1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Local.h" 53 #include "llvm/Transforms/Utils/LoopUtils.h" 54 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 55 using namespace llvm; 56 57 #define DEBUG_TYPE "indvars" 58 59 STATISTIC(NumWidened , "Number of indvars widened"); 60 STATISTIC(NumReplaced , "Number of exit values replaced"); 61 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 62 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 63 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 64 65 // Trip count verification can be enabled by default under NDEBUG if we 66 // implement a strong expression equivalence checker in SCEV. Until then, we 67 // use the verify-indvars flag, which may assert in some cases. 68 static cl::opt<bool> VerifyIndvars( 69 "verify-indvars", cl::Hidden, 70 cl::desc("Verify the ScalarEvolution result after running indvars")); 71 72 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 73 cl::desc("Reduce live induction variables.")); 74 75 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 76 77 static cl::opt<ReplaceExitVal> ReplaceExitValue( 78 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 79 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 80 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 81 clEnumValN(OnlyCheapRepl, "cheap", 82 "only replace exit value when the cost is cheap"), 83 clEnumValN(AlwaysRepl, "always", 84 "always replace exit value whenever possible"), 85 clEnumValEnd)); 86 87 namespace { 88 struct RewritePhi; 89 90 class IndVarSimplify : public LoopPass { 91 LoopInfo *LI; 92 ScalarEvolution *SE; 93 DominatorTree *DT; 94 TargetLibraryInfo *TLI; 95 const TargetTransformInfo *TTI; 96 97 SmallVector<WeakVH, 16> DeadInsts; 98 bool Changed; 99 public: 100 101 static char ID; // Pass identification, replacement for typeid 102 IndVarSimplify() 103 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) { 104 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 105 } 106 107 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 108 109 void getAnalysisUsage(AnalysisUsage &AU) const override { 110 AU.addRequired<DominatorTreeWrapperPass>(); 111 AU.addRequired<LoopInfoWrapperPass>(); 112 AU.addRequired<ScalarEvolutionWrapperPass>(); 113 AU.addRequiredID(LoopSimplifyID); 114 AU.addRequiredID(LCSSAID); 115 AU.addPreserved<GlobalsAAWrapperPass>(); 116 AU.addPreserved<ScalarEvolutionWrapperPass>(); 117 AU.addPreservedID(LoopSimplifyID); 118 AU.addPreservedID(LCSSAID); 119 AU.setPreservesCFG(); 120 } 121 122 private: 123 void releaseMemory() override { 124 DeadInsts.clear(); 125 } 126 127 bool isValidRewrite(Value *FromVal, Value *ToVal); 128 129 void handleFloatingPointIV(Loop *L, PHINode *PH); 130 void rewriteNonIntegerIVs(Loop *L); 131 132 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 133 134 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 135 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 136 137 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 138 PHINode *IndVar, SCEVExpander &Rewriter); 139 140 void sinkUnusedInvariants(Loop *L); 141 142 Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 143 Instruction *InsertPt, Type *Ty); 144 }; 145 } 146 147 char IndVarSimplify::ID = 0; 148 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 149 "Induction Variable Simplification", false, false) 150 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 151 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 152 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 153 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 154 INITIALIZE_PASS_DEPENDENCY(LCSSA) 155 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 156 "Induction Variable Simplification", false, false) 157 158 Pass *llvm::createIndVarSimplifyPass() { 159 return new IndVarSimplify(); 160 } 161 162 /// Return true if the SCEV expansion generated by the rewriter can replace the 163 /// original value. SCEV guarantees that it produces the same value, but the way 164 /// it is produced may be illegal IR. Ideally, this function will only be 165 /// called for verification. 166 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 167 // If an SCEV expression subsumed multiple pointers, its expansion could 168 // reassociate the GEP changing the base pointer. This is illegal because the 169 // final address produced by a GEP chain must be inbounds relative to its 170 // underlying object. Otherwise basic alias analysis, among other things, 171 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 172 // producing an expression involving multiple pointers. Until then, we must 173 // bail out here. 174 // 175 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 176 // because it understands lcssa phis while SCEV does not. 177 Value *FromPtr = FromVal; 178 Value *ToPtr = ToVal; 179 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 180 FromPtr = GEP->getPointerOperand(); 181 } 182 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 183 ToPtr = GEP->getPointerOperand(); 184 } 185 if (FromPtr != FromVal || ToPtr != ToVal) { 186 // Quickly check the common case 187 if (FromPtr == ToPtr) 188 return true; 189 190 // SCEV may have rewritten an expression that produces the GEP's pointer 191 // operand. That's ok as long as the pointer operand has the same base 192 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 193 // base of a recurrence. This handles the case in which SCEV expansion 194 // converts a pointer type recurrence into a nonrecurrent pointer base 195 // indexed by an integer recurrence. 196 197 // If the GEP base pointer is a vector of pointers, abort. 198 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 199 return false; 200 201 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 202 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 203 if (FromBase == ToBase) 204 return true; 205 206 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 207 << *FromBase << " != " << *ToBase << "\n"); 208 209 return false; 210 } 211 return true; 212 } 213 214 /// Determine the insertion point for this user. By default, insert immediately 215 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 216 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 217 /// common dominator for the incoming blocks. 218 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 219 DominatorTree *DT, LoopInfo *LI) { 220 PHINode *PHI = dyn_cast<PHINode>(User); 221 if (!PHI) 222 return User; 223 224 Instruction *InsertPt = nullptr; 225 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 226 if (PHI->getIncomingValue(i) != Def) 227 continue; 228 229 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 230 if (!InsertPt) { 231 InsertPt = InsertBB->getTerminator(); 232 continue; 233 } 234 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 235 InsertPt = InsertBB->getTerminator(); 236 } 237 assert(InsertPt && "Missing phi operand"); 238 239 auto *DefI = dyn_cast<Instruction>(Def); 240 if (!DefI) 241 return InsertPt; 242 243 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 244 245 auto *L = LI->getLoopFor(DefI->getParent()); 246 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 247 248 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 249 if (LI->getLoopFor(DTN->getBlock()) == L) 250 return DTN->getBlock()->getTerminator(); 251 252 llvm_unreachable("DefI dominates InsertPt!"); 253 } 254 255 //===----------------------------------------------------------------------===// 256 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 257 //===----------------------------------------------------------------------===// 258 259 /// Convert APF to an integer, if possible. 260 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 261 bool isExact = false; 262 // See if we can convert this to an int64_t 263 uint64_t UIntVal; 264 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 265 &isExact) != APFloat::opOK || !isExact) 266 return false; 267 IntVal = UIntVal; 268 return true; 269 } 270 271 /// If the loop has floating induction variable then insert corresponding 272 /// integer induction variable if possible. 273 /// For example, 274 /// for(double i = 0; i < 10000; ++i) 275 /// bar(i) 276 /// is converted into 277 /// for(int i = 0; i < 10000; ++i) 278 /// bar((double)i); 279 /// 280 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 281 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 282 unsigned BackEdge = IncomingEdge^1; 283 284 // Check incoming value. 285 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 286 287 int64_t InitValue; 288 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 289 return; 290 291 // Check IV increment. Reject this PN if increment operation is not 292 // an add or increment value can not be represented by an integer. 293 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 294 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 295 296 // If this is not an add of the PHI with a constantfp, or if the constant fp 297 // is not an integer, bail out. 298 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 299 int64_t IncValue; 300 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 301 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 302 return; 303 304 // Check Incr uses. One user is PN and the other user is an exit condition 305 // used by the conditional terminator. 306 Value::user_iterator IncrUse = Incr->user_begin(); 307 Instruction *U1 = cast<Instruction>(*IncrUse++); 308 if (IncrUse == Incr->user_end()) return; 309 Instruction *U2 = cast<Instruction>(*IncrUse++); 310 if (IncrUse != Incr->user_end()) return; 311 312 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 313 // only used by a branch, we can't transform it. 314 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 315 if (!Compare) 316 Compare = dyn_cast<FCmpInst>(U2); 317 if (!Compare || !Compare->hasOneUse() || 318 !isa<BranchInst>(Compare->user_back())) 319 return; 320 321 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 322 323 // We need to verify that the branch actually controls the iteration count 324 // of the loop. If not, the new IV can overflow and no one will notice. 325 // The branch block must be in the loop and one of the successors must be out 326 // of the loop. 327 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 328 if (!L->contains(TheBr->getParent()) || 329 (L->contains(TheBr->getSuccessor(0)) && 330 L->contains(TheBr->getSuccessor(1)))) 331 return; 332 333 334 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 335 // transform it. 336 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 337 int64_t ExitValue; 338 if (ExitValueVal == nullptr || 339 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 340 return; 341 342 // Find new predicate for integer comparison. 343 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 344 switch (Compare->getPredicate()) { 345 default: return; // Unknown comparison. 346 case CmpInst::FCMP_OEQ: 347 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 348 case CmpInst::FCMP_ONE: 349 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 350 case CmpInst::FCMP_OGT: 351 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 352 case CmpInst::FCMP_OGE: 353 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 354 case CmpInst::FCMP_OLT: 355 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 356 case CmpInst::FCMP_OLE: 357 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 358 } 359 360 // We convert the floating point induction variable to a signed i32 value if 361 // we can. This is only safe if the comparison will not overflow in a way 362 // that won't be trapped by the integer equivalent operations. Check for this 363 // now. 364 // TODO: We could use i64 if it is native and the range requires it. 365 366 // The start/stride/exit values must all fit in signed i32. 367 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 368 return; 369 370 // If not actually striding (add x, 0.0), avoid touching the code. 371 if (IncValue == 0) 372 return; 373 374 // Positive and negative strides have different safety conditions. 375 if (IncValue > 0) { 376 // If we have a positive stride, we require the init to be less than the 377 // exit value. 378 if (InitValue >= ExitValue) 379 return; 380 381 uint32_t Range = uint32_t(ExitValue-InitValue); 382 // Check for infinite loop, either: 383 // while (i <= Exit) or until (i > Exit) 384 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 385 if (++Range == 0) return; // Range overflows. 386 } 387 388 unsigned Leftover = Range % uint32_t(IncValue); 389 390 // If this is an equality comparison, we require that the strided value 391 // exactly land on the exit value, otherwise the IV condition will wrap 392 // around and do things the fp IV wouldn't. 393 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 394 Leftover != 0) 395 return; 396 397 // If the stride would wrap around the i32 before exiting, we can't 398 // transform the IV. 399 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 400 return; 401 402 } else { 403 // If we have a negative stride, we require the init to be greater than the 404 // exit value. 405 if (InitValue <= ExitValue) 406 return; 407 408 uint32_t Range = uint32_t(InitValue-ExitValue); 409 // Check for infinite loop, either: 410 // while (i >= Exit) or until (i < Exit) 411 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 412 if (++Range == 0) return; // Range overflows. 413 } 414 415 unsigned Leftover = Range % uint32_t(-IncValue); 416 417 // If this is an equality comparison, we require that the strided value 418 // exactly land on the exit value, otherwise the IV condition will wrap 419 // around and do things the fp IV wouldn't. 420 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 421 Leftover != 0) 422 return; 423 424 // If the stride would wrap around the i32 before exiting, we can't 425 // transform the IV. 426 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 427 return; 428 } 429 430 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 431 432 // Insert new integer induction variable. 433 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 434 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 435 PN->getIncomingBlock(IncomingEdge)); 436 437 Value *NewAdd = 438 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 439 Incr->getName()+".int", Incr); 440 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 441 442 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 443 ConstantInt::get(Int32Ty, ExitValue), 444 Compare->getName()); 445 446 // In the following deletions, PN may become dead and may be deleted. 447 // Use a WeakVH to observe whether this happens. 448 WeakVH WeakPH = PN; 449 450 // Delete the old floating point exit comparison. The branch starts using the 451 // new comparison. 452 NewCompare->takeName(Compare); 453 Compare->replaceAllUsesWith(NewCompare); 454 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 455 456 // Delete the old floating point increment. 457 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 458 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 459 460 // If the FP induction variable still has uses, this is because something else 461 // in the loop uses its value. In order to canonicalize the induction 462 // variable, we chose to eliminate the IV and rewrite it in terms of an 463 // int->fp cast. 464 // 465 // We give preference to sitofp over uitofp because it is faster on most 466 // platforms. 467 if (WeakPH) { 468 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 469 &*PN->getParent()->getFirstInsertionPt()); 470 PN->replaceAllUsesWith(Conv); 471 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 472 } 473 Changed = true; 474 } 475 476 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 477 // First step. Check to see if there are any floating-point recurrences. 478 // If there are, change them into integer recurrences, permitting analysis by 479 // the SCEV routines. 480 // 481 BasicBlock *Header = L->getHeader(); 482 483 SmallVector<WeakVH, 8> PHIs; 484 for (BasicBlock::iterator I = Header->begin(); 485 PHINode *PN = dyn_cast<PHINode>(I); ++I) 486 PHIs.push_back(PN); 487 488 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 489 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 490 handleFloatingPointIV(L, PN); 491 492 // If the loop previously had floating-point IV, ScalarEvolution 493 // may not have been able to compute a trip count. Now that we've done some 494 // re-writing, the trip count may be computable. 495 if (Changed) 496 SE->forgetLoop(L); 497 } 498 499 namespace { 500 // Collect information about PHI nodes which can be transformed in 501 // rewriteLoopExitValues. 502 struct RewritePhi { 503 PHINode *PN; 504 unsigned Ith; // Ith incoming value. 505 Value *Val; // Exit value after expansion. 506 bool HighCost; // High Cost when expansion. 507 bool SafePhi; // LCSSASafePhiForRAUW. 508 509 RewritePhi(PHINode *P, unsigned I, Value *V, bool H, bool S) 510 : PN(P), Ith(I), Val(V), HighCost(H), SafePhi(S) {} 511 }; 512 } 513 514 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 515 Loop *L, Instruction *InsertPt, 516 Type *ResultTy) { 517 // Before expanding S into an expensive LLVM expression, see if we can use an 518 // already existing value as the expansion for S. 519 if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L)) 520 if (ExistingValue->getType() == ResultTy) 521 return ExistingValue; 522 523 // We didn't find anything, fall back to using SCEVExpander. 524 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 525 } 526 527 //===----------------------------------------------------------------------===// 528 // rewriteLoopExitValues - Optimize IV users outside the loop. 529 // As a side effect, reduces the amount of IV processing within the loop. 530 //===----------------------------------------------------------------------===// 531 532 /// Check to see if this loop has a computable loop-invariant execution count. 533 /// If so, this means that we can compute the final value of any expressions 534 /// that are recurrent in the loop, and substitute the exit values from the loop 535 /// into any instructions outside of the loop that use the final values of the 536 /// current expressions. 537 /// 538 /// This is mostly redundant with the regular IndVarSimplify activities that 539 /// happen later, except that it's more powerful in some cases, because it's 540 /// able to brute-force evaluate arbitrary instructions as long as they have 541 /// constant operands at the beginning of the loop. 542 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 543 // Check a pre-condition. 544 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 545 546 SmallVector<BasicBlock*, 8> ExitBlocks; 547 L->getUniqueExitBlocks(ExitBlocks); 548 549 SmallVector<RewritePhi, 8> RewritePhiSet; 550 // Find all values that are computed inside the loop, but used outside of it. 551 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 552 // the exit blocks of the loop to find them. 553 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 554 BasicBlock *ExitBB = ExitBlocks[i]; 555 556 // If there are no PHI nodes in this exit block, then no values defined 557 // inside the loop are used on this path, skip it. 558 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 559 if (!PN) continue; 560 561 unsigned NumPreds = PN->getNumIncomingValues(); 562 563 // We would like to be able to RAUW single-incoming value PHI nodes. We 564 // have to be certain this is safe even when this is an LCSSA PHI node. 565 // While the computed exit value is no longer varying in *this* loop, the 566 // exit block may be an exit block for an outer containing loop as well, 567 // the exit value may be varying in the outer loop, and thus it may still 568 // require an LCSSA PHI node. The safe case is when this is 569 // single-predecessor PHI node (LCSSA) and the exit block containing it is 570 // part of the enclosing loop, or this is the outer most loop of the nest. 571 // In either case the exit value could (at most) be varying in the same 572 // loop body as the phi node itself. Thus if it is in turn used outside of 573 // an enclosing loop it will only be via a separate LCSSA node. 574 bool LCSSASafePhiForRAUW = 575 NumPreds == 1 && 576 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB)); 577 578 // Iterate over all of the PHI nodes. 579 BasicBlock::iterator BBI = ExitBB->begin(); 580 while ((PN = dyn_cast<PHINode>(BBI++))) { 581 if (PN->use_empty()) 582 continue; // dead use, don't replace it 583 584 // SCEV only supports integer expressions for now. 585 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 586 continue; 587 588 // It's necessary to tell ScalarEvolution about this explicitly so that 589 // it can walk the def-use list and forget all SCEVs, as it may not be 590 // watching the PHI itself. Once the new exit value is in place, there 591 // may not be a def-use connection between the loop and every instruction 592 // which got a SCEVAddRecExpr for that loop. 593 SE->forgetValue(PN); 594 595 // Iterate over all of the values in all the PHI nodes. 596 for (unsigned i = 0; i != NumPreds; ++i) { 597 // If the value being merged in is not integer or is not defined 598 // in the loop, skip it. 599 Value *InVal = PN->getIncomingValue(i); 600 if (!isa<Instruction>(InVal)) 601 continue; 602 603 // If this pred is for a subloop, not L itself, skip it. 604 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 605 continue; // The Block is in a subloop, skip it. 606 607 // Check that InVal is defined in the loop. 608 Instruction *Inst = cast<Instruction>(InVal); 609 if (!L->contains(Inst)) 610 continue; 611 612 // Okay, this instruction has a user outside of the current loop 613 // and varies predictably *inside* the loop. Evaluate the value it 614 // contains when the loop exits, if possible. 615 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 616 if (!SE->isLoopInvariant(ExitValue, L) || 617 !isSafeToExpand(ExitValue, *SE)) 618 continue; 619 620 // Computing the value outside of the loop brings no benefit if : 621 // - it is definitely used inside the loop in a way which can not be 622 // optimized away. 623 // - no use outside of the loop can take advantage of hoisting the 624 // computation out of the loop 625 if (ExitValue->getSCEVType()>=scMulExpr) { 626 unsigned NumHardInternalUses = 0; 627 unsigned NumSoftExternalUses = 0; 628 unsigned NumUses = 0; 629 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 630 IB != IE && NumUses <= 6; ++IB) { 631 Instruction *UseInstr = cast<Instruction>(*IB); 632 unsigned Opc = UseInstr->getOpcode(); 633 NumUses++; 634 if (L->contains(UseInstr)) { 635 if (Opc == Instruction::Call || Opc == Instruction::Ret) 636 NumHardInternalUses++; 637 } else { 638 if (Opc == Instruction::PHI) { 639 // Do not count the Phi as a use. LCSSA may have inserted 640 // plenty of trivial ones. 641 NumUses--; 642 for (auto PB = UseInstr->user_begin(), 643 PE = UseInstr->user_end(); 644 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 645 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 646 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 647 NumSoftExternalUses++; 648 } 649 continue; 650 } 651 if (Opc != Instruction::Call && Opc != Instruction::Ret) 652 NumSoftExternalUses++; 653 } 654 } 655 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 656 continue; 657 } 658 659 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 660 Value *ExitVal = 661 expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 662 663 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 664 << " LoopVal = " << *Inst << "\n"); 665 666 if (!isValidRewrite(Inst, ExitVal)) { 667 DeadInsts.push_back(ExitVal); 668 continue; 669 } 670 671 // Collect all the candidate PHINodes to be rewritten. 672 RewritePhiSet.push_back( 673 RewritePhi(PN, i, ExitVal, HighCost, LCSSASafePhiForRAUW)); 674 } 675 } 676 } 677 678 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 679 680 // Transformation. 681 for (const RewritePhi &Phi : RewritePhiSet) { 682 PHINode *PN = Phi.PN; 683 Value *ExitVal = Phi.Val; 684 685 // Only do the rewrite when the ExitValue can be expanded cheaply. 686 // If LoopCanBeDel is true, rewrite exit value aggressively. 687 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 688 DeadInsts.push_back(ExitVal); 689 continue; 690 } 691 692 Changed = true; 693 ++NumReplaced; 694 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 695 PN->setIncomingValue(Phi.Ith, ExitVal); 696 697 // If this instruction is dead now, delete it. Don't do it now to avoid 698 // invalidating iterators. 699 if (isInstructionTriviallyDead(Inst, TLI)) 700 DeadInsts.push_back(Inst); 701 702 // If we determined that this PHI is safe to replace even if an LCSSA 703 // PHI, do so. 704 if (Phi.SafePhi) { 705 PN->replaceAllUsesWith(ExitVal); 706 PN->eraseFromParent(); 707 } 708 } 709 710 // The insertion point instruction may have been deleted; clear it out 711 // so that the rewriter doesn't trip over it later. 712 Rewriter.clearInsertPoint(); 713 } 714 715 /// Check whether it is possible to delete the loop after rewriting exit 716 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 717 /// aggressively. 718 bool IndVarSimplify::canLoopBeDeleted( 719 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 720 721 BasicBlock *Preheader = L->getLoopPreheader(); 722 // If there is no preheader, the loop will not be deleted. 723 if (!Preheader) 724 return false; 725 726 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 727 // We obviate multiple ExitingBlocks case for simplicity. 728 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 729 // after exit value rewriting, we can enhance the logic here. 730 SmallVector<BasicBlock *, 4> ExitingBlocks; 731 L->getExitingBlocks(ExitingBlocks); 732 SmallVector<BasicBlock *, 8> ExitBlocks; 733 L->getUniqueExitBlocks(ExitBlocks); 734 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 735 return false; 736 737 BasicBlock *ExitBlock = ExitBlocks[0]; 738 BasicBlock::iterator BI = ExitBlock->begin(); 739 while (PHINode *P = dyn_cast<PHINode>(BI)) { 740 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 741 742 // If the Incoming value of P is found in RewritePhiSet, we know it 743 // could be rewritten to use a loop invariant value in transformation 744 // phase later. Skip it in the loop invariant check below. 745 bool found = false; 746 for (const RewritePhi &Phi : RewritePhiSet) { 747 unsigned i = Phi.Ith; 748 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 749 found = true; 750 break; 751 } 752 } 753 754 Instruction *I; 755 if (!found && (I = dyn_cast<Instruction>(Incoming))) 756 if (!L->hasLoopInvariantOperands(I)) 757 return false; 758 759 ++BI; 760 } 761 762 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); 763 LI != LE; ++LI) { 764 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end(); BI != BE; 765 ++BI) { 766 if (BI->mayHaveSideEffects()) 767 return false; 768 } 769 } 770 771 return true; 772 } 773 774 //===----------------------------------------------------------------------===// 775 // IV Widening - Extend the width of an IV to cover its widest uses. 776 //===----------------------------------------------------------------------===// 777 778 namespace { 779 // Collect information about induction variables that are used by sign/zero 780 // extend operations. This information is recorded by CollectExtend and provides 781 // the input to WidenIV. 782 struct WideIVInfo { 783 PHINode *NarrowIV = nullptr; 784 Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext 785 bool IsSigned = false; // Was a sext user seen before a zext? 786 }; 787 } 788 789 /// Update information about the induction variable that is extended by this 790 /// sign or zero extend operation. This is used to determine the final width of 791 /// the IV before actually widening it. 792 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 793 const TargetTransformInfo *TTI) { 794 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 795 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 796 return; 797 798 Type *Ty = Cast->getType(); 799 uint64_t Width = SE->getTypeSizeInBits(Ty); 800 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 801 return; 802 803 // Cast is either an sext or zext up to this point. 804 // We should not widen an indvar if arithmetics on the wider indvar are more 805 // expensive than those on the narrower indvar. We check only the cost of ADD 806 // because at least an ADD is required to increment the induction variable. We 807 // could compute more comprehensively the cost of all instructions on the 808 // induction variable when necessary. 809 if (TTI && 810 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 811 TTI->getArithmeticInstrCost(Instruction::Add, 812 Cast->getOperand(0)->getType())) { 813 return; 814 } 815 816 if (!WI.WidestNativeType) { 817 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 818 WI.IsSigned = IsSigned; 819 return; 820 } 821 822 // We extend the IV to satisfy the sign of its first user, arbitrarily. 823 if (WI.IsSigned != IsSigned) 824 return; 825 826 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 827 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 828 } 829 830 namespace { 831 832 /// Record a link in the Narrow IV def-use chain along with the WideIV that 833 /// computes the same value as the Narrow IV def. This avoids caching Use* 834 /// pointers. 835 struct NarrowIVDefUse { 836 Instruction *NarrowDef = nullptr; 837 Instruction *NarrowUse = nullptr; 838 Instruction *WideDef = nullptr; 839 840 // True if the narrow def is never negative. Tracking this information lets 841 // us use a sign extension instead of a zero extension or vice versa, when 842 // profitable and legal. 843 bool NeverNegative = false; 844 845 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 846 bool NeverNegative) 847 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 848 NeverNegative(NeverNegative) {} 849 }; 850 851 /// The goal of this transform is to remove sign and zero extends without 852 /// creating any new induction variables. To do this, it creates a new phi of 853 /// the wider type and redirects all users, either removing extends or inserting 854 /// truncs whenever we stop propagating the type. 855 /// 856 class WidenIV { 857 // Parameters 858 PHINode *OrigPhi; 859 Type *WideType; 860 bool IsSigned; 861 862 // Context 863 LoopInfo *LI; 864 Loop *L; 865 ScalarEvolution *SE; 866 DominatorTree *DT; 867 868 // Result 869 PHINode *WidePhi; 870 Instruction *WideInc; 871 const SCEV *WideIncExpr; 872 SmallVectorImpl<WeakVH> &DeadInsts; 873 874 SmallPtrSet<Instruction*,16> Widened; 875 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 876 877 public: 878 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 879 ScalarEvolution *SEv, DominatorTree *DTree, 880 SmallVectorImpl<WeakVH> &DI) : 881 OrigPhi(WI.NarrowIV), 882 WideType(WI.WidestNativeType), 883 IsSigned(WI.IsSigned), 884 LI(LInfo), 885 L(LI->getLoopFor(OrigPhi->getParent())), 886 SE(SEv), 887 DT(DTree), 888 WidePhi(nullptr), 889 WideInc(nullptr), 890 WideIncExpr(nullptr), 891 DeadInsts(DI) { 892 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 893 } 894 895 PHINode *createWideIV(SCEVExpander &Rewriter); 896 897 protected: 898 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 899 Instruction *Use); 900 901 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 902 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 903 const SCEVAddRecExpr *WideAR); 904 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 905 906 const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse); 907 908 const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU); 909 910 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 911 unsigned OpCode) const; 912 913 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 914 915 bool widenLoopCompare(NarrowIVDefUse DU); 916 917 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 918 }; 919 } // anonymous namespace 920 921 /// Perform a quick domtree based check for loop invariance assuming that V is 922 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 923 /// purpose. 924 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 925 Instruction *Inst = dyn_cast<Instruction>(V); 926 if (!Inst) 927 return true; 928 929 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 930 } 931 932 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 933 bool IsSigned, Instruction *Use) { 934 // Set the debug location and conservative insertion point. 935 IRBuilder<> Builder(Use); 936 // Hoist the insertion point into loop preheaders as far as possible. 937 for (const Loop *L = LI->getLoopFor(Use->getParent()); 938 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 939 L = L->getParentLoop()) 940 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 941 942 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 943 Builder.CreateZExt(NarrowOper, WideType); 944 } 945 946 /// Instantiate a wide operation to replace a narrow operation. This only needs 947 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 948 /// 0 for any operation we decide not to clone. 949 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 950 const SCEVAddRecExpr *WideAR) { 951 unsigned Opcode = DU.NarrowUse->getOpcode(); 952 switch (Opcode) { 953 default: 954 return nullptr; 955 case Instruction::Add: 956 case Instruction::Mul: 957 case Instruction::UDiv: 958 case Instruction::Sub: 959 return cloneArithmeticIVUser(DU, WideAR); 960 961 case Instruction::And: 962 case Instruction::Or: 963 case Instruction::Xor: 964 case Instruction::Shl: 965 case Instruction::LShr: 966 case Instruction::AShr: 967 return cloneBitwiseIVUser(DU); 968 } 969 } 970 971 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 972 Instruction *NarrowUse = DU.NarrowUse; 973 Instruction *NarrowDef = DU.NarrowDef; 974 Instruction *WideDef = DU.WideDef; 975 976 DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 977 978 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 979 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 980 // invariant and will be folded or hoisted. If it actually comes from a 981 // widened IV, it should be removed during a future call to widenIVUse. 982 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 983 ? WideDef 984 : createExtendInst(NarrowUse->getOperand(0), WideType, 985 IsSigned, NarrowUse); 986 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 987 ? WideDef 988 : createExtendInst(NarrowUse->getOperand(1), WideType, 989 IsSigned, NarrowUse); 990 991 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 992 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 993 NarrowBO->getName()); 994 IRBuilder<> Builder(NarrowUse); 995 Builder.Insert(WideBO); 996 WideBO->copyIRFlags(NarrowBO); 997 return WideBO; 998 } 999 1000 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1001 const SCEVAddRecExpr *WideAR) { 1002 Instruction *NarrowUse = DU.NarrowUse; 1003 Instruction *NarrowDef = DU.NarrowDef; 1004 Instruction *WideDef = DU.WideDef; 1005 1006 DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1007 1008 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1009 1010 // We're trying to find X such that 1011 // 1012 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1013 // 1014 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1015 // and check using SCEV if any of them are correct. 1016 1017 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1018 // correct solution to X. 1019 auto GuessNonIVOperand = [&](bool SignExt) { 1020 const SCEV *WideLHS; 1021 const SCEV *WideRHS; 1022 1023 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1024 if (SignExt) 1025 return SE->getSignExtendExpr(S, Ty); 1026 return SE->getZeroExtendExpr(S, Ty); 1027 }; 1028 1029 if (IVOpIdx == 0) { 1030 WideLHS = SE->getSCEV(WideDef); 1031 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1032 WideRHS = GetExtend(NarrowRHS, WideType); 1033 } else { 1034 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1035 WideLHS = GetExtend(NarrowLHS, WideType); 1036 WideRHS = SE->getSCEV(WideDef); 1037 } 1038 1039 // WideUse is "WideDef `op.wide` X" as described in the comment. 1040 const SCEV *WideUse = nullptr; 1041 1042 switch (NarrowUse->getOpcode()) { 1043 default: 1044 llvm_unreachable("No other possibility!"); 1045 1046 case Instruction::Add: 1047 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1048 break; 1049 1050 case Instruction::Mul: 1051 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1052 break; 1053 1054 case Instruction::UDiv: 1055 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1056 break; 1057 1058 case Instruction::Sub: 1059 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1060 break; 1061 } 1062 1063 return WideUse == WideAR; 1064 }; 1065 1066 bool SignExtend = IsSigned; 1067 if (!GuessNonIVOperand(SignExtend)) { 1068 SignExtend = !SignExtend; 1069 if (!GuessNonIVOperand(SignExtend)) 1070 return nullptr; 1071 } 1072 1073 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1074 ? WideDef 1075 : createExtendInst(NarrowUse->getOperand(0), WideType, 1076 SignExtend, NarrowUse); 1077 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1078 ? WideDef 1079 : createExtendInst(NarrowUse->getOperand(1), WideType, 1080 SignExtend, NarrowUse); 1081 1082 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1083 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1084 NarrowBO->getName()); 1085 1086 IRBuilder<> Builder(NarrowUse); 1087 Builder.Insert(WideBO); 1088 WideBO->copyIRFlags(NarrowBO); 1089 return WideBO; 1090 } 1091 1092 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1093 unsigned OpCode) const { 1094 if (OpCode == Instruction::Add) 1095 return SE->getAddExpr(LHS, RHS); 1096 if (OpCode == Instruction::Sub) 1097 return SE->getMinusSCEV(LHS, RHS); 1098 if (OpCode == Instruction::Mul) 1099 return SE->getMulExpr(LHS, RHS); 1100 1101 llvm_unreachable("Unsupported opcode."); 1102 } 1103 1104 /// No-wrap operations can transfer sign extension of their result to their 1105 /// operands. Generate the SCEV value for the widened operation without 1106 /// actually modifying the IR yet. If the expression after extending the 1107 /// operands is an AddRec for this loop, return it. 1108 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1109 1110 // Handle the common case of add<nsw/nuw> 1111 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1112 // Only Add/Sub/Mul instructions supported yet. 1113 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1114 OpCode != Instruction::Mul) 1115 return nullptr; 1116 1117 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1118 // if extending the other will lead to a recurrence. 1119 const unsigned ExtendOperIdx = 1120 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1121 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1122 1123 const SCEV *ExtendOperExpr = nullptr; 1124 const OverflowingBinaryOperator *OBO = 1125 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1126 if (IsSigned && OBO->hasNoSignedWrap()) 1127 ExtendOperExpr = SE->getSignExtendExpr( 1128 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1129 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1130 ExtendOperExpr = SE->getZeroExtendExpr( 1131 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1132 else 1133 return nullptr; 1134 1135 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1136 // flags. This instruction may be guarded by control flow that the no-wrap 1137 // behavior depends on. Non-control-equivalent instructions can be mapped to 1138 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1139 // semantics to those operations. 1140 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1141 const SCEV *rhs = ExtendOperExpr; 1142 1143 // Let's swap operands to the initial order for the case of non-commutative 1144 // operations, like SUB. See PR21014. 1145 if (ExtendOperIdx == 0) 1146 std::swap(lhs, rhs); 1147 const SCEVAddRecExpr *AddRec = 1148 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1149 1150 if (!AddRec || AddRec->getLoop() != L) 1151 return nullptr; 1152 return AddRec; 1153 } 1154 1155 /// Is this instruction potentially interesting for further simplification after 1156 /// widening it's type? In other words, can the extend be safely hoisted out of 1157 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1158 /// so, return the sign or zero extended recurrence. Otherwise return NULL. 1159 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) { 1160 if (!SE->isSCEVable(NarrowUse->getType())) 1161 return nullptr; 1162 1163 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1164 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 1165 >= SE->getTypeSizeInBits(WideType)) { 1166 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1167 // index. So don't follow this use. 1168 return nullptr; 1169 } 1170 1171 const SCEV *WideExpr = IsSigned ? 1172 SE->getSignExtendExpr(NarrowExpr, WideType) : 1173 SE->getZeroExtendExpr(NarrowExpr, WideType); 1174 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1175 if (!AddRec || AddRec->getLoop() != L) 1176 return nullptr; 1177 return AddRec; 1178 } 1179 1180 /// This IV user cannot be widen. Replace this use of the original narrow IV 1181 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1182 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1183 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1184 << " for user " << *DU.NarrowUse << "\n"); 1185 IRBuilder<> Builder( 1186 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1187 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1188 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1189 } 1190 1191 /// If the narrow use is a compare instruction, then widen the compare 1192 // (and possibly the other operand). The extend operation is hoisted into the 1193 // loop preheader as far as possible. 1194 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1195 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1196 if (!Cmp) 1197 return false; 1198 1199 // We can legally widen the comparison in the following two cases: 1200 // 1201 // - The signedness of the IV extension and comparison match 1202 // 1203 // - The narrow IV is always positive (and thus its sign extension is equal 1204 // to its zero extension). For instance, let's say we're zero extending 1205 // %narrow for the following use 1206 // 1207 // icmp slt i32 %narrow, %val ... (A) 1208 // 1209 // and %narrow is always positive. Then 1210 // 1211 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1212 // == icmp slt i32 zext(%narrow), sext(%val) 1213 1214 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1215 return false; 1216 1217 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1218 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1219 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1220 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1221 1222 // Widen the compare instruction. 1223 IRBuilder<> Builder( 1224 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1225 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1226 1227 // Widen the other operand of the compare, if necessary. 1228 if (CastWidth < IVWidth) { 1229 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1230 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1231 } 1232 return true; 1233 } 1234 1235 /// Determine whether an individual user of the narrow IV can be widened. If so, 1236 /// return the wide clone of the user. 1237 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1238 1239 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1240 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1241 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1242 // For LCSSA phis, sink the truncate outside the loop. 1243 // After SimplifyCFG most loop exit targets have a single predecessor. 1244 // Otherwise fall back to a truncate within the loop. 1245 if (UsePhi->getNumOperands() != 1) 1246 truncateIVUse(DU, DT, LI); 1247 else { 1248 PHINode *WidePhi = 1249 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1250 UsePhi); 1251 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1252 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1253 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1254 UsePhi->replaceAllUsesWith(Trunc); 1255 DeadInsts.emplace_back(UsePhi); 1256 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1257 << " to " << *WidePhi << "\n"); 1258 } 1259 return nullptr; 1260 } 1261 } 1262 // Our raison d'etre! Eliminate sign and zero extension. 1263 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1264 Value *NewDef = DU.WideDef; 1265 if (DU.NarrowUse->getType() != WideType) { 1266 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1267 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1268 if (CastWidth < IVWidth) { 1269 // The cast isn't as wide as the IV, so insert a Trunc. 1270 IRBuilder<> Builder(DU.NarrowUse); 1271 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1272 } 1273 else { 1274 // A wider extend was hidden behind a narrower one. This may induce 1275 // another round of IV widening in which the intermediate IV becomes 1276 // dead. It should be very rare. 1277 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1278 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1279 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1280 NewDef = DU.NarrowUse; 1281 } 1282 } 1283 if (NewDef != DU.NarrowUse) { 1284 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1285 << " replaced by " << *DU.WideDef << "\n"); 1286 ++NumElimExt; 1287 DU.NarrowUse->replaceAllUsesWith(NewDef); 1288 DeadInsts.emplace_back(DU.NarrowUse); 1289 } 1290 // Now that the extend is gone, we want to expose it's uses for potential 1291 // further simplification. We don't need to directly inform SimplifyIVUsers 1292 // of the new users, because their parent IV will be processed later as a 1293 // new loop phi. If we preserved IVUsers analysis, we would also want to 1294 // push the uses of WideDef here. 1295 1296 // No further widening is needed. The deceased [sz]ext had done it for us. 1297 return nullptr; 1298 } 1299 1300 // Does this user itself evaluate to a recurrence after widening? 1301 const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse); 1302 if (!WideAddRec) 1303 WideAddRec = getExtendedOperandRecurrence(DU); 1304 1305 if (!WideAddRec) { 1306 // If use is a loop condition, try to promote the condition instead of 1307 // truncating the IV first. 1308 if (widenLoopCompare(DU)) 1309 return nullptr; 1310 1311 // This user does not evaluate to a recurence after widening, so don't 1312 // follow it. Instead insert a Trunc to kill off the original use, 1313 // eventually isolating the original narrow IV so it can be removed. 1314 truncateIVUse(DU, DT, LI); 1315 return nullptr; 1316 } 1317 // Assume block terminators cannot evaluate to a recurrence. We can't to 1318 // insert a Trunc after a terminator if there happens to be a critical edge. 1319 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1320 "SCEV is not expected to evaluate a block terminator"); 1321 1322 // Reuse the IV increment that SCEVExpander created as long as it dominates 1323 // NarrowUse. 1324 Instruction *WideUse = nullptr; 1325 if (WideAddRec == WideIncExpr 1326 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1327 WideUse = WideInc; 1328 else { 1329 WideUse = cloneIVUser(DU, WideAddRec); 1330 if (!WideUse) 1331 return nullptr; 1332 } 1333 // Evaluation of WideAddRec ensured that the narrow expression could be 1334 // extended outside the loop without overflow. This suggests that the wide use 1335 // evaluates to the same expression as the extended narrow use, but doesn't 1336 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1337 // where it fails, we simply throw away the newly created wide use. 1338 if (WideAddRec != SE->getSCEV(WideUse)) { 1339 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1340 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1341 DeadInsts.emplace_back(WideUse); 1342 return nullptr; 1343 } 1344 1345 // Returning WideUse pushes it on the worklist. 1346 return WideUse; 1347 } 1348 1349 /// Add eligible users of NarrowDef to NarrowIVUsers. 1350 /// 1351 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1352 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1353 bool NeverNegative = 1354 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1355 SE->getConstant(NarrowSCEV->getType(), 0)); 1356 for (User *U : NarrowDef->users()) { 1357 Instruction *NarrowUser = cast<Instruction>(U); 1358 1359 // Handle data flow merges and bizarre phi cycles. 1360 if (!Widened.insert(NarrowUser).second) 1361 continue; 1362 1363 NarrowIVUsers.push_back( 1364 NarrowIVDefUse(NarrowDef, NarrowUser, WideDef, NeverNegative)); 1365 } 1366 } 1367 1368 /// Process a single induction variable. First use the SCEVExpander to create a 1369 /// wide induction variable that evaluates to the same recurrence as the 1370 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1371 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1372 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1373 /// 1374 /// It would be simpler to delete uses as they are processed, but we must avoid 1375 /// invalidating SCEV expressions. 1376 /// 1377 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1378 // Is this phi an induction variable? 1379 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1380 if (!AddRec) 1381 return nullptr; 1382 1383 // Widen the induction variable expression. 1384 const SCEV *WideIVExpr = IsSigned ? 1385 SE->getSignExtendExpr(AddRec, WideType) : 1386 SE->getZeroExtendExpr(AddRec, WideType); 1387 1388 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1389 "Expect the new IV expression to preserve its type"); 1390 1391 // Can the IV be extended outside the loop without overflow? 1392 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1393 if (!AddRec || AddRec->getLoop() != L) 1394 return nullptr; 1395 1396 // An AddRec must have loop-invariant operands. Since this AddRec is 1397 // materialized by a loop header phi, the expression cannot have any post-loop 1398 // operands, so they must dominate the loop header. 1399 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1400 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1401 && "Loop header phi recurrence inputs do not dominate the loop"); 1402 1403 // The rewriter provides a value for the desired IV expression. This may 1404 // either find an existing phi or materialize a new one. Either way, we 1405 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1406 // of the phi-SCC dominates the loop entry. 1407 Instruction *InsertPt = &L->getHeader()->front(); 1408 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1409 1410 // Remembering the WideIV increment generated by SCEVExpander allows 1411 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1412 // employ a general reuse mechanism because the call above is the only call to 1413 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1414 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1415 WideInc = 1416 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1417 WideIncExpr = SE->getSCEV(WideInc); 1418 } 1419 1420 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1421 ++NumWidened; 1422 1423 // Traverse the def-use chain using a worklist starting at the original IV. 1424 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1425 1426 Widened.insert(OrigPhi); 1427 pushNarrowIVUsers(OrigPhi, WidePhi); 1428 1429 while (!NarrowIVUsers.empty()) { 1430 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1431 1432 // Process a def-use edge. This may replace the use, so don't hold a 1433 // use_iterator across it. 1434 Instruction *WideUse = widenIVUse(DU, Rewriter); 1435 1436 // Follow all def-use edges from the previous narrow use. 1437 if (WideUse) 1438 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1439 1440 // widenIVUse may have removed the def-use edge. 1441 if (DU.NarrowDef->use_empty()) 1442 DeadInsts.emplace_back(DU.NarrowDef); 1443 } 1444 return WidePhi; 1445 } 1446 1447 //===----------------------------------------------------------------------===// 1448 // Live IV Reduction - Minimize IVs live across the loop. 1449 //===----------------------------------------------------------------------===// 1450 1451 1452 //===----------------------------------------------------------------------===// 1453 // Simplification of IV users based on SCEV evaluation. 1454 //===----------------------------------------------------------------------===// 1455 1456 namespace { 1457 class IndVarSimplifyVisitor : public IVVisitor { 1458 ScalarEvolution *SE; 1459 const TargetTransformInfo *TTI; 1460 PHINode *IVPhi; 1461 1462 public: 1463 WideIVInfo WI; 1464 1465 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1466 const TargetTransformInfo *TTI, 1467 const DominatorTree *DTree) 1468 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1469 DT = DTree; 1470 WI.NarrowIV = IVPhi; 1471 if (ReduceLiveIVs) 1472 setSplitOverflowIntrinsics(); 1473 } 1474 1475 // Implement the interface used by simplifyUsersOfIV. 1476 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1477 }; 1478 } 1479 1480 /// Iteratively perform simplification on a worklist of IV users. Each 1481 /// successive simplification may push more users which may themselves be 1482 /// candidates for simplification. 1483 /// 1484 /// Sign/Zero extend elimination is interleaved with IV simplification. 1485 /// 1486 void IndVarSimplify::simplifyAndExtend(Loop *L, 1487 SCEVExpander &Rewriter, 1488 LPPassManager &LPM) { 1489 SmallVector<WideIVInfo, 8> WideIVs; 1490 1491 SmallVector<PHINode*, 8> LoopPhis; 1492 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1493 LoopPhis.push_back(cast<PHINode>(I)); 1494 } 1495 // Each round of simplification iterates through the SimplifyIVUsers worklist 1496 // for all current phis, then determines whether any IVs can be 1497 // widened. Widening adds new phis to LoopPhis, inducing another round of 1498 // simplification on the wide IVs. 1499 while (!LoopPhis.empty()) { 1500 // Evaluate as many IV expressions as possible before widening any IVs. This 1501 // forces SCEV to set no-wrap flags before evaluating sign/zero 1502 // extension. The first time SCEV attempts to normalize sign/zero extension, 1503 // the result becomes final. So for the most predictable results, we delay 1504 // evaluation of sign/zero extend evaluation until needed, and avoid running 1505 // other SCEV based analysis prior to simplifyAndExtend. 1506 do { 1507 PHINode *CurrIV = LoopPhis.pop_back_val(); 1508 1509 // Information about sign/zero extensions of CurrIV. 1510 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1511 1512 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, &LPM, DeadInsts, &Visitor); 1513 1514 if (Visitor.WI.WidestNativeType) { 1515 WideIVs.push_back(Visitor.WI); 1516 } 1517 } while(!LoopPhis.empty()); 1518 1519 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1520 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1521 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1522 Changed = true; 1523 LoopPhis.push_back(WidePhi); 1524 } 1525 } 1526 } 1527 } 1528 1529 //===----------------------------------------------------------------------===// 1530 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1531 //===----------------------------------------------------------------------===// 1532 1533 /// Return true if this loop's backedge taken count expression can be safely and 1534 /// cheaply expanded into an instruction sequence that can be used by 1535 /// linearFunctionTestReplace. 1536 /// 1537 /// TODO: This fails for pointer-type loop counters with greater than one byte 1538 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1539 /// we could skip this check in the case that the LFTR loop counter (chosen by 1540 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1541 /// the loop test to an inequality test by checking the target data's alignment 1542 /// of element types (given that the initial pointer value originates from or is 1543 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1544 /// However, we don't yet have a strong motivation for converting loop tests 1545 /// into inequality tests. 1546 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1547 SCEVExpander &Rewriter) { 1548 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1549 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1550 BackedgeTakenCount->isZero()) 1551 return false; 1552 1553 if (!L->getExitingBlock()) 1554 return false; 1555 1556 // Can't rewrite non-branch yet. 1557 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1558 return false; 1559 1560 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1561 return false; 1562 1563 return true; 1564 } 1565 1566 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1567 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1568 Instruction *IncI = dyn_cast<Instruction>(IncV); 1569 if (!IncI) 1570 return nullptr; 1571 1572 switch (IncI->getOpcode()) { 1573 case Instruction::Add: 1574 case Instruction::Sub: 1575 break; 1576 case Instruction::GetElementPtr: 1577 // An IV counter must preserve its type. 1578 if (IncI->getNumOperands() == 2) 1579 break; 1580 default: 1581 return nullptr; 1582 } 1583 1584 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1585 if (Phi && Phi->getParent() == L->getHeader()) { 1586 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1587 return Phi; 1588 return nullptr; 1589 } 1590 if (IncI->getOpcode() == Instruction::GetElementPtr) 1591 return nullptr; 1592 1593 // Allow add/sub to be commuted. 1594 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1595 if (Phi && Phi->getParent() == L->getHeader()) { 1596 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1597 return Phi; 1598 } 1599 return nullptr; 1600 } 1601 1602 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1603 static ICmpInst *getLoopTest(Loop *L) { 1604 assert(L->getExitingBlock() && "expected loop exit"); 1605 1606 BasicBlock *LatchBlock = L->getLoopLatch(); 1607 // Don't bother with LFTR if the loop is not properly simplified. 1608 if (!LatchBlock) 1609 return nullptr; 1610 1611 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1612 assert(BI && "expected exit branch"); 1613 1614 return dyn_cast<ICmpInst>(BI->getCondition()); 1615 } 1616 1617 /// linearFunctionTestReplace policy. Return true unless we can show that the 1618 /// current exit test is already sufficiently canonical. 1619 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1620 // Do LFTR to simplify the exit condition to an ICMP. 1621 ICmpInst *Cond = getLoopTest(L); 1622 if (!Cond) 1623 return true; 1624 1625 // Do LFTR to simplify the exit ICMP to EQ/NE 1626 ICmpInst::Predicate Pred = Cond->getPredicate(); 1627 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1628 return true; 1629 1630 // Look for a loop invariant RHS 1631 Value *LHS = Cond->getOperand(0); 1632 Value *RHS = Cond->getOperand(1); 1633 if (!isLoopInvariant(RHS, L, DT)) { 1634 if (!isLoopInvariant(LHS, L, DT)) 1635 return true; 1636 std::swap(LHS, RHS); 1637 } 1638 // Look for a simple IV counter LHS 1639 PHINode *Phi = dyn_cast<PHINode>(LHS); 1640 if (!Phi) 1641 Phi = getLoopPhiForCounter(LHS, L, DT); 1642 1643 if (!Phi) 1644 return true; 1645 1646 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1647 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1648 if (Idx < 0) 1649 return true; 1650 1651 // Do LFTR if the exit condition's IV is *not* a simple counter. 1652 Value *IncV = Phi->getIncomingValue(Idx); 1653 return Phi != getLoopPhiForCounter(IncV, L, DT); 1654 } 1655 1656 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1657 /// down to checking that all operands are constant and listing instructions 1658 /// that may hide undef. 1659 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1660 unsigned Depth) { 1661 if (isa<Constant>(V)) 1662 return !isa<UndefValue>(V); 1663 1664 if (Depth >= 6) 1665 return false; 1666 1667 // Conservatively handle non-constant non-instructions. For example, Arguments 1668 // may be undef. 1669 Instruction *I = dyn_cast<Instruction>(V); 1670 if (!I) 1671 return false; 1672 1673 // Load and return values may be undef. 1674 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1675 return false; 1676 1677 // Optimistically handle other instructions. 1678 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1679 if (!Visited.insert(*OI).second) 1680 continue; 1681 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1682 return false; 1683 } 1684 return true; 1685 } 1686 1687 /// Return true if the given value is concrete. We must prove that undef can 1688 /// never reach it. 1689 /// 1690 /// TODO: If we decide that this is a good approach to checking for undef, we 1691 /// may factor it into a common location. 1692 static bool hasConcreteDef(Value *V) { 1693 SmallPtrSet<Value*, 8> Visited; 1694 Visited.insert(V); 1695 return hasConcreteDefImpl(V, Visited, 0); 1696 } 1697 1698 /// Return true if this IV has any uses other than the (soon to be rewritten) 1699 /// loop exit test. 1700 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1701 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1702 Value *IncV = Phi->getIncomingValue(LatchIdx); 1703 1704 for (User *U : Phi->users()) 1705 if (U != Cond && U != IncV) return false; 1706 1707 for (User *U : IncV->users()) 1708 if (U != Cond && U != Phi) return false; 1709 return true; 1710 } 1711 1712 /// Find an affine IV in canonical form. 1713 /// 1714 /// BECount may be an i8* pointer type. The pointer difference is already 1715 /// valid count without scaling the address stride, so it remains a pointer 1716 /// expression as far as SCEV is concerned. 1717 /// 1718 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1719 /// 1720 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1721 /// 1722 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1723 /// This is difficult in general for SCEV because of potential overflow. But we 1724 /// could at least handle constant BECounts. 1725 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1726 ScalarEvolution *SE, DominatorTree *DT) { 1727 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1728 1729 Value *Cond = 1730 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1731 1732 // Loop over all of the PHI nodes, looking for a simple counter. 1733 PHINode *BestPhi = nullptr; 1734 const SCEV *BestInit = nullptr; 1735 BasicBlock *LatchBlock = L->getLoopLatch(); 1736 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1737 1738 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1739 PHINode *Phi = cast<PHINode>(I); 1740 if (!SE->isSCEVable(Phi->getType())) 1741 continue; 1742 1743 // Avoid comparing an integer IV against a pointer Limit. 1744 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1745 continue; 1746 1747 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1748 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1749 continue; 1750 1751 // AR may be a pointer type, while BECount is an integer type. 1752 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1753 // AR may not be a narrower type, or we may never exit. 1754 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1755 if (PhiWidth < BCWidth || 1756 !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth)) 1757 continue; 1758 1759 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1760 if (!Step || !Step->isOne()) 1761 continue; 1762 1763 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1764 Value *IncV = Phi->getIncomingValue(LatchIdx); 1765 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1766 continue; 1767 1768 // Avoid reusing a potentially undef value to compute other values that may 1769 // have originally had a concrete definition. 1770 if (!hasConcreteDef(Phi)) { 1771 // We explicitly allow unknown phis as long as they are already used by 1772 // the loop test. In this case we assume that performing LFTR could not 1773 // increase the number of undef users. 1774 if (ICmpInst *Cond = getLoopTest(L)) { 1775 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1776 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1777 continue; 1778 } 1779 } 1780 } 1781 const SCEV *Init = AR->getStart(); 1782 1783 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1784 // Don't force a live loop counter if another IV can be used. 1785 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1786 continue; 1787 1788 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1789 // also prefers integer to pointer IVs. 1790 if (BestInit->isZero() != Init->isZero()) { 1791 if (BestInit->isZero()) 1792 continue; 1793 } 1794 // If two IVs both count from zero or both count from nonzero then the 1795 // narrower is likely a dead phi that has been widened. Use the wider phi 1796 // to allow the other to be eliminated. 1797 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1798 continue; 1799 } 1800 BestPhi = Phi; 1801 BestInit = Init; 1802 } 1803 return BestPhi; 1804 } 1805 1806 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 1807 /// the new loop test. 1808 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1809 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1810 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1811 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1812 const SCEV *IVInit = AR->getStart(); 1813 1814 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1815 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1816 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1817 // the existing GEPs whenever possible. 1818 if (IndVar->getType()->isPointerTy() 1819 && !IVCount->getType()->isPointerTy()) { 1820 1821 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1822 // signed value. IVCount on the other hand represents the loop trip count, 1823 // which is an unsigned value. FindLoopCounter only allows induction 1824 // variables that have a positive unit stride of one. This means we don't 1825 // have to handle the case of negative offsets (yet) and just need to zero 1826 // extend IVCount. 1827 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1828 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1829 1830 // Expand the code for the iteration count. 1831 assert(SE->isLoopInvariant(IVOffset, L) && 1832 "Computed iteration count is not loop invariant!"); 1833 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1834 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1835 1836 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1837 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1838 // We could handle pointer IVs other than i8*, but we need to compensate for 1839 // gep index scaling. See canExpandBackedgeTakenCount comments. 1840 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1841 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1842 && "unit stride pointer IV must be i8*"); 1843 1844 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1845 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1846 } 1847 else { 1848 // In any other case, convert both IVInit and IVCount to integers before 1849 // comparing. This may result in SCEV expension of pointers, but in practice 1850 // SCEV will fold the pointer arithmetic away as such: 1851 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1852 // 1853 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1854 // for simple memset-style loops. 1855 // 1856 // IVInit integer and IVCount pointer would only occur if a canonical IV 1857 // were generated on top of case #2, which is not expected. 1858 1859 const SCEV *IVLimit = nullptr; 1860 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1861 // For non-zero Start, compute IVCount here. 1862 if (AR->getStart()->isZero()) 1863 IVLimit = IVCount; 1864 else { 1865 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1866 const SCEV *IVInit = AR->getStart(); 1867 1868 // For integer IVs, truncate the IV before computing IVInit + BECount. 1869 if (SE->getTypeSizeInBits(IVInit->getType()) 1870 > SE->getTypeSizeInBits(IVCount->getType())) 1871 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1872 1873 IVLimit = SE->getAddExpr(IVInit, IVCount); 1874 } 1875 // Expand the code for the iteration count. 1876 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1877 IRBuilder<> Builder(BI); 1878 assert(SE->isLoopInvariant(IVLimit, L) && 1879 "Computed iteration count is not loop invariant!"); 1880 // Ensure that we generate the same type as IndVar, or a smaller integer 1881 // type. In the presence of null pointer values, we have an integer type 1882 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1883 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1884 IndVar->getType() : IVCount->getType(); 1885 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1886 } 1887 } 1888 1889 /// This method rewrites the exit condition of the loop to be a canonical != 1890 /// comparison against the incremented loop induction variable. This pass is 1891 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1892 /// determine a loop-invariant trip count of the loop, which is actually a much 1893 /// broader range than just linear tests. 1894 Value *IndVarSimplify:: 1895 linearFunctionTestReplace(Loop *L, 1896 const SCEV *BackedgeTakenCount, 1897 PHINode *IndVar, 1898 SCEVExpander &Rewriter) { 1899 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1900 1901 // Initialize CmpIndVar and IVCount to their preincremented values. 1902 Value *CmpIndVar = IndVar; 1903 const SCEV *IVCount = BackedgeTakenCount; 1904 1905 // If the exiting block is the same as the backedge block, we prefer to 1906 // compare against the post-incremented value, otherwise we must compare 1907 // against the preincremented value. 1908 if (L->getExitingBlock() == L->getLoopLatch()) { 1909 // Add one to the "backedge-taken" count to get the trip count. 1910 // This addition may overflow, which is valid as long as the comparison is 1911 // truncated to BackedgeTakenCount->getType(). 1912 IVCount = SE->getAddExpr(BackedgeTakenCount, 1913 SE->getOne(BackedgeTakenCount->getType())); 1914 // The BackedgeTaken expression contains the number of times that the 1915 // backedge branches to the loop header. This is one less than the 1916 // number of times the loop executes, so use the incremented indvar. 1917 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1918 } 1919 1920 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1921 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1922 && "genLoopLimit missed a cast"); 1923 1924 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1925 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1926 ICmpInst::Predicate P; 1927 if (L->contains(BI->getSuccessor(0))) 1928 P = ICmpInst::ICMP_NE; 1929 else 1930 P = ICmpInst::ICMP_EQ; 1931 1932 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1933 << " LHS:" << *CmpIndVar << '\n' 1934 << " op:\t" 1935 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1936 << " RHS:\t" << *ExitCnt << "\n" 1937 << " IVCount:\t" << *IVCount << "\n"); 1938 1939 IRBuilder<> Builder(BI); 1940 1941 // LFTR can ignore IV overflow and truncate to the width of 1942 // BECount. This avoids materializing the add(zext(add)) expression. 1943 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1944 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1945 if (CmpIndVarSize > ExitCntSize) { 1946 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1947 const SCEV *ARStart = AR->getStart(); 1948 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1949 // For constant IVCount, avoid truncation. 1950 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1951 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue(); 1952 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue(); 1953 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1954 // above such that IVCount is now zero. 1955 if (IVCount != BackedgeTakenCount && Count == 0) { 1956 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1957 ++Count; 1958 } 1959 else 1960 Count = Count.zext(CmpIndVarSize); 1961 APInt NewLimit; 1962 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1963 NewLimit = Start - Count; 1964 else 1965 NewLimit = Start + Count; 1966 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1967 1968 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1969 } else { 1970 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1971 "lftr.wideiv"); 1972 } 1973 } 1974 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1975 Value *OrigCond = BI->getCondition(); 1976 // It's tempting to use replaceAllUsesWith here to fully replace the old 1977 // comparison, but that's not immediately safe, since users of the old 1978 // comparison may not be dominated by the new comparison. Instead, just 1979 // update the branch to use the new comparison; in the common case this 1980 // will make old comparison dead. 1981 BI->setCondition(Cond); 1982 DeadInsts.push_back(OrigCond); 1983 1984 ++NumLFTR; 1985 Changed = true; 1986 return Cond; 1987 } 1988 1989 //===----------------------------------------------------------------------===// 1990 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1991 //===----------------------------------------------------------------------===// 1992 1993 /// If there's a single exit block, sink any loop-invariant values that 1994 /// were defined in the preheader but not used inside the loop into the 1995 /// exit block to reduce register pressure in the loop. 1996 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 1997 BasicBlock *ExitBlock = L->getExitBlock(); 1998 if (!ExitBlock) return; 1999 2000 BasicBlock *Preheader = L->getLoopPreheader(); 2001 if (!Preheader) return; 2002 2003 Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt(); 2004 BasicBlock::iterator I(Preheader->getTerminator()); 2005 while (I != Preheader->begin()) { 2006 --I; 2007 // New instructions were inserted at the end of the preheader. 2008 if (isa<PHINode>(I)) 2009 break; 2010 2011 // Don't move instructions which might have side effects, since the side 2012 // effects need to complete before instructions inside the loop. Also don't 2013 // move instructions which might read memory, since the loop may modify 2014 // memory. Note that it's okay if the instruction might have undefined 2015 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2016 // block. 2017 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2018 continue; 2019 2020 // Skip debug info intrinsics. 2021 if (isa<DbgInfoIntrinsic>(I)) 2022 continue; 2023 2024 // Skip eh pad instructions. 2025 if (I->isEHPad()) 2026 continue; 2027 2028 // Don't sink alloca: we never want to sink static alloca's out of the 2029 // entry block, and correctly sinking dynamic alloca's requires 2030 // checks for stacksave/stackrestore intrinsics. 2031 // FIXME: Refactor this check somehow? 2032 if (isa<AllocaInst>(I)) 2033 continue; 2034 2035 // Determine if there is a use in or before the loop (direct or 2036 // otherwise). 2037 bool UsedInLoop = false; 2038 for (Use &U : I->uses()) { 2039 Instruction *User = cast<Instruction>(U.getUser()); 2040 BasicBlock *UseBB = User->getParent(); 2041 if (PHINode *P = dyn_cast<PHINode>(User)) { 2042 unsigned i = 2043 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2044 UseBB = P->getIncomingBlock(i); 2045 } 2046 if (UseBB == Preheader || L->contains(UseBB)) { 2047 UsedInLoop = true; 2048 break; 2049 } 2050 } 2051 2052 // If there is, the def must remain in the preheader. 2053 if (UsedInLoop) 2054 continue; 2055 2056 // Otherwise, sink it to the exit block. 2057 Instruction *ToMove = &*I; 2058 bool Done = false; 2059 2060 if (I != Preheader->begin()) { 2061 // Skip debug info intrinsics. 2062 do { 2063 --I; 2064 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2065 2066 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2067 Done = true; 2068 } else { 2069 Done = true; 2070 } 2071 2072 ToMove->moveBefore(InsertPt); 2073 if (Done) break; 2074 InsertPt = ToMove; 2075 } 2076 } 2077 2078 //===----------------------------------------------------------------------===// 2079 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2080 //===----------------------------------------------------------------------===// 2081 2082 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 2083 if (skipOptnoneFunction(L)) 2084 return false; 2085 2086 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2087 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2088 // canonicalization can be a pessimization without LSR to "clean up" 2089 // afterwards. 2090 // - We depend on having a preheader; in particular, 2091 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2092 // and we're in trouble if we can't find the induction variable even when 2093 // we've manually inserted one. 2094 if (!L->isLoopSimplifyForm()) 2095 return false; 2096 2097 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2098 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2099 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2100 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2101 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2102 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2103 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2104 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2105 2106 DeadInsts.clear(); 2107 Changed = false; 2108 2109 // If there are any floating-point recurrences, attempt to 2110 // transform them to use integer recurrences. 2111 rewriteNonIntegerIVs(L); 2112 2113 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2114 2115 // Create a rewriter object which we'll use to transform the code with. 2116 SCEVExpander Rewriter(*SE, DL, "indvars"); 2117 #ifndef NDEBUG 2118 Rewriter.setDebugType(DEBUG_TYPE); 2119 #endif 2120 2121 // Eliminate redundant IV users. 2122 // 2123 // Simplification works best when run before other consumers of SCEV. We 2124 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2125 // other expressions involving loop IVs have been evaluated. This helps SCEV 2126 // set no-wrap flags before normalizing sign/zero extension. 2127 Rewriter.disableCanonicalMode(); 2128 simplifyAndExtend(L, Rewriter, LPM); 2129 2130 // Check to see if this loop has a computable loop-invariant execution count. 2131 // If so, this means that we can compute the final value of any expressions 2132 // that are recurrent in the loop, and substitute the exit values from the 2133 // loop into any instructions outside of the loop that use the final values of 2134 // the current expressions. 2135 // 2136 if (ReplaceExitValue != NeverRepl && 2137 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2138 rewriteLoopExitValues(L, Rewriter); 2139 2140 // Eliminate redundant IV cycles. 2141 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2142 2143 // If we have a trip count expression, rewrite the loop's exit condition 2144 // using it. We can currently only handle loops with a single exit. 2145 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2146 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2147 if (IndVar) { 2148 // Check preconditions for proper SCEVExpander operation. SCEV does not 2149 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2150 // pass that uses the SCEVExpander must do it. This does not work well for 2151 // loop passes because SCEVExpander makes assumptions about all loops, 2152 // while LoopPassManager only forces the current loop to be simplified. 2153 // 2154 // FIXME: SCEV expansion has no way to bail out, so the caller must 2155 // explicitly check any assumptions made by SCEV. Brittle. 2156 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2157 if (!AR || AR->getLoop()->getLoopPreheader()) 2158 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2159 Rewriter); 2160 } 2161 } 2162 // Clear the rewriter cache, because values that are in the rewriter's cache 2163 // can be deleted in the loop below, causing the AssertingVH in the cache to 2164 // trigger. 2165 Rewriter.clear(); 2166 2167 // Now that we're done iterating through lists, clean up any instructions 2168 // which are now dead. 2169 while (!DeadInsts.empty()) 2170 if (Instruction *Inst = 2171 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2172 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2173 2174 // The Rewriter may not be used from this point on. 2175 2176 // Loop-invariant instructions in the preheader that aren't used in the 2177 // loop may be sunk below the loop to reduce register pressure. 2178 sinkUnusedInvariants(L); 2179 2180 // Clean up dead instructions. 2181 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2182 2183 // Check a post-condition. 2184 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 2185 2186 // Verify that LFTR, and any other change have not interfered with SCEV's 2187 // ability to compute trip count. 2188 #ifndef NDEBUG 2189 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2190 SE->forgetLoop(L); 2191 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2192 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2193 SE->getTypeSizeInBits(NewBECount->getType())) 2194 NewBECount = SE->getTruncateOrNoop(NewBECount, 2195 BackedgeTakenCount->getType()); 2196 else 2197 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2198 NewBECount->getType()); 2199 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2200 } 2201 #endif 2202 2203 return Changed; 2204 } 2205