1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/LoopPass.h" 33 #include "llvm/Analysis/ScalarEvolutionExpander.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/Support/CommandLine.h" 46 #include "llvm/Support/Debug.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 49 #include "llvm/Transforms/Utils/Local.h" 50 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 51 using namespace llvm; 52 53 #define DEBUG_TYPE "indvars" 54 55 STATISTIC(NumWidened , "Number of indvars widened"); 56 STATISTIC(NumReplaced , "Number of exit values replaced"); 57 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 58 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 59 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 60 61 // Trip count verification can be enabled by default under NDEBUG if we 62 // implement a strong expression equivalence checker in SCEV. Until then, we 63 // use the verify-indvars flag, which may assert in some cases. 64 static cl::opt<bool> VerifyIndvars( 65 "verify-indvars", cl::Hidden, 66 cl::desc("Verify the ScalarEvolution result after running indvars")); 67 68 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 69 cl::desc("Reduce live induction variables.")); 70 71 namespace { 72 class IndVarSimplify : public LoopPass { 73 LoopInfo *LI; 74 ScalarEvolution *SE; 75 DominatorTree *DT; 76 TargetLibraryInfo *TLI; 77 const TargetTransformInfo *TTI; 78 79 SmallVector<WeakVH, 16> DeadInsts; 80 bool Changed; 81 public: 82 83 static char ID; // Pass identification, replacement for typeid 84 IndVarSimplify() 85 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) { 86 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 87 } 88 89 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 90 91 void getAnalysisUsage(AnalysisUsage &AU) const override { 92 AU.addRequired<DominatorTreeWrapperPass>(); 93 AU.addRequired<LoopInfoWrapperPass>(); 94 AU.addRequired<ScalarEvolution>(); 95 AU.addRequiredID(LoopSimplifyID); 96 AU.addRequiredID(LCSSAID); 97 AU.addPreserved<ScalarEvolution>(); 98 AU.addPreservedID(LoopSimplifyID); 99 AU.addPreservedID(LCSSAID); 100 AU.setPreservesCFG(); 101 } 102 103 private: 104 void releaseMemory() override { 105 DeadInsts.clear(); 106 } 107 108 bool isValidRewrite(Value *FromVal, Value *ToVal); 109 110 void HandleFloatingPointIV(Loop *L, PHINode *PH); 111 void RewriteNonIntegerIVs(Loop *L); 112 113 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 114 115 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 116 117 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 118 PHINode *IndVar, SCEVExpander &Rewriter); 119 120 void SinkUnusedInvariants(Loop *L); 121 }; 122 } 123 124 char IndVarSimplify::ID = 0; 125 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 126 "Induction Variable Simplification", false, false) 127 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 128 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 129 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 130 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 131 INITIALIZE_PASS_DEPENDENCY(LCSSA) 132 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 133 "Induction Variable Simplification", false, false) 134 135 Pass *llvm::createIndVarSimplifyPass() { 136 return new IndVarSimplify(); 137 } 138 139 /// isValidRewrite - Return true if the SCEV expansion generated by the 140 /// rewriter can replace the original value. SCEV guarantees that it 141 /// produces the same value, but the way it is produced may be illegal IR. 142 /// Ideally, this function will only be called for verification. 143 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 144 // If an SCEV expression subsumed multiple pointers, its expansion could 145 // reassociate the GEP changing the base pointer. This is illegal because the 146 // final address produced by a GEP chain must be inbounds relative to its 147 // underlying object. Otherwise basic alias analysis, among other things, 148 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 149 // producing an expression involving multiple pointers. Until then, we must 150 // bail out here. 151 // 152 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 153 // because it understands lcssa phis while SCEV does not. 154 Value *FromPtr = FromVal; 155 Value *ToPtr = ToVal; 156 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 157 FromPtr = GEP->getPointerOperand(); 158 } 159 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 160 ToPtr = GEP->getPointerOperand(); 161 } 162 if (FromPtr != FromVal || ToPtr != ToVal) { 163 // Quickly check the common case 164 if (FromPtr == ToPtr) 165 return true; 166 167 // SCEV may have rewritten an expression that produces the GEP's pointer 168 // operand. That's ok as long as the pointer operand has the same base 169 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 170 // base of a recurrence. This handles the case in which SCEV expansion 171 // converts a pointer type recurrence into a nonrecurrent pointer base 172 // indexed by an integer recurrence. 173 174 // If the GEP base pointer is a vector of pointers, abort. 175 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 176 return false; 177 178 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 179 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 180 if (FromBase == ToBase) 181 return true; 182 183 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 184 << *FromBase << " != " << *ToBase << "\n"); 185 186 return false; 187 } 188 return true; 189 } 190 191 /// Determine the insertion point for this user. By default, insert immediately 192 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 193 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 194 /// common dominator for the incoming blocks. 195 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 196 DominatorTree *DT) { 197 PHINode *PHI = dyn_cast<PHINode>(User); 198 if (!PHI) 199 return User; 200 201 Instruction *InsertPt = nullptr; 202 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 203 if (PHI->getIncomingValue(i) != Def) 204 continue; 205 206 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 207 if (!InsertPt) { 208 InsertPt = InsertBB->getTerminator(); 209 continue; 210 } 211 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 212 InsertPt = InsertBB->getTerminator(); 213 } 214 assert(InsertPt && "Missing phi operand"); 215 assert((!isa<Instruction>(Def) || 216 DT->dominates(cast<Instruction>(Def), InsertPt)) && 217 "def does not dominate all uses"); 218 return InsertPt; 219 } 220 221 //===----------------------------------------------------------------------===// 222 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 223 //===----------------------------------------------------------------------===// 224 225 /// ConvertToSInt - Convert APF to an integer, if possible. 226 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 227 bool isExact = false; 228 // See if we can convert this to an int64_t 229 uint64_t UIntVal; 230 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 231 &isExact) != APFloat::opOK || !isExact) 232 return false; 233 IntVal = UIntVal; 234 return true; 235 } 236 237 /// HandleFloatingPointIV - If the loop has floating induction variable 238 /// then insert corresponding integer induction variable if possible. 239 /// For example, 240 /// for(double i = 0; i < 10000; ++i) 241 /// bar(i) 242 /// is converted into 243 /// for(int i = 0; i < 10000; ++i) 244 /// bar((double)i); 245 /// 246 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 247 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 248 unsigned BackEdge = IncomingEdge^1; 249 250 // Check incoming value. 251 ConstantFP *InitValueVal = 252 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 253 254 int64_t InitValue; 255 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 256 return; 257 258 // Check IV increment. Reject this PN if increment operation is not 259 // an add or increment value can not be represented by an integer. 260 BinaryOperator *Incr = 261 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 262 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 263 264 // If this is not an add of the PHI with a constantfp, or if the constant fp 265 // is not an integer, bail out. 266 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 267 int64_t IncValue; 268 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 269 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 270 return; 271 272 // Check Incr uses. One user is PN and the other user is an exit condition 273 // used by the conditional terminator. 274 Value::user_iterator IncrUse = Incr->user_begin(); 275 Instruction *U1 = cast<Instruction>(*IncrUse++); 276 if (IncrUse == Incr->user_end()) return; 277 Instruction *U2 = cast<Instruction>(*IncrUse++); 278 if (IncrUse != Incr->user_end()) return; 279 280 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 281 // only used by a branch, we can't transform it. 282 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 283 if (!Compare) 284 Compare = dyn_cast<FCmpInst>(U2); 285 if (!Compare || !Compare->hasOneUse() || 286 !isa<BranchInst>(Compare->user_back())) 287 return; 288 289 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 290 291 // We need to verify that the branch actually controls the iteration count 292 // of the loop. If not, the new IV can overflow and no one will notice. 293 // The branch block must be in the loop and one of the successors must be out 294 // of the loop. 295 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 296 if (!L->contains(TheBr->getParent()) || 297 (L->contains(TheBr->getSuccessor(0)) && 298 L->contains(TheBr->getSuccessor(1)))) 299 return; 300 301 302 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 303 // transform it. 304 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 305 int64_t ExitValue; 306 if (ExitValueVal == nullptr || 307 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 308 return; 309 310 // Find new predicate for integer comparison. 311 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 312 switch (Compare->getPredicate()) { 313 default: return; // Unknown comparison. 314 case CmpInst::FCMP_OEQ: 315 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 316 case CmpInst::FCMP_ONE: 317 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 318 case CmpInst::FCMP_OGT: 319 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 320 case CmpInst::FCMP_OGE: 321 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 322 case CmpInst::FCMP_OLT: 323 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 324 case CmpInst::FCMP_OLE: 325 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 326 } 327 328 // We convert the floating point induction variable to a signed i32 value if 329 // we can. This is only safe if the comparison will not overflow in a way 330 // that won't be trapped by the integer equivalent operations. Check for this 331 // now. 332 // TODO: We could use i64 if it is native and the range requires it. 333 334 // The start/stride/exit values must all fit in signed i32. 335 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 336 return; 337 338 // If not actually striding (add x, 0.0), avoid touching the code. 339 if (IncValue == 0) 340 return; 341 342 // Positive and negative strides have different safety conditions. 343 if (IncValue > 0) { 344 // If we have a positive stride, we require the init to be less than the 345 // exit value. 346 if (InitValue >= ExitValue) 347 return; 348 349 uint32_t Range = uint32_t(ExitValue-InitValue); 350 // Check for infinite loop, either: 351 // while (i <= Exit) or until (i > Exit) 352 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 353 if (++Range == 0) return; // Range overflows. 354 } 355 356 unsigned Leftover = Range % uint32_t(IncValue); 357 358 // If this is an equality comparison, we require that the strided value 359 // exactly land on the exit value, otherwise the IV condition will wrap 360 // around and do things the fp IV wouldn't. 361 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 362 Leftover != 0) 363 return; 364 365 // If the stride would wrap around the i32 before exiting, we can't 366 // transform the IV. 367 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 368 return; 369 370 } else { 371 // If we have a negative stride, we require the init to be greater than the 372 // exit value. 373 if (InitValue <= ExitValue) 374 return; 375 376 uint32_t Range = uint32_t(InitValue-ExitValue); 377 // Check for infinite loop, either: 378 // while (i >= Exit) or until (i < Exit) 379 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 380 if (++Range == 0) return; // Range overflows. 381 } 382 383 unsigned Leftover = Range % uint32_t(-IncValue); 384 385 // If this is an equality comparison, we require that the strided value 386 // exactly land on the exit value, otherwise the IV condition will wrap 387 // around and do things the fp IV wouldn't. 388 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 389 Leftover != 0) 390 return; 391 392 // If the stride would wrap around the i32 before exiting, we can't 393 // transform the IV. 394 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 395 return; 396 } 397 398 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 399 400 // Insert new integer induction variable. 401 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 402 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 403 PN->getIncomingBlock(IncomingEdge)); 404 405 Value *NewAdd = 406 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 407 Incr->getName()+".int", Incr); 408 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 409 410 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 411 ConstantInt::get(Int32Ty, ExitValue), 412 Compare->getName()); 413 414 // In the following deletions, PN may become dead and may be deleted. 415 // Use a WeakVH to observe whether this happens. 416 WeakVH WeakPH = PN; 417 418 // Delete the old floating point exit comparison. The branch starts using the 419 // new comparison. 420 NewCompare->takeName(Compare); 421 Compare->replaceAllUsesWith(NewCompare); 422 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 423 424 // Delete the old floating point increment. 425 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 426 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 427 428 // If the FP induction variable still has uses, this is because something else 429 // in the loop uses its value. In order to canonicalize the induction 430 // variable, we chose to eliminate the IV and rewrite it in terms of an 431 // int->fp cast. 432 // 433 // We give preference to sitofp over uitofp because it is faster on most 434 // platforms. 435 if (WeakPH) { 436 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 437 PN->getParent()->getFirstInsertionPt()); 438 PN->replaceAllUsesWith(Conv); 439 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 440 } 441 Changed = true; 442 } 443 444 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 445 // First step. Check to see if there are any floating-point recurrences. 446 // If there are, change them into integer recurrences, permitting analysis by 447 // the SCEV routines. 448 // 449 BasicBlock *Header = L->getHeader(); 450 451 SmallVector<WeakVH, 8> PHIs; 452 for (BasicBlock::iterator I = Header->begin(); 453 PHINode *PN = dyn_cast<PHINode>(I); ++I) 454 PHIs.push_back(PN); 455 456 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 457 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 458 HandleFloatingPointIV(L, PN); 459 460 // If the loop previously had floating-point IV, ScalarEvolution 461 // may not have been able to compute a trip count. Now that we've done some 462 // re-writing, the trip count may be computable. 463 if (Changed) 464 SE->forgetLoop(L); 465 } 466 467 //===----------------------------------------------------------------------===// 468 // RewriteLoopExitValues - Optimize IV users outside the loop. 469 // As a side effect, reduces the amount of IV processing within the loop. 470 //===----------------------------------------------------------------------===// 471 472 /// RewriteLoopExitValues - Check to see if this loop has a computable 473 /// loop-invariant execution count. If so, this means that we can compute the 474 /// final value of any expressions that are recurrent in the loop, and 475 /// substitute the exit values from the loop into any instructions outside of 476 /// the loop that use the final values of the current expressions. 477 /// 478 /// This is mostly redundant with the regular IndVarSimplify activities that 479 /// happen later, except that it's more powerful in some cases, because it's 480 /// able to brute-force evaluate arbitrary instructions as long as they have 481 /// constant operands at the beginning of the loop. 482 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 483 // Verify the input to the pass in already in LCSSA form. 484 assert(L->isLCSSAForm(*DT)); 485 486 SmallVector<BasicBlock*, 8> ExitBlocks; 487 L->getUniqueExitBlocks(ExitBlocks); 488 489 // Find all values that are computed inside the loop, but used outside of it. 490 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 491 // the exit blocks of the loop to find them. 492 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 493 BasicBlock *ExitBB = ExitBlocks[i]; 494 495 // If there are no PHI nodes in this exit block, then no values defined 496 // inside the loop are used on this path, skip it. 497 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 498 if (!PN) continue; 499 500 unsigned NumPreds = PN->getNumIncomingValues(); 501 502 // We would like to be able to RAUW single-incoming value PHI nodes. We 503 // have to be certain this is safe even when this is an LCSSA PHI node. 504 // While the computed exit value is no longer varying in *this* loop, the 505 // exit block may be an exit block for an outer containing loop as well, 506 // the exit value may be varying in the outer loop, and thus it may still 507 // require an LCSSA PHI node. The safe case is when this is 508 // single-predecessor PHI node (LCSSA) and the exit block containing it is 509 // part of the enclosing loop, or this is the outer most loop of the nest. 510 // In either case the exit value could (at most) be varying in the same 511 // loop body as the phi node itself. Thus if it is in turn used outside of 512 // an enclosing loop it will only be via a separate LCSSA node. 513 bool LCSSASafePhiForRAUW = 514 NumPreds == 1 && 515 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB)); 516 517 // Iterate over all of the PHI nodes. 518 BasicBlock::iterator BBI = ExitBB->begin(); 519 while ((PN = dyn_cast<PHINode>(BBI++))) { 520 if (PN->use_empty()) 521 continue; // dead use, don't replace it 522 523 // SCEV only supports integer expressions for now. 524 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 525 continue; 526 527 // It's necessary to tell ScalarEvolution about this explicitly so that 528 // it can walk the def-use list and forget all SCEVs, as it may not be 529 // watching the PHI itself. Once the new exit value is in place, there 530 // may not be a def-use connection between the loop and every instruction 531 // which got a SCEVAddRecExpr for that loop. 532 SE->forgetValue(PN); 533 534 // Iterate over all of the values in all the PHI nodes. 535 for (unsigned i = 0; i != NumPreds; ++i) { 536 // If the value being merged in is not integer or is not defined 537 // in the loop, skip it. 538 Value *InVal = PN->getIncomingValue(i); 539 if (!isa<Instruction>(InVal)) 540 continue; 541 542 // If this pred is for a subloop, not L itself, skip it. 543 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 544 continue; // The Block is in a subloop, skip it. 545 546 // Check that InVal is defined in the loop. 547 Instruction *Inst = cast<Instruction>(InVal); 548 if (!L->contains(Inst)) 549 continue; 550 551 // Okay, this instruction has a user outside of the current loop 552 // and varies predictably *inside* the loop. Evaluate the value it 553 // contains when the loop exits, if possible. 554 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 555 if (!SE->isLoopInvariant(ExitValue, L) || 556 !isSafeToExpand(ExitValue, *SE)) 557 continue; 558 559 // Computing the value outside of the loop brings no benefit if : 560 // - it is definitely used inside the loop in a way which can not be 561 // optimized away. 562 // - no use outside of the loop can take advantage of hoisting the 563 // computation out of the loop 564 if (ExitValue->getSCEVType()>=scMulExpr) { 565 unsigned NumHardInternalUses = 0; 566 unsigned NumSoftExternalUses = 0; 567 unsigned NumUses = 0; 568 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 569 IB != IE && NumUses <= 6; ++IB) { 570 Instruction *UseInstr = cast<Instruction>(*IB); 571 unsigned Opc = UseInstr->getOpcode(); 572 NumUses++; 573 if (L->contains(UseInstr)) { 574 if (Opc == Instruction::Call || Opc == Instruction::Ret) 575 NumHardInternalUses++; 576 } else { 577 if (Opc == Instruction::PHI) { 578 // Do not count the Phi as a use. LCSSA may have inserted 579 // plenty of trivial ones. 580 NumUses--; 581 for (auto PB = UseInstr->user_begin(), 582 PE = UseInstr->user_end(); 583 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 584 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 585 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 586 NumSoftExternalUses++; 587 } 588 continue; 589 } 590 if (Opc != Instruction::Call && Opc != Instruction::Ret) 591 NumSoftExternalUses++; 592 } 593 } 594 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 595 continue; 596 } 597 598 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 599 600 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 601 << " LoopVal = " << *Inst << "\n"); 602 603 if (!isValidRewrite(Inst, ExitVal)) { 604 DeadInsts.push_back(ExitVal); 605 continue; 606 } 607 Changed = true; 608 ++NumReplaced; 609 610 PN->setIncomingValue(i, ExitVal); 611 612 // If this instruction is dead now, delete it. Don't do it now to avoid 613 // invalidating iterators. 614 if (isInstructionTriviallyDead(Inst, TLI)) 615 DeadInsts.push_back(Inst); 616 617 // If we determined that this PHI is safe to replace even if an LCSSA 618 // PHI, do so. 619 if (LCSSASafePhiForRAUW) { 620 PN->replaceAllUsesWith(ExitVal); 621 PN->eraseFromParent(); 622 } 623 } 624 } 625 } 626 627 // The insertion point instruction may have been deleted; clear it out 628 // so that the rewriter doesn't trip over it later. 629 Rewriter.clearInsertPoint(); 630 } 631 632 //===----------------------------------------------------------------------===// 633 // IV Widening - Extend the width of an IV to cover its widest uses. 634 //===----------------------------------------------------------------------===// 635 636 namespace { 637 // Collect information about induction variables that are used by sign/zero 638 // extend operations. This information is recorded by CollectExtend and 639 // provides the input to WidenIV. 640 struct WideIVInfo { 641 PHINode *NarrowIV; 642 Type *WidestNativeType; // Widest integer type created [sz]ext 643 bool IsSigned; // Was a sext user seen before a zext? 644 645 WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr), 646 IsSigned(false) {} 647 }; 648 } 649 650 /// visitCast - Update information about the induction variable that is 651 /// extended by this sign or zero extend operation. This is used to determine 652 /// the final width of the IV before actually widening it. 653 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 654 const TargetTransformInfo *TTI) { 655 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 656 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 657 return; 658 659 Type *Ty = Cast->getType(); 660 uint64_t Width = SE->getTypeSizeInBits(Ty); 661 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 662 return; 663 664 // Cast is either an sext or zext up to this point. 665 // We should not widen an indvar if arithmetics on the wider indvar are more 666 // expensive than those on the narrower indvar. We check only the cost of ADD 667 // because at least an ADD is required to increment the induction variable. We 668 // could compute more comprehensively the cost of all instructions on the 669 // induction variable when necessary. 670 if (TTI && 671 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 672 TTI->getArithmeticInstrCost(Instruction::Add, 673 Cast->getOperand(0)->getType())) { 674 return; 675 } 676 677 if (!WI.WidestNativeType) { 678 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 679 WI.IsSigned = IsSigned; 680 return; 681 } 682 683 // We extend the IV to satisfy the sign of its first user, arbitrarily. 684 if (WI.IsSigned != IsSigned) 685 return; 686 687 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 688 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 689 } 690 691 namespace { 692 693 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 694 /// WideIV that computes the same value as the Narrow IV def. This avoids 695 /// caching Use* pointers. 696 struct NarrowIVDefUse { 697 Instruction *NarrowDef; 698 Instruction *NarrowUse; 699 Instruction *WideDef; 700 701 NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {} 702 703 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 704 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 705 }; 706 707 /// WidenIV - The goal of this transform is to remove sign and zero extends 708 /// without creating any new induction variables. To do this, it creates a new 709 /// phi of the wider type and redirects all users, either removing extends or 710 /// inserting truncs whenever we stop propagating the type. 711 /// 712 class WidenIV { 713 // Parameters 714 PHINode *OrigPhi; 715 Type *WideType; 716 bool IsSigned; 717 718 // Context 719 LoopInfo *LI; 720 Loop *L; 721 ScalarEvolution *SE; 722 DominatorTree *DT; 723 724 // Result 725 PHINode *WidePhi; 726 Instruction *WideInc; 727 const SCEV *WideIncExpr; 728 SmallVectorImpl<WeakVH> &DeadInsts; 729 730 SmallPtrSet<Instruction*,16> Widened; 731 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 732 733 public: 734 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 735 ScalarEvolution *SEv, DominatorTree *DTree, 736 SmallVectorImpl<WeakVH> &DI) : 737 OrigPhi(WI.NarrowIV), 738 WideType(WI.WidestNativeType), 739 IsSigned(WI.IsSigned), 740 LI(LInfo), 741 L(LI->getLoopFor(OrigPhi->getParent())), 742 SE(SEv), 743 DT(DTree), 744 WidePhi(nullptr), 745 WideInc(nullptr), 746 WideIncExpr(nullptr), 747 DeadInsts(DI) { 748 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 749 } 750 751 PHINode *CreateWideIV(SCEVExpander &Rewriter); 752 753 protected: 754 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 755 Instruction *Use); 756 757 Instruction *CloneIVUser(NarrowIVDefUse DU); 758 759 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 760 761 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 762 763 const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 764 unsigned OpCode) const; 765 766 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 767 768 bool WidenLoopCompare(NarrowIVDefUse DU); 769 770 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 771 }; 772 } // anonymous namespace 773 774 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 775 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 776 /// gratuitous for this purpose. 777 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 778 Instruction *Inst = dyn_cast<Instruction>(V); 779 if (!Inst) 780 return true; 781 782 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 783 } 784 785 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 786 Instruction *Use) { 787 // Set the debug location and conservative insertion point. 788 IRBuilder<> Builder(Use); 789 // Hoist the insertion point into loop preheaders as far as possible. 790 for (const Loop *L = LI->getLoopFor(Use->getParent()); 791 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 792 L = L->getParentLoop()) 793 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 794 795 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 796 Builder.CreateZExt(NarrowOper, WideType); 797 } 798 799 /// CloneIVUser - Instantiate a wide operation to replace a narrow 800 /// operation. This only needs to handle operations that can evaluation to 801 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 802 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 803 unsigned Opcode = DU.NarrowUse->getOpcode(); 804 switch (Opcode) { 805 default: 806 return nullptr; 807 case Instruction::Add: 808 case Instruction::Mul: 809 case Instruction::UDiv: 810 case Instruction::Sub: 811 case Instruction::And: 812 case Instruction::Or: 813 case Instruction::Xor: 814 case Instruction::Shl: 815 case Instruction::LShr: 816 case Instruction::AShr: 817 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 818 819 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 820 // anything about the narrow operand yet so must insert a [sz]ext. It is 821 // probably loop invariant and will be folded or hoisted. If it actually 822 // comes from a widened IV, it should be removed during a future call to 823 // WidenIVUse. 824 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 825 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 826 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 827 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 828 829 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 830 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 831 LHS, RHS, 832 NarrowBO->getName()); 833 IRBuilder<> Builder(DU.NarrowUse); 834 Builder.Insert(WideBO); 835 if (const OverflowingBinaryOperator *OBO = 836 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 837 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 838 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 839 } 840 return WideBO; 841 } 842 } 843 844 const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 845 unsigned OpCode) const { 846 if (OpCode == Instruction::Add) 847 return SE->getAddExpr(LHS, RHS); 848 if (OpCode == Instruction::Sub) 849 return SE->getMinusSCEV(LHS, RHS); 850 if (OpCode == Instruction::Mul) 851 return SE->getMulExpr(LHS, RHS); 852 853 llvm_unreachable("Unsupported opcode."); 854 } 855 856 /// No-wrap operations can transfer sign extension of their result to their 857 /// operands. Generate the SCEV value for the widened operation without 858 /// actually modifying the IR yet. If the expression after extending the 859 /// operands is an AddRec for this loop, return it. 860 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 861 862 // Handle the common case of add<nsw/nuw> 863 const unsigned OpCode = DU.NarrowUse->getOpcode(); 864 // Only Add/Sub/Mul instructions supported yet. 865 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 866 OpCode != Instruction::Mul) 867 return nullptr; 868 869 // One operand (NarrowDef) has already been extended to WideDef. Now determine 870 // if extending the other will lead to a recurrence. 871 const unsigned ExtendOperIdx = 872 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 873 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 874 875 const SCEV *ExtendOperExpr = nullptr; 876 const OverflowingBinaryOperator *OBO = 877 cast<OverflowingBinaryOperator>(DU.NarrowUse); 878 if (IsSigned && OBO->hasNoSignedWrap()) 879 ExtendOperExpr = SE->getSignExtendExpr( 880 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 881 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 882 ExtendOperExpr = SE->getZeroExtendExpr( 883 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 884 else 885 return nullptr; 886 887 // When creating this SCEV expr, don't apply the current operations NSW or NUW 888 // flags. This instruction may be guarded by control flow that the no-wrap 889 // behavior depends on. Non-control-equivalent instructions can be mapped to 890 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 891 // semantics to those operations. 892 const SCEV *lhs = SE->getSCEV(DU.WideDef); 893 const SCEV *rhs = ExtendOperExpr; 894 895 // Let's swap operands to the initial order for the case of non-commutative 896 // operations, like SUB. See PR21014. 897 if (ExtendOperIdx == 0) 898 std::swap(lhs, rhs); 899 const SCEVAddRecExpr *AddRec = 900 dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode)); 901 902 if (!AddRec || AddRec->getLoop() != L) 903 return nullptr; 904 return AddRec; 905 } 906 907 /// GetWideRecurrence - Is this instruction potentially interesting for further 908 /// simplification after widening it's type? In other words, can the 909 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 910 /// recurrence on the same loop. If so, return the sign or zero extended 911 /// recurrence. Otherwise return NULL. 912 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 913 if (!SE->isSCEVable(NarrowUse->getType())) 914 return nullptr; 915 916 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 917 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 918 >= SE->getTypeSizeInBits(WideType)) { 919 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 920 // index. So don't follow this use. 921 return nullptr; 922 } 923 924 const SCEV *WideExpr = IsSigned ? 925 SE->getSignExtendExpr(NarrowExpr, WideType) : 926 SE->getZeroExtendExpr(NarrowExpr, WideType); 927 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 928 if (!AddRec || AddRec->getLoop() != L) 929 return nullptr; 930 return AddRec; 931 } 932 933 /// This IV user cannot be widen. Replace this use of the original narrow IV 934 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 935 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) { 936 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 937 << " for user " << *DU.NarrowUse << "\n"); 938 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 939 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 940 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 941 } 942 943 /// If the narrow use is a compare instruction, then widen the compare 944 // (and possibly the other operand). The extend operation is hoisted into the 945 // loop preheader as far as possible. 946 bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) { 947 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 948 if (!Cmp) 949 return false; 950 951 // Sign of IV user and compare must match. 952 if (IsSigned != CmpInst::isSigned(Cmp->getPredicate())) 953 return false; 954 955 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 956 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 957 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 958 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 959 960 // Widen the compare instruction. 961 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 962 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 963 964 // Widen the other operand of the compare, if necessary. 965 if (CastWidth < IVWidth) { 966 Value *ExtOp = getExtend(Op, WideType, IsSigned, Cmp); 967 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 968 } 969 return true; 970 } 971 972 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 973 /// widened. If so, return the wide clone of the user. 974 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 975 976 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 977 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 978 if (LI->getLoopFor(UsePhi->getParent()) != L) { 979 // For LCSSA phis, sink the truncate outside the loop. 980 // After SimplifyCFG most loop exit targets have a single predecessor. 981 // Otherwise fall back to a truncate within the loop. 982 if (UsePhi->getNumOperands() != 1) 983 truncateIVUse(DU, DT); 984 else { 985 PHINode *WidePhi = 986 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 987 UsePhi); 988 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 989 IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt()); 990 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 991 UsePhi->replaceAllUsesWith(Trunc); 992 DeadInsts.push_back(UsePhi); 993 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 994 << " to " << *WidePhi << "\n"); 995 } 996 return nullptr; 997 } 998 } 999 // Our raison d'etre! Eliminate sign and zero extension. 1000 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1001 Value *NewDef = DU.WideDef; 1002 if (DU.NarrowUse->getType() != WideType) { 1003 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1004 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1005 if (CastWidth < IVWidth) { 1006 // The cast isn't as wide as the IV, so insert a Trunc. 1007 IRBuilder<> Builder(DU.NarrowUse); 1008 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1009 } 1010 else { 1011 // A wider extend was hidden behind a narrower one. This may induce 1012 // another round of IV widening in which the intermediate IV becomes 1013 // dead. It should be very rare. 1014 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1015 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1016 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1017 NewDef = DU.NarrowUse; 1018 } 1019 } 1020 if (NewDef != DU.NarrowUse) { 1021 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1022 << " replaced by " << *DU.WideDef << "\n"); 1023 ++NumElimExt; 1024 DU.NarrowUse->replaceAllUsesWith(NewDef); 1025 DeadInsts.push_back(DU.NarrowUse); 1026 } 1027 // Now that the extend is gone, we want to expose it's uses for potential 1028 // further simplification. We don't need to directly inform SimplifyIVUsers 1029 // of the new users, because their parent IV will be processed later as a 1030 // new loop phi. If we preserved IVUsers analysis, we would also want to 1031 // push the uses of WideDef here. 1032 1033 // No further widening is needed. The deceased [sz]ext had done it for us. 1034 return nullptr; 1035 } 1036 1037 // Does this user itself evaluate to a recurrence after widening? 1038 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 1039 if (!WideAddRec) 1040 WideAddRec = GetExtendedOperandRecurrence(DU); 1041 1042 if (!WideAddRec) { 1043 // If use is a loop condition, try to promote the condition instead of 1044 // truncating the IV first. 1045 if (WidenLoopCompare(DU)) 1046 return nullptr; 1047 1048 // This user does not evaluate to a recurence after widening, so don't 1049 // follow it. Instead insert a Trunc to kill off the original use, 1050 // eventually isolating the original narrow IV so it can be removed. 1051 truncateIVUse(DU, DT); 1052 return nullptr; 1053 } 1054 // Assume block terminators cannot evaluate to a recurrence. We can't to 1055 // insert a Trunc after a terminator if there happens to be a critical edge. 1056 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1057 "SCEV is not expected to evaluate a block terminator"); 1058 1059 // Reuse the IV increment that SCEVExpander created as long as it dominates 1060 // NarrowUse. 1061 Instruction *WideUse = nullptr; 1062 if (WideAddRec == WideIncExpr 1063 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1064 WideUse = WideInc; 1065 else { 1066 WideUse = CloneIVUser(DU); 1067 if (!WideUse) 1068 return nullptr; 1069 } 1070 // Evaluation of WideAddRec ensured that the narrow expression could be 1071 // extended outside the loop without overflow. This suggests that the wide use 1072 // evaluates to the same expression as the extended narrow use, but doesn't 1073 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1074 // where it fails, we simply throw away the newly created wide use. 1075 if (WideAddRec != SE->getSCEV(WideUse)) { 1076 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1077 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1078 DeadInsts.push_back(WideUse); 1079 return nullptr; 1080 } 1081 1082 // Returning WideUse pushes it on the worklist. 1083 return WideUse; 1084 } 1085 1086 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1087 /// 1088 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1089 for (User *U : NarrowDef->users()) { 1090 Instruction *NarrowUser = cast<Instruction>(U); 1091 1092 // Handle data flow merges and bizarre phi cycles. 1093 if (!Widened.insert(NarrowUser).second) 1094 continue; 1095 1096 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef)); 1097 } 1098 } 1099 1100 /// CreateWideIV - Process a single induction variable. First use the 1101 /// SCEVExpander to create a wide induction variable that evaluates to the same 1102 /// recurrence as the original narrow IV. Then use a worklist to forward 1103 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1104 /// interesting IV users, the narrow IV will be isolated for removal by 1105 /// DeleteDeadPHIs. 1106 /// 1107 /// It would be simpler to delete uses as they are processed, but we must avoid 1108 /// invalidating SCEV expressions. 1109 /// 1110 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1111 // Is this phi an induction variable? 1112 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1113 if (!AddRec) 1114 return nullptr; 1115 1116 // Widen the induction variable expression. 1117 const SCEV *WideIVExpr = IsSigned ? 1118 SE->getSignExtendExpr(AddRec, WideType) : 1119 SE->getZeroExtendExpr(AddRec, WideType); 1120 1121 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1122 "Expect the new IV expression to preserve its type"); 1123 1124 // Can the IV be extended outside the loop without overflow? 1125 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1126 if (!AddRec || AddRec->getLoop() != L) 1127 return nullptr; 1128 1129 // An AddRec must have loop-invariant operands. Since this AddRec is 1130 // materialized by a loop header phi, the expression cannot have any post-loop 1131 // operands, so they must dominate the loop header. 1132 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1133 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1134 && "Loop header phi recurrence inputs do not dominate the loop"); 1135 1136 // The rewriter provides a value for the desired IV expression. This may 1137 // either find an existing phi or materialize a new one. Either way, we 1138 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1139 // of the phi-SCC dominates the loop entry. 1140 Instruction *InsertPt = L->getHeader()->begin(); 1141 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1142 1143 // Remembering the WideIV increment generated by SCEVExpander allows 1144 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1145 // employ a general reuse mechanism because the call above is the only call to 1146 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1147 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1148 WideInc = 1149 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1150 WideIncExpr = SE->getSCEV(WideInc); 1151 } 1152 1153 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1154 ++NumWidened; 1155 1156 // Traverse the def-use chain using a worklist starting at the original IV. 1157 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1158 1159 Widened.insert(OrigPhi); 1160 pushNarrowIVUsers(OrigPhi, WidePhi); 1161 1162 while (!NarrowIVUsers.empty()) { 1163 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1164 1165 // Process a def-use edge. This may replace the use, so don't hold a 1166 // use_iterator across it. 1167 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1168 1169 // Follow all def-use edges from the previous narrow use. 1170 if (WideUse) 1171 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1172 1173 // WidenIVUse may have removed the def-use edge. 1174 if (DU.NarrowDef->use_empty()) 1175 DeadInsts.push_back(DU.NarrowDef); 1176 } 1177 return WidePhi; 1178 } 1179 1180 //===----------------------------------------------------------------------===// 1181 // Live IV Reduction - Minimize IVs live across the loop. 1182 //===----------------------------------------------------------------------===// 1183 1184 1185 //===----------------------------------------------------------------------===// 1186 // Simplification of IV users based on SCEV evaluation. 1187 //===----------------------------------------------------------------------===// 1188 1189 namespace { 1190 class IndVarSimplifyVisitor : public IVVisitor { 1191 ScalarEvolution *SE; 1192 const TargetTransformInfo *TTI; 1193 PHINode *IVPhi; 1194 1195 public: 1196 WideIVInfo WI; 1197 1198 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1199 const TargetTransformInfo *TTI, 1200 const DominatorTree *DTree) 1201 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1202 DT = DTree; 1203 WI.NarrowIV = IVPhi; 1204 if (ReduceLiveIVs) 1205 setSplitOverflowIntrinsics(); 1206 } 1207 1208 // Implement the interface used by simplifyUsersOfIV. 1209 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1210 }; 1211 } 1212 1213 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1214 /// users. Each successive simplification may push more users which may 1215 /// themselves be candidates for simplification. 1216 /// 1217 /// Sign/Zero extend elimination is interleaved with IV simplification. 1218 /// 1219 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1220 SCEVExpander &Rewriter, 1221 LPPassManager &LPM) { 1222 SmallVector<WideIVInfo, 8> WideIVs; 1223 1224 SmallVector<PHINode*, 8> LoopPhis; 1225 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1226 LoopPhis.push_back(cast<PHINode>(I)); 1227 } 1228 // Each round of simplification iterates through the SimplifyIVUsers worklist 1229 // for all current phis, then determines whether any IVs can be 1230 // widened. Widening adds new phis to LoopPhis, inducing another round of 1231 // simplification on the wide IVs. 1232 while (!LoopPhis.empty()) { 1233 // Evaluate as many IV expressions as possible before widening any IVs. This 1234 // forces SCEV to set no-wrap flags before evaluating sign/zero 1235 // extension. The first time SCEV attempts to normalize sign/zero extension, 1236 // the result becomes final. So for the most predictable results, we delay 1237 // evaluation of sign/zero extend evaluation until needed, and avoid running 1238 // other SCEV based analysis prior to SimplifyAndExtend. 1239 do { 1240 PHINode *CurrIV = LoopPhis.pop_back_val(); 1241 1242 // Information about sign/zero extensions of CurrIV. 1243 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1244 1245 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor); 1246 1247 if (Visitor.WI.WidestNativeType) { 1248 WideIVs.push_back(Visitor.WI); 1249 } 1250 } while(!LoopPhis.empty()); 1251 1252 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1253 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1254 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1255 Changed = true; 1256 LoopPhis.push_back(WidePhi); 1257 } 1258 } 1259 } 1260 } 1261 1262 //===----------------------------------------------------------------------===// 1263 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1264 //===----------------------------------------------------------------------===// 1265 1266 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1267 /// count expression can be safely and cheaply expanded into an instruction 1268 /// sequence that can be used by LinearFunctionTestReplace. 1269 /// 1270 /// TODO: This fails for pointer-type loop counters with greater than one byte 1271 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1272 /// we could skip this check in the case that the LFTR loop counter (chosen by 1273 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1274 /// the loop test to an inequality test by checking the target data's alignment 1275 /// of element types (given that the initial pointer value originates from or is 1276 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1277 /// However, we don't yet have a strong motivation for converting loop tests 1278 /// into inequality tests. 1279 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1280 SCEVExpander &Rewriter) { 1281 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1282 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1283 BackedgeTakenCount->isZero()) 1284 return false; 1285 1286 if (!L->getExitingBlock()) 1287 return false; 1288 1289 // Can't rewrite non-branch yet. 1290 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1291 return false; 1292 1293 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1294 return false; 1295 1296 return true; 1297 } 1298 1299 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1300 /// invariant value to the phi. 1301 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1302 Instruction *IncI = dyn_cast<Instruction>(IncV); 1303 if (!IncI) 1304 return nullptr; 1305 1306 switch (IncI->getOpcode()) { 1307 case Instruction::Add: 1308 case Instruction::Sub: 1309 break; 1310 case Instruction::GetElementPtr: 1311 // An IV counter must preserve its type. 1312 if (IncI->getNumOperands() == 2) 1313 break; 1314 default: 1315 return nullptr; 1316 } 1317 1318 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1319 if (Phi && Phi->getParent() == L->getHeader()) { 1320 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1321 return Phi; 1322 return nullptr; 1323 } 1324 if (IncI->getOpcode() == Instruction::GetElementPtr) 1325 return nullptr; 1326 1327 // Allow add/sub to be commuted. 1328 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1329 if (Phi && Phi->getParent() == L->getHeader()) { 1330 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1331 return Phi; 1332 } 1333 return nullptr; 1334 } 1335 1336 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1337 static ICmpInst *getLoopTest(Loop *L) { 1338 assert(L->getExitingBlock() && "expected loop exit"); 1339 1340 BasicBlock *LatchBlock = L->getLoopLatch(); 1341 // Don't bother with LFTR if the loop is not properly simplified. 1342 if (!LatchBlock) 1343 return nullptr; 1344 1345 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1346 assert(BI && "expected exit branch"); 1347 1348 return dyn_cast<ICmpInst>(BI->getCondition()); 1349 } 1350 1351 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1352 /// that the current exit test is already sufficiently canonical. 1353 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1354 // Do LFTR to simplify the exit condition to an ICMP. 1355 ICmpInst *Cond = getLoopTest(L); 1356 if (!Cond) 1357 return true; 1358 1359 // Do LFTR to simplify the exit ICMP to EQ/NE 1360 ICmpInst::Predicate Pred = Cond->getPredicate(); 1361 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1362 return true; 1363 1364 // Look for a loop invariant RHS 1365 Value *LHS = Cond->getOperand(0); 1366 Value *RHS = Cond->getOperand(1); 1367 if (!isLoopInvariant(RHS, L, DT)) { 1368 if (!isLoopInvariant(LHS, L, DT)) 1369 return true; 1370 std::swap(LHS, RHS); 1371 } 1372 // Look for a simple IV counter LHS 1373 PHINode *Phi = dyn_cast<PHINode>(LHS); 1374 if (!Phi) 1375 Phi = getLoopPhiForCounter(LHS, L, DT); 1376 1377 if (!Phi) 1378 return true; 1379 1380 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1381 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1382 if (Idx < 0) 1383 return true; 1384 1385 // Do LFTR if the exit condition's IV is *not* a simple counter. 1386 Value *IncV = Phi->getIncomingValue(Idx); 1387 return Phi != getLoopPhiForCounter(IncV, L, DT); 1388 } 1389 1390 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1391 /// down to checking that all operands are constant and listing instructions 1392 /// that may hide undef. 1393 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1394 unsigned Depth) { 1395 if (isa<Constant>(V)) 1396 return !isa<UndefValue>(V); 1397 1398 if (Depth >= 6) 1399 return false; 1400 1401 // Conservatively handle non-constant non-instructions. For example, Arguments 1402 // may be undef. 1403 Instruction *I = dyn_cast<Instruction>(V); 1404 if (!I) 1405 return false; 1406 1407 // Load and return values may be undef. 1408 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1409 return false; 1410 1411 // Optimistically handle other instructions. 1412 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1413 if (!Visited.insert(*OI).second) 1414 continue; 1415 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1416 return false; 1417 } 1418 return true; 1419 } 1420 1421 /// Return true if the given value is concrete. We must prove that undef can 1422 /// never reach it. 1423 /// 1424 /// TODO: If we decide that this is a good approach to checking for undef, we 1425 /// may factor it into a common location. 1426 static bool hasConcreteDef(Value *V) { 1427 SmallPtrSet<Value*, 8> Visited; 1428 Visited.insert(V); 1429 return hasConcreteDefImpl(V, Visited, 0); 1430 } 1431 1432 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1433 /// be rewritten) loop exit test. 1434 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1435 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1436 Value *IncV = Phi->getIncomingValue(LatchIdx); 1437 1438 for (User *U : Phi->users()) 1439 if (U != Cond && U != IncV) return false; 1440 1441 for (User *U : IncV->users()) 1442 if (U != Cond && U != Phi) return false; 1443 return true; 1444 } 1445 1446 /// FindLoopCounter - Find an affine IV in canonical form. 1447 /// 1448 /// BECount may be an i8* pointer type. The pointer difference is already 1449 /// valid count without scaling the address stride, so it remains a pointer 1450 /// expression as far as SCEV is concerned. 1451 /// 1452 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1453 /// 1454 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1455 /// 1456 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1457 /// This is difficult in general for SCEV because of potential overflow. But we 1458 /// could at least handle constant BECounts. 1459 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1460 ScalarEvolution *SE, DominatorTree *DT) { 1461 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1462 1463 Value *Cond = 1464 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1465 1466 // Loop over all of the PHI nodes, looking for a simple counter. 1467 PHINode *BestPhi = nullptr; 1468 const SCEV *BestInit = nullptr; 1469 BasicBlock *LatchBlock = L->getLoopLatch(); 1470 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1471 1472 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1473 PHINode *Phi = cast<PHINode>(I); 1474 if (!SE->isSCEVable(Phi->getType())) 1475 continue; 1476 1477 // Avoid comparing an integer IV against a pointer Limit. 1478 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1479 continue; 1480 1481 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1482 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1483 continue; 1484 1485 // AR may be a pointer type, while BECount is an integer type. 1486 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1487 // AR may not be a narrower type, or we may never exit. 1488 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1489 if (PhiWidth < BCWidth || 1490 !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth)) 1491 continue; 1492 1493 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1494 if (!Step || !Step->isOne()) 1495 continue; 1496 1497 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1498 Value *IncV = Phi->getIncomingValue(LatchIdx); 1499 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1500 continue; 1501 1502 // Avoid reusing a potentially undef value to compute other values that may 1503 // have originally had a concrete definition. 1504 if (!hasConcreteDef(Phi)) { 1505 // We explicitly allow unknown phis as long as they are already used by 1506 // the loop test. In this case we assume that performing LFTR could not 1507 // increase the number of undef users. 1508 if (ICmpInst *Cond = getLoopTest(L)) { 1509 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1510 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1511 continue; 1512 } 1513 } 1514 } 1515 const SCEV *Init = AR->getStart(); 1516 1517 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1518 // Don't force a live loop counter if another IV can be used. 1519 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1520 continue; 1521 1522 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1523 // also prefers integer to pointer IVs. 1524 if (BestInit->isZero() != Init->isZero()) { 1525 if (BestInit->isZero()) 1526 continue; 1527 } 1528 // If two IVs both count from zero or both count from nonzero then the 1529 // narrower is likely a dead phi that has been widened. Use the wider phi 1530 // to allow the other to be eliminated. 1531 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1532 continue; 1533 } 1534 BestPhi = Phi; 1535 BestInit = Init; 1536 } 1537 return BestPhi; 1538 } 1539 1540 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1541 /// holds the RHS of the new loop test. 1542 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1543 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1544 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1545 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1546 const SCEV *IVInit = AR->getStart(); 1547 1548 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1549 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1550 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1551 // the existing GEPs whenever possible. 1552 if (IndVar->getType()->isPointerTy() 1553 && !IVCount->getType()->isPointerTy()) { 1554 1555 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1556 // signed value. IVCount on the other hand represents the loop trip count, 1557 // which is an unsigned value. FindLoopCounter only allows induction 1558 // variables that have a positive unit stride of one. This means we don't 1559 // have to handle the case of negative offsets (yet) and just need to zero 1560 // extend IVCount. 1561 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1562 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1563 1564 // Expand the code for the iteration count. 1565 assert(SE->isLoopInvariant(IVOffset, L) && 1566 "Computed iteration count is not loop invariant!"); 1567 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1568 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1569 1570 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1571 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1572 // We could handle pointer IVs other than i8*, but we need to compensate for 1573 // gep index scaling. See canExpandBackedgeTakenCount comments. 1574 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1575 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1576 && "unit stride pointer IV must be i8*"); 1577 1578 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1579 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1580 } 1581 else { 1582 // In any other case, convert both IVInit and IVCount to integers before 1583 // comparing. This may result in SCEV expension of pointers, but in practice 1584 // SCEV will fold the pointer arithmetic away as such: 1585 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1586 // 1587 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1588 // for simple memset-style loops. 1589 // 1590 // IVInit integer and IVCount pointer would only occur if a canonical IV 1591 // were generated on top of case #2, which is not expected. 1592 1593 const SCEV *IVLimit = nullptr; 1594 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1595 // For non-zero Start, compute IVCount here. 1596 if (AR->getStart()->isZero()) 1597 IVLimit = IVCount; 1598 else { 1599 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1600 const SCEV *IVInit = AR->getStart(); 1601 1602 // For integer IVs, truncate the IV before computing IVInit + BECount. 1603 if (SE->getTypeSizeInBits(IVInit->getType()) 1604 > SE->getTypeSizeInBits(IVCount->getType())) 1605 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1606 1607 IVLimit = SE->getAddExpr(IVInit, IVCount); 1608 } 1609 // Expand the code for the iteration count. 1610 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1611 IRBuilder<> Builder(BI); 1612 assert(SE->isLoopInvariant(IVLimit, L) && 1613 "Computed iteration count is not loop invariant!"); 1614 // Ensure that we generate the same type as IndVar, or a smaller integer 1615 // type. In the presence of null pointer values, we have an integer type 1616 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1617 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1618 IndVar->getType() : IVCount->getType(); 1619 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1620 } 1621 } 1622 1623 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1624 /// loop to be a canonical != comparison against the incremented loop induction 1625 /// variable. This pass is able to rewrite the exit tests of any loop where the 1626 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1627 /// is actually a much broader range than just linear tests. 1628 Value *IndVarSimplify:: 1629 LinearFunctionTestReplace(Loop *L, 1630 const SCEV *BackedgeTakenCount, 1631 PHINode *IndVar, 1632 SCEVExpander &Rewriter) { 1633 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1634 1635 // Initialize CmpIndVar and IVCount to their preincremented values. 1636 Value *CmpIndVar = IndVar; 1637 const SCEV *IVCount = BackedgeTakenCount; 1638 1639 // If the exiting block is the same as the backedge block, we prefer to 1640 // compare against the post-incremented value, otherwise we must compare 1641 // against the preincremented value. 1642 if (L->getExitingBlock() == L->getLoopLatch()) { 1643 // Add one to the "backedge-taken" count to get the trip count. 1644 // This addition may overflow, which is valid as long as the comparison is 1645 // truncated to BackedgeTakenCount->getType(). 1646 IVCount = SE->getAddExpr(BackedgeTakenCount, 1647 SE->getConstant(BackedgeTakenCount->getType(), 1)); 1648 // The BackedgeTaken expression contains the number of times that the 1649 // backedge branches to the loop header. This is one less than the 1650 // number of times the loop executes, so use the incremented indvar. 1651 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1652 } 1653 1654 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1655 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1656 && "genLoopLimit missed a cast"); 1657 1658 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1659 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1660 ICmpInst::Predicate P; 1661 if (L->contains(BI->getSuccessor(0))) 1662 P = ICmpInst::ICMP_NE; 1663 else 1664 P = ICmpInst::ICMP_EQ; 1665 1666 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1667 << " LHS:" << *CmpIndVar << '\n' 1668 << " op:\t" 1669 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1670 << " RHS:\t" << *ExitCnt << "\n" 1671 << " IVCount:\t" << *IVCount << "\n"); 1672 1673 IRBuilder<> Builder(BI); 1674 1675 // LFTR can ignore IV overflow and truncate to the width of 1676 // BECount. This avoids materializing the add(zext(add)) expression. 1677 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1678 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1679 if (CmpIndVarSize > ExitCntSize) { 1680 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1681 const SCEV *ARStart = AR->getStart(); 1682 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1683 // For constant IVCount, avoid truncation. 1684 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1685 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue(); 1686 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue(); 1687 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1688 // above such that IVCount is now zero. 1689 if (IVCount != BackedgeTakenCount && Count == 0) { 1690 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1691 ++Count; 1692 } 1693 else 1694 Count = Count.zext(CmpIndVarSize); 1695 APInt NewLimit; 1696 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1697 NewLimit = Start - Count; 1698 else 1699 NewLimit = Start + Count; 1700 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1701 1702 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1703 } else { 1704 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1705 "lftr.wideiv"); 1706 } 1707 } 1708 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1709 Value *OrigCond = BI->getCondition(); 1710 // It's tempting to use replaceAllUsesWith here to fully replace the old 1711 // comparison, but that's not immediately safe, since users of the old 1712 // comparison may not be dominated by the new comparison. Instead, just 1713 // update the branch to use the new comparison; in the common case this 1714 // will make old comparison dead. 1715 BI->setCondition(Cond); 1716 DeadInsts.push_back(OrigCond); 1717 1718 ++NumLFTR; 1719 Changed = true; 1720 return Cond; 1721 } 1722 1723 //===----------------------------------------------------------------------===// 1724 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1725 //===----------------------------------------------------------------------===// 1726 1727 /// If there's a single exit block, sink any loop-invariant values that 1728 /// were defined in the preheader but not used inside the loop into the 1729 /// exit block to reduce register pressure in the loop. 1730 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1731 BasicBlock *ExitBlock = L->getExitBlock(); 1732 if (!ExitBlock) return; 1733 1734 BasicBlock *Preheader = L->getLoopPreheader(); 1735 if (!Preheader) return; 1736 1737 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1738 BasicBlock::iterator I = Preheader->getTerminator(); 1739 while (I != Preheader->begin()) { 1740 --I; 1741 // New instructions were inserted at the end of the preheader. 1742 if (isa<PHINode>(I)) 1743 break; 1744 1745 // Don't move instructions which might have side effects, since the side 1746 // effects need to complete before instructions inside the loop. Also don't 1747 // move instructions which might read memory, since the loop may modify 1748 // memory. Note that it's okay if the instruction might have undefined 1749 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1750 // block. 1751 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1752 continue; 1753 1754 // Skip debug info intrinsics. 1755 if (isa<DbgInfoIntrinsic>(I)) 1756 continue; 1757 1758 // Skip landingpad instructions. 1759 if (isa<LandingPadInst>(I)) 1760 continue; 1761 1762 // Don't sink alloca: we never want to sink static alloca's out of the 1763 // entry block, and correctly sinking dynamic alloca's requires 1764 // checks for stacksave/stackrestore intrinsics. 1765 // FIXME: Refactor this check somehow? 1766 if (isa<AllocaInst>(I)) 1767 continue; 1768 1769 // Determine if there is a use in or before the loop (direct or 1770 // otherwise). 1771 bool UsedInLoop = false; 1772 for (Use &U : I->uses()) { 1773 Instruction *User = cast<Instruction>(U.getUser()); 1774 BasicBlock *UseBB = User->getParent(); 1775 if (PHINode *P = dyn_cast<PHINode>(User)) { 1776 unsigned i = 1777 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1778 UseBB = P->getIncomingBlock(i); 1779 } 1780 if (UseBB == Preheader || L->contains(UseBB)) { 1781 UsedInLoop = true; 1782 break; 1783 } 1784 } 1785 1786 // If there is, the def must remain in the preheader. 1787 if (UsedInLoop) 1788 continue; 1789 1790 // Otherwise, sink it to the exit block. 1791 Instruction *ToMove = I; 1792 bool Done = false; 1793 1794 if (I != Preheader->begin()) { 1795 // Skip debug info intrinsics. 1796 do { 1797 --I; 1798 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1799 1800 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1801 Done = true; 1802 } else { 1803 Done = true; 1804 } 1805 1806 ToMove->moveBefore(InsertPt); 1807 if (Done) break; 1808 InsertPt = ToMove; 1809 } 1810 } 1811 1812 //===----------------------------------------------------------------------===// 1813 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1814 //===----------------------------------------------------------------------===// 1815 1816 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1817 if (skipOptnoneFunction(L)) 1818 return false; 1819 1820 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1821 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1822 // canonicalization can be a pessimization without LSR to "clean up" 1823 // afterwards. 1824 // - We depend on having a preheader; in particular, 1825 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1826 // and we're in trouble if we can't find the induction variable even when 1827 // we've manually inserted one. 1828 if (!L->isLoopSimplifyForm()) 1829 return false; 1830 1831 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1832 SE = &getAnalysis<ScalarEvolution>(); 1833 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1834 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1835 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1836 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 1837 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 1838 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1839 1840 DeadInsts.clear(); 1841 Changed = false; 1842 1843 // If there are any floating-point recurrences, attempt to 1844 // transform them to use integer recurrences. 1845 RewriteNonIntegerIVs(L); 1846 1847 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1848 1849 // Create a rewriter object which we'll use to transform the code with. 1850 SCEVExpander Rewriter(*SE, DL, "indvars"); 1851 #ifndef NDEBUG 1852 Rewriter.setDebugType(DEBUG_TYPE); 1853 #endif 1854 1855 // Eliminate redundant IV users. 1856 // 1857 // Simplification works best when run before other consumers of SCEV. We 1858 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1859 // other expressions involving loop IVs have been evaluated. This helps SCEV 1860 // set no-wrap flags before normalizing sign/zero extension. 1861 Rewriter.disableCanonicalMode(); 1862 SimplifyAndExtend(L, Rewriter, LPM); 1863 1864 // Check to see if this loop has a computable loop-invariant execution count. 1865 // If so, this means that we can compute the final value of any expressions 1866 // that are recurrent in the loop, and substitute the exit values from the 1867 // loop into any instructions outside of the loop that use the final values of 1868 // the current expressions. 1869 // 1870 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1871 RewriteLoopExitValues(L, Rewriter); 1872 1873 // Eliminate redundant IV cycles. 1874 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1875 1876 // If we have a trip count expression, rewrite the loop's exit condition 1877 // using it. We can currently only handle loops with a single exit. 1878 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 1879 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 1880 if (IndVar) { 1881 // Check preconditions for proper SCEVExpander operation. SCEV does not 1882 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 1883 // pass that uses the SCEVExpander must do it. This does not work well for 1884 // loop passes because SCEVExpander makes assumptions about all loops, 1885 // while LoopPassManager only forces the current loop to be simplified. 1886 // 1887 // FIXME: SCEV expansion has no way to bail out, so the caller must 1888 // explicitly check any assumptions made by SCEV. Brittle. 1889 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 1890 if (!AR || AR->getLoop()->getLoopPreheader()) 1891 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 1892 Rewriter); 1893 } 1894 } 1895 // Clear the rewriter cache, because values that are in the rewriter's cache 1896 // can be deleted in the loop below, causing the AssertingVH in the cache to 1897 // trigger. 1898 Rewriter.clear(); 1899 1900 // Now that we're done iterating through lists, clean up any instructions 1901 // which are now dead. 1902 while (!DeadInsts.empty()) 1903 if (Instruction *Inst = 1904 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 1905 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 1906 1907 // The Rewriter may not be used from this point on. 1908 1909 // Loop-invariant instructions in the preheader that aren't used in the 1910 // loop may be sunk below the loop to reduce register pressure. 1911 SinkUnusedInvariants(L); 1912 1913 // Clean up dead instructions. 1914 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 1915 // Check a post-condition. 1916 assert(L->isLCSSAForm(*DT) && 1917 "Indvars did not leave the loop in lcssa form!"); 1918 1919 // Verify that LFTR, and any other change have not interfered with SCEV's 1920 // ability to compute trip count. 1921 #ifndef NDEBUG 1922 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1923 SE->forgetLoop(L); 1924 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1925 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1926 SE->getTypeSizeInBits(NewBECount->getType())) 1927 NewBECount = SE->getTruncateOrNoop(NewBECount, 1928 BackedgeTakenCount->getType()); 1929 else 1930 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1931 NewBECount->getType()); 1932 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 1933 } 1934 #endif 1935 1936 return Changed; 1937 } 1938