 // Determine if there is a use in or before the loop (direct or 2022 // otherwise). 2023 bool UsedInLoop = false; 2024 for (Use &U : I->uses()) { 2025 Instruction *User = cast<Instruction>(U.getUser()); 2026 BasicBlock *UseBB = User->getParent(); 2027 if (PHINode *P = dyn_cast<PHINode>(User)) { 2028 unsigned i = 2029 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2030 UseBB = P->getIncomingBlock(i); 2031 } 2032 if (UseBB == Preheader || L->contains(UseBB)) { 2033 UsedInLoop = true; 2034 break; 2035 } 2036 } 2037 2038 // If there is, the def must remain in the preheader. 2039 if (UsedInLoop) 2040 continue; 2041 2042 // Otherwise, sink it to the exit block. 2043 Instruction *ToMove = &*I; 2044 bool Done = false; 2045 2046 if (I != Preheader->begin()) { 2047 // Skip debug info intrinsics. 2048 do { 2049 --I; 2050 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2051 2052 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2053 Done = true; 2054 } else { 2055 Done = true; 2056 } 2057 2058 ToMove->moveBefore(InsertPt); 2059 if (Done) break; 2060 InsertPt = ToMove; 2061 } 2062 } 2063 2064 //===----------------------------------------------------------------------===// 2065 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2066 //===----------------------------------------------------------------------===// 2067 2068 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 2069 if (skipOptnoneFunction(L)) 2070 return false; 2071 2072 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2073 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2074 // canonicalization can be a pessimization without LSR to "clean up" 2075 // afterwards. 2076 // - We depend on having a preheader; in particular, 2077 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2078 // and we're in trouble if we can't find the induction variable even when 2079 // we've manually inserted one. 2080 if (!L->isLoopSimplifyForm()) 2081 return false; 2082 2083 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2084 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2085 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2086 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2087 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2088 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2089 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2090 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2091 2092 DeadInsts.clear(); 2093 Changed = false; 2094 2095 // If there are any floating-point recurrences, attempt to 2096 // transform them to use integer recurrences. 2097 rewriteNonIntegerIVs(L); 2098 2099 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2100 2101 // Create a rewriter object which we'll use to transform the code with. 2102 SCEVExpander Rewriter(*SE, DL, "indvars"); 2103 #ifndef NDEBUG 2104 Rewriter.setDebugType(DEBUG_TYPE); 2105 #endif 2106 2107 // Eliminate redundant IV users. 2108 // 2109 // Simplification works best when run before other consumers of SCEV. We 2110 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2111 // other expressions involving loop IVs have been evaluated. This helps SCEV 2112 // set no-wrap flags before normalizing sign/zero extension. 2113 Rewriter.disableCanonicalMode(); 2114 simplifyAndExtend(L, Rewriter, LPM); 2115 2116 // Check to see if this loop has a computable loop-invariant execution count. 2117 // If so, this means that we can compute the final value of any expressions 2118 // that are recurrent in the loop, and substitute the exit values from the 2119 // loop into any instructions outside of the loop that use the final values of 2120 // the current expressions. 2121 // 2122 if (ReplaceExitValue != NeverRepl && 2123 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2124 rewriteLoopExitValues(L, Rewriter); 2125 2126 // Eliminate redundant IV cycles. 2127 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2128 2129 // If we have a trip count expression, rewrite the loop's exit condition 2130 // using it. We can currently only handle loops with a single exit. 2131 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2132 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2133 if (IndVar) { 2134 // Check preconditions for proper SCEVExpander operation. SCEV does not 2135 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2136 // pass that uses the SCEVExpander must do it. This does not work well for 2137 // loop passes because SCEVExpander makes assumptions about all loops, 2138 // while LoopPassManager only forces the current loop to be simplified. 2139 // 2140 // FIXME: SCEV expansion has no way to bail out, so the caller must 2141 // explicitly check any assumptions made by SCEV. Brittle. 2142 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2143 if (!AR || AR->getLoop()->getLoopPreheader()) 2144 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2145 Rewriter); 2146 } 2147 } 2148 // Clear the rewriter cache, because values that are in the rewriter's cache 2149 // can be deleted in the loop below, causing the AssertingVH in the cache to 2150 // trigger. 2151 Rewriter.clear(); 2152 2153 // Now that we're done iterating through lists, clean up any instructions 2154 // which are now dead. 2155 while (!DeadInsts.empty()) 2156 if (Instruction *Inst = 2157 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2158 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2159 2160 // The Rewriter may not be used from this point on. 2161 2162 // Loop-invariant instructions in the preheader that aren't used in the 2163 // loop may be sunk below the loop to reduce register pressure. 2164 sinkUnusedInvariants(L); 2165 2166 // Clean up dead instructions. 2167 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2168 // Check a post-condition. 2169 assert(L->isLCSSAForm(*DT) && 2170 "Indvars did not leave the loop in lcssa form!"); 2171 2172 // Verify that LFTR, and any other change have not interfered with SCEV's 2173 // ability to compute trip count. 2174 #ifndef NDEBUG 2175 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2176 SE->forgetLoop(L); 2177 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2178 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2179 SE->getTypeSizeInBits(NewBECount->getType())) 2180 NewBECount = SE->getTruncateOrNoop(NewBECount, 2181 BackedgeTakenCount->getType()); 2182 else 2183 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2184 NewBECount->getType()); 2185 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2186 } 2187 #endif 2188 2189 return Changed; 2190 } 2191