1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/LoopPass.h" 33 #include "llvm/Analysis/ScalarEvolutionExpander.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 50 #include "llvm/Transforms/Utils/Local.h" 51 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 52 using namespace llvm; 53 54 #define DEBUG_TYPE "indvars" 55 56 STATISTIC(NumWidened , "Number of indvars widened"); 57 STATISTIC(NumReplaced , "Number of exit values replaced"); 58 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 59 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 60 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 61 62 // Trip count verification can be enabled by default under NDEBUG if we 63 // implement a strong expression equivalence checker in SCEV. Until then, we 64 // use the verify-indvars flag, which may assert in some cases. 65 static cl::opt<bool> VerifyIndvars( 66 "verify-indvars", cl::Hidden, 67 cl::desc("Verify the ScalarEvolution result after running indvars")); 68 69 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 70 cl::desc("Reduce live induction variables.")); 71 72 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 73 74 static cl::opt<ReplaceExitVal> ReplaceExitValue( 75 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 76 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 77 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 78 clEnumValN(OnlyCheapRepl, "cheap", 79 "only replace exit value when the cost is cheap"), 80 clEnumValN(AlwaysRepl, "always", 81 "always replace exit value whenever possible"), 82 clEnumValEnd)); 83 84 namespace { 85 struct RewritePhi; 86 } 87 88 namespace { 89 class IndVarSimplify : public LoopPass { 90 LoopInfo *LI; 91 ScalarEvolution *SE; 92 DominatorTree *DT; 93 TargetLibraryInfo *TLI; 94 const TargetTransformInfo *TTI; 95 96 SmallVector<WeakVH, 16> DeadInsts; 97 bool Changed; 98 public: 99 100 static char ID; // Pass identification, replacement for typeid 101 IndVarSimplify() 102 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) { 103 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 104 } 105 106 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 107 108 void getAnalysisUsage(AnalysisUsage &AU) const override { 109 AU.addRequired<DominatorTreeWrapperPass>(); 110 AU.addRequired<LoopInfoWrapperPass>(); 111 AU.addRequired<ScalarEvolution>(); 112 AU.addRequiredID(LoopSimplifyID); 113 AU.addRequiredID(LCSSAID); 114 AU.addPreserved<ScalarEvolution>(); 115 AU.addPreservedID(LoopSimplifyID); 116 AU.addPreservedID(LCSSAID); 117 AU.setPreservesCFG(); 118 } 119 120 private: 121 void releaseMemory() override { 122 DeadInsts.clear(); 123 } 124 125 bool isValidRewrite(Value *FromVal, Value *ToVal); 126 127 void HandleFloatingPointIV(Loop *L, PHINode *PH); 128 void RewriteNonIntegerIVs(Loop *L); 129 130 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 131 132 bool CanLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 133 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 134 135 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 136 PHINode *IndVar, SCEVExpander &Rewriter); 137 138 void SinkUnusedInvariants(Loop *L); 139 140 Value *ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 141 Instruction *InsertPt, Type *Ty, 142 bool &IsHighCostExpansion); 143 }; 144 } 145 146 char IndVarSimplify::ID = 0; 147 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 148 "Induction Variable Simplification", false, false) 149 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 150 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 151 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 152 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 153 INITIALIZE_PASS_DEPENDENCY(LCSSA) 154 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 155 "Induction Variable Simplification", false, false) 156 157 Pass *llvm::createIndVarSimplifyPass() { 158 return new IndVarSimplify(); 159 } 160 161 /// isValidRewrite - Return true if the SCEV expansion generated by the 162 /// rewriter can replace the original value. SCEV guarantees that it 163 /// produces the same value, but the way it is produced may be illegal IR. 164 /// Ideally, this function will only be called for verification. 165 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 166 // If an SCEV expression subsumed multiple pointers, its expansion could 167 // reassociate the GEP changing the base pointer. This is illegal because the 168 // final address produced by a GEP chain must be inbounds relative to its 169 // underlying object. Otherwise basic alias analysis, among other things, 170 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 171 // producing an expression involving multiple pointers. Until then, we must 172 // bail out here. 173 // 174 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 175 // because it understands lcssa phis while SCEV does not. 176 Value *FromPtr = FromVal; 177 Value *ToPtr = ToVal; 178 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 179 FromPtr = GEP->getPointerOperand(); 180 } 181 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 182 ToPtr = GEP->getPointerOperand(); 183 } 184 if (FromPtr != FromVal || ToPtr != ToVal) { 185 // Quickly check the common case 186 if (FromPtr == ToPtr) 187 return true; 188 189 // SCEV may have rewritten an expression that produces the GEP's pointer 190 // operand. That's ok as long as the pointer operand has the same base 191 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 192 // base of a recurrence. This handles the case in which SCEV expansion 193 // converts a pointer type recurrence into a nonrecurrent pointer base 194 // indexed by an integer recurrence. 195 196 // If the GEP base pointer is a vector of pointers, abort. 197 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 198 return false; 199 200 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 201 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 202 if (FromBase == ToBase) 203 return true; 204 205 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 206 << *FromBase << " != " << *ToBase << "\n"); 207 208 return false; 209 } 210 return true; 211 } 212 213 /// Determine the insertion point for this user. By default, insert immediately 214 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 215 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 216 /// common dominator for the incoming blocks. 217 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 218 DominatorTree *DT) { 219 PHINode *PHI = dyn_cast<PHINode>(User); 220 if (!PHI) 221 return User; 222 223 Instruction *InsertPt = nullptr; 224 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 225 if (PHI->getIncomingValue(i) != Def) 226 continue; 227 228 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 229 if (!InsertPt) { 230 InsertPt = InsertBB->getTerminator(); 231 continue; 232 } 233 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 234 InsertPt = InsertBB->getTerminator(); 235 } 236 assert(InsertPt && "Missing phi operand"); 237 assert((!isa<Instruction>(Def) || 238 DT->dominates(cast<Instruction>(Def), InsertPt)) && 239 "def does not dominate all uses"); 240 return InsertPt; 241 } 242 243 //===----------------------------------------------------------------------===// 244 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 245 //===----------------------------------------------------------------------===// 246 247 /// ConvertToSInt - Convert APF to an integer, if possible. 248 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 249 bool isExact = false; 250 // See if we can convert this to an int64_t 251 uint64_t UIntVal; 252 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 253 &isExact) != APFloat::opOK || !isExact) 254 return false; 255 IntVal = UIntVal; 256 return true; 257 } 258 259 /// HandleFloatingPointIV - If the loop has floating induction variable 260 /// then insert corresponding integer induction variable if possible. 261 /// For example, 262 /// for(double i = 0; i < 10000; ++i) 263 /// bar(i) 264 /// is converted into 265 /// for(int i = 0; i < 10000; ++i) 266 /// bar((double)i); 267 /// 268 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 269 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 270 unsigned BackEdge = IncomingEdge^1; 271 272 // Check incoming value. 273 ConstantFP *InitValueVal = 274 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 275 276 int64_t InitValue; 277 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 278 return; 279 280 // Check IV increment. Reject this PN if increment operation is not 281 // an add or increment value can not be represented by an integer. 282 BinaryOperator *Incr = 283 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 284 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 285 286 // If this is not an add of the PHI with a constantfp, or if the constant fp 287 // is not an integer, bail out. 288 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 289 int64_t IncValue; 290 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 291 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 292 return; 293 294 // Check Incr uses. One user is PN and the other user is an exit condition 295 // used by the conditional terminator. 296 Value::user_iterator IncrUse = Incr->user_begin(); 297 Instruction *U1 = cast<Instruction>(*IncrUse++); 298 if (IncrUse == Incr->user_end()) return; 299 Instruction *U2 = cast<Instruction>(*IncrUse++); 300 if (IncrUse != Incr->user_end()) return; 301 302 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 303 // only used by a branch, we can't transform it. 304 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 305 if (!Compare) 306 Compare = dyn_cast<FCmpInst>(U2); 307 if (!Compare || !Compare->hasOneUse() || 308 !isa<BranchInst>(Compare->user_back())) 309 return; 310 311 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 312 313 // We need to verify that the branch actually controls the iteration count 314 // of the loop. If not, the new IV can overflow and no one will notice. 315 // The branch block must be in the loop and one of the successors must be out 316 // of the loop. 317 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 318 if (!L->contains(TheBr->getParent()) || 319 (L->contains(TheBr->getSuccessor(0)) && 320 L->contains(TheBr->getSuccessor(1)))) 321 return; 322 323 324 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 325 // transform it. 326 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 327 int64_t ExitValue; 328 if (ExitValueVal == nullptr || 329 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 330 return; 331 332 // Find new predicate for integer comparison. 333 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 334 switch (Compare->getPredicate()) { 335 default: return; // Unknown comparison. 336 case CmpInst::FCMP_OEQ: 337 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 338 case CmpInst::FCMP_ONE: 339 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 340 case CmpInst::FCMP_OGT: 341 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 342 case CmpInst::FCMP_OGE: 343 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 344 case CmpInst::FCMP_OLT: 345 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 346 case CmpInst::FCMP_OLE: 347 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 348 } 349 350 // We convert the floating point induction variable to a signed i32 value if 351 // we can. This is only safe if the comparison will not overflow in a way 352 // that won't be trapped by the integer equivalent operations. Check for this 353 // now. 354 // TODO: We could use i64 if it is native and the range requires it. 355 356 // The start/stride/exit values must all fit in signed i32. 357 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 358 return; 359 360 // If not actually striding (add x, 0.0), avoid touching the code. 361 if (IncValue == 0) 362 return; 363 364 // Positive and negative strides have different safety conditions. 365 if (IncValue > 0) { 366 // If we have a positive stride, we require the init to be less than the 367 // exit value. 368 if (InitValue >= ExitValue) 369 return; 370 371 uint32_t Range = uint32_t(ExitValue-InitValue); 372 // Check for infinite loop, either: 373 // while (i <= Exit) or until (i > Exit) 374 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 375 if (++Range == 0) return; // Range overflows. 376 } 377 378 unsigned Leftover = Range % uint32_t(IncValue); 379 380 // If this is an equality comparison, we require that the strided value 381 // exactly land on the exit value, otherwise the IV condition will wrap 382 // around and do things the fp IV wouldn't. 383 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 384 Leftover != 0) 385 return; 386 387 // If the stride would wrap around the i32 before exiting, we can't 388 // transform the IV. 389 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 390 return; 391 392 } else { 393 // If we have a negative stride, we require the init to be greater than the 394 // exit value. 395 if (InitValue <= ExitValue) 396 return; 397 398 uint32_t Range = uint32_t(InitValue-ExitValue); 399 // Check for infinite loop, either: 400 // while (i >= Exit) or until (i < Exit) 401 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 402 if (++Range == 0) return; // Range overflows. 403 } 404 405 unsigned Leftover = Range % uint32_t(-IncValue); 406 407 // If this is an equality comparison, we require that the strided value 408 // exactly land on the exit value, otherwise the IV condition will wrap 409 // around and do things the fp IV wouldn't. 410 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 411 Leftover != 0) 412 return; 413 414 // If the stride would wrap around the i32 before exiting, we can't 415 // transform the IV. 416 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 417 return; 418 } 419 420 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 421 422 // Insert new integer induction variable. 423 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 424 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 425 PN->getIncomingBlock(IncomingEdge)); 426 427 Value *NewAdd = 428 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 429 Incr->getName()+".int", Incr); 430 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 431 432 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 433 ConstantInt::get(Int32Ty, ExitValue), 434 Compare->getName()); 435 436 // In the following deletions, PN may become dead and may be deleted. 437 // Use a WeakVH to observe whether this happens. 438 WeakVH WeakPH = PN; 439 440 // Delete the old floating point exit comparison. The branch starts using the 441 // new comparison. 442 NewCompare->takeName(Compare); 443 Compare->replaceAllUsesWith(NewCompare); 444 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 445 446 // Delete the old floating point increment. 447 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 448 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 449 450 // If the FP induction variable still has uses, this is because something else 451 // in the loop uses its value. In order to canonicalize the induction 452 // variable, we chose to eliminate the IV and rewrite it in terms of an 453 // int->fp cast. 454 // 455 // We give preference to sitofp over uitofp because it is faster on most 456 // platforms. 457 if (WeakPH) { 458 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 459 PN->getParent()->getFirstInsertionPt()); 460 PN->replaceAllUsesWith(Conv); 461 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 462 } 463 Changed = true; 464 } 465 466 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 467 // First step. Check to see if there are any floating-point recurrences. 468 // If there are, change them into integer recurrences, permitting analysis by 469 // the SCEV routines. 470 // 471 BasicBlock *Header = L->getHeader(); 472 473 SmallVector<WeakVH, 8> PHIs; 474 for (BasicBlock::iterator I = Header->begin(); 475 PHINode *PN = dyn_cast<PHINode>(I); ++I) 476 PHIs.push_back(PN); 477 478 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 479 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 480 HandleFloatingPointIV(L, PN); 481 482 // If the loop previously had floating-point IV, ScalarEvolution 483 // may not have been able to compute a trip count. Now that we've done some 484 // re-writing, the trip count may be computable. 485 if (Changed) 486 SE->forgetLoop(L); 487 } 488 489 namespace { 490 // Collect information about PHI nodes which can be transformed in 491 // RewriteLoopExitValues. 492 struct RewritePhi { 493 PHINode *PN; 494 unsigned Ith; // Ith incoming value. 495 Value *Val; // Exit value after expansion. 496 bool HighCost; // High Cost when expansion. 497 bool SafePhi; // LCSSASafePhiForRAUW. 498 499 RewritePhi(PHINode *P, unsigned I, Value *V, bool H, bool S) 500 : PN(P), Ith(I), Val(V), HighCost(H), SafePhi(S) {} 501 }; 502 } 503 504 Value *IndVarSimplify::ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 505 Loop *L, Instruction *InsertPt, 506 Type *ResultTy, 507 bool &IsHighCostExpansion) { 508 using namespace llvm::PatternMatch; 509 510 if (!Rewriter.isHighCostExpansion(S, L)) { 511 IsHighCostExpansion = false; 512 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 513 } 514 515 // Before expanding S into an expensive LLVM expression, see if we can use an 516 // already existing value as the expansion for S. There is potential to make 517 // this significantly smarter, but this simple heuristic already gets some 518 // interesting cases. 519 520 SmallVector<BasicBlock *, 4> Latches; 521 L->getLoopLatches(Latches); 522 523 for (BasicBlock *BB : Latches) { 524 ICmpInst::Predicate Pred; 525 Instruction *LHS, *RHS; 526 BasicBlock *TrueBB, *FalseBB; 527 528 if (!match(BB->getTerminator(), 529 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)), 530 TrueBB, FalseBB))) 531 continue; 532 533 if (SE->getSCEV(LHS) == S && DT->dominates(LHS, InsertPt)) { 534 IsHighCostExpansion = false; 535 return LHS; 536 } 537 538 if (SE->getSCEV(RHS) == S && DT->dominates(RHS, InsertPt)) { 539 IsHighCostExpansion = false; 540 return RHS; 541 } 542 } 543 544 // We didn't find anything, fall back to using SCEVExpander. 545 assert(Rewriter.isHighCostExpansion(S, L) && "this should not have changed!"); 546 IsHighCostExpansion = true; 547 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 548 } 549 550 //===----------------------------------------------------------------------===// 551 // RewriteLoopExitValues - Optimize IV users outside the loop. 552 // As a side effect, reduces the amount of IV processing within the loop. 553 //===----------------------------------------------------------------------===// 554 555 /// RewriteLoopExitValues - Check to see if this loop has a computable 556 /// loop-invariant execution count. If so, this means that we can compute the 557 /// final value of any expressions that are recurrent in the loop, and 558 /// substitute the exit values from the loop into any instructions outside of 559 /// the loop that use the final values of the current expressions. 560 /// 561 /// This is mostly redundant with the regular IndVarSimplify activities that 562 /// happen later, except that it's more powerful in some cases, because it's 563 /// able to brute-force evaluate arbitrary instructions as long as they have 564 /// constant operands at the beginning of the loop. 565 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 566 // Verify the input to the pass in already in LCSSA form. 567 assert(L->isLCSSAForm(*DT)); 568 569 SmallVector<BasicBlock*, 8> ExitBlocks; 570 L->getUniqueExitBlocks(ExitBlocks); 571 572 SmallVector<RewritePhi, 8> RewritePhiSet; 573 // Find all values that are computed inside the loop, but used outside of it. 574 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 575 // the exit blocks of the loop to find them. 576 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 577 BasicBlock *ExitBB = ExitBlocks[i]; 578 579 // If there are no PHI nodes in this exit block, then no values defined 580 // inside the loop are used on this path, skip it. 581 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 582 if (!PN) continue; 583 584 unsigned NumPreds = PN->getNumIncomingValues(); 585 586 // We would like to be able to RAUW single-incoming value PHI nodes. We 587 // have to be certain this is safe even when this is an LCSSA PHI node. 588 // While the computed exit value is no longer varying in *this* loop, the 589 // exit block may be an exit block for an outer containing loop as well, 590 // the exit value may be varying in the outer loop, and thus it may still 591 // require an LCSSA PHI node. The safe case is when this is 592 // single-predecessor PHI node (LCSSA) and the exit block containing it is 593 // part of the enclosing loop, or this is the outer most loop of the nest. 594 // In either case the exit value could (at most) be varying in the same 595 // loop body as the phi node itself. Thus if it is in turn used outside of 596 // an enclosing loop it will only be via a separate LCSSA node. 597 bool LCSSASafePhiForRAUW = 598 NumPreds == 1 && 599 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB)); 600 601 // Iterate over all of the PHI nodes. 602 BasicBlock::iterator BBI = ExitBB->begin(); 603 while ((PN = dyn_cast<PHINode>(BBI++))) { 604 if (PN->use_empty()) 605 continue; // dead use, don't replace it 606 607 // SCEV only supports integer expressions for now. 608 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 609 continue; 610 611 // It's necessary to tell ScalarEvolution about this explicitly so that 612 // it can walk the def-use list and forget all SCEVs, as it may not be 613 // watching the PHI itself. Once the new exit value is in place, there 614 // may not be a def-use connection between the loop and every instruction 615 // which got a SCEVAddRecExpr for that loop. 616 SE->forgetValue(PN); 617 618 // Iterate over all of the values in all the PHI nodes. 619 for (unsigned i = 0; i != NumPreds; ++i) { 620 // If the value being merged in is not integer or is not defined 621 // in the loop, skip it. 622 Value *InVal = PN->getIncomingValue(i); 623 if (!isa<Instruction>(InVal)) 624 continue; 625 626 // If this pred is for a subloop, not L itself, skip it. 627 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 628 continue; // The Block is in a subloop, skip it. 629 630 // Check that InVal is defined in the loop. 631 Instruction *Inst = cast<Instruction>(InVal); 632 if (!L->contains(Inst)) 633 continue; 634 635 // Okay, this instruction has a user outside of the current loop 636 // and varies predictably *inside* the loop. Evaluate the value it 637 // contains when the loop exits, if possible. 638 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 639 if (!SE->isLoopInvariant(ExitValue, L) || 640 !isSafeToExpand(ExitValue, *SE)) 641 continue; 642 643 // Computing the value outside of the loop brings no benefit if : 644 // - it is definitely used inside the loop in a way which can not be 645 // optimized away. 646 // - no use outside of the loop can take advantage of hoisting the 647 // computation out of the loop 648 if (ExitValue->getSCEVType()>=scMulExpr) { 649 unsigned NumHardInternalUses = 0; 650 unsigned NumSoftExternalUses = 0; 651 unsigned NumUses = 0; 652 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 653 IB != IE && NumUses <= 6; ++IB) { 654 Instruction *UseInstr = cast<Instruction>(*IB); 655 unsigned Opc = UseInstr->getOpcode(); 656 NumUses++; 657 if (L->contains(UseInstr)) { 658 if (Opc == Instruction::Call || Opc == Instruction::Ret) 659 NumHardInternalUses++; 660 } else { 661 if (Opc == Instruction::PHI) { 662 // Do not count the Phi as a use. LCSSA may have inserted 663 // plenty of trivial ones. 664 NumUses--; 665 for (auto PB = UseInstr->user_begin(), 666 PE = UseInstr->user_end(); 667 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 668 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 669 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 670 NumSoftExternalUses++; 671 } 672 continue; 673 } 674 if (Opc != Instruction::Call && Opc != Instruction::Ret) 675 NumSoftExternalUses++; 676 } 677 } 678 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 679 continue; 680 } 681 682 bool HighCost = false; 683 Value *ExitVal = ExpandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, 684 PN->getType(), HighCost); 685 686 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 687 << " LoopVal = " << *Inst << "\n"); 688 689 if (!isValidRewrite(Inst, ExitVal)) { 690 DeadInsts.push_back(ExitVal); 691 continue; 692 } 693 694 // Collect all the candidate PHINodes to be rewritten. 695 RewritePhiSet.push_back( 696 RewritePhi(PN, i, ExitVal, HighCost, LCSSASafePhiForRAUW)); 697 } 698 } 699 } 700 701 bool LoopCanBeDel = CanLoopBeDeleted(L, RewritePhiSet); 702 703 // Transformation. 704 for (const RewritePhi &Phi : RewritePhiSet) { 705 PHINode *PN = Phi.PN; 706 Value *ExitVal = Phi.Val; 707 708 // Only do the rewrite when the ExitValue can be expanded cheaply. 709 // If LoopCanBeDel is true, rewrite exit value aggressively. 710 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 711 DeadInsts.push_back(ExitVal); 712 continue; 713 } 714 715 Changed = true; 716 ++NumReplaced; 717 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 718 PN->setIncomingValue(Phi.Ith, ExitVal); 719 720 // If this instruction is dead now, delete it. Don't do it now to avoid 721 // invalidating iterators. 722 if (isInstructionTriviallyDead(Inst, TLI)) 723 DeadInsts.push_back(Inst); 724 725 // If we determined that this PHI is safe to replace even if an LCSSA 726 // PHI, do so. 727 if (Phi.SafePhi) { 728 PN->replaceAllUsesWith(ExitVal); 729 PN->eraseFromParent(); 730 } 731 } 732 733 // The insertion point instruction may have been deleted; clear it out 734 // so that the rewriter doesn't trip over it later. 735 Rewriter.clearInsertPoint(); 736 } 737 738 /// CanLoopBeDeleted - Check whether it is possible to delete the loop after 739 /// rewriting exit value. If it is possible, ignore ReplaceExitValue and 740 /// do rewriting aggressively. 741 bool IndVarSimplify::CanLoopBeDeleted( 742 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 743 744 BasicBlock *Preheader = L->getLoopPreheader(); 745 // If there is no preheader, the loop will not be deleted. 746 if (!Preheader) 747 return false; 748 749 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 750 // We obviate multiple ExitingBlocks case for simplicity. 751 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 752 // after exit value rewriting, we can enhance the logic here. 753 SmallVector<BasicBlock *, 4> ExitingBlocks; 754 L->getExitingBlocks(ExitingBlocks); 755 SmallVector<BasicBlock *, 8> ExitBlocks; 756 L->getUniqueExitBlocks(ExitBlocks); 757 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 758 return false; 759 760 BasicBlock *ExitBlock = ExitBlocks[0]; 761 BasicBlock::iterator BI = ExitBlock->begin(); 762 while (PHINode *P = dyn_cast<PHINode>(BI)) { 763 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 764 765 // If the Incoming value of P is found in RewritePhiSet, we know it 766 // could be rewritten to use a loop invariant value in transformation 767 // phase later. Skip it in the loop invariant check below. 768 bool found = false; 769 for (const RewritePhi &Phi : RewritePhiSet) { 770 unsigned i = Phi.Ith; 771 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 772 found = true; 773 break; 774 } 775 } 776 777 Instruction *I; 778 if (!found && (I = dyn_cast<Instruction>(Incoming))) 779 if (!L->hasLoopInvariantOperands(I)) 780 return false; 781 782 ++BI; 783 } 784 785 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); 786 LI != LE; ++LI) { 787 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end(); BI != BE; 788 ++BI) { 789 if (BI->mayHaveSideEffects()) 790 return false; 791 } 792 } 793 794 return true; 795 } 796 797 //===----------------------------------------------------------------------===// 798 // IV Widening - Extend the width of an IV to cover its widest uses. 799 //===----------------------------------------------------------------------===// 800 801 namespace { 802 // Collect information about induction variables that are used by sign/zero 803 // extend operations. This information is recorded by CollectExtend and 804 // provides the input to WidenIV. 805 struct WideIVInfo { 806 PHINode *NarrowIV; 807 Type *WidestNativeType; // Widest integer type created [sz]ext 808 bool IsSigned; // Was a sext user seen before a zext? 809 810 WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr), 811 IsSigned(false) {} 812 }; 813 } 814 815 /// visitCast - Update information about the induction variable that is 816 /// extended by this sign or zero extend operation. This is used to determine 817 /// the final width of the IV before actually widening it. 818 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 819 const TargetTransformInfo *TTI) { 820 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 821 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 822 return; 823 824 Type *Ty = Cast->getType(); 825 uint64_t Width = SE->getTypeSizeInBits(Ty); 826 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 827 return; 828 829 // Cast is either an sext or zext up to this point. 830 // We should not widen an indvar if arithmetics on the wider indvar are more 831 // expensive than those on the narrower indvar. We check only the cost of ADD 832 // because at least an ADD is required to increment the induction variable. We 833 // could compute more comprehensively the cost of all instructions on the 834 // induction variable when necessary. 835 if (TTI && 836 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 837 TTI->getArithmeticInstrCost(Instruction::Add, 838 Cast->getOperand(0)->getType())) { 839 return; 840 } 841 842 if (!WI.WidestNativeType) { 843 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 844 WI.IsSigned = IsSigned; 845 return; 846 } 847 848 // We extend the IV to satisfy the sign of its first user, arbitrarily. 849 if (WI.IsSigned != IsSigned) 850 return; 851 852 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 853 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 854 } 855 856 namespace { 857 858 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 859 /// WideIV that computes the same value as the Narrow IV def. This avoids 860 /// caching Use* pointers. 861 struct NarrowIVDefUse { 862 Instruction *NarrowDef; 863 Instruction *NarrowUse; 864 Instruction *WideDef; 865 866 NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {} 867 868 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 869 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 870 }; 871 872 /// WidenIV - The goal of this transform is to remove sign and zero extends 873 /// without creating any new induction variables. To do this, it creates a new 874 /// phi of the wider type and redirects all users, either removing extends or 875 /// inserting truncs whenever we stop propagating the type. 876 /// 877 class WidenIV { 878 // Parameters 879 PHINode *OrigPhi; 880 Type *WideType; 881 bool IsSigned; 882 883 // Context 884 LoopInfo *LI; 885 Loop *L; 886 ScalarEvolution *SE; 887 DominatorTree *DT; 888 889 // Result 890 PHINode *WidePhi; 891 Instruction *WideInc; 892 const SCEV *WideIncExpr; 893 SmallVectorImpl<WeakVH> &DeadInsts; 894 895 SmallPtrSet<Instruction*,16> Widened; 896 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 897 898 public: 899 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 900 ScalarEvolution *SEv, DominatorTree *DTree, 901 SmallVectorImpl<WeakVH> &DI) : 902 OrigPhi(WI.NarrowIV), 903 WideType(WI.WidestNativeType), 904 IsSigned(WI.IsSigned), 905 LI(LInfo), 906 L(LI->getLoopFor(OrigPhi->getParent())), 907 SE(SEv), 908 DT(DTree), 909 WidePhi(nullptr), 910 WideInc(nullptr), 911 WideIncExpr(nullptr), 912 DeadInsts(DI) { 913 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 914 } 915 916 PHINode *CreateWideIV(SCEVExpander &Rewriter); 917 918 protected: 919 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 920 Instruction *Use); 921 922 Instruction *CloneIVUser(NarrowIVDefUse DU); 923 924 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 925 926 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 927 928 const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 929 unsigned OpCode) const; 930 931 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 932 933 bool WidenLoopCompare(NarrowIVDefUse DU); 934 935 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 936 }; 937 } // anonymous namespace 938 939 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 940 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 941 /// gratuitous for this purpose. 942 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 943 Instruction *Inst = dyn_cast<Instruction>(V); 944 if (!Inst) 945 return true; 946 947 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 948 } 949 950 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 951 Instruction *Use) { 952 // Set the debug location and conservative insertion point. 953 IRBuilder<> Builder(Use); 954 // Hoist the insertion point into loop preheaders as far as possible. 955 for (const Loop *L = LI->getLoopFor(Use->getParent()); 956 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 957 L = L->getParentLoop()) 958 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 959 960 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 961 Builder.CreateZExt(NarrowOper, WideType); 962 } 963 964 /// CloneIVUser - Instantiate a wide operation to replace a narrow 965 /// operation. This only needs to handle operations that can evaluation to 966 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 967 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 968 unsigned Opcode = DU.NarrowUse->getOpcode(); 969 switch (Opcode) { 970 default: 971 return nullptr; 972 case Instruction::Add: 973 case Instruction::Mul: 974 case Instruction::UDiv: 975 case Instruction::Sub: 976 case Instruction::And: 977 case Instruction::Or: 978 case Instruction::Xor: 979 case Instruction::Shl: 980 case Instruction::LShr: 981 case Instruction::AShr: 982 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 983 984 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 985 // anything about the narrow operand yet so must insert a [sz]ext. It is 986 // probably loop invariant and will be folded or hoisted. If it actually 987 // comes from a widened IV, it should be removed during a future call to 988 // WidenIVUse. 989 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 990 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 991 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 992 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 993 994 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 995 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 996 LHS, RHS, 997 NarrowBO->getName()); 998 IRBuilder<> Builder(DU.NarrowUse); 999 Builder.Insert(WideBO); 1000 if (const OverflowingBinaryOperator *OBO = 1001 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 1002 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 1003 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 1004 } 1005 return WideBO; 1006 } 1007 } 1008 1009 const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1010 unsigned OpCode) const { 1011 if (OpCode == Instruction::Add) 1012 return SE->getAddExpr(LHS, RHS); 1013 if (OpCode == Instruction::Sub) 1014 return SE->getMinusSCEV(LHS, RHS); 1015 if (OpCode == Instruction::Mul) 1016 return SE->getMulExpr(LHS, RHS); 1017 1018 llvm_unreachable("Unsupported opcode."); 1019 } 1020 1021 /// No-wrap operations can transfer sign extension of their result to their 1022 /// operands. Generate the SCEV value for the widened operation without 1023 /// actually modifying the IR yet. If the expression after extending the 1024 /// operands is an AddRec for this loop, return it. 1025 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 1026 1027 // Handle the common case of add<nsw/nuw> 1028 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1029 // Only Add/Sub/Mul instructions supported yet. 1030 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1031 OpCode != Instruction::Mul) 1032 return nullptr; 1033 1034 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1035 // if extending the other will lead to a recurrence. 1036 const unsigned ExtendOperIdx = 1037 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1038 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1039 1040 const SCEV *ExtendOperExpr = nullptr; 1041 const OverflowingBinaryOperator *OBO = 1042 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1043 if (IsSigned && OBO->hasNoSignedWrap()) 1044 ExtendOperExpr = SE->getSignExtendExpr( 1045 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1046 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1047 ExtendOperExpr = SE->getZeroExtendExpr( 1048 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1049 else 1050 return nullptr; 1051 1052 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1053 // flags. This instruction may be guarded by control flow that the no-wrap 1054 // behavior depends on. Non-control-equivalent instructions can be mapped to 1055 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1056 // semantics to those operations. 1057 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1058 const SCEV *rhs = ExtendOperExpr; 1059 1060 // Let's swap operands to the initial order for the case of non-commutative 1061 // operations, like SUB. See PR21014. 1062 if (ExtendOperIdx == 0) 1063 std::swap(lhs, rhs); 1064 const SCEVAddRecExpr *AddRec = 1065 dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode)); 1066 1067 if (!AddRec || AddRec->getLoop() != L) 1068 return nullptr; 1069 return AddRec; 1070 } 1071 1072 /// GetWideRecurrence - Is this instruction potentially interesting for further 1073 /// simplification after widening it's type? In other words, can the 1074 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 1075 /// recurrence on the same loop. If so, return the sign or zero extended 1076 /// recurrence. Otherwise return NULL. 1077 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 1078 if (!SE->isSCEVable(NarrowUse->getType())) 1079 return nullptr; 1080 1081 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1082 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 1083 >= SE->getTypeSizeInBits(WideType)) { 1084 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1085 // index. So don't follow this use. 1086 return nullptr; 1087 } 1088 1089 const SCEV *WideExpr = IsSigned ? 1090 SE->getSignExtendExpr(NarrowExpr, WideType) : 1091 SE->getZeroExtendExpr(NarrowExpr, WideType); 1092 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1093 if (!AddRec || AddRec->getLoop() != L) 1094 return nullptr; 1095 return AddRec; 1096 } 1097 1098 /// This IV user cannot be widen. Replace this use of the original narrow IV 1099 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1100 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) { 1101 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1102 << " for user " << *DU.NarrowUse << "\n"); 1103 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1104 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1105 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1106 } 1107 1108 /// If the narrow use is a compare instruction, then widen the compare 1109 // (and possibly the other operand). The extend operation is hoisted into the 1110 // loop preheader as far as possible. 1111 bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) { 1112 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1113 if (!Cmp) 1114 return false; 1115 1116 // Sign of IV user and compare must match. 1117 if (IsSigned != CmpInst::isSigned(Cmp->getPredicate())) 1118 return false; 1119 1120 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1121 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1122 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1123 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1124 1125 // Widen the compare instruction. 1126 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1127 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1128 1129 // Widen the other operand of the compare, if necessary. 1130 if (CastWidth < IVWidth) { 1131 Value *ExtOp = getExtend(Op, WideType, IsSigned, Cmp); 1132 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1133 } 1134 return true; 1135 } 1136 1137 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 1138 /// widened. If so, return the wide clone of the user. 1139 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1140 1141 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1142 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1143 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1144 // For LCSSA phis, sink the truncate outside the loop. 1145 // After SimplifyCFG most loop exit targets have a single predecessor. 1146 // Otherwise fall back to a truncate within the loop. 1147 if (UsePhi->getNumOperands() != 1) 1148 truncateIVUse(DU, DT); 1149 else { 1150 PHINode *WidePhi = 1151 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1152 UsePhi); 1153 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1154 IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt()); 1155 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1156 UsePhi->replaceAllUsesWith(Trunc); 1157 DeadInsts.emplace_back(UsePhi); 1158 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1159 << " to " << *WidePhi << "\n"); 1160 } 1161 return nullptr; 1162 } 1163 } 1164 // Our raison d'etre! Eliminate sign and zero extension. 1165 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1166 Value *NewDef = DU.WideDef; 1167 if (DU.NarrowUse->getType() != WideType) { 1168 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1169 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1170 if (CastWidth < IVWidth) { 1171 // The cast isn't as wide as the IV, so insert a Trunc. 1172 IRBuilder<> Builder(DU.NarrowUse); 1173 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1174 } 1175 else { 1176 // A wider extend was hidden behind a narrower one. This may induce 1177 // another round of IV widening in which the intermediate IV becomes 1178 // dead. It should be very rare. 1179 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1180 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1181 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1182 NewDef = DU.NarrowUse; 1183 } 1184 } 1185 if (NewDef != DU.NarrowUse) { 1186 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1187 << " replaced by " << *DU.WideDef << "\n"); 1188 ++NumElimExt; 1189 DU.NarrowUse->replaceAllUsesWith(NewDef); 1190 DeadInsts.emplace_back(DU.NarrowUse); 1191 } 1192 // Now that the extend is gone, we want to expose it's uses for potential 1193 // further simplification. We don't need to directly inform SimplifyIVUsers 1194 // of the new users, because their parent IV will be processed later as a 1195 // new loop phi. If we preserved IVUsers analysis, we would also want to 1196 // push the uses of WideDef here. 1197 1198 // No further widening is needed. The deceased [sz]ext had done it for us. 1199 return nullptr; 1200 } 1201 1202 // Does this user itself evaluate to a recurrence after widening? 1203 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 1204 if (!WideAddRec) 1205 WideAddRec = GetExtendedOperandRecurrence(DU); 1206 1207 if (!WideAddRec) { 1208 // If use is a loop condition, try to promote the condition instead of 1209 // truncating the IV first. 1210 if (WidenLoopCompare(DU)) 1211 return nullptr; 1212 1213 // This user does not evaluate to a recurence after widening, so don't 1214 // follow it. Instead insert a Trunc to kill off the original use, 1215 // eventually isolating the original narrow IV so it can be removed. 1216 truncateIVUse(DU, DT); 1217 return nullptr; 1218 } 1219 // Assume block terminators cannot evaluate to a recurrence. We can't to 1220 // insert a Trunc after a terminator if there happens to be a critical edge. 1221 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1222 "SCEV is not expected to evaluate a block terminator"); 1223 1224 // Reuse the IV increment that SCEVExpander created as long as it dominates 1225 // NarrowUse. 1226 Instruction *WideUse = nullptr; 1227 if (WideAddRec == WideIncExpr 1228 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1229 WideUse = WideInc; 1230 else { 1231 WideUse = CloneIVUser(DU); 1232 if (!WideUse) 1233 return nullptr; 1234 } 1235 // Evaluation of WideAddRec ensured that the narrow expression could be 1236 // extended outside the loop without overflow. This suggests that the wide use 1237 // evaluates to the same expression as the extended narrow use, but doesn't 1238 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1239 // where it fails, we simply throw away the newly created wide use. 1240 if (WideAddRec != SE->getSCEV(WideUse)) { 1241 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1242 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1243 DeadInsts.emplace_back(WideUse); 1244 return nullptr; 1245 } 1246 1247 // Returning WideUse pushes it on the worklist. 1248 return WideUse; 1249 } 1250 1251 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1252 /// 1253 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1254 for (User *U : NarrowDef->users()) { 1255 Instruction *NarrowUser = cast<Instruction>(U); 1256 1257 // Handle data flow merges and bizarre phi cycles. 1258 if (!Widened.insert(NarrowUser).second) 1259 continue; 1260 1261 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef)); 1262 } 1263 } 1264 1265 /// CreateWideIV - Process a single induction variable. First use the 1266 /// SCEVExpander to create a wide induction variable that evaluates to the same 1267 /// recurrence as the original narrow IV. Then use a worklist to forward 1268 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1269 /// interesting IV users, the narrow IV will be isolated for removal by 1270 /// DeleteDeadPHIs. 1271 /// 1272 /// It would be simpler to delete uses as they are processed, but we must avoid 1273 /// invalidating SCEV expressions. 1274 /// 1275 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1276 // Is this phi an induction variable? 1277 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1278 if (!AddRec) 1279 return nullptr; 1280 1281 // Widen the induction variable expression. 1282 const SCEV *WideIVExpr = IsSigned ? 1283 SE->getSignExtendExpr(AddRec, WideType) : 1284 SE->getZeroExtendExpr(AddRec, WideType); 1285 1286 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1287 "Expect the new IV expression to preserve its type"); 1288 1289 // Can the IV be extended outside the loop without overflow? 1290 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1291 if (!AddRec || AddRec->getLoop() != L) 1292 return nullptr; 1293 1294 // An AddRec must have loop-invariant operands. Since this AddRec is 1295 // materialized by a loop header phi, the expression cannot have any post-loop 1296 // operands, so they must dominate the loop header. 1297 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1298 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1299 && "Loop header phi recurrence inputs do not dominate the loop"); 1300 1301 // The rewriter provides a value for the desired IV expression. This may 1302 // either find an existing phi or materialize a new one. Either way, we 1303 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1304 // of the phi-SCC dominates the loop entry. 1305 Instruction *InsertPt = L->getHeader()->begin(); 1306 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1307 1308 // Remembering the WideIV increment generated by SCEVExpander allows 1309 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1310 // employ a general reuse mechanism because the call above is the only call to 1311 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1312 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1313 WideInc = 1314 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1315 WideIncExpr = SE->getSCEV(WideInc); 1316 } 1317 1318 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1319 ++NumWidened; 1320 1321 // Traverse the def-use chain using a worklist starting at the original IV. 1322 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1323 1324 Widened.insert(OrigPhi); 1325 pushNarrowIVUsers(OrigPhi, WidePhi); 1326 1327 while (!NarrowIVUsers.empty()) { 1328 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1329 1330 // Process a def-use edge. This may replace the use, so don't hold a 1331 // use_iterator across it. 1332 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1333 1334 // Follow all def-use edges from the previous narrow use. 1335 if (WideUse) 1336 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1337 1338 // WidenIVUse may have removed the def-use edge. 1339 if (DU.NarrowDef->use_empty()) 1340 DeadInsts.emplace_back(DU.NarrowDef); 1341 } 1342 return WidePhi; 1343 } 1344 1345 //===----------------------------------------------------------------------===// 1346 // Live IV Reduction - Minimize IVs live across the loop. 1347 //===----------------------------------------------------------------------===// 1348 1349 1350 //===----------------------------------------------------------------------===// 1351 // Simplification of IV users based on SCEV evaluation. 1352 //===----------------------------------------------------------------------===// 1353 1354 namespace { 1355 class IndVarSimplifyVisitor : public IVVisitor { 1356 ScalarEvolution *SE; 1357 const TargetTransformInfo *TTI; 1358 PHINode *IVPhi; 1359 1360 public: 1361 WideIVInfo WI; 1362 1363 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1364 const TargetTransformInfo *TTI, 1365 const DominatorTree *DTree) 1366 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1367 DT = DTree; 1368 WI.NarrowIV = IVPhi; 1369 if (ReduceLiveIVs) 1370 setSplitOverflowIntrinsics(); 1371 } 1372 1373 // Implement the interface used by simplifyUsersOfIV. 1374 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1375 }; 1376 } 1377 1378 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1379 /// users. Each successive simplification may push more users which may 1380 /// themselves be candidates for simplification. 1381 /// 1382 /// Sign/Zero extend elimination is interleaved with IV simplification. 1383 /// 1384 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1385 SCEVExpander &Rewriter, 1386 LPPassManager &LPM) { 1387 SmallVector<WideIVInfo, 8> WideIVs; 1388 1389 SmallVector<PHINode*, 8> LoopPhis; 1390 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1391 LoopPhis.push_back(cast<PHINode>(I)); 1392 } 1393 // Each round of simplification iterates through the SimplifyIVUsers worklist 1394 // for all current phis, then determines whether any IVs can be 1395 // widened. Widening adds new phis to LoopPhis, inducing another round of 1396 // simplification on the wide IVs. 1397 while (!LoopPhis.empty()) { 1398 // Evaluate as many IV expressions as possible before widening any IVs. This 1399 // forces SCEV to set no-wrap flags before evaluating sign/zero 1400 // extension. The first time SCEV attempts to normalize sign/zero extension, 1401 // the result becomes final. So for the most predictable results, we delay 1402 // evaluation of sign/zero extend evaluation until needed, and avoid running 1403 // other SCEV based analysis prior to SimplifyAndExtend. 1404 do { 1405 PHINode *CurrIV = LoopPhis.pop_back_val(); 1406 1407 // Information about sign/zero extensions of CurrIV. 1408 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1409 1410 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor); 1411 1412 if (Visitor.WI.WidestNativeType) { 1413 WideIVs.push_back(Visitor.WI); 1414 } 1415 } while(!LoopPhis.empty()); 1416 1417 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1418 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1419 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1420 Changed = true; 1421 LoopPhis.push_back(WidePhi); 1422 } 1423 } 1424 } 1425 } 1426 1427 //===----------------------------------------------------------------------===// 1428 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1429 //===----------------------------------------------------------------------===// 1430 1431 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1432 /// count expression can be safely and cheaply expanded into an instruction 1433 /// sequence that can be used by LinearFunctionTestReplace. 1434 /// 1435 /// TODO: This fails for pointer-type loop counters with greater than one byte 1436 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1437 /// we could skip this check in the case that the LFTR loop counter (chosen by 1438 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1439 /// the loop test to an inequality test by checking the target data's alignment 1440 /// of element types (given that the initial pointer value originates from or is 1441 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1442 /// However, we don't yet have a strong motivation for converting loop tests 1443 /// into inequality tests. 1444 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1445 SCEVExpander &Rewriter) { 1446 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1447 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1448 BackedgeTakenCount->isZero()) 1449 return false; 1450 1451 if (!L->getExitingBlock()) 1452 return false; 1453 1454 // Can't rewrite non-branch yet. 1455 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1456 return false; 1457 1458 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1459 return false; 1460 1461 return true; 1462 } 1463 1464 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1465 /// invariant value to the phi. 1466 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1467 Instruction *IncI = dyn_cast<Instruction>(IncV); 1468 if (!IncI) 1469 return nullptr; 1470 1471 switch (IncI->getOpcode()) { 1472 case Instruction::Add: 1473 case Instruction::Sub: 1474 break; 1475 case Instruction::GetElementPtr: 1476 // An IV counter must preserve its type. 1477 if (IncI->getNumOperands() == 2) 1478 break; 1479 default: 1480 return nullptr; 1481 } 1482 1483 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1484 if (Phi && Phi->getParent() == L->getHeader()) { 1485 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1486 return Phi; 1487 return nullptr; 1488 } 1489 if (IncI->getOpcode() == Instruction::GetElementPtr) 1490 return nullptr; 1491 1492 // Allow add/sub to be commuted. 1493 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1494 if (Phi && Phi->getParent() == L->getHeader()) { 1495 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1496 return Phi; 1497 } 1498 return nullptr; 1499 } 1500 1501 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1502 static ICmpInst *getLoopTest(Loop *L) { 1503 assert(L->getExitingBlock() && "expected loop exit"); 1504 1505 BasicBlock *LatchBlock = L->getLoopLatch(); 1506 // Don't bother with LFTR if the loop is not properly simplified. 1507 if (!LatchBlock) 1508 return nullptr; 1509 1510 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1511 assert(BI && "expected exit branch"); 1512 1513 return dyn_cast<ICmpInst>(BI->getCondition()); 1514 } 1515 1516 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1517 /// that the current exit test is already sufficiently canonical. 1518 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1519 // Do LFTR to simplify the exit condition to an ICMP. 1520 ICmpInst *Cond = getLoopTest(L); 1521 if (!Cond) 1522 return true; 1523 1524 // Do LFTR to simplify the exit ICMP to EQ/NE 1525 ICmpInst::Predicate Pred = Cond->getPredicate(); 1526 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1527 return true; 1528 1529 // Look for a loop invariant RHS 1530 Value *LHS = Cond->getOperand(0); 1531 Value *RHS = Cond->getOperand(1); 1532 if (!isLoopInvariant(RHS, L, DT)) { 1533 if (!isLoopInvariant(LHS, L, DT)) 1534 return true; 1535 std::swap(LHS, RHS); 1536 } 1537 // Look for a simple IV counter LHS 1538 PHINode *Phi = dyn_cast<PHINode>(LHS); 1539 if (!Phi) 1540 Phi = getLoopPhiForCounter(LHS, L, DT); 1541 1542 if (!Phi) 1543 return true; 1544 1545 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1546 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1547 if (Idx < 0) 1548 return true; 1549 1550 // Do LFTR if the exit condition's IV is *not* a simple counter. 1551 Value *IncV = Phi->getIncomingValue(Idx); 1552 return Phi != getLoopPhiForCounter(IncV, L, DT); 1553 } 1554 1555 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1556 /// down to checking that all operands are constant and listing instructions 1557 /// that may hide undef. 1558 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1559 unsigned Depth) { 1560 if (isa<Constant>(V)) 1561 return !isa<UndefValue>(V); 1562 1563 if (Depth >= 6) 1564 return false; 1565 1566 // Conservatively handle non-constant non-instructions. For example, Arguments 1567 // may be undef. 1568 Instruction *I = dyn_cast<Instruction>(V); 1569 if (!I) 1570 return false; 1571 1572 // Load and return values may be undef. 1573 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1574 return false; 1575 1576 // Optimistically handle other instructions. 1577 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1578 if (!Visited.insert(*OI).second) 1579 continue; 1580 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1581 return false; 1582 } 1583 return true; 1584 } 1585 1586 /// Return true if the given value is concrete. We must prove that undef can 1587 /// never reach it. 1588 /// 1589 /// TODO: If we decide that this is a good approach to checking for undef, we 1590 /// may factor it into a common location. 1591 static bool hasConcreteDef(Value *V) { 1592 SmallPtrSet<Value*, 8> Visited; 1593 Visited.insert(V); 1594 return hasConcreteDefImpl(V, Visited, 0); 1595 } 1596 1597 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1598 /// be rewritten) loop exit test. 1599 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1600 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1601 Value *IncV = Phi->getIncomingValue(LatchIdx); 1602 1603 for (User *U : Phi->users()) 1604 if (U != Cond && U != IncV) return false; 1605 1606 for (User *U : IncV->users()) 1607 if (U != Cond && U != Phi) return false; 1608 return true; 1609 } 1610 1611 /// FindLoopCounter - Find an affine IV in canonical form. 1612 /// 1613 /// BECount may be an i8* pointer type. The pointer difference is already 1614 /// valid count without scaling the address stride, so it remains a pointer 1615 /// expression as far as SCEV is concerned. 1616 /// 1617 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1618 /// 1619 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1620 /// 1621 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1622 /// This is difficult in general for SCEV because of potential overflow. But we 1623 /// could at least handle constant BECounts. 1624 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1625 ScalarEvolution *SE, DominatorTree *DT) { 1626 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1627 1628 Value *Cond = 1629 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1630 1631 // Loop over all of the PHI nodes, looking for a simple counter. 1632 PHINode *BestPhi = nullptr; 1633 const SCEV *BestInit = nullptr; 1634 BasicBlock *LatchBlock = L->getLoopLatch(); 1635 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1636 1637 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1638 PHINode *Phi = cast<PHINode>(I); 1639 if (!SE->isSCEVable(Phi->getType())) 1640 continue; 1641 1642 // Avoid comparing an integer IV against a pointer Limit. 1643 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1644 continue; 1645 1646 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1647 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1648 continue; 1649 1650 // AR may be a pointer type, while BECount is an integer type. 1651 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1652 // AR may not be a narrower type, or we may never exit. 1653 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1654 if (PhiWidth < BCWidth || 1655 !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth)) 1656 continue; 1657 1658 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1659 if (!Step || !Step->isOne()) 1660 continue; 1661 1662 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1663 Value *IncV = Phi->getIncomingValue(LatchIdx); 1664 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1665 continue; 1666 1667 // Avoid reusing a potentially undef value to compute other values that may 1668 // have originally had a concrete definition. 1669 if (!hasConcreteDef(Phi)) { 1670 // We explicitly allow unknown phis as long as they are already used by 1671 // the loop test. In this case we assume that performing LFTR could not 1672 // increase the number of undef users. 1673 if (ICmpInst *Cond = getLoopTest(L)) { 1674 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1675 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1676 continue; 1677 } 1678 } 1679 } 1680 const SCEV *Init = AR->getStart(); 1681 1682 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1683 // Don't force a live loop counter if another IV can be used. 1684 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1685 continue; 1686 1687 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1688 // also prefers integer to pointer IVs. 1689 if (BestInit->isZero() != Init->isZero()) { 1690 if (BestInit->isZero()) 1691 continue; 1692 } 1693 // If two IVs both count from zero or both count from nonzero then the 1694 // narrower is likely a dead phi that has been widened. Use the wider phi 1695 // to allow the other to be eliminated. 1696 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1697 continue; 1698 } 1699 BestPhi = Phi; 1700 BestInit = Init; 1701 } 1702 return BestPhi; 1703 } 1704 1705 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1706 /// holds the RHS of the new loop test. 1707 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1708 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1709 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1710 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1711 const SCEV *IVInit = AR->getStart(); 1712 1713 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1714 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1715 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1716 // the existing GEPs whenever possible. 1717 if (IndVar->getType()->isPointerTy() 1718 && !IVCount->getType()->isPointerTy()) { 1719 1720 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1721 // signed value. IVCount on the other hand represents the loop trip count, 1722 // which is an unsigned value. FindLoopCounter only allows induction 1723 // variables that have a positive unit stride of one. This means we don't 1724 // have to handle the case of negative offsets (yet) and just need to zero 1725 // extend IVCount. 1726 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1727 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1728 1729 // Expand the code for the iteration count. 1730 assert(SE->isLoopInvariant(IVOffset, L) && 1731 "Computed iteration count is not loop invariant!"); 1732 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1733 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1734 1735 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1736 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1737 // We could handle pointer IVs other than i8*, but we need to compensate for 1738 // gep index scaling. See canExpandBackedgeTakenCount comments. 1739 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1740 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1741 && "unit stride pointer IV must be i8*"); 1742 1743 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1744 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1745 } 1746 else { 1747 // In any other case, convert both IVInit and IVCount to integers before 1748 // comparing. This may result in SCEV expension of pointers, but in practice 1749 // SCEV will fold the pointer arithmetic away as such: 1750 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1751 // 1752 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1753 // for simple memset-style loops. 1754 // 1755 // IVInit integer and IVCount pointer would only occur if a canonical IV 1756 // were generated on top of case #2, which is not expected. 1757 1758 const SCEV *IVLimit = nullptr; 1759 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1760 // For non-zero Start, compute IVCount here. 1761 if (AR->getStart()->isZero()) 1762 IVLimit = IVCount; 1763 else { 1764 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1765 const SCEV *IVInit = AR->getStart(); 1766 1767 // For integer IVs, truncate the IV before computing IVInit + BECount. 1768 if (SE->getTypeSizeInBits(IVInit->getType()) 1769 > SE->getTypeSizeInBits(IVCount->getType())) 1770 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1771 1772 IVLimit = SE->getAddExpr(IVInit, IVCount); 1773 } 1774 // Expand the code for the iteration count. 1775 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1776 IRBuilder<> Builder(BI); 1777 assert(SE->isLoopInvariant(IVLimit, L) && 1778 "Computed iteration count is not loop invariant!"); 1779 // Ensure that we generate the same type as IndVar, or a smaller integer 1780 // type. In the presence of null pointer values, we have an integer type 1781 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1782 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1783 IndVar->getType() : IVCount->getType(); 1784 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1785 } 1786 } 1787 1788 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1789 /// loop to be a canonical != comparison against the incremented loop induction 1790 /// variable. This pass is able to rewrite the exit tests of any loop where the 1791 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1792 /// is actually a much broader range than just linear tests. 1793 Value *IndVarSimplify:: 1794 LinearFunctionTestReplace(Loop *L, 1795 const SCEV *BackedgeTakenCount, 1796 PHINode *IndVar, 1797 SCEVExpander &Rewriter) { 1798 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1799 1800 // Initialize CmpIndVar and IVCount to their preincremented values. 1801 Value *CmpIndVar = IndVar; 1802 const SCEV *IVCount = BackedgeTakenCount; 1803 1804 // If the exiting block is the same as the backedge block, we prefer to 1805 // compare against the post-incremented value, otherwise we must compare 1806 // against the preincremented value. 1807 if (L->getExitingBlock() == L->getLoopLatch()) { 1808 // Add one to the "backedge-taken" count to get the trip count. 1809 // This addition may overflow, which is valid as long as the comparison is 1810 // truncated to BackedgeTakenCount->getType(). 1811 IVCount = SE->getAddExpr(BackedgeTakenCount, 1812 SE->getConstant(BackedgeTakenCount->getType(), 1)); 1813 // The BackedgeTaken expression contains the number of times that the 1814 // backedge branches to the loop header. This is one less than the 1815 // number of times the loop executes, so use the incremented indvar. 1816 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1817 } 1818 1819 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1820 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1821 && "genLoopLimit missed a cast"); 1822 1823 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1824 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1825 ICmpInst::Predicate P; 1826 if (L->contains(BI->getSuccessor(0))) 1827 P = ICmpInst::ICMP_NE; 1828 else 1829 P = ICmpInst::ICMP_EQ; 1830 1831 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1832 << " LHS:" << *CmpIndVar << '\n' 1833 << " op:\t" 1834 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1835 << " RHS:\t" << *ExitCnt << "\n" 1836 << " IVCount:\t" << *IVCount << "\n"); 1837 1838 IRBuilder<> Builder(BI); 1839 1840 // LFTR can ignore IV overflow and truncate to the width of 1841 // BECount. This avoids materializing the add(zext(add)) expression. 1842 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1843 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1844 if (CmpIndVarSize > ExitCntSize) { 1845 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1846 const SCEV *ARStart = AR->getStart(); 1847 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1848 // For constant IVCount, avoid truncation. 1849 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1850 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue(); 1851 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue(); 1852 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1853 // above such that IVCount is now zero. 1854 if (IVCount != BackedgeTakenCount && Count == 0) { 1855 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1856 ++Count; 1857 } 1858 else 1859 Count = Count.zext(CmpIndVarSize); 1860 APInt NewLimit; 1861 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1862 NewLimit = Start - Count; 1863 else 1864 NewLimit = Start + Count; 1865 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1866 1867 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1868 } else { 1869 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1870 "lftr.wideiv"); 1871 } 1872 } 1873 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1874 Value *OrigCond = BI->getCondition(); 1875 // It's tempting to use replaceAllUsesWith here to fully replace the old 1876 // comparison, but that's not immediately safe, since users of the old 1877 // comparison may not be dominated by the new comparison. Instead, just 1878 // update the branch to use the new comparison; in the common case this 1879 // will make old comparison dead. 1880 BI->setCondition(Cond); 1881 DeadInsts.push_back(OrigCond); 1882 1883 ++NumLFTR; 1884 Changed = true; 1885 return Cond; 1886 } 1887 1888 //===----------------------------------------------------------------------===// 1889 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1890 //===----------------------------------------------------------------------===// 1891 1892 /// If there's a single exit block, sink any loop-invariant values that 1893 /// were defined in the preheader but not used inside the loop into the 1894 /// exit block to reduce register pressure in the loop. 1895 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1896 BasicBlock *ExitBlock = L->getExitBlock(); 1897 if (!ExitBlock) return; 1898 1899 BasicBlock *Preheader = L->getLoopPreheader(); 1900 if (!Preheader) return; 1901 1902 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1903 BasicBlock::iterator I = Preheader->getTerminator(); 1904 while (I != Preheader->begin()) { 1905 --I; 1906 // New instructions were inserted at the end of the preheader. 1907 if (isa<PHINode>(I)) 1908 break; 1909 1910 // Don't move instructions which might have side effects, since the side 1911 // effects need to complete before instructions inside the loop. Also don't 1912 // move instructions which might read memory, since the loop may modify 1913 // memory. Note that it's okay if the instruction might have undefined 1914 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1915 // block. 1916 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1917 continue; 1918 1919 // Skip debug info intrinsics. 1920 if (isa<DbgInfoIntrinsic>(I)) 1921 continue; 1922 1923 // Skip landingpad instructions. 1924 if (isa<LandingPadInst>(I)) 1925 continue; 1926 1927 // Don't sink alloca: we never want to sink static alloca's out of the 1928 // entry block, and correctly sinking dynamic alloca's requires 1929 // checks for stacksave/stackrestore intrinsics. 1930 // FIXME: Refactor this check somehow? 1931 if (isa<AllocaInst>(I)) 1932 continue; 1933 1934 // Determine if there is a use in or before the loop (direct or 1935 // otherwise). 1936 bool UsedInLoop = false; 1937 for (Use &U : I->uses()) { 1938 Instruction *User = cast<Instruction>(U.getUser()); 1939 BasicBlock *UseBB = User->getParent(); 1940 if (PHINode *P = dyn_cast<PHINode>(User)) { 1941 unsigned i = 1942 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1943 UseBB = P->getIncomingBlock(i); 1944 } 1945 if (UseBB == Preheader || L->contains(UseBB)) { 1946 UsedInLoop = true; 1947 break; 1948 } 1949 } 1950 1951 // If there is, the def must remain in the preheader. 1952 if (UsedInLoop) 1953 continue; 1954 1955 // Otherwise, sink it to the exit block. 1956 Instruction *ToMove = I; 1957 bool Done = false; 1958 1959 if (I != Preheader->begin()) { 1960 // Skip debug info intrinsics. 1961 do { 1962 --I; 1963 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1964 1965 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1966 Done = true; 1967 } else { 1968 Done = true; 1969 } 1970 1971 ToMove->moveBefore(InsertPt); 1972 if (Done) break; 1973 InsertPt = ToMove; 1974 } 1975 } 1976 1977 //===----------------------------------------------------------------------===// 1978 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1979 //===----------------------------------------------------------------------===// 1980 1981 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1982 if (skipOptnoneFunction(L)) 1983 return false; 1984 1985 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1986 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1987 // canonicalization can be a pessimization without LSR to "clean up" 1988 // afterwards. 1989 // - We depend on having a preheader; in particular, 1990 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1991 // and we're in trouble if we can't find the induction variable even when 1992 // we've manually inserted one. 1993 if (!L->isLoopSimplifyForm()) 1994 return false; 1995 1996 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1997 SE = &getAnalysis<ScalarEvolution>(); 1998 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1999 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2000 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2001 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2002 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2003 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2004 2005 DeadInsts.clear(); 2006 Changed = false; 2007 2008 // If there are any floating-point recurrences, attempt to 2009 // transform them to use integer recurrences. 2010 RewriteNonIntegerIVs(L); 2011 2012 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2013 2014 // Create a rewriter object which we'll use to transform the code with. 2015 SCEVExpander Rewriter(*SE, DL, "indvars"); 2016 #ifndef NDEBUG 2017 Rewriter.setDebugType(DEBUG_TYPE); 2018 #endif 2019 2020 // Eliminate redundant IV users. 2021 // 2022 // Simplification works best when run before other consumers of SCEV. We 2023 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2024 // other expressions involving loop IVs have been evaluated. This helps SCEV 2025 // set no-wrap flags before normalizing sign/zero extension. 2026 Rewriter.disableCanonicalMode(); 2027 SimplifyAndExtend(L, Rewriter, LPM); 2028 2029 // Check to see if this loop has a computable loop-invariant execution count. 2030 // If so, this means that we can compute the final value of any expressions 2031 // that are recurrent in the loop, and substitute the exit values from the 2032 // loop into any instructions outside of the loop that use the final values of 2033 // the current expressions. 2034 // 2035 if (ReplaceExitValue != NeverRepl && 2036 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2037 RewriteLoopExitValues(L, Rewriter); 2038 2039 // Eliminate redundant IV cycles. 2040 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2041 2042 // If we have a trip count expression, rewrite the loop's exit condition 2043 // using it. We can currently only handle loops with a single exit. 2044 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2045 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2046 if (IndVar) { 2047 // Check preconditions for proper SCEVExpander operation. SCEV does not 2048 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2049 // pass that uses the SCEVExpander must do it. This does not work well for 2050 // loop passes because SCEVExpander makes assumptions about all loops, 2051 // while LoopPassManager only forces the current loop to be simplified. 2052 // 2053 // FIXME: SCEV expansion has no way to bail out, so the caller must 2054 // explicitly check any assumptions made by SCEV. Brittle. 2055 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2056 if (!AR || AR->getLoop()->getLoopPreheader()) 2057 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2058 Rewriter); 2059 } 2060 } 2061 // Clear the rewriter cache, because values that are in the rewriter's cache 2062 // can be deleted in the loop below, causing the AssertingVH in the cache to 2063 // trigger. 2064 Rewriter.clear(); 2065 2066 // Now that we're done iterating through lists, clean up any instructions 2067 // which are now dead. 2068 while (!DeadInsts.empty()) 2069 if (Instruction *Inst = 2070 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2071 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2072 2073 // The Rewriter may not be used from this point on. 2074 2075 // Loop-invariant instructions in the preheader that aren't used in the 2076 // loop may be sunk below the loop to reduce register pressure. 2077 SinkUnusedInvariants(L); 2078 2079 // Clean up dead instructions. 2080 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2081 // Check a post-condition. 2082 assert(L->isLCSSAForm(*DT) && 2083 "Indvars did not leave the loop in lcssa form!"); 2084 2085 // Verify that LFTR, and any other change have not interfered with SCEV's 2086 // ability to compute trip count. 2087 #ifndef NDEBUG 2088 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2089 SE->forgetLoop(L); 2090 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2091 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2092 SE->getTypeSizeInBits(NewBECount->getType())) 2093 NewBECount = SE->getTruncateOrNoop(NewBECount, 2094 BackedgeTakenCount->getType()); 2095 else 2096 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2097 NewBECount->getType()); 2098 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2099 } 2100 #endif 2101 2102 return Changed; 2103 } 2104