xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 6d45a01b67df7e4e1b88bec8bc724a46caefb1a5)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // This transformation makes the following changes to each loop with an
15 // identifiable induction variable:
16 //   1. All loops are transformed to have a SINGLE canonical induction variable
17 //      which starts at zero and steps by one.
18 //   2. The canonical induction variable is guaranteed to be the first PHI node
19 //      in the loop header block.
20 //   3. The canonical induction variable is guaranteed to be in a wide enough
21 //      type so that IV expressions need not be (directly) zero-extended or
22 //      sign-extended.
23 //   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24 //
25 // If the trip count of a loop is computable, this pass also makes the following
26 // changes:
27 //   1. The exit condition for the loop is canonicalized to compare the
28 //      induction value against the exit value.  This turns loops like:
29 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 //   2. Any use outside of the loop of an expression derived from the indvar
31 //      is changed to compute the derived value outside of the loop, eliminating
32 //      the dependence on the exit value of the induction variable.  If the only
33 //      purpose of the loop is to compute the exit value of some derived
34 //      expression, this transformation will make the loop dead.
35 //
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/LLVMContext.h"
48 #include "llvm/Type.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/IVUsers.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Support/CFG.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Target/TargetData.h"
61 #include "llvm/ADT/DenseMap.h"
62 #include "llvm/ADT/SmallVector.h"
63 #include "llvm/ADT/Statistic.h"
64 #include "llvm/ADT/STLExtras.h"
65 using namespace llvm;
66 
67 STATISTIC(NumRemoved     , "Number of aux indvars removed");
68 STATISTIC(NumWidened     , "Number of indvars widened");
69 STATISTIC(NumInserted    , "Number of canonical indvars added");
70 STATISTIC(NumReplaced    , "Number of exit values replaced");
71 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
72 STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
73 STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
74 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
75 STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
76 STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");
77 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
78 
79 static cl::opt<bool> DisableIVRewrite(
80   "disable-iv-rewrite", cl::Hidden,
81   cl::desc("Disable canonical induction variable rewriting"));
82 
83 // Temporary flag for use with -disable-iv-rewrite to force a canonical IV for
84 // LFTR purposes.
85 static cl::opt<bool> ForceLFTR(
86   "force-lftr", cl::Hidden,
87   cl::desc("Enable forced linear function test replacement"));
88 
89 namespace {
90   class IndVarSimplify : public LoopPass {
91     IVUsers         *IU;
92     LoopInfo        *LI;
93     ScalarEvolution *SE;
94     DominatorTree   *DT;
95     TargetData      *TD;
96 
97     SmallVector<WeakVH, 16> DeadInsts;
98     bool Changed;
99   public:
100 
101     static char ID; // Pass identification, replacement for typeid
102     IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
103                        Changed(false) {
104       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
105     }
106 
107     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
108 
109     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
110       AU.addRequired<DominatorTree>();
111       AU.addRequired<LoopInfo>();
112       AU.addRequired<ScalarEvolution>();
113       AU.addRequiredID(LoopSimplifyID);
114       AU.addRequiredID(LCSSAID);
115       if (!DisableIVRewrite)
116         AU.addRequired<IVUsers>();
117       AU.addPreserved<ScalarEvolution>();
118       AU.addPreservedID(LoopSimplifyID);
119       AU.addPreservedID(LCSSAID);
120       if (!DisableIVRewrite)
121         AU.addPreserved<IVUsers>();
122       AU.setPreservesCFG();
123     }
124 
125   private:
126     virtual void releaseMemory() {
127       DeadInsts.clear();
128     }
129 
130     bool isValidRewrite(Value *FromVal, Value *ToVal);
131 
132     void HandleFloatingPointIV(Loop *L, PHINode *PH);
133     void RewriteNonIntegerIVs(Loop *L);
134 
135     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
136 
137     void SimplifyIVUsers(SCEVExpander &Rewriter);
138     void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter);
139 
140     bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
141     void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
142     void EliminateIVRemainder(BinaryOperator *Rem,
143                               Value *IVOperand,
144                               bool IsSigned);
145 
146     bool FoldIVUser(Instruction *UseInst, Instruction *IVOperand);
147 
148     void SimplifyCongruentIVs(Loop *L);
149 
150     void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
151 
152     Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
153                                      PHINode *IndVar, SCEVExpander &Rewriter);
154 
155     void SinkUnusedInvariants(Loop *L);
156   };
157 }
158 
159 char IndVarSimplify::ID = 0;
160 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
161                 "Induction Variable Simplification", false, false)
162 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
163 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
164 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
165 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
166 INITIALIZE_PASS_DEPENDENCY(LCSSA)
167 INITIALIZE_PASS_DEPENDENCY(IVUsers)
168 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
169                 "Induction Variable Simplification", false, false)
170 
171 Pass *llvm::createIndVarSimplifyPass() {
172   return new IndVarSimplify();
173 }
174 
175 /// isValidRewrite - Return true if the SCEV expansion generated by the
176 /// rewriter can replace the original value. SCEV guarantees that it
177 /// produces the same value, but the way it is produced may be illegal IR.
178 /// Ideally, this function will only be called for verification.
179 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
180   // If an SCEV expression subsumed multiple pointers, its expansion could
181   // reassociate the GEP changing the base pointer. This is illegal because the
182   // final address produced by a GEP chain must be inbounds relative to its
183   // underlying object. Otherwise basic alias analysis, among other things,
184   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
185   // producing an expression involving multiple pointers. Until then, we must
186   // bail out here.
187   //
188   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
189   // because it understands lcssa phis while SCEV does not.
190   Value *FromPtr = FromVal;
191   Value *ToPtr = ToVal;
192   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
193     FromPtr = GEP->getPointerOperand();
194   }
195   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
196     ToPtr = GEP->getPointerOperand();
197   }
198   if (FromPtr != FromVal || ToPtr != ToVal) {
199     // Quickly check the common case
200     if (FromPtr == ToPtr)
201       return true;
202 
203     // SCEV may have rewritten an expression that produces the GEP's pointer
204     // operand. That's ok as long as the pointer operand has the same base
205     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
206     // base of a recurrence. This handles the case in which SCEV expansion
207     // converts a pointer type recurrence into a nonrecurrent pointer base
208     // indexed by an integer recurrence.
209     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
210     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
211     if (FromBase == ToBase)
212       return true;
213 
214     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
215           << *FromBase << " != " << *ToBase << "\n");
216 
217     return false;
218   }
219   return true;
220 }
221 
222 /// Determine the insertion point for this user. By default, insert immediately
223 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
224 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
225 /// common dominator for the incoming blocks.
226 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
227                                           DominatorTree *DT) {
228   PHINode *PHI = dyn_cast<PHINode>(User);
229   if (!PHI)
230     return User;
231 
232   Instruction *InsertPt = 0;
233   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
234     if (PHI->getIncomingValue(i) != Def)
235       continue;
236 
237     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
238     if (!InsertPt) {
239       InsertPt = InsertBB->getTerminator();
240       continue;
241     }
242     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
243     InsertPt = InsertBB->getTerminator();
244   }
245   assert(InsertPt && "Missing phi operand");
246   assert((!isa<Instruction>(Def) ||
247           DT->dominates(cast<Instruction>(Def), InsertPt)) &&
248          "def does not dominate all uses");
249   return InsertPt;
250 }
251 
252 //===----------------------------------------------------------------------===//
253 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
254 //===----------------------------------------------------------------------===//
255 
256 /// ConvertToSInt - Convert APF to an integer, if possible.
257 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
258   bool isExact = false;
259   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
260     return false;
261   // See if we can convert this to an int64_t
262   uint64_t UIntVal;
263   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
264                            &isExact) != APFloat::opOK || !isExact)
265     return false;
266   IntVal = UIntVal;
267   return true;
268 }
269 
270 /// HandleFloatingPointIV - If the loop has floating induction variable
271 /// then insert corresponding integer induction variable if possible.
272 /// For example,
273 /// for(double i = 0; i < 10000; ++i)
274 ///   bar(i)
275 /// is converted into
276 /// for(int i = 0; i < 10000; ++i)
277 ///   bar((double)i);
278 ///
279 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
280   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
281   unsigned BackEdge     = IncomingEdge^1;
282 
283   // Check incoming value.
284   ConstantFP *InitValueVal =
285     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
286 
287   int64_t InitValue;
288   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
289     return;
290 
291   // Check IV increment. Reject this PN if increment operation is not
292   // an add or increment value can not be represented by an integer.
293   BinaryOperator *Incr =
294     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
295   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
296 
297   // If this is not an add of the PHI with a constantfp, or if the constant fp
298   // is not an integer, bail out.
299   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
300   int64_t IncValue;
301   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
302       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
303     return;
304 
305   // Check Incr uses. One user is PN and the other user is an exit condition
306   // used by the conditional terminator.
307   Value::use_iterator IncrUse = Incr->use_begin();
308   Instruction *U1 = cast<Instruction>(*IncrUse++);
309   if (IncrUse == Incr->use_end()) return;
310   Instruction *U2 = cast<Instruction>(*IncrUse++);
311   if (IncrUse != Incr->use_end()) return;
312 
313   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
314   // only used by a branch, we can't transform it.
315   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
316   if (!Compare)
317     Compare = dyn_cast<FCmpInst>(U2);
318   if (Compare == 0 || !Compare->hasOneUse() ||
319       !isa<BranchInst>(Compare->use_back()))
320     return;
321 
322   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
323 
324   // We need to verify that the branch actually controls the iteration count
325   // of the loop.  If not, the new IV can overflow and no one will notice.
326   // The branch block must be in the loop and one of the successors must be out
327   // of the loop.
328   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
329   if (!L->contains(TheBr->getParent()) ||
330       (L->contains(TheBr->getSuccessor(0)) &&
331        L->contains(TheBr->getSuccessor(1))))
332     return;
333 
334 
335   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
336   // transform it.
337   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
338   int64_t ExitValue;
339   if (ExitValueVal == 0 ||
340       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
341     return;
342 
343   // Find new predicate for integer comparison.
344   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
345   switch (Compare->getPredicate()) {
346   default: return;  // Unknown comparison.
347   case CmpInst::FCMP_OEQ:
348   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
349   case CmpInst::FCMP_ONE:
350   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
351   case CmpInst::FCMP_OGT:
352   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
353   case CmpInst::FCMP_OGE:
354   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
355   case CmpInst::FCMP_OLT:
356   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
357   case CmpInst::FCMP_OLE:
358   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
359   }
360 
361   // We convert the floating point induction variable to a signed i32 value if
362   // we can.  This is only safe if the comparison will not overflow in a way
363   // that won't be trapped by the integer equivalent operations.  Check for this
364   // now.
365   // TODO: We could use i64 if it is native and the range requires it.
366 
367   // The start/stride/exit values must all fit in signed i32.
368   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
369     return;
370 
371   // If not actually striding (add x, 0.0), avoid touching the code.
372   if (IncValue == 0)
373     return;
374 
375   // Positive and negative strides have different safety conditions.
376   if (IncValue > 0) {
377     // If we have a positive stride, we require the init to be less than the
378     // exit value and an equality or less than comparison.
379     if (InitValue >= ExitValue ||
380         NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
381       return;
382 
383     uint32_t Range = uint32_t(ExitValue-InitValue);
384     if (NewPred == CmpInst::ICMP_SLE) {
385       // Normalize SLE -> SLT, check for infinite loop.
386       if (++Range == 0) return;  // Range overflows.
387     }
388 
389     unsigned Leftover = Range % uint32_t(IncValue);
390 
391     // If this is an equality comparison, we require that the strided value
392     // exactly land on the exit value, otherwise the IV condition will wrap
393     // around and do things the fp IV wouldn't.
394     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
395         Leftover != 0)
396       return;
397 
398     // If the stride would wrap around the i32 before exiting, we can't
399     // transform the IV.
400     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
401       return;
402 
403   } else {
404     // If we have a negative stride, we require the init to be greater than the
405     // exit value and an equality or greater than comparison.
406     if (InitValue >= ExitValue ||
407         NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
408       return;
409 
410     uint32_t Range = uint32_t(InitValue-ExitValue);
411     if (NewPred == CmpInst::ICMP_SGE) {
412       // Normalize SGE -> SGT, check for infinite loop.
413       if (++Range == 0) return;  // Range overflows.
414     }
415 
416     unsigned Leftover = Range % uint32_t(-IncValue);
417 
418     // If this is an equality comparison, we require that the strided value
419     // exactly land on the exit value, otherwise the IV condition will wrap
420     // around and do things the fp IV wouldn't.
421     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
422         Leftover != 0)
423       return;
424 
425     // If the stride would wrap around the i32 before exiting, we can't
426     // transform the IV.
427     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
428       return;
429   }
430 
431   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
432 
433   // Insert new integer induction variable.
434   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
435   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
436                       PN->getIncomingBlock(IncomingEdge));
437 
438   Value *NewAdd =
439     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
440                               Incr->getName()+".int", Incr);
441   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
442 
443   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
444                                       ConstantInt::get(Int32Ty, ExitValue),
445                                       Compare->getName());
446 
447   // In the following deletions, PN may become dead and may be deleted.
448   // Use a WeakVH to observe whether this happens.
449   WeakVH WeakPH = PN;
450 
451   // Delete the old floating point exit comparison.  The branch starts using the
452   // new comparison.
453   NewCompare->takeName(Compare);
454   Compare->replaceAllUsesWith(NewCompare);
455   RecursivelyDeleteTriviallyDeadInstructions(Compare);
456 
457   // Delete the old floating point increment.
458   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
459   RecursivelyDeleteTriviallyDeadInstructions(Incr);
460 
461   // If the FP induction variable still has uses, this is because something else
462   // in the loop uses its value.  In order to canonicalize the induction
463   // variable, we chose to eliminate the IV and rewrite it in terms of an
464   // int->fp cast.
465   //
466   // We give preference to sitofp over uitofp because it is faster on most
467   // platforms.
468   if (WeakPH) {
469     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
470                                  PN->getParent()->getFirstNonPHI());
471     PN->replaceAllUsesWith(Conv);
472     RecursivelyDeleteTriviallyDeadInstructions(PN);
473   }
474 
475   // Add a new IVUsers entry for the newly-created integer PHI.
476   if (IU)
477     IU->AddUsersIfInteresting(NewPHI);
478 }
479 
480 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
481   // First step.  Check to see if there are any floating-point recurrences.
482   // If there are, change them into integer recurrences, permitting analysis by
483   // the SCEV routines.
484   //
485   BasicBlock *Header = L->getHeader();
486 
487   SmallVector<WeakVH, 8> PHIs;
488   for (BasicBlock::iterator I = Header->begin();
489        PHINode *PN = dyn_cast<PHINode>(I); ++I)
490     PHIs.push_back(PN);
491 
492   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
493     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
494       HandleFloatingPointIV(L, PN);
495 
496   // If the loop previously had floating-point IV, ScalarEvolution
497   // may not have been able to compute a trip count. Now that we've done some
498   // re-writing, the trip count may be computable.
499   if (Changed)
500     SE->forgetLoop(L);
501 }
502 
503 //===----------------------------------------------------------------------===//
504 // RewriteLoopExitValues - Optimize IV users outside the loop.
505 // As a side effect, reduces the amount of IV processing within the loop.
506 //===----------------------------------------------------------------------===//
507 
508 /// RewriteLoopExitValues - Check to see if this loop has a computable
509 /// loop-invariant execution count.  If so, this means that we can compute the
510 /// final value of any expressions that are recurrent in the loop, and
511 /// substitute the exit values from the loop into any instructions outside of
512 /// the loop that use the final values of the current expressions.
513 ///
514 /// This is mostly redundant with the regular IndVarSimplify activities that
515 /// happen later, except that it's more powerful in some cases, because it's
516 /// able to brute-force evaluate arbitrary instructions as long as they have
517 /// constant operands at the beginning of the loop.
518 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
519   // Verify the input to the pass in already in LCSSA form.
520   assert(L->isLCSSAForm(*DT));
521 
522   SmallVector<BasicBlock*, 8> ExitBlocks;
523   L->getUniqueExitBlocks(ExitBlocks);
524 
525   // Find all values that are computed inside the loop, but used outside of it.
526   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
527   // the exit blocks of the loop to find them.
528   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
529     BasicBlock *ExitBB = ExitBlocks[i];
530 
531     // If there are no PHI nodes in this exit block, then no values defined
532     // inside the loop are used on this path, skip it.
533     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
534     if (!PN) continue;
535 
536     unsigned NumPreds = PN->getNumIncomingValues();
537 
538     // Iterate over all of the PHI nodes.
539     BasicBlock::iterator BBI = ExitBB->begin();
540     while ((PN = dyn_cast<PHINode>(BBI++))) {
541       if (PN->use_empty())
542         continue; // dead use, don't replace it
543 
544       // SCEV only supports integer expressions for now.
545       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
546         continue;
547 
548       // It's necessary to tell ScalarEvolution about this explicitly so that
549       // it can walk the def-use list and forget all SCEVs, as it may not be
550       // watching the PHI itself. Once the new exit value is in place, there
551       // may not be a def-use connection between the loop and every instruction
552       // which got a SCEVAddRecExpr for that loop.
553       SE->forgetValue(PN);
554 
555       // Iterate over all of the values in all the PHI nodes.
556       for (unsigned i = 0; i != NumPreds; ++i) {
557         // If the value being merged in is not integer or is not defined
558         // in the loop, skip it.
559         Value *InVal = PN->getIncomingValue(i);
560         if (!isa<Instruction>(InVal))
561           continue;
562 
563         // If this pred is for a subloop, not L itself, skip it.
564         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
565           continue; // The Block is in a subloop, skip it.
566 
567         // Check that InVal is defined in the loop.
568         Instruction *Inst = cast<Instruction>(InVal);
569         if (!L->contains(Inst))
570           continue;
571 
572         // Okay, this instruction has a user outside of the current loop
573         // and varies predictably *inside* the loop.  Evaluate the value it
574         // contains when the loop exits, if possible.
575         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
576         if (!SE->isLoopInvariant(ExitValue, L))
577           continue;
578 
579         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
580 
581         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
582                      << "  LoopVal = " << *Inst << "\n");
583 
584         if (!isValidRewrite(Inst, ExitVal)) {
585           DeadInsts.push_back(ExitVal);
586           continue;
587         }
588         Changed = true;
589         ++NumReplaced;
590 
591         PN->setIncomingValue(i, ExitVal);
592 
593         // If this instruction is dead now, delete it.
594         RecursivelyDeleteTriviallyDeadInstructions(Inst);
595 
596         if (NumPreds == 1) {
597           // Completely replace a single-pred PHI. This is safe, because the
598           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
599           // node anymore.
600           PN->replaceAllUsesWith(ExitVal);
601           RecursivelyDeleteTriviallyDeadInstructions(PN);
602         }
603       }
604       if (NumPreds != 1) {
605         // Clone the PHI and delete the original one. This lets IVUsers and
606         // any other maps purge the original user from their records.
607         PHINode *NewPN = cast<PHINode>(PN->clone());
608         NewPN->takeName(PN);
609         NewPN->insertBefore(PN);
610         PN->replaceAllUsesWith(NewPN);
611         PN->eraseFromParent();
612       }
613     }
614   }
615 
616   // The insertion point instruction may have been deleted; clear it out
617   // so that the rewriter doesn't trip over it later.
618   Rewriter.clearInsertPoint();
619 }
620 
621 //===----------------------------------------------------------------------===//
622 //  Rewrite IV users based on a canonical IV.
623 //  To be replaced by -disable-iv-rewrite.
624 //===----------------------------------------------------------------------===//
625 
626 /// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this
627 /// loop. IVUsers is treated as a worklist. Each successive simplification may
628 /// push more users which may themselves be candidates for simplification.
629 ///
630 /// This is the old approach to IV simplification to be replaced by
631 /// SimplifyIVUsersNoRewrite.
632 ///
633 void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) {
634   // Each round of simplification involves a round of eliminating operations
635   // followed by a round of widening IVs. A single IVUsers worklist is used
636   // across all rounds. The inner loop advances the user. If widening exposes
637   // more uses, then another pass through the outer loop is triggered.
638   for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) {
639     Instruction *UseInst = I->getUser();
640     Value *IVOperand = I->getOperandValToReplace();
641 
642     if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
643       EliminateIVComparison(ICmp, IVOperand);
644       continue;
645     }
646     if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
647       bool IsSigned = Rem->getOpcode() == Instruction::SRem;
648       if (IsSigned || Rem->getOpcode() == Instruction::URem) {
649         EliminateIVRemainder(Rem, IVOperand, IsSigned);
650         continue;
651       }
652     }
653   }
654 }
655 
656 // FIXME: It is an extremely bad idea to indvar substitute anything more
657 // complex than affine induction variables.  Doing so will put expensive
658 // polynomial evaluations inside of the loop, and the str reduction pass
659 // currently can only reduce affine polynomials.  For now just disable
660 // indvar subst on anything more complex than an affine addrec, unless
661 // it can be expanded to a trivial value.
662 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
663   // Loop-invariant values are safe.
664   if (SE->isLoopInvariant(S, L)) return true;
665 
666   // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
667   // to transform them into efficient code.
668   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
669     return AR->isAffine();
670 
671   // An add is safe it all its operands are safe.
672   if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
673     for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
674          E = Commutative->op_end(); I != E; ++I)
675       if (!isSafe(*I, L, SE)) return false;
676     return true;
677   }
678 
679   // A cast is safe if its operand is.
680   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
681     return isSafe(C->getOperand(), L, SE);
682 
683   // A udiv is safe if its operands are.
684   if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
685     return isSafe(UD->getLHS(), L, SE) &&
686            isSafe(UD->getRHS(), L, SE);
687 
688   // SCEVUnknown is always safe.
689   if (isa<SCEVUnknown>(S))
690     return true;
691 
692   // Nothing else is safe.
693   return false;
694 }
695 
696 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
697   // Rewrite all induction variable expressions in terms of the canonical
698   // induction variable.
699   //
700   // If there were induction variables of other sizes or offsets, manually
701   // add the offsets to the primary induction variable and cast, avoiding
702   // the need for the code evaluation methods to insert induction variables
703   // of different sizes.
704   for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
705     Value *Op = UI->getOperandValToReplace();
706     Type *UseTy = Op->getType();
707     Instruction *User = UI->getUser();
708 
709     // Compute the final addrec to expand into code.
710     const SCEV *AR = IU->getReplacementExpr(*UI);
711 
712     // Evaluate the expression out of the loop, if possible.
713     if (!L->contains(UI->getUser())) {
714       const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
715       if (SE->isLoopInvariant(ExitVal, L))
716         AR = ExitVal;
717     }
718 
719     // FIXME: It is an extremely bad idea to indvar substitute anything more
720     // complex than affine induction variables.  Doing so will put expensive
721     // polynomial evaluations inside of the loop, and the str reduction pass
722     // currently can only reduce affine polynomials.  For now just disable
723     // indvar subst on anything more complex than an affine addrec, unless
724     // it can be expanded to a trivial value.
725     if (!isSafe(AR, L, SE))
726       continue;
727 
728     // Determine the insertion point for this user. By default, insert
729     // immediately before the user. The SCEVExpander class will automatically
730     // hoist loop invariants out of the loop. For PHI nodes, there may be
731     // multiple uses, so compute the nearest common dominator for the
732     // incoming blocks.
733     Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
734 
735     // Now expand it into actual Instructions and patch it into place.
736     Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
737 
738     DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
739                  << "   into = " << *NewVal << "\n");
740 
741     if (!isValidRewrite(Op, NewVal)) {
742       DeadInsts.push_back(NewVal);
743       continue;
744     }
745     // Inform ScalarEvolution that this value is changing. The change doesn't
746     // affect its value, but it does potentially affect which use lists the
747     // value will be on after the replacement, which affects ScalarEvolution's
748     // ability to walk use lists and drop dangling pointers when a value is
749     // deleted.
750     SE->forgetValue(User);
751 
752     // Patch the new value into place.
753     if (Op->hasName())
754       NewVal->takeName(Op);
755     if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
756       NewValI->setDebugLoc(User->getDebugLoc());
757     User->replaceUsesOfWith(Op, NewVal);
758     UI->setOperandValToReplace(NewVal);
759 
760     ++NumRemoved;
761     Changed = true;
762 
763     // The old value may be dead now.
764     DeadInsts.push_back(Op);
765   }
766 }
767 
768 //===----------------------------------------------------------------------===//
769 //  IV Widening - Extend the width of an IV to cover its widest uses.
770 //===----------------------------------------------------------------------===//
771 
772 namespace {
773   // Collect information about induction variables that are used by sign/zero
774   // extend operations. This information is recorded by CollectExtend and
775   // provides the input to WidenIV.
776   struct WideIVInfo {
777     Type *WidestNativeType; // Widest integer type created [sz]ext
778     bool IsSigned;                // Was an sext user seen before a zext?
779 
780     WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
781   };
782 }
783 
784 /// CollectExtend - Update information about the induction variable that is
785 /// extended by this sign or zero extend operation. This is used to determine
786 /// the final width of the IV before actually widening it.
787 static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI,
788                           ScalarEvolution *SE, const TargetData *TD) {
789   Type *Ty = Cast->getType();
790   uint64_t Width = SE->getTypeSizeInBits(Ty);
791   if (TD && !TD->isLegalInteger(Width))
792     return;
793 
794   if (!WI.WidestNativeType) {
795     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
796     WI.IsSigned = IsSigned;
797     return;
798   }
799 
800   // We extend the IV to satisfy the sign of its first user, arbitrarily.
801   if (WI.IsSigned != IsSigned)
802     return;
803 
804   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
805     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
806 }
807 
808 namespace {
809 
810 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
811 /// WideIV that computes the same value as the Narrow IV def.  This avoids
812 /// caching Use* pointers.
813 struct NarrowIVDefUse {
814   Instruction *NarrowDef;
815   Instruction *NarrowUse;
816   Instruction *WideDef;
817 
818   NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
819 
820   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
821     NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
822 };
823 
824 /// WidenIV - The goal of this transform is to remove sign and zero extends
825 /// without creating any new induction variables. To do this, it creates a new
826 /// phi of the wider type and redirects all users, either removing extends or
827 /// inserting truncs whenever we stop propagating the type.
828 ///
829 class WidenIV {
830   // Parameters
831   PHINode *OrigPhi;
832   Type *WideType;
833   bool IsSigned;
834 
835   // Context
836   LoopInfo        *LI;
837   Loop            *L;
838   ScalarEvolution *SE;
839   DominatorTree   *DT;
840 
841   // Result
842   PHINode *WidePhi;
843   Instruction *WideInc;
844   const SCEV *WideIncExpr;
845   SmallVectorImpl<WeakVH> &DeadInsts;
846 
847   SmallPtrSet<Instruction*,16> Widened;
848   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
849 
850 public:
851   WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
852           ScalarEvolution *SEv, DominatorTree *DTree,
853           SmallVectorImpl<WeakVH> &DI) :
854     OrigPhi(PN),
855     WideType(WI.WidestNativeType),
856     IsSigned(WI.IsSigned),
857     LI(LInfo),
858     L(LI->getLoopFor(OrigPhi->getParent())),
859     SE(SEv),
860     DT(DTree),
861     WidePhi(0),
862     WideInc(0),
863     WideIncExpr(0),
864     DeadInsts(DI) {
865     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
866   }
867 
868   PHINode *CreateWideIV(SCEVExpander &Rewriter);
869 
870 protected:
871   Instruction *CloneIVUser(NarrowIVDefUse DU);
872 
873   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
874 
875   Instruction *WidenIVUse(NarrowIVDefUse DU);
876 
877   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
878 };
879 } // anonymous namespace
880 
881 static Value *getExtend( Value *NarrowOper, Type *WideType,
882                                bool IsSigned, IRBuilder<> &Builder) {
883   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
884                     Builder.CreateZExt(NarrowOper, WideType);
885 }
886 
887 /// CloneIVUser - Instantiate a wide operation to replace a narrow
888 /// operation. This only needs to handle operations that can evaluation to
889 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
890 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
891   unsigned Opcode = DU.NarrowUse->getOpcode();
892   switch (Opcode) {
893   default:
894     return 0;
895   case Instruction::Add:
896   case Instruction::Mul:
897   case Instruction::UDiv:
898   case Instruction::Sub:
899   case Instruction::And:
900   case Instruction::Or:
901   case Instruction::Xor:
902   case Instruction::Shl:
903   case Instruction::LShr:
904   case Instruction::AShr:
905     DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
906 
907     IRBuilder<> Builder(DU.NarrowUse);
908 
909     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
910     // anything about the narrow operand yet so must insert a [sz]ext. It is
911     // probably loop invariant and will be folded or hoisted. If it actually
912     // comes from a widened IV, it should be removed during a future call to
913     // WidenIVUse.
914     Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
915       getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, Builder);
916     Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
917       getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, Builder);
918 
919     BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
920     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
921                                                     LHS, RHS,
922                                                     NarrowBO->getName());
923     Builder.Insert(WideBO);
924     if (const OverflowingBinaryOperator *OBO =
925         dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
926       if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
927       if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
928     }
929     return WideBO;
930   }
931   llvm_unreachable(0);
932 }
933 
934 /// HoistStep - Attempt to hoist an IV increment above a potential use.
935 ///
936 /// To successfully hoist, two criteria must be met:
937 /// - IncV operands dominate InsertPos and
938 /// - InsertPos dominates IncV
939 ///
940 /// Meeting the second condition means that we don't need to check all of IncV's
941 /// existing uses (it's moving up in the domtree).
942 ///
943 /// This does not yet recursively hoist the operands, although that would
944 /// not be difficult.
945 static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
946                       const DominatorTree *DT)
947 {
948   if (DT->dominates(IncV, InsertPos))
949     return true;
950 
951   if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
952     return false;
953 
954   if (IncV->mayHaveSideEffects())
955     return false;
956 
957   // Attempt to hoist IncV
958   for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
959        OI != OE; ++OI) {
960     Instruction *OInst = dyn_cast<Instruction>(OI);
961     if (OInst && !DT->dominates(OInst, InsertPos))
962       return false;
963   }
964   IncV->moveBefore(InsertPos);
965   return true;
966 }
967 
968 // GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
969 // perspective after widening it's type? In other words, can the extend be
970 // safely hoisted out of the loop with SCEV reducing the value to a recurrence
971 // on the same loop. If so, return the sign or zero extended
972 // recurrence. Otherwise return NULL.
973 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
974   if (!SE->isSCEVable(NarrowUse->getType()))
975     return 0;
976 
977   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
978   if (SE->getTypeSizeInBits(NarrowExpr->getType())
979       >= SE->getTypeSizeInBits(WideType)) {
980     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
981     // index. So don't follow this use.
982     return 0;
983   }
984 
985   const SCEV *WideExpr = IsSigned ?
986     SE->getSignExtendExpr(NarrowExpr, WideType) :
987     SE->getZeroExtendExpr(NarrowExpr, WideType);
988   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
989   if (!AddRec || AddRec->getLoop() != L)
990     return 0;
991 
992   return AddRec;
993 }
994 
995 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
996 /// widened. If so, return the wide clone of the user.
997 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) {
998 
999   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1000   if (isa<PHINode>(DU.NarrowUse) &&
1001       LI->getLoopFor(DU.NarrowUse->getParent()) != L)
1002     return 0;
1003 
1004   // Our raison d'etre! Eliminate sign and zero extension.
1005   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1006     Value *NewDef = DU.WideDef;
1007     if (DU.NarrowUse->getType() != WideType) {
1008       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1009       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1010       if (CastWidth < IVWidth) {
1011         // The cast isn't as wide as the IV, so insert a Trunc.
1012         IRBuilder<> Builder(DU.NarrowUse);
1013         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1014       }
1015       else {
1016         // A wider extend was hidden behind a narrower one. This may induce
1017         // another round of IV widening in which the intermediate IV becomes
1018         // dead. It should be very rare.
1019         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1020               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1021         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1022         NewDef = DU.NarrowUse;
1023       }
1024     }
1025     if (NewDef != DU.NarrowUse) {
1026       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1027             << " replaced by " << *DU.WideDef << "\n");
1028       ++NumElimExt;
1029       DU.NarrowUse->replaceAllUsesWith(NewDef);
1030       DeadInsts.push_back(DU.NarrowUse);
1031     }
1032     // Now that the extend is gone, we want to expose it's uses for potential
1033     // further simplification. We don't need to directly inform SimplifyIVUsers
1034     // of the new users, because their parent IV will be processed later as a
1035     // new loop phi. If we preserved IVUsers analysis, we would also want to
1036     // push the uses of WideDef here.
1037 
1038     // No further widening is needed. The deceased [sz]ext had done it for us.
1039     return 0;
1040   }
1041 
1042   // Does this user itself evaluate to a recurrence after widening?
1043   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
1044   if (!WideAddRec) {
1045     // This user does not evaluate to a recurence after widening, so don't
1046     // follow it. Instead insert a Trunc to kill off the original use,
1047     // eventually isolating the original narrow IV so it can be removed.
1048     IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
1049     Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1050     DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1051     return 0;
1052   }
1053   // Assume block terminators cannot evaluate to a recurrence. We can't to
1054   // insert a Trunc after a terminator if there happens to be a critical edge.
1055   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1056          "SCEV is not expected to evaluate a block terminator");
1057 
1058   // Reuse the IV increment that SCEVExpander created as long as it dominates
1059   // NarrowUse.
1060   Instruction *WideUse = 0;
1061   if (WideAddRec == WideIncExpr && HoistStep(WideInc, DU.NarrowUse, DT)) {
1062     WideUse = WideInc;
1063   }
1064   else {
1065     WideUse = CloneIVUser(DU);
1066     if (!WideUse)
1067       return 0;
1068   }
1069   // Evaluation of WideAddRec ensured that the narrow expression could be
1070   // extended outside the loop without overflow. This suggests that the wide use
1071   // evaluates to the same expression as the extended narrow use, but doesn't
1072   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1073   // where it fails, we simply throw away the newly created wide use.
1074   if (WideAddRec != SE->getSCEV(WideUse)) {
1075     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1076           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1077     DeadInsts.push_back(WideUse);
1078     return 0;
1079   }
1080 
1081   // Returning WideUse pushes it on the worklist.
1082   return WideUse;
1083 }
1084 
1085 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1086 ///
1087 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1088   for (Value::use_iterator UI = NarrowDef->use_begin(),
1089          UE = NarrowDef->use_end(); UI != UE; ++UI) {
1090     Instruction *NarrowUse = cast<Instruction>(*UI);
1091 
1092     // Handle data flow merges and bizarre phi cycles.
1093     if (!Widened.insert(NarrowUse))
1094       continue;
1095 
1096     NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
1097   }
1098 }
1099 
1100 /// CreateWideIV - Process a single induction variable. First use the
1101 /// SCEVExpander to create a wide induction variable that evaluates to the same
1102 /// recurrence as the original narrow IV. Then use a worklist to forward
1103 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1104 /// interesting IV users, the narrow IV will be isolated for removal by
1105 /// DeleteDeadPHIs.
1106 ///
1107 /// It would be simpler to delete uses as they are processed, but we must avoid
1108 /// invalidating SCEV expressions.
1109 ///
1110 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1111   // Is this phi an induction variable?
1112   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1113   if (!AddRec)
1114     return NULL;
1115 
1116   // Widen the induction variable expression.
1117   const SCEV *WideIVExpr = IsSigned ?
1118     SE->getSignExtendExpr(AddRec, WideType) :
1119     SE->getZeroExtendExpr(AddRec, WideType);
1120 
1121   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1122          "Expect the new IV expression to preserve its type");
1123 
1124   // Can the IV be extended outside the loop without overflow?
1125   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1126   if (!AddRec || AddRec->getLoop() != L)
1127     return NULL;
1128 
1129   // An AddRec must have loop-invariant operands. Since this AddRec is
1130   // materialized by a loop header phi, the expression cannot have any post-loop
1131   // operands, so they must dominate the loop header.
1132   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1133          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1134          && "Loop header phi recurrence inputs do not dominate the loop");
1135 
1136   // The rewriter provides a value for the desired IV expression. This may
1137   // either find an existing phi or materialize a new one. Either way, we
1138   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1139   // of the phi-SCC dominates the loop entry.
1140   Instruction *InsertPt = L->getHeader()->begin();
1141   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1142 
1143   // Remembering the WideIV increment generated by SCEVExpander allows
1144   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1145   // employ a general reuse mechanism because the call above is the only call to
1146   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1147   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1148     WideInc =
1149       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1150     WideIncExpr = SE->getSCEV(WideInc);
1151   }
1152 
1153   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1154   ++NumWidened;
1155 
1156   // Traverse the def-use chain using a worklist starting at the original IV.
1157   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1158 
1159   Widened.insert(OrigPhi);
1160   pushNarrowIVUsers(OrigPhi, WidePhi);
1161 
1162   while (!NarrowIVUsers.empty()) {
1163     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1164 
1165     // Process a def-use edge. This may replace the use, so don't hold a
1166     // use_iterator across it.
1167     Instruction *WideUse = WidenIVUse(DU);
1168 
1169     // Follow all def-use edges from the previous narrow use.
1170     if (WideUse)
1171       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1172 
1173     // WidenIVUse may have removed the def-use edge.
1174     if (DU.NarrowDef->use_empty())
1175       DeadInsts.push_back(DU.NarrowDef);
1176   }
1177   return WidePhi;
1178 }
1179 
1180 //===----------------------------------------------------------------------===//
1181 //  Simplification of IV users based on SCEV evaluation.
1182 //===----------------------------------------------------------------------===//
1183 
1184 void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
1185   unsigned IVOperIdx = 0;
1186   ICmpInst::Predicate Pred = ICmp->getPredicate();
1187   if (IVOperand != ICmp->getOperand(0)) {
1188     // Swapped
1189     assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
1190     IVOperIdx = 1;
1191     Pred = ICmpInst::getSwappedPredicate(Pred);
1192   }
1193 
1194   // Get the SCEVs for the ICmp operands.
1195   const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
1196   const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));
1197 
1198   // Simplify unnecessary loops away.
1199   const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
1200   S = SE->getSCEVAtScope(S, ICmpLoop);
1201   X = SE->getSCEVAtScope(X, ICmpLoop);
1202 
1203   // If the condition is always true or always false, replace it with
1204   // a constant value.
1205   if (SE->isKnownPredicate(Pred, S, X))
1206     ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
1207   else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X))
1208     ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
1209   else
1210     return;
1211 
1212   DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
1213   ++NumElimCmp;
1214   Changed = true;
1215   DeadInsts.push_back(ICmp);
1216 }
1217 
1218 void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem,
1219                                           Value *IVOperand,
1220                                           bool IsSigned) {
1221   // We're only interested in the case where we know something about
1222   // the numerator.
1223   if (IVOperand != Rem->getOperand(0))
1224     return;
1225 
1226   // Get the SCEVs for the ICmp operands.
1227   const SCEV *S = SE->getSCEV(Rem->getOperand(0));
1228   const SCEV *X = SE->getSCEV(Rem->getOperand(1));
1229 
1230   // Simplify unnecessary loops away.
1231   const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
1232   S = SE->getSCEVAtScope(S, ICmpLoop);
1233   X = SE->getSCEVAtScope(X, ICmpLoop);
1234 
1235   // i % n  -->  i  if i is in [0,n).
1236   if ((!IsSigned || SE->isKnownNonNegative(S)) &&
1237       SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
1238                            S, X))
1239     Rem->replaceAllUsesWith(Rem->getOperand(0));
1240   else {
1241     // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
1242     const SCEV *LessOne =
1243       SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1));
1244     if (IsSigned && !SE->isKnownNonNegative(LessOne))
1245       return;
1246 
1247     if (!SE->isKnownPredicate(IsSigned ?
1248                               ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
1249                               LessOne, X))
1250       return;
1251 
1252     ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
1253                                   Rem->getOperand(0), Rem->getOperand(1),
1254                                   "tmp");
1255     SelectInst *Sel =
1256       SelectInst::Create(ICmp,
1257                          ConstantInt::get(Rem->getType(), 0),
1258                          Rem->getOperand(0), "tmp", Rem);
1259     Rem->replaceAllUsesWith(Sel);
1260   }
1261 
1262   // Inform IVUsers about the new users.
1263   if (IU) {
1264     if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0)))
1265       IU->AddUsersIfInteresting(I);
1266   }
1267   DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
1268   ++NumElimRem;
1269   Changed = true;
1270   DeadInsts.push_back(Rem);
1271 }
1272 
1273 /// EliminateIVUser - Eliminate an operation that consumes a simple IV and has
1274 /// no observable side-effect given the range of IV values.
1275 bool IndVarSimplify::EliminateIVUser(Instruction *UseInst,
1276                                      Instruction *IVOperand) {
1277   if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
1278     EliminateIVComparison(ICmp, IVOperand);
1279     return true;
1280   }
1281   if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
1282     bool IsSigned = Rem->getOpcode() == Instruction::SRem;
1283     if (IsSigned || Rem->getOpcode() == Instruction::URem) {
1284       EliminateIVRemainder(Rem, IVOperand, IsSigned);
1285       return true;
1286     }
1287   }
1288 
1289   // Eliminate any operation that SCEV can prove is an identity function.
1290   if (!SE->isSCEVable(UseInst->getType()) ||
1291       (UseInst->getType() != IVOperand->getType()) ||
1292       (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
1293     return false;
1294 
1295   DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');
1296 
1297   UseInst->replaceAllUsesWith(IVOperand);
1298   ++NumElimIdentity;
1299   Changed = true;
1300   DeadInsts.push_back(UseInst);
1301   return true;
1302 }
1303 
1304 /// FoldIVUser - Fold an IV operand into its use.  This removes increments of an
1305 /// aligned IV when used by a instruction that ignores the low bits.
1306 bool IndVarSimplify::FoldIVUser(Instruction *UseInst, Instruction *IVOperand) {
1307   Value *IVSrc = 0;
1308   unsigned OperIdx = 0;
1309   const SCEV *FoldedExpr = 0;
1310   switch (UseInst->getOpcode()) {
1311   default:
1312     return false;
1313   case Instruction::UDiv:
1314   case Instruction::LShr:
1315     // We're only interested in the case where we know something about
1316     // the numerator and have a constant denominator.
1317     if (IVOperand != UseInst->getOperand(OperIdx) ||
1318         !isa<ConstantInt>(UseInst->getOperand(1)))
1319       return false;
1320 
1321     // Attempt to fold a binary operator with constant operand.
1322     // e.g. ((I + 1) >> 2) => I >> 2
1323     if (IVOperand->getNumOperands() != 2 ||
1324         !isa<ConstantInt>(IVOperand->getOperand(1)))
1325       return false;
1326 
1327     IVSrc = IVOperand->getOperand(0);
1328     // IVSrc must be the (SCEVable) IV, since the other operand is const.
1329     assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");
1330 
1331     ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
1332     if (UseInst->getOpcode() == Instruction::LShr) {
1333       // Get a constant for the divisor. See createSCEV.
1334       uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
1335       if (D->getValue().uge(BitWidth))
1336         return false;
1337 
1338       D = ConstantInt::get(UseInst->getContext(),
1339                            APInt(BitWidth, 1).shl(D->getZExtValue()));
1340     }
1341     FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
1342   }
1343   // We have something that might fold it's operand. Compare SCEVs.
1344   if (!SE->isSCEVable(UseInst->getType()))
1345     return false;
1346 
1347   // Bypass the operand if SCEV can prove it has no effect.
1348   if (SE->getSCEV(UseInst) != FoldedExpr)
1349     return false;
1350 
1351   DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
1352         << " -> " << *UseInst << '\n');
1353 
1354   UseInst->setOperand(OperIdx, IVSrc);
1355   assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");
1356 
1357   ++NumElimOperand;
1358   Changed = true;
1359   if (IVOperand->use_empty())
1360     DeadInsts.push_back(IVOperand);
1361   return true;
1362 }
1363 
1364 /// pushIVUsers - Add all uses of Def to the current IV's worklist.
1365 ///
1366 static void pushIVUsers(
1367   Instruction *Def,
1368   SmallPtrSet<Instruction*,16> &Simplified,
1369   SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {
1370 
1371   for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end();
1372        UI != E; ++UI) {
1373     Instruction *User = cast<Instruction>(*UI);
1374 
1375     // Avoid infinite or exponential worklist processing.
1376     // Also ensure unique worklist users.
1377     // If Def is a LoopPhi, it may not be in the Simplified set, so check for
1378     // self edges first.
1379     if (User != Def && Simplified.insert(User))
1380       SimpleIVUsers.push_back(std::make_pair(User, Def));
1381   }
1382 }
1383 
1384 /// isSimpleIVUser - Return true if this instruction generates a simple SCEV
1385 /// expression in terms of that IV.
1386 ///
1387 /// This is similar to IVUsers' isInsteresting() but processes each instruction
1388 /// non-recursively when the operand is already known to be a simpleIVUser.
1389 ///
1390 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
1391   if (!SE->isSCEVable(I->getType()))
1392     return false;
1393 
1394   // Get the symbolic expression for this instruction.
1395   const SCEV *S = SE->getSCEV(I);
1396 
1397   // Only consider affine recurrences.
1398   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
1399   if (AR && AR->getLoop() == L)
1400     return true;
1401 
1402   return false;
1403 }
1404 
1405 /// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist
1406 /// of IV users. Each successive simplification may push more users which may
1407 /// themselves be candidates for simplification.
1408 ///
1409 /// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it
1410 /// simplifies instructions in-place during analysis. Rather than rewriting
1411 /// induction variables bottom-up from their users, it transforms a chain of
1412 /// IVUsers top-down, updating the IR only when it encouters a clear
1413 /// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still
1414 /// needed, but only used to generate a new IV (phi) of wider type for sign/zero
1415 /// extend elimination.
1416 ///
1417 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
1418 ///
1419 void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) {
1420   std::map<PHINode *, WideIVInfo> WideIVMap;
1421 
1422   SmallVector<PHINode*, 8> LoopPhis;
1423   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1424     LoopPhis.push_back(cast<PHINode>(I));
1425   }
1426   // Each round of simplification iterates through the SimplifyIVUsers worklist
1427   // for all current phis, then determines whether any IVs can be
1428   // widened. Widening adds new phis to LoopPhis, inducing another round of
1429   // simplification on the wide IVs.
1430   while (!LoopPhis.empty()) {
1431     // Evaluate as many IV expressions as possible before widening any IVs. This
1432     // forces SCEV to set no-wrap flags before evaluating sign/zero
1433     // extension. The first time SCEV attempts to normalize sign/zero extension,
1434     // the result becomes final. So for the most predictable results, we delay
1435     // evaluation of sign/zero extend evaluation until needed, and avoid running
1436     // other SCEV based analysis prior to SimplifyIVUsersNoRewrite.
1437     do {
1438       PHINode *CurrIV = LoopPhis.pop_back_val();
1439 
1440       // Information about sign/zero extensions of CurrIV.
1441       WideIVInfo WI;
1442 
1443       // Instructions processed by SimplifyIVUsers for CurrIV.
1444       SmallPtrSet<Instruction*,16> Simplified;
1445 
1446       // Use-def pairs if IV users waiting to be processed for CurrIV.
1447       SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;
1448 
1449       // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
1450       // called multiple times for the same LoopPhi. This is the proper thing to
1451       // do for loop header phis that use each other.
1452       pushIVUsers(CurrIV, Simplified, SimpleIVUsers);
1453 
1454       while (!SimpleIVUsers.empty()) {
1455         std::pair<Instruction*, Instruction*> UseOper =
1456           SimpleIVUsers.pop_back_val();
1457         // Bypass back edges to avoid extra work.
1458         if (UseOper.first == CurrIV) continue;
1459 
1460         FoldIVUser(UseOper.first, UseOper.second);
1461 
1462         if (EliminateIVUser(UseOper.first, UseOper.second)) {
1463           pushIVUsers(UseOper.second, Simplified, SimpleIVUsers);
1464           continue;
1465         }
1466         if (CastInst *Cast = dyn_cast<CastInst>(UseOper.first)) {
1467           bool IsSigned = Cast->getOpcode() == Instruction::SExt;
1468           if (IsSigned || Cast->getOpcode() == Instruction::ZExt) {
1469             CollectExtend(Cast, IsSigned, WI, SE, TD);
1470           }
1471           continue;
1472         }
1473         if (isSimpleIVUser(UseOper.first, L, SE)) {
1474           pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
1475         }
1476       }
1477       if (WI.WidestNativeType) {
1478         WideIVMap[CurrIV] = WI;
1479       }
1480     } while(!LoopPhis.empty());
1481 
1482     for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1483            E = WideIVMap.end(); I != E; ++I) {
1484       WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
1485       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1486         Changed = true;
1487         LoopPhis.push_back(WidePhi);
1488       }
1489     }
1490     WideIVMap.clear();
1491   }
1492 }
1493 
1494 /// SimplifyCongruentIVs - Check for congruent phis in this loop header and
1495 /// populate ExprToIVMap for use later.
1496 ///
1497 void IndVarSimplify::SimplifyCongruentIVs(Loop *L) {
1498   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1499   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1500     PHINode *Phi = cast<PHINode>(I);
1501     if (!SE->isSCEVable(Phi->getType()))
1502       continue;
1503 
1504     const SCEV *S = SE->getSCEV(Phi);
1505     std::pair<DenseMap<const SCEV *, PHINode *>::const_iterator, bool> Tmp =
1506       ExprToIVMap.insert(std::make_pair(S, Phi));
1507     if (Tmp.second)
1508       continue;
1509     PHINode *OrigPhi = Tmp.first->second;
1510 
1511     // If one phi derives from the other via GEPs, types may differ.
1512     if (OrigPhi->getType() != Phi->getType())
1513       continue;
1514 
1515     // Replacing the congruent phi is sufficient because acyclic redundancy
1516     // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1517     // that a phi is congruent, it's almost certain to be the head of an IV
1518     // user cycle that is isomorphic with the original phi. So it's worth
1519     // eagerly cleaning up the common case of a single IV increment.
1520     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1521       Instruction *OrigInc =
1522         cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1523       Instruction *IsomorphicInc =
1524         cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1525       if (OrigInc != IsomorphicInc &&
1526           OrigInc->getType() == IsomorphicInc->getType() &&
1527           SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) &&
1528           HoistStep(OrigInc, IsomorphicInc, DT)) {
1529         DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1530               << *IsomorphicInc << '\n');
1531         IsomorphicInc->replaceAllUsesWith(OrigInc);
1532         DeadInsts.push_back(IsomorphicInc);
1533       }
1534     }
1535     DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1536     ++NumElimIV;
1537     Phi->replaceAllUsesWith(OrigPhi);
1538     DeadInsts.push_back(Phi);
1539   }
1540 }
1541 
1542 //===----------------------------------------------------------------------===//
1543 //  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1544 //===----------------------------------------------------------------------===//
1545 
1546 // Check for expressions that ScalarEvolution generates to compute
1547 // BackedgeTakenInfo. If these expressions have not been reduced, then expanding
1548 // them may incur additional cost (albeit in the loop preheader).
1549 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1550                                 ScalarEvolution *SE) {
1551   // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1552   // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1553   // precise expression, rather than a UDiv from the user's code. If we can't
1554   // find a UDiv in the code with some simple searching, assume the former and
1555   // forego rewriting the loop.
1556   if (isa<SCEVUDivExpr>(S)) {
1557     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1558     if (!OrigCond) return true;
1559     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1560     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1561     if (R != S) {
1562       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1563       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1564       if (L != S)
1565         return true;
1566     }
1567   }
1568 
1569   if (!DisableIVRewrite || ForceLFTR)
1570     return false;
1571 
1572   // Recurse past add expressions, which commonly occur in the
1573   // BackedgeTakenCount. They may already exist in program code, and if not,
1574   // they are not too expensive rematerialize.
1575   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1576     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1577          I != E; ++I) {
1578       if (isHighCostExpansion(*I, BI, SE))
1579         return true;
1580     }
1581     return false;
1582   }
1583 
1584   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1585   // the exit condition.
1586   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1587     return true;
1588 
1589   // If we haven't recognized an expensive SCEV patter, assume its an expression
1590   // produced by program code.
1591   return false;
1592 }
1593 
1594 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1595 /// count expression can be safely and cheaply expanded into an instruction
1596 /// sequence that can be used by LinearFunctionTestReplace.
1597 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1598   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1599   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1600       BackedgeTakenCount->isZero())
1601     return false;
1602 
1603   if (!L->getExitingBlock())
1604     return false;
1605 
1606   // Can't rewrite non-branch yet.
1607   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1608   if (!BI)
1609     return false;
1610 
1611   if (isHighCostExpansion(BackedgeTakenCount, BI, SE))
1612     return false;
1613 
1614   return true;
1615 }
1616 
1617 /// getBackedgeIVType - Get the widest type used by the loop test after peeking
1618 /// through Truncs.
1619 ///
1620 /// TODO: Unnecessary when ForceLFTR is removed.
1621 static Type *getBackedgeIVType(Loop *L) {
1622   if (!L->getExitingBlock())
1623     return 0;
1624 
1625   // Can't rewrite non-branch yet.
1626   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1627   if (!BI)
1628     return 0;
1629 
1630   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1631   if (!Cond)
1632     return 0;
1633 
1634   Type *Ty = 0;
1635   for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1636       OI != OE; ++OI) {
1637     assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1638     TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1639     if (!Trunc)
1640       continue;
1641 
1642     return Trunc->getSrcTy();
1643   }
1644   return Ty;
1645 }
1646 
1647 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
1648 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
1649 /// gratuitous for this purpose.
1650 static bool isLoopInvariant(Value *V, Loop *L, DominatorTree *DT) {
1651   Instruction *Inst = dyn_cast<Instruction>(V);
1652   if (!Inst)
1653     return true;
1654 
1655   return DT->properlyDominates(Inst->getParent(), L->getHeader());
1656 }
1657 
1658 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1659 /// invariant value to the phi.
1660 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1661   Instruction *IncI = dyn_cast<Instruction>(IncV);
1662   if (!IncI)
1663     return 0;
1664 
1665   switch (IncI->getOpcode()) {
1666   case Instruction::Add:
1667   case Instruction::Sub:
1668     break;
1669   case Instruction::GetElementPtr:
1670     // An IV counter must preserve its type.
1671     if (IncI->getNumOperands() == 2)
1672       break;
1673   default:
1674     return 0;
1675   }
1676 
1677   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1678   if (Phi && Phi->getParent() == L->getHeader()) {
1679     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1680       return Phi;
1681     return 0;
1682   }
1683   if (IncI->getOpcode() == Instruction::GetElementPtr)
1684     return 0;
1685 
1686   // Allow add/sub to be commuted.
1687   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1688   if (Phi && Phi->getParent() == L->getHeader()) {
1689     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1690       return Phi;
1691   }
1692   return 0;
1693 }
1694 
1695 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1696 /// that the current exit test is already sufficiently canonical.
1697 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1698   assert(L->getExitingBlock() && "expected loop exit");
1699 
1700   BasicBlock *LatchBlock = L->getLoopLatch();
1701   // Don't bother with LFTR if the loop is not properly simplified.
1702   if (!LatchBlock)
1703     return false;
1704 
1705   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1706   assert(BI && "expected exit branch");
1707 
1708   // Do LFTR to simplify the exit condition to an ICMP.
1709   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1710   if (!Cond)
1711     return true;
1712 
1713   // Do LFTR to simplify the exit ICMP to EQ/NE
1714   ICmpInst::Predicate Pred = Cond->getPredicate();
1715   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1716     return true;
1717 
1718   // Look for a loop invariant RHS
1719   Value *LHS = Cond->getOperand(0);
1720   Value *RHS = Cond->getOperand(1);
1721   if (!isLoopInvariant(RHS, L, DT)) {
1722     if (!isLoopInvariant(LHS, L, DT))
1723       return true;
1724     std::swap(LHS, RHS);
1725   }
1726   // Look for a simple IV counter LHS
1727   PHINode *Phi = dyn_cast<PHINode>(LHS);
1728   if (!Phi)
1729     Phi = getLoopPhiForCounter(LHS, L, DT);
1730 
1731   if (!Phi)
1732     return true;
1733 
1734   // Do LFTR if the exit condition's IV is *not* a simple counter.
1735   Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1736   return Phi != getLoopPhiForCounter(IncV, L, DT);
1737 }
1738 
1739 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1740 /// be rewritten) loop exit test.
1741 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1742   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1743   Value *IncV = Phi->getIncomingValue(LatchIdx);
1744 
1745   for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1746        UI != UE; ++UI) {
1747     if (*UI != Cond && *UI != IncV) return false;
1748   }
1749 
1750   for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1751        UI != UE; ++UI) {
1752     if (*UI != Cond && *UI != Phi) return false;
1753   }
1754   return true;
1755 }
1756 
1757 /// FindLoopCounter - Find an affine IV in canonical form.
1758 ///
1759 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1760 ///
1761 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1762 /// This is difficult in general for SCEV because of potential overflow. But we
1763 /// could at least handle constant BECounts.
1764 static PHINode *
1765 FindLoopCounter(Loop *L, const SCEV *BECount,
1766                 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1767   // I'm not sure how BECount could be a pointer type, but we definitely don't
1768   // want to LFTR that.
1769   if (BECount->getType()->isPointerTy())
1770     return 0;
1771 
1772   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1773 
1774   Value *Cond =
1775     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1776 
1777   // Loop over all of the PHI nodes, looking for a simple counter.
1778   PHINode *BestPhi = 0;
1779   const SCEV *BestInit = 0;
1780   BasicBlock *LatchBlock = L->getLoopLatch();
1781   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1782 
1783   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1784     PHINode *Phi = cast<PHINode>(I);
1785     if (!SE->isSCEVable(Phi->getType()))
1786       continue;
1787 
1788     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1789     if (!AR || AR->getLoop() != L || !AR->isAffine())
1790       continue;
1791 
1792     // AR may be a pointer type, while BECount is an integer type.
1793     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1794     // AR may not be a narrower type, or we may never exit.
1795     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1796     if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1797       continue;
1798 
1799     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1800     if (!Step || !Step->isOne())
1801       continue;
1802 
1803     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1804     Value *IncV = Phi->getIncomingValue(LatchIdx);
1805     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1806       continue;
1807 
1808     const SCEV *Init = AR->getStart();
1809 
1810     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1811       // Don't force a live loop counter if another IV can be used.
1812       if (AlmostDeadIV(Phi, LatchBlock, Cond))
1813         continue;
1814 
1815       // Prefer to count-from-zero. This is a more "canonical" counter form. It
1816       // also prefers integer to pointer IVs.
1817       if (BestInit->isZero() != Init->isZero()) {
1818         if (BestInit->isZero())
1819           continue;
1820       }
1821       // If two IVs both count from zero or both count from nonzero then the
1822       // narrower is likely a dead phi that has been widened. Use the wider phi
1823       // to allow the other to be eliminated.
1824       if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1825         continue;
1826     }
1827     BestPhi = Phi;
1828     BestInit = Init;
1829   }
1830   return BestPhi;
1831 }
1832 
1833 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
1834 /// loop to be a canonical != comparison against the incremented loop induction
1835 /// variable.  This pass is able to rewrite the exit tests of any loop where the
1836 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
1837 /// is actually a much broader range than just linear tests.
1838 Value *IndVarSimplify::
1839 LinearFunctionTestReplace(Loop *L,
1840                           const SCEV *BackedgeTakenCount,
1841                           PHINode *IndVar,
1842                           SCEVExpander &Rewriter) {
1843   assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1844   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1845 
1846   // In DisableIVRewrite mode, IndVar is not necessarily a canonical IV. In this
1847   // mode, LFTR can ignore IV overflow and truncate to the width of
1848   // BECount. This avoids materializing the add(zext(add)) expression.
1849   Type *CntTy = DisableIVRewrite ?
1850     BackedgeTakenCount->getType() : IndVar->getType();
1851 
1852   const SCEV *IVLimit = BackedgeTakenCount;
1853 
1854   // If the exiting block is not the same as the backedge block, we must compare
1855   // against the preincremented value, otherwise we prefer to compare against
1856   // the post-incremented value.
1857   Value *CmpIndVar;
1858   if (L->getExitingBlock() == L->getLoopLatch()) {
1859     // Add one to the "backedge-taken" count to get the trip count.
1860     // If this addition may overflow, we have to be more pessimistic and
1861     // cast the induction variable before doing the add.
1862     const SCEV *N =
1863       SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1));
1864     if (CntTy == IVLimit->getType())
1865       IVLimit = N;
1866     else {
1867       const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0);
1868       if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1869           SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1870         // No overflow. Cast the sum.
1871         IVLimit = SE->getTruncateOrZeroExtend(N, CntTy);
1872       } else {
1873         // Potential overflow. Cast before doing the add.
1874         IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1875         IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1));
1876       }
1877     }
1878     // The BackedgeTaken expression contains the number of times that the
1879     // backedge branches to the loop header.  This is one less than the
1880     // number of times the loop executes, so use the incremented indvar.
1881     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1882   } else {
1883     // We have to use the preincremented value...
1884     IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1885     CmpIndVar = IndVar;
1886   }
1887 
1888   // For unit stride, IVLimit = Start + BECount with 2's complement overflow.
1889   // So for, non-zero start compute the IVLimit here.
1890   bool isPtrIV = false;
1891   Type *CmpTy = CntTy;
1892   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1893   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1894   if (!AR->getStart()->isZero()) {
1895     assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1896     const SCEV *IVInit = AR->getStart();
1897 
1898     // For pointer types, sign extend BECount in order to materialize a GEP.
1899     // Note that for DisableIVRewrite, we never run SCEVExpander on a
1900     // pointer type, because we must preserve the existing GEPs. Instead we
1901     // directly generate a GEP later.
1902     if (IVInit->getType()->isPointerTy()) {
1903       isPtrIV = true;
1904       CmpTy = SE->getEffectiveSCEVType(IVInit->getType());
1905       IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy);
1906     }
1907     // For integer types, truncate the IV before computing IVInit + BECount.
1908     else {
1909       if (SE->getTypeSizeInBits(IVInit->getType())
1910           > SE->getTypeSizeInBits(CmpTy))
1911         IVInit = SE->getTruncateExpr(IVInit, CmpTy);
1912 
1913       IVLimit = SE->getAddExpr(IVInit, IVLimit);
1914     }
1915   }
1916   // Expand the code for the iteration count.
1917   IRBuilder<> Builder(BI);
1918 
1919   assert(SE->isLoopInvariant(IVLimit, L) &&
1920          "Computed iteration count is not loop invariant!");
1921   Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI);
1922 
1923   // Create a gep for IVInit + IVLimit from on an existing pointer base.
1924   assert(isPtrIV == IndVar->getType()->isPointerTy() &&
1925          "IndVar type must match IVInit type");
1926   if (isPtrIV) {
1927       Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1928       assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter");
1929       assert(SE->getSizeOfExpr(
1930                cast<PointerType>(IVStart->getType())->getElementType())->isOne()
1931              && "unit stride pointer IV must be i8*");
1932 
1933       Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1934       ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit");
1935       Builder.SetInsertPoint(BI);
1936   }
1937 
1938   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1939   ICmpInst::Predicate P;
1940   if (L->contains(BI->getSuccessor(0)))
1941     P = ICmpInst::ICMP_NE;
1942   else
1943     P = ICmpInst::ICMP_EQ;
1944 
1945   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1946                << "      LHS:" << *CmpIndVar << '\n'
1947                << "       op:\t"
1948                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1949                << "      RHS:\t" << *ExitCnt << "\n"
1950                << "     Expr:\t" << *IVLimit << "\n");
1951 
1952   if (SE->getTypeSizeInBits(CmpIndVar->getType())
1953       > SE->getTypeSizeInBits(CmpTy)) {
1954     CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv");
1955   }
1956 
1957   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1958   Value *OrigCond = BI->getCondition();
1959   // It's tempting to use replaceAllUsesWith here to fully replace the old
1960   // comparison, but that's not immediately safe, since users of the old
1961   // comparison may not be dominated by the new comparison. Instead, just
1962   // update the branch to use the new comparison; in the common case this
1963   // will make old comparison dead.
1964   BI->setCondition(Cond);
1965   DeadInsts.push_back(OrigCond);
1966 
1967   ++NumLFTR;
1968   Changed = true;
1969   return Cond;
1970 }
1971 
1972 //===----------------------------------------------------------------------===//
1973 //  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1974 //===----------------------------------------------------------------------===//
1975 
1976 /// If there's a single exit block, sink any loop-invariant values that
1977 /// were defined in the preheader but not used inside the loop into the
1978 /// exit block to reduce register pressure in the loop.
1979 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1980   BasicBlock *ExitBlock = L->getExitBlock();
1981   if (!ExitBlock) return;
1982 
1983   BasicBlock *Preheader = L->getLoopPreheader();
1984   if (!Preheader) return;
1985 
1986   Instruction *InsertPt = ExitBlock->getFirstNonPHI();
1987   BasicBlock::iterator I = Preheader->getTerminator();
1988   while (I != Preheader->begin()) {
1989     --I;
1990     // New instructions were inserted at the end of the preheader.
1991     if (isa<PHINode>(I))
1992       break;
1993 
1994     // Don't move instructions which might have side effects, since the side
1995     // effects need to complete before instructions inside the loop.  Also don't
1996     // move instructions which might read memory, since the loop may modify
1997     // memory. Note that it's okay if the instruction might have undefined
1998     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1999     // block.
2000     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2001       continue;
2002 
2003     // Skip debug info intrinsics.
2004     if (isa<DbgInfoIntrinsic>(I))
2005       continue;
2006 
2007     // Don't sink static AllocaInsts out of the entry block, which would
2008     // turn them into dynamic allocas!
2009     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
2010       if (AI->isStaticAlloca())
2011         continue;
2012 
2013     // Determine if there is a use in or before the loop (direct or
2014     // otherwise).
2015     bool UsedInLoop = false;
2016     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
2017          UI != UE; ++UI) {
2018       User *U = *UI;
2019       BasicBlock *UseBB = cast<Instruction>(U)->getParent();
2020       if (PHINode *P = dyn_cast<PHINode>(U)) {
2021         unsigned i =
2022           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
2023         UseBB = P->getIncomingBlock(i);
2024       }
2025       if (UseBB == Preheader || L->contains(UseBB)) {
2026         UsedInLoop = true;
2027         break;
2028       }
2029     }
2030 
2031     // If there is, the def must remain in the preheader.
2032     if (UsedInLoop)
2033       continue;
2034 
2035     // Otherwise, sink it to the exit block.
2036     Instruction *ToMove = I;
2037     bool Done = false;
2038 
2039     if (I != Preheader->begin()) {
2040       // Skip debug info intrinsics.
2041       do {
2042         --I;
2043       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2044 
2045       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2046         Done = true;
2047     } else {
2048       Done = true;
2049     }
2050 
2051     ToMove->moveBefore(InsertPt);
2052     if (Done) break;
2053     InsertPt = ToMove;
2054   }
2055 }
2056 
2057 //===----------------------------------------------------------------------===//
2058 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2059 //===----------------------------------------------------------------------===//
2060 
2061 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
2062   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2063   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2064   //    canonicalization can be a pessimization without LSR to "clean up"
2065   //    afterwards.
2066   //  - We depend on having a preheader; in particular,
2067   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2068   //    and we're in trouble if we can't find the induction variable even when
2069   //    we've manually inserted one.
2070   if (!L->isLoopSimplifyForm())
2071     return false;
2072 
2073   if (!DisableIVRewrite)
2074     IU = &getAnalysis<IVUsers>();
2075   LI = &getAnalysis<LoopInfo>();
2076   SE = &getAnalysis<ScalarEvolution>();
2077   DT = &getAnalysis<DominatorTree>();
2078   TD = getAnalysisIfAvailable<TargetData>();
2079 
2080   DeadInsts.clear();
2081   Changed = false;
2082 
2083   // If there are any floating-point recurrences, attempt to
2084   // transform them to use integer recurrences.
2085   RewriteNonIntegerIVs(L);
2086 
2087   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2088 
2089   // Create a rewriter object which we'll use to transform the code with.
2090   SCEVExpander Rewriter(*SE, "indvars");
2091 
2092   // Eliminate redundant IV users.
2093   //
2094   // Simplification works best when run before other consumers of SCEV. We
2095   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2096   // other expressions involving loop IVs have been evaluated. This helps SCEV
2097   // set no-wrap flags before normalizing sign/zero extension.
2098   if (DisableIVRewrite) {
2099     Rewriter.disableCanonicalMode();
2100     SimplifyIVUsersNoRewrite(L, Rewriter);
2101   }
2102 
2103   // Check to see if this loop has a computable loop-invariant execution count.
2104   // If so, this means that we can compute the final value of any expressions
2105   // that are recurrent in the loop, and substitute the exit values from the
2106   // loop into any instructions outside of the loop that use the final values of
2107   // the current expressions.
2108   //
2109   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2110     RewriteLoopExitValues(L, Rewriter);
2111 
2112   // Eliminate redundant IV users.
2113   if (!DisableIVRewrite)
2114     SimplifyIVUsers(Rewriter);
2115 
2116   // Eliminate redundant IV cycles.
2117   if (DisableIVRewrite)
2118     SimplifyCongruentIVs(L);
2119 
2120   // Compute the type of the largest recurrence expression, and decide whether
2121   // a canonical induction variable should be inserted.
2122   Type *LargestType = 0;
2123   bool NeedCannIV = false;
2124   bool ReuseIVForExit = DisableIVRewrite && !ForceLFTR;
2125   bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
2126   if (ExpandBECount && !ReuseIVForExit) {
2127     // If we have a known trip count and a single exit block, we'll be
2128     // rewriting the loop exit test condition below, which requires a
2129     // canonical induction variable.
2130     NeedCannIV = true;
2131     Type *Ty = BackedgeTakenCount->getType();
2132     if (DisableIVRewrite) {
2133       // In this mode, SimplifyIVUsers may have already widened the IV used by
2134       // the backedge test and inserted a Trunc on the compare's operand. Get
2135       // the wider type to avoid creating a redundant narrow IV only used by the
2136       // loop test.
2137       LargestType = getBackedgeIVType(L);
2138     }
2139     if (!LargestType ||
2140         SE->getTypeSizeInBits(Ty) >
2141         SE->getTypeSizeInBits(LargestType))
2142       LargestType = SE->getEffectiveSCEVType(Ty);
2143   }
2144   if (!DisableIVRewrite) {
2145     for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
2146       NeedCannIV = true;
2147       Type *Ty =
2148         SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
2149       if (!LargestType ||
2150           SE->getTypeSizeInBits(Ty) >
2151           SE->getTypeSizeInBits(LargestType))
2152         LargestType = Ty;
2153     }
2154   }
2155 
2156   // Now that we know the largest of the induction variable expressions
2157   // in this loop, insert a canonical induction variable of the largest size.
2158   PHINode *IndVar = 0;
2159   if (NeedCannIV) {
2160     // Check to see if the loop already has any canonical-looking induction
2161     // variables. If any are present and wider than the planned canonical
2162     // induction variable, temporarily remove them, so that the Rewriter
2163     // doesn't attempt to reuse them.
2164     SmallVector<PHINode *, 2> OldCannIVs;
2165     while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
2166       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
2167           SE->getTypeSizeInBits(LargestType))
2168         OldCannIV->removeFromParent();
2169       else
2170         break;
2171       OldCannIVs.push_back(OldCannIV);
2172     }
2173 
2174     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
2175 
2176     ++NumInserted;
2177     Changed = true;
2178     DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
2179 
2180     // Now that the official induction variable is established, reinsert
2181     // any old canonical-looking variables after it so that the IR remains
2182     // consistent. They will be deleted as part of the dead-PHI deletion at
2183     // the end of the pass.
2184     while (!OldCannIVs.empty()) {
2185       PHINode *OldCannIV = OldCannIVs.pop_back_val();
2186       OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI());
2187     }
2188   }
2189   else if (ExpandBECount && ReuseIVForExit && needsLFTR(L, DT)) {
2190     IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
2191   }
2192   // If we have a trip count expression, rewrite the loop's exit condition
2193   // using it.  We can currently only handle loops with a single exit.
2194   Value *NewICmp = 0;
2195   if (ExpandBECount && IndVar) {
2196     // Check preconditions for proper SCEVExpander operation. SCEV does not
2197     // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2198     // pass that uses the SCEVExpander must do it. This does not work well for
2199     // loop passes because SCEVExpander makes assumptions about all loops, while
2200     // LoopPassManager only forces the current loop to be simplified.
2201     //
2202     // FIXME: SCEV expansion has no way to bail out, so the caller must
2203     // explicitly check any assumptions made by SCEV. Brittle.
2204     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2205     if (!AR || AR->getLoop()->getLoopPreheader())
2206       NewICmp =
2207         LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
2208   }
2209   // Rewrite IV-derived expressions.
2210   if (!DisableIVRewrite)
2211     RewriteIVExpressions(L, Rewriter);
2212 
2213   // Clear the rewriter cache, because values that are in the rewriter's cache
2214   // can be deleted in the loop below, causing the AssertingVH in the cache to
2215   // trigger.
2216   Rewriter.clear();
2217 
2218   // Now that we're done iterating through lists, clean up any instructions
2219   // which are now dead.
2220   while (!DeadInsts.empty())
2221     if (Instruction *Inst =
2222           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
2223       RecursivelyDeleteTriviallyDeadInstructions(Inst);
2224 
2225   // The Rewriter may not be used from this point on.
2226 
2227   // Loop-invariant instructions in the preheader that aren't used in the
2228   // loop may be sunk below the loop to reduce register pressure.
2229   SinkUnusedInvariants(L);
2230 
2231   // For completeness, inform IVUsers of the IV use in the newly-created
2232   // loop exit test instruction.
2233   if (IU && NewICmp) {
2234     ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
2235     if (NewICmpInst)
2236       IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
2237   }
2238   // Clean up dead instructions.
2239   Changed |= DeleteDeadPHIs(L->getHeader());
2240   // Check a post-condition.
2241   assert(L->isLCSSAForm(*DT) &&
2242          "Indvars did not leave the loop in lcssa form!");
2243 
2244   // Verify that LFTR, and any other change have not interfered with SCEV's
2245   // ability to compute trip count.
2246 #ifndef NDEBUG
2247   if (DisableIVRewrite && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2248     SE->forgetLoop(L);
2249     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2250     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2251         SE->getTypeSizeInBits(NewBECount->getType()))
2252       NewBECount = SE->getTruncateOrNoop(NewBECount,
2253                                          BackedgeTakenCount->getType());
2254     else
2255       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2256                                                  NewBECount->getType());
2257     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2258   }
2259 #endif
2260 
2261   return Changed;
2262 }
2263