1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #define DEBUG_TYPE "indvars" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/BasicBlock.h" 30 #include "llvm/Constants.h" 31 #include "llvm/Instructions.h" 32 #include "llvm/IntrinsicInst.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Type.h" 35 #include "llvm/Analysis/Dominators.h" 36 #include "llvm/Analysis/IVUsers.h" 37 #include "llvm/Analysis/ScalarEvolutionExpander.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Support/CFG.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 using namespace llvm; 52 53 STATISTIC(NumRemoved , "Number of aux indvars removed"); 54 STATISTIC(NumWidened , "Number of indvars widened"); 55 STATISTIC(NumInserted , "Number of canonical indvars added"); 56 STATISTIC(NumReplaced , "Number of exit values replaced"); 57 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 58 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 59 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 60 61 static cl::opt<bool> EnableIVRewrite( 62 "enable-iv-rewrite", cl::Hidden, 63 cl::desc("Enable canonical induction variable rewriting")); 64 65 // Trip count verification can be enabled by default under NDEBUG if we 66 // implement a strong expression equivalence checker in SCEV. Until then, we 67 // use the verify-indvars flag, which may assert in some cases. 68 static cl::opt<bool> VerifyIndvars( 69 "verify-indvars", cl::Hidden, 70 cl::desc("Verify the ScalarEvolution result after running indvars")); 71 72 namespace { 73 class IndVarSimplify : public LoopPass { 74 IVUsers *IU; 75 LoopInfo *LI; 76 ScalarEvolution *SE; 77 DominatorTree *DT; 78 TargetData *TD; 79 80 SmallVector<WeakVH, 16> DeadInsts; 81 bool Changed; 82 public: 83 84 static char ID; // Pass identification, replacement for typeid 85 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0), 86 Changed(false) { 87 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 88 } 89 90 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 91 92 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 93 AU.addRequired<DominatorTree>(); 94 AU.addRequired<LoopInfo>(); 95 AU.addRequired<ScalarEvolution>(); 96 AU.addRequiredID(LoopSimplifyID); 97 AU.addRequiredID(LCSSAID); 98 if (EnableIVRewrite) 99 AU.addRequired<IVUsers>(); 100 AU.addPreserved<ScalarEvolution>(); 101 AU.addPreservedID(LoopSimplifyID); 102 AU.addPreservedID(LCSSAID); 103 if (EnableIVRewrite) 104 AU.addPreserved<IVUsers>(); 105 AU.setPreservesCFG(); 106 } 107 108 private: 109 virtual void releaseMemory() { 110 DeadInsts.clear(); 111 } 112 113 bool isValidRewrite(Value *FromVal, Value *ToVal); 114 115 void HandleFloatingPointIV(Loop *L, PHINode *PH); 116 void RewriteNonIntegerIVs(Loop *L); 117 118 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 119 120 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 121 122 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter); 123 124 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 125 PHINode *IndVar, SCEVExpander &Rewriter); 126 127 void SinkUnusedInvariants(Loop *L); 128 }; 129 } 130 131 char IndVarSimplify::ID = 0; 132 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 133 "Induction Variable Simplification", false, false) 134 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 135 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 136 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 137 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 138 INITIALIZE_PASS_DEPENDENCY(LCSSA) 139 INITIALIZE_PASS_DEPENDENCY(IVUsers) 140 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 141 "Induction Variable Simplification", false, false) 142 143 Pass *llvm::createIndVarSimplifyPass() { 144 return new IndVarSimplify(); 145 } 146 147 /// isValidRewrite - Return true if the SCEV expansion generated by the 148 /// rewriter can replace the original value. SCEV guarantees that it 149 /// produces the same value, but the way it is produced may be illegal IR. 150 /// Ideally, this function will only be called for verification. 151 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 152 // If an SCEV expression subsumed multiple pointers, its expansion could 153 // reassociate the GEP changing the base pointer. This is illegal because the 154 // final address produced by a GEP chain must be inbounds relative to its 155 // underlying object. Otherwise basic alias analysis, among other things, 156 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 157 // producing an expression involving multiple pointers. Until then, we must 158 // bail out here. 159 // 160 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 161 // because it understands lcssa phis while SCEV does not. 162 Value *FromPtr = FromVal; 163 Value *ToPtr = ToVal; 164 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 165 FromPtr = GEP->getPointerOperand(); 166 } 167 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 168 ToPtr = GEP->getPointerOperand(); 169 } 170 if (FromPtr != FromVal || ToPtr != ToVal) { 171 // Quickly check the common case 172 if (FromPtr == ToPtr) 173 return true; 174 175 // SCEV may have rewritten an expression that produces the GEP's pointer 176 // operand. That's ok as long as the pointer operand has the same base 177 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 178 // base of a recurrence. This handles the case in which SCEV expansion 179 // converts a pointer type recurrence into a nonrecurrent pointer base 180 // indexed by an integer recurrence. 181 182 // If the GEP base pointer is a vector of pointers, abort. 183 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 184 return false; 185 186 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 187 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 188 if (FromBase == ToBase) 189 return true; 190 191 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 192 << *FromBase << " != " << *ToBase << "\n"); 193 194 return false; 195 } 196 return true; 197 } 198 199 /// Determine the insertion point for this user. By default, insert immediately 200 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 201 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 202 /// common dominator for the incoming blocks. 203 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 204 DominatorTree *DT) { 205 PHINode *PHI = dyn_cast<PHINode>(User); 206 if (!PHI) 207 return User; 208 209 Instruction *InsertPt = 0; 210 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 211 if (PHI->getIncomingValue(i) != Def) 212 continue; 213 214 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 215 if (!InsertPt) { 216 InsertPt = InsertBB->getTerminator(); 217 continue; 218 } 219 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 220 InsertPt = InsertBB->getTerminator(); 221 } 222 assert(InsertPt && "Missing phi operand"); 223 assert((!isa<Instruction>(Def) || 224 DT->dominates(cast<Instruction>(Def), InsertPt)) && 225 "def does not dominate all uses"); 226 return InsertPt; 227 } 228 229 //===----------------------------------------------------------------------===// 230 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 231 //===----------------------------------------------------------------------===// 232 233 /// ConvertToSInt - Convert APF to an integer, if possible. 234 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 235 bool isExact = false; 236 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) 237 return false; 238 // See if we can convert this to an int64_t 239 uint64_t UIntVal; 240 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 241 &isExact) != APFloat::opOK || !isExact) 242 return false; 243 IntVal = UIntVal; 244 return true; 245 } 246 247 /// HandleFloatingPointIV - If the loop has floating induction variable 248 /// then insert corresponding integer induction variable if possible. 249 /// For example, 250 /// for(double i = 0; i < 10000; ++i) 251 /// bar(i) 252 /// is converted into 253 /// for(int i = 0; i < 10000; ++i) 254 /// bar((double)i); 255 /// 256 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 257 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 258 unsigned BackEdge = IncomingEdge^1; 259 260 // Check incoming value. 261 ConstantFP *InitValueVal = 262 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 263 264 int64_t InitValue; 265 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 266 return; 267 268 // Check IV increment. Reject this PN if increment operation is not 269 // an add or increment value can not be represented by an integer. 270 BinaryOperator *Incr = 271 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 272 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; 273 274 // If this is not an add of the PHI with a constantfp, or if the constant fp 275 // is not an integer, bail out. 276 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 277 int64_t IncValue; 278 if (IncValueVal == 0 || Incr->getOperand(0) != PN || 279 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 280 return; 281 282 // Check Incr uses. One user is PN and the other user is an exit condition 283 // used by the conditional terminator. 284 Value::use_iterator IncrUse = Incr->use_begin(); 285 Instruction *U1 = cast<Instruction>(*IncrUse++); 286 if (IncrUse == Incr->use_end()) return; 287 Instruction *U2 = cast<Instruction>(*IncrUse++); 288 if (IncrUse != Incr->use_end()) return; 289 290 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 291 // only used by a branch, we can't transform it. 292 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 293 if (!Compare) 294 Compare = dyn_cast<FCmpInst>(U2); 295 if (Compare == 0 || !Compare->hasOneUse() || 296 !isa<BranchInst>(Compare->use_back())) 297 return; 298 299 BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); 300 301 // We need to verify that the branch actually controls the iteration count 302 // of the loop. If not, the new IV can overflow and no one will notice. 303 // The branch block must be in the loop and one of the successors must be out 304 // of the loop. 305 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 306 if (!L->contains(TheBr->getParent()) || 307 (L->contains(TheBr->getSuccessor(0)) && 308 L->contains(TheBr->getSuccessor(1)))) 309 return; 310 311 312 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 313 // transform it. 314 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 315 int64_t ExitValue; 316 if (ExitValueVal == 0 || 317 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 318 return; 319 320 // Find new predicate for integer comparison. 321 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 322 switch (Compare->getPredicate()) { 323 default: return; // Unknown comparison. 324 case CmpInst::FCMP_OEQ: 325 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 326 case CmpInst::FCMP_ONE: 327 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 328 case CmpInst::FCMP_OGT: 329 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 330 case CmpInst::FCMP_OGE: 331 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 332 case CmpInst::FCMP_OLT: 333 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 334 case CmpInst::FCMP_OLE: 335 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 336 } 337 338 // We convert the floating point induction variable to a signed i32 value if 339 // we can. This is only safe if the comparison will not overflow in a way 340 // that won't be trapped by the integer equivalent operations. Check for this 341 // now. 342 // TODO: We could use i64 if it is native and the range requires it. 343 344 // The start/stride/exit values must all fit in signed i32. 345 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 346 return; 347 348 // If not actually striding (add x, 0.0), avoid touching the code. 349 if (IncValue == 0) 350 return; 351 352 // Positive and negative strides have different safety conditions. 353 if (IncValue > 0) { 354 // If we have a positive stride, we require the init to be less than the 355 // exit value. 356 if (InitValue >= ExitValue) 357 return; 358 359 uint32_t Range = uint32_t(ExitValue-InitValue); 360 // Check for infinite loop, either: 361 // while (i <= Exit) or until (i > Exit) 362 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 363 if (++Range == 0) return; // Range overflows. 364 } 365 366 unsigned Leftover = Range % uint32_t(IncValue); 367 368 // If this is an equality comparison, we require that the strided value 369 // exactly land on the exit value, otherwise the IV condition will wrap 370 // around and do things the fp IV wouldn't. 371 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 372 Leftover != 0) 373 return; 374 375 // If the stride would wrap around the i32 before exiting, we can't 376 // transform the IV. 377 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 378 return; 379 380 } else { 381 // If we have a negative stride, we require the init to be greater than the 382 // exit value. 383 if (InitValue <= ExitValue) 384 return; 385 386 uint32_t Range = uint32_t(InitValue-ExitValue); 387 // Check for infinite loop, either: 388 // while (i >= Exit) or until (i < Exit) 389 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 390 if (++Range == 0) return; // Range overflows. 391 } 392 393 unsigned Leftover = Range % uint32_t(-IncValue); 394 395 // If this is an equality comparison, we require that the strided value 396 // exactly land on the exit value, otherwise the IV condition will wrap 397 // around and do things the fp IV wouldn't. 398 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 399 Leftover != 0) 400 return; 401 402 // If the stride would wrap around the i32 before exiting, we can't 403 // transform the IV. 404 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 405 return; 406 } 407 408 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 409 410 // Insert new integer induction variable. 411 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 412 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 413 PN->getIncomingBlock(IncomingEdge)); 414 415 Value *NewAdd = 416 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 417 Incr->getName()+".int", Incr); 418 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 419 420 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 421 ConstantInt::get(Int32Ty, ExitValue), 422 Compare->getName()); 423 424 // In the following deletions, PN may become dead and may be deleted. 425 // Use a WeakVH to observe whether this happens. 426 WeakVH WeakPH = PN; 427 428 // Delete the old floating point exit comparison. The branch starts using the 429 // new comparison. 430 NewCompare->takeName(Compare); 431 Compare->replaceAllUsesWith(NewCompare); 432 RecursivelyDeleteTriviallyDeadInstructions(Compare); 433 434 // Delete the old floating point increment. 435 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 436 RecursivelyDeleteTriviallyDeadInstructions(Incr); 437 438 // If the FP induction variable still has uses, this is because something else 439 // in the loop uses its value. In order to canonicalize the induction 440 // variable, we chose to eliminate the IV and rewrite it in terms of an 441 // int->fp cast. 442 // 443 // We give preference to sitofp over uitofp because it is faster on most 444 // platforms. 445 if (WeakPH) { 446 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 447 PN->getParent()->getFirstInsertionPt()); 448 PN->replaceAllUsesWith(Conv); 449 RecursivelyDeleteTriviallyDeadInstructions(PN); 450 } 451 452 // Add a new IVUsers entry for the newly-created integer PHI. 453 if (IU) 454 IU->AddUsersIfInteresting(NewPHI); 455 456 Changed = true; 457 } 458 459 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 460 // First step. Check to see if there are any floating-point recurrences. 461 // If there are, change them into integer recurrences, permitting analysis by 462 // the SCEV routines. 463 // 464 BasicBlock *Header = L->getHeader(); 465 466 SmallVector<WeakVH, 8> PHIs; 467 for (BasicBlock::iterator I = Header->begin(); 468 PHINode *PN = dyn_cast<PHINode>(I); ++I) 469 PHIs.push_back(PN); 470 471 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 472 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 473 HandleFloatingPointIV(L, PN); 474 475 // If the loop previously had floating-point IV, ScalarEvolution 476 // may not have been able to compute a trip count. Now that we've done some 477 // re-writing, the trip count may be computable. 478 if (Changed) 479 SE->forgetLoop(L); 480 } 481 482 //===----------------------------------------------------------------------===// 483 // RewriteLoopExitValues - Optimize IV users outside the loop. 484 // As a side effect, reduces the amount of IV processing within the loop. 485 //===----------------------------------------------------------------------===// 486 487 /// RewriteLoopExitValues - Check to see if this loop has a computable 488 /// loop-invariant execution count. If so, this means that we can compute the 489 /// final value of any expressions that are recurrent in the loop, and 490 /// substitute the exit values from the loop into any instructions outside of 491 /// the loop that use the final values of the current expressions. 492 /// 493 /// This is mostly redundant with the regular IndVarSimplify activities that 494 /// happen later, except that it's more powerful in some cases, because it's 495 /// able to brute-force evaluate arbitrary instructions as long as they have 496 /// constant operands at the beginning of the loop. 497 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 498 // Verify the input to the pass in already in LCSSA form. 499 assert(L->isLCSSAForm(*DT)); 500 501 SmallVector<BasicBlock*, 8> ExitBlocks; 502 L->getUniqueExitBlocks(ExitBlocks); 503 504 // Find all values that are computed inside the loop, but used outside of it. 505 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 506 // the exit blocks of the loop to find them. 507 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 508 BasicBlock *ExitBB = ExitBlocks[i]; 509 510 // If there are no PHI nodes in this exit block, then no values defined 511 // inside the loop are used on this path, skip it. 512 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 513 if (!PN) continue; 514 515 unsigned NumPreds = PN->getNumIncomingValues(); 516 517 // Iterate over all of the PHI nodes. 518 BasicBlock::iterator BBI = ExitBB->begin(); 519 while ((PN = dyn_cast<PHINode>(BBI++))) { 520 if (PN->use_empty()) 521 continue; // dead use, don't replace it 522 523 // SCEV only supports integer expressions for now. 524 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 525 continue; 526 527 // It's necessary to tell ScalarEvolution about this explicitly so that 528 // it can walk the def-use list and forget all SCEVs, as it may not be 529 // watching the PHI itself. Once the new exit value is in place, there 530 // may not be a def-use connection between the loop and every instruction 531 // which got a SCEVAddRecExpr for that loop. 532 SE->forgetValue(PN); 533 534 // Iterate over all of the values in all the PHI nodes. 535 for (unsigned i = 0; i != NumPreds; ++i) { 536 // If the value being merged in is not integer or is not defined 537 // in the loop, skip it. 538 Value *InVal = PN->getIncomingValue(i); 539 if (!isa<Instruction>(InVal)) 540 continue; 541 542 // If this pred is for a subloop, not L itself, skip it. 543 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 544 continue; // The Block is in a subloop, skip it. 545 546 // Check that InVal is defined in the loop. 547 Instruction *Inst = cast<Instruction>(InVal); 548 if (!L->contains(Inst)) 549 continue; 550 551 // Okay, this instruction has a user outside of the current loop 552 // and varies predictably *inside* the loop. Evaluate the value it 553 // contains when the loop exits, if possible. 554 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 555 if (!SE->isLoopInvariant(ExitValue, L)) 556 continue; 557 558 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 559 560 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 561 << " LoopVal = " << *Inst << "\n"); 562 563 if (!isValidRewrite(Inst, ExitVal)) { 564 DeadInsts.push_back(ExitVal); 565 continue; 566 } 567 Changed = true; 568 ++NumReplaced; 569 570 PN->setIncomingValue(i, ExitVal); 571 572 // If this instruction is dead now, delete it. 573 RecursivelyDeleteTriviallyDeadInstructions(Inst); 574 575 if (NumPreds == 1) { 576 // Completely replace a single-pred PHI. This is safe, because the 577 // NewVal won't be variant in the loop, so we don't need an LCSSA phi 578 // node anymore. 579 PN->replaceAllUsesWith(ExitVal); 580 RecursivelyDeleteTriviallyDeadInstructions(PN); 581 } 582 } 583 if (NumPreds != 1) { 584 // Clone the PHI and delete the original one. This lets IVUsers and 585 // any other maps purge the original user from their records. 586 PHINode *NewPN = cast<PHINode>(PN->clone()); 587 NewPN->takeName(PN); 588 NewPN->insertBefore(PN); 589 PN->replaceAllUsesWith(NewPN); 590 PN->eraseFromParent(); 591 } 592 } 593 } 594 595 // The insertion point instruction may have been deleted; clear it out 596 // so that the rewriter doesn't trip over it later. 597 Rewriter.clearInsertPoint(); 598 } 599 600 //===----------------------------------------------------------------------===// 601 // Rewrite IV users based on a canonical IV. 602 // Only for use with -enable-iv-rewrite. 603 //===----------------------------------------------------------------------===// 604 605 /// FIXME: It is an extremely bad idea to indvar substitute anything more 606 /// complex than affine induction variables. Doing so will put expensive 607 /// polynomial evaluations inside of the loop, and the str reduction pass 608 /// currently can only reduce affine polynomials. For now just disable 609 /// indvar subst on anything more complex than an affine addrec, unless 610 /// it can be expanded to a trivial value. 611 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) { 612 // Loop-invariant values are safe. 613 if (SE->isLoopInvariant(S, L)) return true; 614 615 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how 616 // to transform them into efficient code. 617 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 618 return AR->isAffine(); 619 620 // An add is safe it all its operands are safe. 621 if (const SCEVCommutativeExpr *Commutative 622 = dyn_cast<SCEVCommutativeExpr>(S)) { 623 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(), 624 E = Commutative->op_end(); I != E; ++I) 625 if (!isSafe(*I, L, SE)) return false; 626 return true; 627 } 628 629 // A cast is safe if its operand is. 630 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 631 return isSafe(C->getOperand(), L, SE); 632 633 // A udiv is safe if its operands are. 634 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S)) 635 return isSafe(UD->getLHS(), L, SE) && 636 isSafe(UD->getRHS(), L, SE); 637 638 // SCEVUnknown is always safe. 639 if (isa<SCEVUnknown>(S)) 640 return true; 641 642 // Nothing else is safe. 643 return false; 644 } 645 646 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) { 647 // Rewrite all induction variable expressions in terms of the canonical 648 // induction variable. 649 // 650 // If there were induction variables of other sizes or offsets, manually 651 // add the offsets to the primary induction variable and cast, avoiding 652 // the need for the code evaluation methods to insert induction variables 653 // of different sizes. 654 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) { 655 Value *Op = UI->getOperandValToReplace(); 656 Type *UseTy = Op->getType(); 657 Instruction *User = UI->getUser(); 658 659 // Compute the final addrec to expand into code. 660 const SCEV *AR = IU->getReplacementExpr(*UI); 661 662 // Evaluate the expression out of the loop, if possible. 663 if (!L->contains(UI->getUser())) { 664 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop()); 665 if (SE->isLoopInvariant(ExitVal, L)) 666 AR = ExitVal; 667 } 668 669 // FIXME: It is an extremely bad idea to indvar substitute anything more 670 // complex than affine induction variables. Doing so will put expensive 671 // polynomial evaluations inside of the loop, and the str reduction pass 672 // currently can only reduce affine polynomials. For now just disable 673 // indvar subst on anything more complex than an affine addrec, unless 674 // it can be expanded to a trivial value. 675 if (!isSafe(AR, L, SE)) 676 continue; 677 678 // Determine the insertion point for this user. By default, insert 679 // immediately before the user. The SCEVExpander class will automatically 680 // hoist loop invariants out of the loop. For PHI nodes, there may be 681 // multiple uses, so compute the nearest common dominator for the 682 // incoming blocks. 683 Instruction *InsertPt = getInsertPointForUses(User, Op, DT); 684 685 // Now expand it into actual Instructions and patch it into place. 686 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt); 687 688 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n' 689 << " into = " << *NewVal << "\n"); 690 691 if (!isValidRewrite(Op, NewVal)) { 692 DeadInsts.push_back(NewVal); 693 continue; 694 } 695 // Inform ScalarEvolution that this value is changing. The change doesn't 696 // affect its value, but it does potentially affect which use lists the 697 // value will be on after the replacement, which affects ScalarEvolution's 698 // ability to walk use lists and drop dangling pointers when a value is 699 // deleted. 700 SE->forgetValue(User); 701 702 // Patch the new value into place. 703 if (Op->hasName()) 704 NewVal->takeName(Op); 705 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal)) 706 NewValI->setDebugLoc(User->getDebugLoc()); 707 User->replaceUsesOfWith(Op, NewVal); 708 UI->setOperandValToReplace(NewVal); 709 710 ++NumRemoved; 711 Changed = true; 712 713 // The old value may be dead now. 714 DeadInsts.push_back(Op); 715 } 716 } 717 718 //===----------------------------------------------------------------------===// 719 // IV Widening - Extend the width of an IV to cover its widest uses. 720 //===----------------------------------------------------------------------===// 721 722 namespace { 723 // Collect information about induction variables that are used by sign/zero 724 // extend operations. This information is recorded by CollectExtend and 725 // provides the input to WidenIV. 726 struct WideIVInfo { 727 PHINode *NarrowIV; 728 Type *WidestNativeType; // Widest integer type created [sz]ext 729 bool IsSigned; // Was an sext user seen before a zext? 730 731 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {} 732 }; 733 734 class WideIVVisitor : public IVVisitor { 735 ScalarEvolution *SE; 736 const TargetData *TD; 737 738 public: 739 WideIVInfo WI; 740 741 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV, 742 const TargetData *TData) : 743 SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; } 744 745 // Implement the interface used by simplifyUsersOfIV. 746 virtual void visitCast(CastInst *Cast); 747 }; 748 } 749 750 /// visitCast - Update information about the induction variable that is 751 /// extended by this sign or zero extend operation. This is used to determine 752 /// the final width of the IV before actually widening it. 753 void WideIVVisitor::visitCast(CastInst *Cast) { 754 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 755 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 756 return; 757 758 Type *Ty = Cast->getType(); 759 uint64_t Width = SE->getTypeSizeInBits(Ty); 760 if (TD && !TD->isLegalInteger(Width)) 761 return; 762 763 if (!WI.WidestNativeType) { 764 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 765 WI.IsSigned = IsSigned; 766 return; 767 } 768 769 // We extend the IV to satisfy the sign of its first user, arbitrarily. 770 if (WI.IsSigned != IsSigned) 771 return; 772 773 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 774 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 775 } 776 777 namespace { 778 779 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 780 /// WideIV that computes the same value as the Narrow IV def. This avoids 781 /// caching Use* pointers. 782 struct NarrowIVDefUse { 783 Instruction *NarrowDef; 784 Instruction *NarrowUse; 785 Instruction *WideDef; 786 787 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {} 788 789 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 790 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 791 }; 792 793 /// WidenIV - The goal of this transform is to remove sign and zero extends 794 /// without creating any new induction variables. To do this, it creates a new 795 /// phi of the wider type and redirects all users, either removing extends or 796 /// inserting truncs whenever we stop propagating the type. 797 /// 798 class WidenIV { 799 // Parameters 800 PHINode *OrigPhi; 801 Type *WideType; 802 bool IsSigned; 803 804 // Context 805 LoopInfo *LI; 806 Loop *L; 807 ScalarEvolution *SE; 808 DominatorTree *DT; 809 810 // Result 811 PHINode *WidePhi; 812 Instruction *WideInc; 813 const SCEV *WideIncExpr; 814 SmallVectorImpl<WeakVH> &DeadInsts; 815 816 SmallPtrSet<Instruction*,16> Widened; 817 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 818 819 public: 820 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 821 ScalarEvolution *SEv, DominatorTree *DTree, 822 SmallVectorImpl<WeakVH> &DI) : 823 OrigPhi(WI.NarrowIV), 824 WideType(WI.WidestNativeType), 825 IsSigned(WI.IsSigned), 826 LI(LInfo), 827 L(LI->getLoopFor(OrigPhi->getParent())), 828 SE(SEv), 829 DT(DTree), 830 WidePhi(0), 831 WideInc(0), 832 WideIncExpr(0), 833 DeadInsts(DI) { 834 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 835 } 836 837 PHINode *CreateWideIV(SCEVExpander &Rewriter); 838 839 protected: 840 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 841 Instruction *Use); 842 843 Instruction *CloneIVUser(NarrowIVDefUse DU); 844 845 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 846 847 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 848 849 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 850 851 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 852 }; 853 } // anonymous namespace 854 855 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 856 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 857 /// gratuitous for this purpose. 858 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 859 Instruction *Inst = dyn_cast<Instruction>(V); 860 if (!Inst) 861 return true; 862 863 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 864 } 865 866 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 867 Instruction *Use) { 868 // Set the debug location and conservative insertion point. 869 IRBuilder<> Builder(Use); 870 // Hoist the insertion point into loop preheaders as far as possible. 871 for (const Loop *L = LI->getLoopFor(Use->getParent()); 872 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 873 L = L->getParentLoop()) 874 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 875 876 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 877 Builder.CreateZExt(NarrowOper, WideType); 878 } 879 880 /// CloneIVUser - Instantiate a wide operation to replace a narrow 881 /// operation. This only needs to handle operations that can evaluation to 882 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 883 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 884 unsigned Opcode = DU.NarrowUse->getOpcode(); 885 switch (Opcode) { 886 default: 887 return 0; 888 case Instruction::Add: 889 case Instruction::Mul: 890 case Instruction::UDiv: 891 case Instruction::Sub: 892 case Instruction::And: 893 case Instruction::Or: 894 case Instruction::Xor: 895 case Instruction::Shl: 896 case Instruction::LShr: 897 case Instruction::AShr: 898 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 899 900 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 901 // anything about the narrow operand yet so must insert a [sz]ext. It is 902 // probably loop invariant and will be folded or hoisted. If it actually 903 // comes from a widened IV, it should be removed during a future call to 904 // WidenIVUse. 905 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 906 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 907 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 908 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 909 910 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 911 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 912 LHS, RHS, 913 NarrowBO->getName()); 914 IRBuilder<> Builder(DU.NarrowUse); 915 Builder.Insert(WideBO); 916 if (const OverflowingBinaryOperator *OBO = 917 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 918 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 919 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 920 } 921 return WideBO; 922 } 923 } 924 925 /// No-wrap operations can transfer sign extension of their result to their 926 /// operands. Generate the SCEV value for the widened operation without 927 /// actually modifying the IR yet. If the expression after extending the 928 /// operands is an AddRec for this loop, return it. 929 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 930 // Handle the common case of add<nsw/nuw> 931 if (DU.NarrowUse->getOpcode() != Instruction::Add) 932 return 0; 933 934 // One operand (NarrowDef) has already been extended to WideDef. Now determine 935 // if extending the other will lead to a recurrence. 936 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 937 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 938 939 const SCEV *ExtendOperExpr = 0; 940 const OverflowingBinaryOperator *OBO = 941 cast<OverflowingBinaryOperator>(DU.NarrowUse); 942 if (IsSigned && OBO->hasNoSignedWrap()) 943 ExtendOperExpr = SE->getSignExtendExpr( 944 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 945 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 946 ExtendOperExpr = SE->getZeroExtendExpr( 947 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 948 else 949 return 0; 950 951 // When creating this AddExpr, don't apply the current operations NSW or NUW 952 // flags. This instruction may be guarded by control flow that the no-wrap 953 // behavior depends on. Non-control-equivalent instructions can be mapped to 954 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 955 // semantics to those operations. 956 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>( 957 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr)); 958 959 if (!AddRec || AddRec->getLoop() != L) 960 return 0; 961 return AddRec; 962 } 963 964 /// GetWideRecurrence - Is this instruction potentially interesting from 965 /// IVUsers' perspective after widening it's type? In other words, can the 966 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 967 /// recurrence on the same loop. If so, return the sign or zero extended 968 /// recurrence. Otherwise return NULL. 969 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 970 if (!SE->isSCEVable(NarrowUse->getType())) 971 return 0; 972 973 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 974 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 975 >= SE->getTypeSizeInBits(WideType)) { 976 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 977 // index. So don't follow this use. 978 return 0; 979 } 980 981 const SCEV *WideExpr = IsSigned ? 982 SE->getSignExtendExpr(NarrowExpr, WideType) : 983 SE->getZeroExtendExpr(NarrowExpr, WideType); 984 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 985 if (!AddRec || AddRec->getLoop() != L) 986 return 0; 987 return AddRec; 988 } 989 990 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 991 /// widened. If so, return the wide clone of the user. 992 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 993 994 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 995 if (isa<PHINode>(DU.NarrowUse) && 996 LI->getLoopFor(DU.NarrowUse->getParent()) != L) 997 return 0; 998 999 // Our raison d'etre! Eliminate sign and zero extension. 1000 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1001 Value *NewDef = DU.WideDef; 1002 if (DU.NarrowUse->getType() != WideType) { 1003 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1004 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1005 if (CastWidth < IVWidth) { 1006 // The cast isn't as wide as the IV, so insert a Trunc. 1007 IRBuilder<> Builder(DU.NarrowUse); 1008 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1009 } 1010 else { 1011 // A wider extend was hidden behind a narrower one. This may induce 1012 // another round of IV widening in which the intermediate IV becomes 1013 // dead. It should be very rare. 1014 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1015 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1016 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1017 NewDef = DU.NarrowUse; 1018 } 1019 } 1020 if (NewDef != DU.NarrowUse) { 1021 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1022 << " replaced by " << *DU.WideDef << "\n"); 1023 ++NumElimExt; 1024 DU.NarrowUse->replaceAllUsesWith(NewDef); 1025 DeadInsts.push_back(DU.NarrowUse); 1026 } 1027 // Now that the extend is gone, we want to expose it's uses for potential 1028 // further simplification. We don't need to directly inform SimplifyIVUsers 1029 // of the new users, because their parent IV will be processed later as a 1030 // new loop phi. If we preserved IVUsers analysis, we would also want to 1031 // push the uses of WideDef here. 1032 1033 // No further widening is needed. The deceased [sz]ext had done it for us. 1034 return 0; 1035 } 1036 1037 // Does this user itself evaluate to a recurrence after widening? 1038 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 1039 if (!WideAddRec) { 1040 WideAddRec = GetExtendedOperandRecurrence(DU); 1041 } 1042 if (!WideAddRec) { 1043 // This user does not evaluate to a recurence after widening, so don't 1044 // follow it. Instead insert a Trunc to kill off the original use, 1045 // eventually isolating the original narrow IV so it can be removed. 1046 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1047 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1048 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1049 return 0; 1050 } 1051 // Assume block terminators cannot evaluate to a recurrence. We can't to 1052 // insert a Trunc after a terminator if there happens to be a critical edge. 1053 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1054 "SCEV is not expected to evaluate a block terminator"); 1055 1056 // Reuse the IV increment that SCEVExpander created as long as it dominates 1057 // NarrowUse. 1058 Instruction *WideUse = 0; 1059 if (WideAddRec == WideIncExpr 1060 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1061 WideUse = WideInc; 1062 else { 1063 WideUse = CloneIVUser(DU); 1064 if (!WideUse) 1065 return 0; 1066 } 1067 // Evaluation of WideAddRec ensured that the narrow expression could be 1068 // extended outside the loop without overflow. This suggests that the wide use 1069 // evaluates to the same expression as the extended narrow use, but doesn't 1070 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1071 // where it fails, we simply throw away the newly created wide use. 1072 if (WideAddRec != SE->getSCEV(WideUse)) { 1073 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1074 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1075 DeadInsts.push_back(WideUse); 1076 return 0; 1077 } 1078 1079 // Returning WideUse pushes it on the worklist. 1080 return WideUse; 1081 } 1082 1083 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1084 /// 1085 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1086 for (Value::use_iterator UI = NarrowDef->use_begin(), 1087 UE = NarrowDef->use_end(); UI != UE; ++UI) { 1088 Instruction *NarrowUse = cast<Instruction>(*UI); 1089 1090 // Handle data flow merges and bizarre phi cycles. 1091 if (!Widened.insert(NarrowUse)) 1092 continue; 1093 1094 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef)); 1095 } 1096 } 1097 1098 /// CreateWideIV - Process a single induction variable. First use the 1099 /// SCEVExpander to create a wide induction variable that evaluates to the same 1100 /// recurrence as the original narrow IV. Then use a worklist to forward 1101 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1102 /// interesting IV users, the narrow IV will be isolated for removal by 1103 /// DeleteDeadPHIs. 1104 /// 1105 /// It would be simpler to delete uses as they are processed, but we must avoid 1106 /// invalidating SCEV expressions. 1107 /// 1108 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1109 // Is this phi an induction variable? 1110 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1111 if (!AddRec) 1112 return NULL; 1113 1114 // Widen the induction variable expression. 1115 const SCEV *WideIVExpr = IsSigned ? 1116 SE->getSignExtendExpr(AddRec, WideType) : 1117 SE->getZeroExtendExpr(AddRec, WideType); 1118 1119 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1120 "Expect the new IV expression to preserve its type"); 1121 1122 // Can the IV be extended outside the loop without overflow? 1123 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1124 if (!AddRec || AddRec->getLoop() != L) 1125 return NULL; 1126 1127 // An AddRec must have loop-invariant operands. Since this AddRec is 1128 // materialized by a loop header phi, the expression cannot have any post-loop 1129 // operands, so they must dominate the loop header. 1130 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1131 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1132 && "Loop header phi recurrence inputs do not dominate the loop"); 1133 1134 // The rewriter provides a value for the desired IV expression. This may 1135 // either find an existing phi or materialize a new one. Either way, we 1136 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1137 // of the phi-SCC dominates the loop entry. 1138 Instruction *InsertPt = L->getHeader()->begin(); 1139 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1140 1141 // Remembering the WideIV increment generated by SCEVExpander allows 1142 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1143 // employ a general reuse mechanism because the call above is the only call to 1144 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1145 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1146 WideInc = 1147 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1148 WideIncExpr = SE->getSCEV(WideInc); 1149 } 1150 1151 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1152 ++NumWidened; 1153 1154 // Traverse the def-use chain using a worklist starting at the original IV. 1155 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1156 1157 Widened.insert(OrigPhi); 1158 pushNarrowIVUsers(OrigPhi, WidePhi); 1159 1160 while (!NarrowIVUsers.empty()) { 1161 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1162 1163 // Process a def-use edge. This may replace the use, so don't hold a 1164 // use_iterator across it. 1165 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1166 1167 // Follow all def-use edges from the previous narrow use. 1168 if (WideUse) 1169 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1170 1171 // WidenIVUse may have removed the def-use edge. 1172 if (DU.NarrowDef->use_empty()) 1173 DeadInsts.push_back(DU.NarrowDef); 1174 } 1175 return WidePhi; 1176 } 1177 1178 //===----------------------------------------------------------------------===// 1179 // Simplification of IV users based on SCEV evaluation. 1180 //===----------------------------------------------------------------------===// 1181 1182 1183 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1184 /// users. Each successive simplification may push more users which may 1185 /// themselves be candidates for simplification. 1186 /// 1187 /// Sign/Zero extend elimination is interleaved with IV simplification. 1188 /// 1189 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1190 SCEVExpander &Rewriter, 1191 LPPassManager &LPM) { 1192 SmallVector<WideIVInfo, 8> WideIVs; 1193 1194 SmallVector<PHINode*, 8> LoopPhis; 1195 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1196 LoopPhis.push_back(cast<PHINode>(I)); 1197 } 1198 // Each round of simplification iterates through the SimplifyIVUsers worklist 1199 // for all current phis, then determines whether any IVs can be 1200 // widened. Widening adds new phis to LoopPhis, inducing another round of 1201 // simplification on the wide IVs. 1202 while (!LoopPhis.empty()) { 1203 // Evaluate as many IV expressions as possible before widening any IVs. This 1204 // forces SCEV to set no-wrap flags before evaluating sign/zero 1205 // extension. The first time SCEV attempts to normalize sign/zero extension, 1206 // the result becomes final. So for the most predictable results, we delay 1207 // evaluation of sign/zero extend evaluation until needed, and avoid running 1208 // other SCEV based analysis prior to SimplifyAndExtend. 1209 do { 1210 PHINode *CurrIV = LoopPhis.pop_back_val(); 1211 1212 // Information about sign/zero extensions of CurrIV. 1213 WideIVVisitor WIV(CurrIV, SE, TD); 1214 1215 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV); 1216 1217 if (WIV.WI.WidestNativeType) { 1218 WideIVs.push_back(WIV.WI); 1219 } 1220 } while(!LoopPhis.empty()); 1221 1222 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1223 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1224 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1225 Changed = true; 1226 LoopPhis.push_back(WidePhi); 1227 } 1228 } 1229 } 1230 } 1231 1232 //===----------------------------------------------------------------------===// 1233 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1234 //===----------------------------------------------------------------------===// 1235 1236 /// Check for expressions that ScalarEvolution generates to compute 1237 /// BackedgeTakenInfo. If these expressions have not been reduced, then 1238 /// expanding them may incur additional cost (albeit in the loop preheader). 1239 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, 1240 SmallPtrSet<const SCEV*, 8> &Processed, 1241 ScalarEvolution *SE) { 1242 if (!Processed.insert(S)) 1243 return false; 1244 1245 // If the backedge-taken count is a UDiv, it's very likely a UDiv that 1246 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a 1247 // precise expression, rather than a UDiv from the user's code. If we can't 1248 // find a UDiv in the code with some simple searching, assume the former and 1249 // forego rewriting the loop. 1250 if (isa<SCEVUDivExpr>(S)) { 1251 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 1252 if (!OrigCond) return true; 1253 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 1254 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 1255 if (R != S) { 1256 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 1257 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 1258 if (L != S) 1259 return true; 1260 } 1261 } 1262 1263 if (EnableIVRewrite) 1264 return false; 1265 1266 // Recurse past add expressions, which commonly occur in the 1267 // BackedgeTakenCount. They may already exist in program code, and if not, 1268 // they are not too expensive rematerialize. 1269 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1270 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1271 I != E; ++I) { 1272 if (isHighCostExpansion(*I, BI, Processed, SE)) 1273 return true; 1274 } 1275 return false; 1276 } 1277 1278 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1279 // the exit condition. 1280 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1281 return true; 1282 1283 // If we haven't recognized an expensive SCEV pattern, assume it's an 1284 // expression produced by program code. 1285 return false; 1286 } 1287 1288 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1289 /// count expression can be safely and cheaply expanded into an instruction 1290 /// sequence that can be used by LinearFunctionTestReplace. 1291 /// 1292 /// TODO: This fails for pointer-type loop counters with greater than one byte 1293 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1294 /// we could skip this check in the case that the LFTR loop counter (chosen by 1295 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1296 /// the loop test to an inequality test by checking the target data's alignment 1297 /// of element types (given that the initial pointer value originates from or is 1298 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1299 /// However, we don't yet have a strong motivation for converting loop tests 1300 /// into inequality tests. 1301 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { 1302 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1303 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1304 BackedgeTakenCount->isZero()) 1305 return false; 1306 1307 if (!L->getExitingBlock()) 1308 return false; 1309 1310 // Can't rewrite non-branch yet. 1311 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1312 if (!BI) 1313 return false; 1314 1315 SmallPtrSet<const SCEV*, 8> Processed; 1316 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE)) 1317 return false; 1318 1319 return true; 1320 } 1321 1322 /// getBackedgeIVType - Get the widest type used by the loop test after peeking 1323 /// through Truncs. 1324 /// 1325 /// TODO: Unnecessary when ForceLFTR is removed. 1326 static Type *getBackedgeIVType(Loop *L) { 1327 if (!L->getExitingBlock()) 1328 return 0; 1329 1330 // Can't rewrite non-branch yet. 1331 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1332 if (!BI) 1333 return 0; 1334 1335 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1336 if (!Cond) 1337 return 0; 1338 1339 Type *Ty = 0; 1340 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end(); 1341 OI != OE; ++OI) { 1342 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types"); 1343 TruncInst *Trunc = dyn_cast<TruncInst>(*OI); 1344 if (!Trunc) 1345 continue; 1346 1347 return Trunc->getSrcTy(); 1348 } 1349 return Ty; 1350 } 1351 1352 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1353 /// invariant value to the phi. 1354 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1355 Instruction *IncI = dyn_cast<Instruction>(IncV); 1356 if (!IncI) 1357 return 0; 1358 1359 switch (IncI->getOpcode()) { 1360 case Instruction::Add: 1361 case Instruction::Sub: 1362 break; 1363 case Instruction::GetElementPtr: 1364 // An IV counter must preserve its type. 1365 if (IncI->getNumOperands() == 2) 1366 break; 1367 default: 1368 return 0; 1369 } 1370 1371 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1372 if (Phi && Phi->getParent() == L->getHeader()) { 1373 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1374 return Phi; 1375 return 0; 1376 } 1377 if (IncI->getOpcode() == Instruction::GetElementPtr) 1378 return 0; 1379 1380 // Allow add/sub to be commuted. 1381 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1382 if (Phi && Phi->getParent() == L->getHeader()) { 1383 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1384 return Phi; 1385 } 1386 return 0; 1387 } 1388 1389 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1390 /// that the current exit test is already sufficiently canonical. 1391 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1392 assert(L->getExitingBlock() && "expected loop exit"); 1393 1394 BasicBlock *LatchBlock = L->getLoopLatch(); 1395 // Don't bother with LFTR if the loop is not properly simplified. 1396 if (!LatchBlock) 1397 return false; 1398 1399 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1400 assert(BI && "expected exit branch"); 1401 1402 // Do LFTR to simplify the exit condition to an ICMP. 1403 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1404 if (!Cond) 1405 return true; 1406 1407 // Do LFTR to simplify the exit ICMP to EQ/NE 1408 ICmpInst::Predicate Pred = Cond->getPredicate(); 1409 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1410 return true; 1411 1412 // Look for a loop invariant RHS 1413 Value *LHS = Cond->getOperand(0); 1414 Value *RHS = Cond->getOperand(1); 1415 if (!isLoopInvariant(RHS, L, DT)) { 1416 if (!isLoopInvariant(LHS, L, DT)) 1417 return true; 1418 std::swap(LHS, RHS); 1419 } 1420 // Look for a simple IV counter LHS 1421 PHINode *Phi = dyn_cast<PHINode>(LHS); 1422 if (!Phi) 1423 Phi = getLoopPhiForCounter(LHS, L, DT); 1424 1425 if (!Phi) 1426 return true; 1427 1428 // Do LFTR if the exit condition's IV is *not* a simple counter. 1429 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch()); 1430 return Phi != getLoopPhiForCounter(IncV, L, DT); 1431 } 1432 1433 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1434 /// be rewritten) loop exit test. 1435 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1436 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1437 Value *IncV = Phi->getIncomingValue(LatchIdx); 1438 1439 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end(); 1440 UI != UE; ++UI) { 1441 if (*UI != Cond && *UI != IncV) return false; 1442 } 1443 1444 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end(); 1445 UI != UE; ++UI) { 1446 if (*UI != Cond && *UI != Phi) return false; 1447 } 1448 return true; 1449 } 1450 1451 /// FindLoopCounter - Find an affine IV in canonical form. 1452 /// 1453 /// BECount may be an i8* pointer type. The pointer difference is already 1454 /// valid count without scaling the address stride, so it remains a pointer 1455 /// expression as far as SCEV is concerned. 1456 /// 1457 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1458 /// 1459 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1460 /// This is difficult in general for SCEV because of potential overflow. But we 1461 /// could at least handle constant BECounts. 1462 static PHINode * 1463 FindLoopCounter(Loop *L, const SCEV *BECount, 1464 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) { 1465 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1466 1467 Value *Cond = 1468 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1469 1470 // Loop over all of the PHI nodes, looking for a simple counter. 1471 PHINode *BestPhi = 0; 1472 const SCEV *BestInit = 0; 1473 BasicBlock *LatchBlock = L->getLoopLatch(); 1474 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1475 1476 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1477 PHINode *Phi = cast<PHINode>(I); 1478 if (!SE->isSCEVable(Phi->getType())) 1479 continue; 1480 1481 // Avoid comparing an integer IV against a pointer Limit. 1482 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1483 continue; 1484 1485 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1486 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1487 continue; 1488 1489 // AR may be a pointer type, while BECount is an integer type. 1490 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1491 // AR may not be a narrower type, or we may never exit. 1492 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1493 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth))) 1494 continue; 1495 1496 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1497 if (!Step || !Step->isOne()) 1498 continue; 1499 1500 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1501 Value *IncV = Phi->getIncomingValue(LatchIdx); 1502 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1503 continue; 1504 1505 const SCEV *Init = AR->getStart(); 1506 1507 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1508 // Don't force a live loop counter if another IV can be used. 1509 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1510 continue; 1511 1512 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1513 // also prefers integer to pointer IVs. 1514 if (BestInit->isZero() != Init->isZero()) { 1515 if (BestInit->isZero()) 1516 continue; 1517 } 1518 // If two IVs both count from zero or both count from nonzero then the 1519 // narrower is likely a dead phi that has been widened. Use the wider phi 1520 // to allow the other to be eliminated. 1521 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1522 continue; 1523 } 1524 BestPhi = Phi; 1525 BestInit = Init; 1526 } 1527 return BestPhi; 1528 } 1529 1530 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1531 /// holds the RHS of the new loop test. 1532 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1533 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1534 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1535 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1536 const SCEV *IVInit = AR->getStart(); 1537 1538 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1539 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1540 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1541 // the existing GEPs whenever possible. 1542 if (IndVar->getType()->isPointerTy() 1543 && !IVCount->getType()->isPointerTy()) { 1544 1545 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1546 const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy); 1547 1548 // Expand the code for the iteration count. 1549 assert(SE->isLoopInvariant(IVOffset, L) && 1550 "Computed iteration count is not loop invariant!"); 1551 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1552 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1553 1554 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1555 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1556 // We could handle pointer IVs other than i8*, but we need to compensate for 1557 // gep index scaling. See canExpandBackedgeTakenCount comments. 1558 assert(SE->getSizeOfExpr( 1559 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1560 && "unit stride pointer IV must be i8*"); 1561 1562 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1563 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit"); 1564 } 1565 else { 1566 // In any other case, convert both IVInit and IVCount to integers before 1567 // comparing. This may result in SCEV expension of pointers, but in practice 1568 // SCEV will fold the pointer arithmetic away as such: 1569 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1570 // 1571 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1572 // for simple memset-style loops; (3) IVInit is an integer and IVCount is a 1573 // pointer may occur when enable-iv-rewrite generates a canonical IV on top 1574 // of case #2. 1575 1576 const SCEV *IVLimit = 0; 1577 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1578 // For non-zero Start, compute IVCount here. 1579 if (AR->getStart()->isZero()) 1580 IVLimit = IVCount; 1581 else { 1582 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1583 const SCEV *IVInit = AR->getStart(); 1584 1585 // For integer IVs, truncate the IV before computing IVInit + BECount. 1586 if (SE->getTypeSizeInBits(IVInit->getType()) 1587 > SE->getTypeSizeInBits(IVCount->getType())) 1588 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1589 1590 IVLimit = SE->getAddExpr(IVInit, IVCount); 1591 } 1592 // Expand the code for the iteration count. 1593 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1594 IRBuilder<> Builder(BI); 1595 assert(SE->isLoopInvariant(IVLimit, L) && 1596 "Computed iteration count is not loop invariant!"); 1597 // Ensure that we generate the same type as IndVar, or a smaller integer 1598 // type. In the presence of null pointer values, we have an integer type 1599 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1600 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1601 IndVar->getType() : IVCount->getType(); 1602 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1603 } 1604 } 1605 1606 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1607 /// loop to be a canonical != comparison against the incremented loop induction 1608 /// variable. This pass is able to rewrite the exit tests of any loop where the 1609 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1610 /// is actually a much broader range than just linear tests. 1611 Value *IndVarSimplify:: 1612 LinearFunctionTestReplace(Loop *L, 1613 const SCEV *BackedgeTakenCount, 1614 PHINode *IndVar, 1615 SCEVExpander &Rewriter) { 1616 assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); 1617 1618 // LFTR can ignore IV overflow and truncate to the width of 1619 // BECount. This avoids materializing the add(zext(add)) expression. 1620 Type *CntTy = !EnableIVRewrite ? 1621 BackedgeTakenCount->getType() : IndVar->getType(); 1622 1623 const SCEV *IVCount = BackedgeTakenCount; 1624 1625 // If the exiting block is the same as the backedge block, we prefer to 1626 // compare against the post-incremented value, otherwise we must compare 1627 // against the preincremented value. 1628 Value *CmpIndVar; 1629 if (L->getExitingBlock() == L->getLoopLatch()) { 1630 // Add one to the "backedge-taken" count to get the trip count. 1631 // If this addition may overflow, we have to be more pessimistic and 1632 // cast the induction variable before doing the add. 1633 const SCEV *N = 1634 SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1)); 1635 if (CntTy == IVCount->getType()) 1636 IVCount = N; 1637 else { 1638 const SCEV *Zero = SE->getConstant(IVCount->getType(), 0); 1639 if ((isa<SCEVConstant>(N) && !N->isZero()) || 1640 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { 1641 // No overflow. Cast the sum. 1642 IVCount = SE->getTruncateOrZeroExtend(N, CntTy); 1643 } else { 1644 // Potential overflow. Cast before doing the add. 1645 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); 1646 IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1)); 1647 } 1648 } 1649 // The BackedgeTaken expression contains the number of times that the 1650 // backedge branches to the loop header. This is one less than the 1651 // number of times the loop executes, so use the incremented indvar. 1652 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1653 } else { 1654 // We must use the preincremented value... 1655 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); 1656 CmpIndVar = IndVar; 1657 } 1658 1659 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1660 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1661 && "genLoopLimit missed a cast"); 1662 1663 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1664 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1665 ICmpInst::Predicate P; 1666 if (L->contains(BI->getSuccessor(0))) 1667 P = ICmpInst::ICMP_NE; 1668 else 1669 P = ICmpInst::ICMP_EQ; 1670 1671 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1672 << " LHS:" << *CmpIndVar << '\n' 1673 << " op:\t" 1674 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1675 << " RHS:\t" << *ExitCnt << "\n" 1676 << " IVCount:\t" << *IVCount << "\n"); 1677 1678 IRBuilder<> Builder(BI); 1679 if (SE->getTypeSizeInBits(CmpIndVar->getType()) 1680 > SE->getTypeSizeInBits(ExitCnt->getType())) { 1681 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1682 "lftr.wideiv"); 1683 } 1684 1685 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1686 Value *OrigCond = BI->getCondition(); 1687 // It's tempting to use replaceAllUsesWith here to fully replace the old 1688 // comparison, but that's not immediately safe, since users of the old 1689 // comparison may not be dominated by the new comparison. Instead, just 1690 // update the branch to use the new comparison; in the common case this 1691 // will make old comparison dead. 1692 BI->setCondition(Cond); 1693 DeadInsts.push_back(OrigCond); 1694 1695 ++NumLFTR; 1696 Changed = true; 1697 return Cond; 1698 } 1699 1700 //===----------------------------------------------------------------------===// 1701 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1702 //===----------------------------------------------------------------------===// 1703 1704 /// If there's a single exit block, sink any loop-invariant values that 1705 /// were defined in the preheader but not used inside the loop into the 1706 /// exit block to reduce register pressure in the loop. 1707 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1708 BasicBlock *ExitBlock = L->getExitBlock(); 1709 if (!ExitBlock) return; 1710 1711 BasicBlock *Preheader = L->getLoopPreheader(); 1712 if (!Preheader) return; 1713 1714 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1715 BasicBlock::iterator I = Preheader->getTerminator(); 1716 while (I != Preheader->begin()) { 1717 --I; 1718 // New instructions were inserted at the end of the preheader. 1719 if (isa<PHINode>(I)) 1720 break; 1721 1722 // Don't move instructions which might have side effects, since the side 1723 // effects need to complete before instructions inside the loop. Also don't 1724 // move instructions which might read memory, since the loop may modify 1725 // memory. Note that it's okay if the instruction might have undefined 1726 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1727 // block. 1728 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1729 continue; 1730 1731 // Skip debug info intrinsics. 1732 if (isa<DbgInfoIntrinsic>(I)) 1733 continue; 1734 1735 // Skip landingpad instructions. 1736 if (isa<LandingPadInst>(I)) 1737 continue; 1738 1739 // Don't sink alloca: we never want to sink static alloca's out of the 1740 // entry block, and correctly sinking dynamic alloca's requires 1741 // checks for stacksave/stackrestore intrinsics. 1742 // FIXME: Refactor this check somehow? 1743 if (isa<AllocaInst>(I)) 1744 continue; 1745 1746 // Determine if there is a use in or before the loop (direct or 1747 // otherwise). 1748 bool UsedInLoop = false; 1749 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 1750 UI != UE; ++UI) { 1751 User *U = *UI; 1752 BasicBlock *UseBB = cast<Instruction>(U)->getParent(); 1753 if (PHINode *P = dyn_cast<PHINode>(U)) { 1754 unsigned i = 1755 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); 1756 UseBB = P->getIncomingBlock(i); 1757 } 1758 if (UseBB == Preheader || L->contains(UseBB)) { 1759 UsedInLoop = true; 1760 break; 1761 } 1762 } 1763 1764 // If there is, the def must remain in the preheader. 1765 if (UsedInLoop) 1766 continue; 1767 1768 // Otherwise, sink it to the exit block. 1769 Instruction *ToMove = I; 1770 bool Done = false; 1771 1772 if (I != Preheader->begin()) { 1773 // Skip debug info intrinsics. 1774 do { 1775 --I; 1776 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1777 1778 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1779 Done = true; 1780 } else { 1781 Done = true; 1782 } 1783 1784 ToMove->moveBefore(InsertPt); 1785 if (Done) break; 1786 InsertPt = ToMove; 1787 } 1788 } 1789 1790 //===----------------------------------------------------------------------===// 1791 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1792 //===----------------------------------------------------------------------===// 1793 1794 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1795 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1796 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1797 // canonicalization can be a pessimization without LSR to "clean up" 1798 // afterwards. 1799 // - We depend on having a preheader; in particular, 1800 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1801 // and we're in trouble if we can't find the induction variable even when 1802 // we've manually inserted one. 1803 if (!L->isLoopSimplifyForm()) 1804 return false; 1805 1806 if (EnableIVRewrite) 1807 IU = &getAnalysis<IVUsers>(); 1808 LI = &getAnalysis<LoopInfo>(); 1809 SE = &getAnalysis<ScalarEvolution>(); 1810 DT = &getAnalysis<DominatorTree>(); 1811 TD = getAnalysisIfAvailable<TargetData>(); 1812 1813 DeadInsts.clear(); 1814 Changed = false; 1815 1816 // If there are any floating-point recurrences, attempt to 1817 // transform them to use integer recurrences. 1818 RewriteNonIntegerIVs(L); 1819 1820 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1821 1822 // Create a rewriter object which we'll use to transform the code with. 1823 SCEVExpander Rewriter(*SE, "indvars"); 1824 #ifndef NDEBUG 1825 Rewriter.setDebugType(DEBUG_TYPE); 1826 #endif 1827 1828 // Eliminate redundant IV users. 1829 // 1830 // Simplification works best when run before other consumers of SCEV. We 1831 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1832 // other expressions involving loop IVs have been evaluated. This helps SCEV 1833 // set no-wrap flags before normalizing sign/zero extension. 1834 if (!EnableIVRewrite) { 1835 Rewriter.disableCanonicalMode(); 1836 SimplifyAndExtend(L, Rewriter, LPM); 1837 } 1838 1839 // Check to see if this loop has a computable loop-invariant execution count. 1840 // If so, this means that we can compute the final value of any expressions 1841 // that are recurrent in the loop, and substitute the exit values from the 1842 // loop into any instructions outside of the loop that use the final values of 1843 // the current expressions. 1844 // 1845 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1846 RewriteLoopExitValues(L, Rewriter); 1847 1848 // Eliminate redundant IV users. 1849 if (EnableIVRewrite) 1850 Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts); 1851 1852 // Eliminate redundant IV cycles. 1853 if (!EnableIVRewrite) 1854 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1855 1856 // Compute the type of the largest recurrence expression, and decide whether 1857 // a canonical induction variable should be inserted. 1858 Type *LargestType = 0; 1859 bool NeedCannIV = false; 1860 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE); 1861 if (EnableIVRewrite && ExpandBECount) { 1862 // If we have a known trip count and a single exit block, we'll be 1863 // rewriting the loop exit test condition below, which requires a 1864 // canonical induction variable. 1865 NeedCannIV = true; 1866 Type *Ty = BackedgeTakenCount->getType(); 1867 if (!EnableIVRewrite) { 1868 // In this mode, SimplifyIVUsers may have already widened the IV used by 1869 // the backedge test and inserted a Trunc on the compare's operand. Get 1870 // the wider type to avoid creating a redundant narrow IV only used by the 1871 // loop test. 1872 LargestType = getBackedgeIVType(L); 1873 } 1874 if (!LargestType || 1875 SE->getTypeSizeInBits(Ty) > 1876 SE->getTypeSizeInBits(LargestType)) 1877 LargestType = SE->getEffectiveSCEVType(Ty); 1878 } 1879 if (EnableIVRewrite) { 1880 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) { 1881 NeedCannIV = true; 1882 Type *Ty = 1883 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType()); 1884 if (!LargestType || 1885 SE->getTypeSizeInBits(Ty) > 1886 SE->getTypeSizeInBits(LargestType)) 1887 LargestType = Ty; 1888 } 1889 } 1890 1891 // Now that we know the largest of the induction variable expressions 1892 // in this loop, insert a canonical induction variable of the largest size. 1893 PHINode *IndVar = 0; 1894 if (NeedCannIV) { 1895 // Check to see if the loop already has any canonical-looking induction 1896 // variables. If any are present and wider than the planned canonical 1897 // induction variable, temporarily remove them, so that the Rewriter 1898 // doesn't attempt to reuse them. 1899 SmallVector<PHINode *, 2> OldCannIVs; 1900 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) { 1901 if (SE->getTypeSizeInBits(OldCannIV->getType()) > 1902 SE->getTypeSizeInBits(LargestType)) 1903 OldCannIV->removeFromParent(); 1904 else 1905 break; 1906 OldCannIVs.push_back(OldCannIV); 1907 } 1908 1909 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType); 1910 1911 ++NumInserted; 1912 Changed = true; 1913 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n'); 1914 1915 // Now that the official induction variable is established, reinsert 1916 // any old canonical-looking variables after it so that the IR remains 1917 // consistent. They will be deleted as part of the dead-PHI deletion at 1918 // the end of the pass. 1919 while (!OldCannIVs.empty()) { 1920 PHINode *OldCannIV = OldCannIVs.pop_back_val(); 1921 OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt()); 1922 } 1923 } 1924 else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) { 1925 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); 1926 } 1927 // If we have a trip count expression, rewrite the loop's exit condition 1928 // using it. We can currently only handle loops with a single exit. 1929 Value *NewICmp = 0; 1930 if (ExpandBECount && IndVar) { 1931 // Check preconditions for proper SCEVExpander operation. SCEV does not 1932 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 1933 // pass that uses the SCEVExpander must do it. This does not work well for 1934 // loop passes because SCEVExpander makes assumptions about all loops, while 1935 // LoopPassManager only forces the current loop to be simplified. 1936 // 1937 // FIXME: SCEV expansion has no way to bail out, so the caller must 1938 // explicitly check any assumptions made by SCEV. Brittle. 1939 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 1940 if (!AR || AR->getLoop()->getLoopPreheader()) 1941 NewICmp = 1942 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter); 1943 } 1944 // Rewrite IV-derived expressions. 1945 if (EnableIVRewrite) 1946 RewriteIVExpressions(L, Rewriter); 1947 1948 // Clear the rewriter cache, because values that are in the rewriter's cache 1949 // can be deleted in the loop below, causing the AssertingVH in the cache to 1950 // trigger. 1951 Rewriter.clear(); 1952 1953 // Now that we're done iterating through lists, clean up any instructions 1954 // which are now dead. 1955 while (!DeadInsts.empty()) 1956 if (Instruction *Inst = 1957 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 1958 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1959 1960 // The Rewriter may not be used from this point on. 1961 1962 // Loop-invariant instructions in the preheader that aren't used in the 1963 // loop may be sunk below the loop to reduce register pressure. 1964 SinkUnusedInvariants(L); 1965 1966 // For completeness, inform IVUsers of the IV use in the newly-created 1967 // loop exit test instruction. 1968 if (IU && NewICmp) { 1969 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp); 1970 if (NewICmpInst) 1971 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0))); 1972 } 1973 // Clean up dead instructions. 1974 Changed |= DeleteDeadPHIs(L->getHeader()); 1975 // Check a post-condition. 1976 assert(L->isLCSSAForm(*DT) && 1977 "Indvars did not leave the loop in lcssa form!"); 1978 1979 // Verify that LFTR, and any other change have not interfered with SCEV's 1980 // ability to compute trip count. 1981 #ifndef NDEBUG 1982 if (!EnableIVRewrite && VerifyIndvars && 1983 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1984 SE->forgetLoop(L); 1985 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1986 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1987 SE->getTypeSizeInBits(NewBECount->getType())) 1988 NewBECount = SE->getTruncateOrNoop(NewBECount, 1989 BackedgeTakenCount->getType()); 1990 else 1991 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1992 NewBECount->getType()); 1993 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 1994 } 1995 #endif 1996 1997 return Changed; 1998 } 1999