xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 602916d2defa95cf4bec76e458be4375dbe70e4a)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/LoopInfo.h"
36 #include "llvm/Analysis/LoopPass.h"
37 #include "llvm/Analysis/MemorySSA.h"
38 #include "llvm/Analysis/MemorySSAUpdater.h"
39 #include "llvm/Analysis/ScalarEvolution.h"
40 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
41 #include "llvm/Analysis/TargetLibraryInfo.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/Analysis/ValueTracking.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/Constant.h"
46 #include "llvm/IR/ConstantRange.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DataLayout.h"
49 #include "llvm/IR/DerivedTypes.h"
50 #include "llvm/IR/Dominators.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/IRBuilder.h"
53 #include "llvm/IR/InstrTypes.h"
54 #include "llvm/IR/Instruction.h"
55 #include "llvm/IR/Instructions.h"
56 #include "llvm/IR/IntrinsicInst.h"
57 #include "llvm/IR/Intrinsics.h"
58 #include "llvm/IR/Module.h"
59 #include "llvm/IR/Operator.h"
60 #include "llvm/IR/PassManager.h"
61 #include "llvm/IR/PatternMatch.h"
62 #include "llvm/IR/Type.h"
63 #include "llvm/IR/Use.h"
64 #include "llvm/IR/User.h"
65 #include "llvm/IR/Value.h"
66 #include "llvm/IR/ValueHandle.h"
67 #include "llvm/InitializePasses.h"
68 #include "llvm/Pass.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/Compiler.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/MathExtras.h"
74 #include "llvm/Support/raw_ostream.h"
75 #include "llvm/Transforms/Scalar.h"
76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
77 #include "llvm/Transforms/Utils/Local.h"
78 #include "llvm/Transforms/Utils/LoopUtils.h"
79 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
80 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
81 #include <cassert>
82 #include <cstdint>
83 #include <utility>
84 
85 using namespace llvm;
86 using namespace PatternMatch;
87 
88 #define DEBUG_TYPE "indvars"
89 
90 STATISTIC(NumWidened     , "Number of indvars widened");
91 STATISTIC(NumReplaced    , "Number of exit values replaced");
92 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
93 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
94 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
95 
96 // Trip count verification can be enabled by default under NDEBUG if we
97 // implement a strong expression equivalence checker in SCEV. Until then, we
98 // use the verify-indvars flag, which may assert in some cases.
99 static cl::opt<bool> VerifyIndvars(
100     "verify-indvars", cl::Hidden,
101     cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
102              "effect in release builds. (Note: this adds additional SCEV "
103              "queries potentially changing the analysis result)"));
104 
105 static cl::opt<ReplaceExitVal> ReplaceExitValue(
106     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
107     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
108     cl::values(
109         clEnumValN(NeverRepl, "never", "never replace exit value"),
110         clEnumValN(OnlyCheapRepl, "cheap",
111                    "only replace exit value when the cost is cheap"),
112         clEnumValN(
113             UnusedIndVarInLoop, "unusedindvarinloop",
114             "only replace exit value when it is an unused "
115             "induction variable in the loop and has cheap replacement cost"),
116         clEnumValN(NoHardUse, "noharduse",
117                    "only replace exit values when loop def likely dead"),
118         clEnumValN(AlwaysRepl, "always",
119                    "always replace exit value whenever possible")));
120 
121 static cl::opt<bool> UsePostIncrementRanges(
122   "indvars-post-increment-ranges", cl::Hidden,
123   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
124   cl::init(true));
125 
126 static cl::opt<bool>
127 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
128             cl::desc("Disable Linear Function Test Replace optimization"));
129 
130 static cl::opt<bool>
131 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
132                 cl::desc("Predicate conditions in read only loops"));
133 
134 static cl::opt<bool>
135 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
136                 cl::desc("Allow widening of indvars to eliminate s/zext"));
137 
138 namespace {
139 
140 class IndVarSimplify {
141   LoopInfo *LI;
142   ScalarEvolution *SE;
143   DominatorTree *DT;
144   const DataLayout &DL;
145   TargetLibraryInfo *TLI;
146   const TargetTransformInfo *TTI;
147   std::unique_ptr<MemorySSAUpdater> MSSAU;
148 
149   SmallVector<WeakTrackingVH, 16> DeadInsts;
150   bool WidenIndVars;
151 
152   bool handleFloatingPointIV(Loop *L, PHINode *PH);
153   bool rewriteNonIntegerIVs(Loop *L);
154 
155   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
156   /// Try to improve our exit conditions by converting condition from signed
157   /// to unsigned or rotating computation out of the loop.
158   /// (See inline comment about why this is duplicated from simplifyAndExtend)
159   bool canonicalizeExitCondition(Loop *L);
160   /// Try to eliminate loop exits based on analyzeable exit counts
161   bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
162   /// Try to form loop invariant tests for loop exits by changing how many
163   /// iterations of the loop run when that is unobservable.
164   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
165 
166   bool rewriteFirstIterationLoopExitValues(Loop *L);
167 
168   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
169                                  const SCEV *ExitCount,
170                                  PHINode *IndVar, SCEVExpander &Rewriter);
171 
172   bool sinkUnusedInvariants(Loop *L);
173 
174 public:
175   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
176                  const DataLayout &DL, TargetLibraryInfo *TLI,
177                  TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
178       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
179         WidenIndVars(WidenIndVars) {
180     if (MSSA)
181       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
182   }
183 
184   bool run(Loop *L);
185 };
186 
187 } // end anonymous namespace
188 
189 //===----------------------------------------------------------------------===//
190 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
191 //===----------------------------------------------------------------------===//
192 
193 /// Convert APF to an integer, if possible.
194 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
195   bool isExact = false;
196   // See if we can convert this to an int64_t
197   uint64_t UIntVal;
198   if (APF.convertToInteger(MutableArrayRef(UIntVal), 64, true,
199                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
200       !isExact)
201     return false;
202   IntVal = UIntVal;
203   return true;
204 }
205 
206 /// If the loop has floating induction variable then insert corresponding
207 /// integer induction variable if possible.
208 /// For example,
209 /// for(double i = 0; i < 10000; ++i)
210 ///   bar(i)
211 /// is converted into
212 /// for(int i = 0; i < 10000; ++i)
213 ///   bar((double)i);
214 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
215   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
216   unsigned BackEdge     = IncomingEdge^1;
217 
218   // Check incoming value.
219   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
220 
221   int64_t InitValue;
222   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
223     return false;
224 
225   // Check IV increment. Reject this PN if increment operation is not
226   // an add or increment value can not be represented by an integer.
227   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
228   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
229 
230   // If this is not an add of the PHI with a constantfp, or if the constant fp
231   // is not an integer, bail out.
232   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
233   int64_t IncValue;
234   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
235       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
236     return false;
237 
238   // Check Incr uses. One user is PN and the other user is an exit condition
239   // used by the conditional terminator.
240   Value::user_iterator IncrUse = Incr->user_begin();
241   Instruction *U1 = cast<Instruction>(*IncrUse++);
242   if (IncrUse == Incr->user_end()) return false;
243   Instruction *U2 = cast<Instruction>(*IncrUse++);
244   if (IncrUse != Incr->user_end()) return false;
245 
246   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
247   // only used by a branch, we can't transform it.
248   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
249   if (!Compare)
250     Compare = dyn_cast<FCmpInst>(U2);
251   if (!Compare || !Compare->hasOneUse() ||
252       !isa<BranchInst>(Compare->user_back()))
253     return false;
254 
255   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
256 
257   // We need to verify that the branch actually controls the iteration count
258   // of the loop.  If not, the new IV can overflow and no one will notice.
259   // The branch block must be in the loop and one of the successors must be out
260   // of the loop.
261   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
262   if (!L->contains(TheBr->getParent()) ||
263       (L->contains(TheBr->getSuccessor(0)) &&
264        L->contains(TheBr->getSuccessor(1))))
265     return false;
266 
267   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
268   // transform it.
269   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
270   int64_t ExitValue;
271   if (ExitValueVal == nullptr ||
272       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
273     return false;
274 
275   // Find new predicate for integer comparison.
276   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
277   switch (Compare->getPredicate()) {
278   default: return false;  // Unknown comparison.
279   case CmpInst::FCMP_OEQ:
280   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
281   case CmpInst::FCMP_ONE:
282   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
283   case CmpInst::FCMP_OGT:
284   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
285   case CmpInst::FCMP_OGE:
286   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
287   case CmpInst::FCMP_OLT:
288   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
289   case CmpInst::FCMP_OLE:
290   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
291   }
292 
293   // We convert the floating point induction variable to a signed i32 value if
294   // we can.  This is only safe if the comparison will not overflow in a way
295   // that won't be trapped by the integer equivalent operations.  Check for this
296   // now.
297   // TODO: We could use i64 if it is native and the range requires it.
298 
299   // The start/stride/exit values must all fit in signed i32.
300   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
301     return false;
302 
303   // If not actually striding (add x, 0.0), avoid touching the code.
304   if (IncValue == 0)
305     return false;
306 
307   // Positive and negative strides have different safety conditions.
308   if (IncValue > 0) {
309     // If we have a positive stride, we require the init to be less than the
310     // exit value.
311     if (InitValue >= ExitValue)
312       return false;
313 
314     uint32_t Range = uint32_t(ExitValue-InitValue);
315     // Check for infinite loop, either:
316     // while (i <= Exit) or until (i > Exit)
317     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
318       if (++Range == 0) return false;  // Range overflows.
319     }
320 
321     unsigned Leftover = Range % uint32_t(IncValue);
322 
323     // If this is an equality comparison, we require that the strided value
324     // exactly land on the exit value, otherwise the IV condition will wrap
325     // around and do things the fp IV wouldn't.
326     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
327         Leftover != 0)
328       return false;
329 
330     // If the stride would wrap around the i32 before exiting, we can't
331     // transform the IV.
332     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
333       return false;
334   } else {
335     // If we have a negative stride, we require the init to be greater than the
336     // exit value.
337     if (InitValue <= ExitValue)
338       return false;
339 
340     uint32_t Range = uint32_t(InitValue-ExitValue);
341     // Check for infinite loop, either:
342     // while (i >= Exit) or until (i < Exit)
343     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
344       if (++Range == 0) return false;  // Range overflows.
345     }
346 
347     unsigned Leftover = Range % uint32_t(-IncValue);
348 
349     // If this is an equality comparison, we require that the strided value
350     // exactly land on the exit value, otherwise the IV condition will wrap
351     // around and do things the fp IV wouldn't.
352     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
353         Leftover != 0)
354       return false;
355 
356     // If the stride would wrap around the i32 before exiting, we can't
357     // transform the IV.
358     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
359       return false;
360   }
361 
362   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
363 
364   // Insert new integer induction variable.
365   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
366   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
367                       PN->getIncomingBlock(IncomingEdge));
368 
369   Value *NewAdd =
370     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
371                               Incr->getName()+".int", Incr);
372   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
373 
374   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
375                                       ConstantInt::get(Int32Ty, ExitValue),
376                                       Compare->getName());
377 
378   // In the following deletions, PN may become dead and may be deleted.
379   // Use a WeakTrackingVH to observe whether this happens.
380   WeakTrackingVH WeakPH = PN;
381 
382   // Delete the old floating point exit comparison.  The branch starts using the
383   // new comparison.
384   NewCompare->takeName(Compare);
385   Compare->replaceAllUsesWith(NewCompare);
386   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
387 
388   // Delete the old floating point increment.
389   Incr->replaceAllUsesWith(PoisonValue::get(Incr->getType()));
390   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
391 
392   // If the FP induction variable still has uses, this is because something else
393   // in the loop uses its value.  In order to canonicalize the induction
394   // variable, we chose to eliminate the IV and rewrite it in terms of an
395   // int->fp cast.
396   //
397   // We give preference to sitofp over uitofp because it is faster on most
398   // platforms.
399   if (WeakPH) {
400     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
401                                  &*PN->getParent()->getFirstInsertionPt());
402     PN->replaceAllUsesWith(Conv);
403     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
404   }
405   return true;
406 }
407 
408 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
409   // First step.  Check to see if there are any floating-point recurrences.
410   // If there are, change them into integer recurrences, permitting analysis by
411   // the SCEV routines.
412   BasicBlock *Header = L->getHeader();
413 
414   SmallVector<WeakTrackingVH, 8> PHIs;
415   for (PHINode &PN : Header->phis())
416     PHIs.push_back(&PN);
417 
418   bool Changed = false;
419   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
420     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
421       Changed |= handleFloatingPointIV(L, PN);
422 
423   // If the loop previously had floating-point IV, ScalarEvolution
424   // may not have been able to compute a trip count. Now that we've done some
425   // re-writing, the trip count may be computable.
426   if (Changed)
427     SE->forgetLoop(L);
428   return Changed;
429 }
430 
431 //===---------------------------------------------------------------------===//
432 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
433 // they will exit at the first iteration.
434 //===---------------------------------------------------------------------===//
435 
436 /// Check to see if this loop has loop invariant conditions which lead to loop
437 /// exits. If so, we know that if the exit path is taken, it is at the first
438 /// loop iteration. This lets us predict exit values of PHI nodes that live in
439 /// loop header.
440 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
441   // Verify the input to the pass is already in LCSSA form.
442   assert(L->isLCSSAForm(*DT));
443 
444   SmallVector<BasicBlock *, 8> ExitBlocks;
445   L->getUniqueExitBlocks(ExitBlocks);
446 
447   bool MadeAnyChanges = false;
448   for (auto *ExitBB : ExitBlocks) {
449     // If there are no more PHI nodes in this exit block, then no more
450     // values defined inside the loop are used on this path.
451     for (PHINode &PN : ExitBB->phis()) {
452       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
453            IncomingValIdx != E; ++IncomingValIdx) {
454         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
455 
456         // Can we prove that the exit must run on the first iteration if it
457         // runs at all?  (i.e. early exits are fine for our purposes, but
458         // traces which lead to this exit being taken on the 2nd iteration
459         // aren't.)  Note that this is about whether the exit branch is
460         // executed, not about whether it is taken.
461         if (!L->getLoopLatch() ||
462             !DT->dominates(IncomingBB, L->getLoopLatch()))
463           continue;
464 
465         // Get condition that leads to the exit path.
466         auto *TermInst = IncomingBB->getTerminator();
467 
468         Value *Cond = nullptr;
469         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
470           // Must be a conditional branch, otherwise the block
471           // should not be in the loop.
472           Cond = BI->getCondition();
473         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
474           Cond = SI->getCondition();
475         else
476           continue;
477 
478         if (!L->isLoopInvariant(Cond))
479           continue;
480 
481         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
482 
483         // Only deal with PHIs in the loop header.
484         if (!ExitVal || ExitVal->getParent() != L->getHeader())
485           continue;
486 
487         // If ExitVal is a PHI on the loop header, then we know its
488         // value along this exit because the exit can only be taken
489         // on the first iteration.
490         auto *LoopPreheader = L->getLoopPreheader();
491         assert(LoopPreheader && "Invalid loop");
492         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
493         if (PreheaderIdx != -1) {
494           assert(ExitVal->getParent() == L->getHeader() &&
495                  "ExitVal must be in loop header");
496           MadeAnyChanges = true;
497           PN.setIncomingValue(IncomingValIdx,
498                               ExitVal->getIncomingValue(PreheaderIdx));
499           SE->forgetValue(&PN);
500         }
501       }
502     }
503   }
504   return MadeAnyChanges;
505 }
506 
507 //===----------------------------------------------------------------------===//
508 //  IV Widening - Extend the width of an IV to cover its widest uses.
509 //===----------------------------------------------------------------------===//
510 
511 /// Update information about the induction variable that is extended by this
512 /// sign or zero extend operation. This is used to determine the final width of
513 /// the IV before actually widening it.
514 static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
515                         ScalarEvolution *SE,
516                         const TargetTransformInfo *TTI) {
517   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
518   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
519     return;
520 
521   Type *Ty = Cast->getType();
522   uint64_t Width = SE->getTypeSizeInBits(Ty);
523   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
524     return;
525 
526   // Check that `Cast` actually extends the induction variable (we rely on this
527   // later).  This takes care of cases where `Cast` is extending a truncation of
528   // the narrow induction variable, and thus can end up being narrower than the
529   // "narrow" induction variable.
530   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
531   if (NarrowIVWidth >= Width)
532     return;
533 
534   // Cast is either an sext or zext up to this point.
535   // We should not widen an indvar if arithmetics on the wider indvar are more
536   // expensive than those on the narrower indvar. We check only the cost of ADD
537   // because at least an ADD is required to increment the induction variable. We
538   // could compute more comprehensively the cost of all instructions on the
539   // induction variable when necessary.
540   if (TTI &&
541       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
542           TTI->getArithmeticInstrCost(Instruction::Add,
543                                       Cast->getOperand(0)->getType())) {
544     return;
545   }
546 
547   if (!WI.WidestNativeType ||
548       Width > SE->getTypeSizeInBits(WI.WidestNativeType)) {
549     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
550     WI.IsSigned = IsSigned;
551     return;
552   }
553 
554   // We extend the IV to satisfy the sign of its user(s), or 'signed'
555   // if there are multiple users with both sign- and zero extensions,
556   // in order not to introduce nondeterministic behaviour based on the
557   // unspecified order of a PHI nodes' users-iterator.
558   WI.IsSigned |= IsSigned;
559 }
560 
561 //===----------------------------------------------------------------------===//
562 //  Live IV Reduction - Minimize IVs live across the loop.
563 //===----------------------------------------------------------------------===//
564 
565 //===----------------------------------------------------------------------===//
566 //  Simplification of IV users based on SCEV evaluation.
567 //===----------------------------------------------------------------------===//
568 
569 namespace {
570 
571 class IndVarSimplifyVisitor : public IVVisitor {
572   ScalarEvolution *SE;
573   const TargetTransformInfo *TTI;
574   PHINode *IVPhi;
575 
576 public:
577   WideIVInfo WI;
578 
579   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
580                         const TargetTransformInfo *TTI,
581                         const DominatorTree *DTree)
582     : SE(SCEV), TTI(TTI), IVPhi(IV) {
583     DT = DTree;
584     WI.NarrowIV = IVPhi;
585   }
586 
587   // Implement the interface used by simplifyUsersOfIV.
588   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
589 };
590 
591 } // end anonymous namespace
592 
593 /// Iteratively perform simplification on a worklist of IV users. Each
594 /// successive simplification may push more users which may themselves be
595 /// candidates for simplification.
596 ///
597 /// Sign/Zero extend elimination is interleaved with IV simplification.
598 bool IndVarSimplify::simplifyAndExtend(Loop *L,
599                                        SCEVExpander &Rewriter,
600                                        LoopInfo *LI) {
601   SmallVector<WideIVInfo, 8> WideIVs;
602 
603   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
604           Intrinsic::getName(Intrinsic::experimental_guard));
605   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
606 
607   SmallVector<PHINode *, 8> LoopPhis;
608   for (PHINode &PN : L->getHeader()->phis())
609     LoopPhis.push_back(&PN);
610 
611   // Each round of simplification iterates through the SimplifyIVUsers worklist
612   // for all current phis, then determines whether any IVs can be
613   // widened. Widening adds new phis to LoopPhis, inducing another round of
614   // simplification on the wide IVs.
615   bool Changed = false;
616   while (!LoopPhis.empty()) {
617     // Evaluate as many IV expressions as possible before widening any IVs. This
618     // forces SCEV to set no-wrap flags before evaluating sign/zero
619     // extension. The first time SCEV attempts to normalize sign/zero extension,
620     // the result becomes final. So for the most predictable results, we delay
621     // evaluation of sign/zero extend evaluation until needed, and avoid running
622     // other SCEV based analysis prior to simplifyAndExtend.
623     do {
624       PHINode *CurrIV = LoopPhis.pop_back_val();
625 
626       // Information about sign/zero extensions of CurrIV.
627       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
628 
629       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
630                                    &Visitor);
631 
632       if (Visitor.WI.WidestNativeType) {
633         WideIVs.push_back(Visitor.WI);
634       }
635     } while(!LoopPhis.empty());
636 
637     // Continue if we disallowed widening.
638     if (!WidenIndVars)
639       continue;
640 
641     for (; !WideIVs.empty(); WideIVs.pop_back()) {
642       unsigned ElimExt;
643       unsigned Widened;
644       if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
645                                           DT, DeadInsts, ElimExt, Widened,
646                                           HasGuards, UsePostIncrementRanges)) {
647         NumElimExt += ElimExt;
648         NumWidened += Widened;
649         Changed = true;
650         LoopPhis.push_back(WidePhi);
651       }
652     }
653   }
654   return Changed;
655 }
656 
657 //===----------------------------------------------------------------------===//
658 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
659 //===----------------------------------------------------------------------===//
660 
661 /// Given an Value which is hoped to be part of an add recurance in the given
662 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
663 /// that this is less general than SCEVs AddRec checking.
664 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
665   Instruction *IncI = dyn_cast<Instruction>(IncV);
666   if (!IncI)
667     return nullptr;
668 
669   switch (IncI->getOpcode()) {
670   case Instruction::Add:
671   case Instruction::Sub:
672     break;
673   case Instruction::GetElementPtr:
674     // An IV counter must preserve its type.
675     if (IncI->getNumOperands() == 2)
676       break;
677     [[fallthrough]];
678   default:
679     return nullptr;
680   }
681 
682   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
683   if (Phi && Phi->getParent() == L->getHeader()) {
684     if (L->isLoopInvariant(IncI->getOperand(1)))
685       return Phi;
686     return nullptr;
687   }
688   if (IncI->getOpcode() == Instruction::GetElementPtr)
689     return nullptr;
690 
691   // Allow add/sub to be commuted.
692   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
693   if (Phi && Phi->getParent() == L->getHeader()) {
694     if (L->isLoopInvariant(IncI->getOperand(0)))
695       return Phi;
696   }
697   return nullptr;
698 }
699 
700 /// Whether the current loop exit test is based on this value.  Currently this
701 /// is limited to a direct use in the loop condition.
702 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
703   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
704   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
705   // TODO: Allow non-icmp loop test.
706   if (!ICmp)
707     return false;
708 
709   // TODO: Allow indirect use.
710   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
711 }
712 
713 /// linearFunctionTestReplace policy. Return true unless we can show that the
714 /// current exit test is already sufficiently canonical.
715 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
716   assert(L->getLoopLatch() && "Must be in simplified form");
717 
718   // Avoid converting a constant or loop invariant test back to a runtime
719   // test.  This is critical for when SCEV's cached ExitCount is less precise
720   // than the current IR (such as after we've proven a particular exit is
721   // actually dead and thus the BE count never reaches our ExitCount.)
722   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
723   if (L->isLoopInvariant(BI->getCondition()))
724     return false;
725 
726   // Do LFTR to simplify the exit condition to an ICMP.
727   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
728   if (!Cond)
729     return true;
730 
731   // Do LFTR to simplify the exit ICMP to EQ/NE
732   ICmpInst::Predicate Pred = Cond->getPredicate();
733   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
734     return true;
735 
736   // Look for a loop invariant RHS
737   Value *LHS = Cond->getOperand(0);
738   Value *RHS = Cond->getOperand(1);
739   if (!L->isLoopInvariant(RHS)) {
740     if (!L->isLoopInvariant(LHS))
741       return true;
742     std::swap(LHS, RHS);
743   }
744   // Look for a simple IV counter LHS
745   PHINode *Phi = dyn_cast<PHINode>(LHS);
746   if (!Phi)
747     Phi = getLoopPhiForCounter(LHS, L);
748 
749   if (!Phi)
750     return true;
751 
752   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
753   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
754   if (Idx < 0)
755     return true;
756 
757   // Do LFTR if the exit condition's IV is *not* a simple counter.
758   Value *IncV = Phi->getIncomingValue(Idx);
759   return Phi != getLoopPhiForCounter(IncV, L);
760 }
761 
762 /// Return true if undefined behavior would provable be executed on the path to
763 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
764 /// anything about whether OnPathTo is actually executed or whether Root is
765 /// actually poison.  This can be used to assess whether a new use of Root can
766 /// be added at a location which is control equivalent with OnPathTo (such as
767 /// immediately before it) without introducing UB which didn't previously
768 /// exist.  Note that a false result conveys no information.
769 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
770                                           Instruction *OnPathTo,
771                                           DominatorTree *DT) {
772   // Basic approach is to assume Root is poison, propagate poison forward
773   // through all users we can easily track, and then check whether any of those
774   // users are provable UB and must execute before out exiting block might
775   // exit.
776 
777   // The set of all recursive users we've visited (which are assumed to all be
778   // poison because of said visit)
779   SmallSet<const Value *, 16> KnownPoison;
780   SmallVector<const Instruction*, 16> Worklist;
781   Worklist.push_back(Root);
782   while (!Worklist.empty()) {
783     const Instruction *I = Worklist.pop_back_val();
784 
785     // If we know this must trigger UB on a path leading our target.
786     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
787       return true;
788 
789     // If we can't analyze propagation through this instruction, just skip it
790     // and transitive users.  Safe as false is a conservative result.
791     if (I != Root && !any_of(I->operands(), [&KnownPoison](const Use &U) {
792           return KnownPoison.contains(U) && propagatesPoison(U);
793         }))
794       continue;
795 
796     if (KnownPoison.insert(I).second)
797       for (const User *User : I->users())
798         Worklist.push_back(cast<Instruction>(User));
799   }
800 
801   // Might be non-UB, or might have a path we couldn't prove must execute on
802   // way to exiting bb.
803   return false;
804 }
805 
806 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
807 /// down to checking that all operands are constant and listing instructions
808 /// that may hide undef.
809 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
810                                unsigned Depth) {
811   if (isa<Constant>(V))
812     return !isa<UndefValue>(V);
813 
814   if (Depth >= 6)
815     return false;
816 
817   // Conservatively handle non-constant non-instructions. For example, Arguments
818   // may be undef.
819   Instruction *I = dyn_cast<Instruction>(V);
820   if (!I)
821     return false;
822 
823   // Load and return values may be undef.
824   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
825     return false;
826 
827   // Optimistically handle other instructions.
828   for (Value *Op : I->operands()) {
829     if (!Visited.insert(Op).second)
830       continue;
831     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
832       return false;
833   }
834   return true;
835 }
836 
837 /// Return true if the given value is concrete. We must prove that undef can
838 /// never reach it.
839 ///
840 /// TODO: If we decide that this is a good approach to checking for undef, we
841 /// may factor it into a common location.
842 static bool hasConcreteDef(Value *V) {
843   SmallPtrSet<Value*, 8> Visited;
844   Visited.insert(V);
845   return hasConcreteDefImpl(V, Visited, 0);
846 }
847 
848 /// Return true if this IV has any uses other than the (soon to be rewritten)
849 /// loop exit test.
850 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
851   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
852   Value *IncV = Phi->getIncomingValue(LatchIdx);
853 
854   for (User *U : Phi->users())
855     if (U != Cond && U != IncV) return false;
856 
857   for (User *U : IncV->users())
858     if (U != Cond && U != Phi) return false;
859   return true;
860 }
861 
862 /// Return true if the given phi is a "counter" in L.  A counter is an
863 /// add recurance (of integer or pointer type) with an arbitrary start, and a
864 /// step of 1.  Note that L must have exactly one latch.
865 static bool isLoopCounter(PHINode* Phi, Loop *L,
866                           ScalarEvolution *SE) {
867   assert(Phi->getParent() == L->getHeader());
868   assert(L->getLoopLatch());
869 
870   if (!SE->isSCEVable(Phi->getType()))
871     return false;
872 
873   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
874   if (!AR || AR->getLoop() != L || !AR->isAffine())
875     return false;
876 
877   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
878   if (!Step || !Step->isOne())
879     return false;
880 
881   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
882   Value *IncV = Phi->getIncomingValue(LatchIdx);
883   return (getLoopPhiForCounter(IncV, L) == Phi &&
884           isa<SCEVAddRecExpr>(SE->getSCEV(IncV)));
885 }
886 
887 /// Search the loop header for a loop counter (anadd rec w/step of one)
888 /// suitable for use by LFTR.  If multiple counters are available, select the
889 /// "best" one based profitable heuristics.
890 ///
891 /// BECount may be an i8* pointer type. The pointer difference is already
892 /// valid count without scaling the address stride, so it remains a pointer
893 /// expression as far as SCEV is concerned.
894 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
895                                 const SCEV *BECount,
896                                 ScalarEvolution *SE, DominatorTree *DT) {
897   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
898 
899   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
900 
901   // Loop over all of the PHI nodes, looking for a simple counter.
902   PHINode *BestPhi = nullptr;
903   const SCEV *BestInit = nullptr;
904   BasicBlock *LatchBlock = L->getLoopLatch();
905   assert(LatchBlock && "Must be in simplified form");
906   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
907 
908   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
909     PHINode *Phi = cast<PHINode>(I);
910     if (!isLoopCounter(Phi, L, SE))
911       continue;
912 
913     // Avoid comparing an integer IV against a pointer Limit.
914     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
915       continue;
916 
917     const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
918 
919     // AR may be a pointer type, while BECount is an integer type.
920     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
921     // AR may not be a narrower type, or we may never exit.
922     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
923     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
924       continue;
925 
926     // Avoid reusing a potentially undef value to compute other values that may
927     // have originally had a concrete definition.
928     if (!hasConcreteDef(Phi)) {
929       // We explicitly allow unknown phis as long as they are already used by
930       // the loop exit test.  This is legal since performing LFTR could not
931       // increase the number of undef users.
932       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
933       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
934           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
935         continue;
936     }
937 
938     // Avoid introducing undefined behavior due to poison which didn't exist in
939     // the original program.  (Annoyingly, the rules for poison and undef
940     // propagation are distinct, so this does NOT cover the undef case above.)
941     // We have to ensure that we don't introduce UB by introducing a use on an
942     // iteration where said IV produces poison.  Our strategy here differs for
943     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
944     // see code in linearFunctionTestReplace.  For pointers, we restrict
945     // transforms as there is no good way to reinfer inbounds once lost.
946     if (!Phi->getType()->isIntegerTy() &&
947         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
948       continue;
949 
950     const SCEV *Init = AR->getStart();
951 
952     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
953       // Don't force a live loop counter if another IV can be used.
954       if (AlmostDeadIV(Phi, LatchBlock, Cond))
955         continue;
956 
957       // Prefer to count-from-zero. This is a more "canonical" counter form. It
958       // also prefers integer to pointer IVs.
959       if (BestInit->isZero() != Init->isZero()) {
960         if (BestInit->isZero())
961           continue;
962       }
963       // If two IVs both count from zero or both count from nonzero then the
964       // narrower is likely a dead phi that has been widened. Use the wider phi
965       // to allow the other to be eliminated.
966       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
967         continue;
968     }
969     BestPhi = Phi;
970     BestInit = Init;
971   }
972   return BestPhi;
973 }
974 
975 /// Insert an IR expression which computes the value held by the IV IndVar
976 /// (which must be an loop counter w/unit stride) after the backedge of loop L
977 /// is taken ExitCount times.
978 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
979                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
980                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
981   assert(isLoopCounter(IndVar, L, SE));
982   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
983   const SCEV *IVInit = AR->getStart();
984   assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
985 
986   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
987   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
988   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
989   // the existing GEPs whenever possible.
990   if (IndVar->getType()->isPointerTy() &&
991       !ExitCount->getType()->isPointerTy()) {
992     // IVOffset will be the new GEP offset that is interpreted by GEP as a
993     // signed value. ExitCount on the other hand represents the loop trip count,
994     // which is an unsigned value. FindLoopCounter only allows induction
995     // variables that have a positive unit stride of one. This means we don't
996     // have to handle the case of negative offsets (yet) and just need to zero
997     // extend ExitCount.
998     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
999     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
1000     if (UsePostInc)
1001       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
1002 
1003     // Expand the code for the iteration count.
1004     assert(SE->isLoopInvariant(IVOffset, L) &&
1005            "Computed iteration count is not loop invariant!");
1006 
1007     const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
1008     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1009     return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
1010   } else {
1011     // In any other case, convert both IVInit and ExitCount to integers before
1012     // comparing. This may result in SCEV expansion of pointers, but in practice
1013     // SCEV will fold the pointer arithmetic away as such:
1014     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1015     //
1016     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1017     // for simple memset-style loops.
1018     //
1019     // IVInit integer and ExitCount pointer would only occur if a canonical IV
1020     // were generated on top of case #2, which is not expected.
1021 
1022     // For unit stride, IVCount = Start + ExitCount with 2's complement
1023     // overflow.
1024 
1025     // For integer IVs, truncate the IV before computing IVInit + BECount,
1026     // unless we know apriori that the limit must be a constant when evaluated
1027     // in the bitwidth of the IV.  We prefer (potentially) keeping a truncate
1028     // of the IV in the loop over a (potentially) expensive expansion of the
1029     // widened exit count add(zext(add)) expression.
1030     if (SE->getTypeSizeInBits(IVInit->getType())
1031         > SE->getTypeSizeInBits(ExitCount->getType())) {
1032       if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
1033         ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
1034       else
1035         IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
1036     }
1037 
1038     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
1039 
1040     if (UsePostInc)
1041       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
1042 
1043     // Expand the code for the iteration count.
1044     assert(SE->isLoopInvariant(IVLimit, L) &&
1045            "Computed iteration count is not loop invariant!");
1046     // Ensure that we generate the same type as IndVar, or a smaller integer
1047     // type. In the presence of null pointer values, we have an integer type
1048     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1049     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
1050       IndVar->getType() : ExitCount->getType();
1051     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1052     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1053   }
1054 }
1055 
1056 /// This method rewrites the exit condition of the loop to be a canonical !=
1057 /// comparison against the incremented loop induction variable.  This pass is
1058 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1059 /// determine a loop-invariant trip count of the loop, which is actually a much
1060 /// broader range than just linear tests.
1061 bool IndVarSimplify::
1062 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
1063                           const SCEV *ExitCount,
1064                           PHINode *IndVar, SCEVExpander &Rewriter) {
1065   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
1066   assert(isLoopCounter(IndVar, L, SE));
1067   Instruction * const IncVar =
1068     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
1069 
1070   // Initialize CmpIndVar to the preincremented IV.
1071   Value *CmpIndVar = IndVar;
1072   bool UsePostInc = false;
1073 
1074   // If the exiting block is the same as the backedge block, we prefer to
1075   // compare against the post-incremented value, otherwise we must compare
1076   // against the preincremented value.
1077   if (ExitingBB == L->getLoopLatch()) {
1078     // For pointer IVs, we chose to not strip inbounds which requires us not
1079     // to add a potentially UB introducing use.  We need to either a) show
1080     // the loop test we're modifying is already in post-inc form, or b) show
1081     // that adding a use must not introduce UB.
1082     bool SafeToPostInc =
1083         IndVar->getType()->isIntegerTy() ||
1084         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
1085         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
1086     if (SafeToPostInc) {
1087       UsePostInc = true;
1088       CmpIndVar = IncVar;
1089     }
1090   }
1091 
1092   // It may be necessary to drop nowrap flags on the incrementing instruction
1093   // if either LFTR moves from a pre-inc check to a post-inc check (in which
1094   // case the increment might have previously been poison on the last iteration
1095   // only) or if LFTR switches to a different IV that was previously dynamically
1096   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
1097   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
1098   // check), because the pre-inc addrec flags may be adopted from the original
1099   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
1100   // TODO: This handling is inaccurate for one case: If we switch to a
1101   // dynamically dead IV that wraps on the first loop iteration only, which is
1102   // not covered by the post-inc addrec. (If the new IV was not dynamically
1103   // dead, it could not be poison on the first iteration in the first place.)
1104   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
1105     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
1106     if (BO->hasNoUnsignedWrap())
1107       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
1108     if (BO->hasNoSignedWrap())
1109       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
1110   }
1111 
1112   Value *ExitCnt = genLoopLimit(
1113       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1114   assert(ExitCnt->getType()->isPointerTy() ==
1115              IndVar->getType()->isPointerTy() &&
1116          "genLoopLimit missed a cast");
1117 
1118   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1119   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1120   ICmpInst::Predicate P;
1121   if (L->contains(BI->getSuccessor(0)))
1122     P = ICmpInst::ICMP_NE;
1123   else
1124     P = ICmpInst::ICMP_EQ;
1125 
1126   IRBuilder<> Builder(BI);
1127 
1128   // The new loop exit condition should reuse the debug location of the
1129   // original loop exit condition.
1130   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
1131     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
1132 
1133   // For integer IVs, if we evaluated the limit in the narrower bitwidth to
1134   // avoid the expensive expansion of the limit expression in the wider type,
1135   // emit a truncate to narrow the IV to the ExitCount type.  This is safe
1136   // since we know (from the exit count bitwidth), that we can't self-wrap in
1137   // the narrower type.
1138   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1139   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1140   if (CmpIndVarSize > ExitCntSize) {
1141     assert(!CmpIndVar->getType()->isPointerTy() &&
1142            !ExitCnt->getType()->isPointerTy());
1143 
1144     // Before resorting to actually inserting the truncate, use the same
1145     // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
1146     // the other side of the comparison instead.  We still evaluate the limit
1147     // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
1148     // a truncate within in.
1149     bool Extended = false;
1150     const SCEV *IV = SE->getSCEV(CmpIndVar);
1151     const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
1152                                                   ExitCnt->getType());
1153     const SCEV *ZExtTrunc =
1154       SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
1155 
1156     if (ZExtTrunc == IV) {
1157       Extended = true;
1158       ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
1159                                    "wide.trip.count");
1160     } else {
1161       const SCEV *SExtTrunc =
1162         SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
1163       if (SExtTrunc == IV) {
1164         Extended = true;
1165         ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
1166                                      "wide.trip.count");
1167       }
1168     }
1169 
1170     if (Extended) {
1171       bool Discard;
1172       L->makeLoopInvariant(ExitCnt, Discard);
1173     } else
1174       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1175                                       "lftr.wideiv");
1176   }
1177   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1178                     << "      LHS:" << *CmpIndVar << '\n'
1179                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
1180                     << "\n"
1181                     << "      RHS:\t" << *ExitCnt << "\n"
1182                     << "ExitCount:\t" << *ExitCount << "\n"
1183                     << "  was: " << *BI->getCondition() << "\n");
1184 
1185   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1186   Value *OrigCond = BI->getCondition();
1187   // It's tempting to use replaceAllUsesWith here to fully replace the old
1188   // comparison, but that's not immediately safe, since users of the old
1189   // comparison may not be dominated by the new comparison. Instead, just
1190   // update the branch to use the new comparison; in the common case this
1191   // will make old comparison dead.
1192   BI->setCondition(Cond);
1193   DeadInsts.emplace_back(OrigCond);
1194 
1195   ++NumLFTR;
1196   return true;
1197 }
1198 
1199 //===----------------------------------------------------------------------===//
1200 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1201 //===----------------------------------------------------------------------===//
1202 
1203 /// If there's a single exit block, sink any loop-invariant values that
1204 /// were defined in the preheader but not used inside the loop into the
1205 /// exit block to reduce register pressure in the loop.
1206 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1207   BasicBlock *ExitBlock = L->getExitBlock();
1208   if (!ExitBlock) return false;
1209 
1210   BasicBlock *Preheader = L->getLoopPreheader();
1211   if (!Preheader) return false;
1212 
1213   bool MadeAnyChanges = false;
1214   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
1215   BasicBlock::iterator I(Preheader->getTerminator());
1216   while (I != Preheader->begin()) {
1217     --I;
1218     // New instructions were inserted at the end of the preheader.
1219     if (isa<PHINode>(I))
1220       break;
1221 
1222     // Don't move instructions which might have side effects, since the side
1223     // effects need to complete before instructions inside the loop.  Also don't
1224     // move instructions which might read memory, since the loop may modify
1225     // memory. Note that it's okay if the instruction might have undefined
1226     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1227     // block.
1228     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1229       continue;
1230 
1231     // Skip debug info intrinsics.
1232     if (isa<DbgInfoIntrinsic>(I))
1233       continue;
1234 
1235     // Skip eh pad instructions.
1236     if (I->isEHPad())
1237       continue;
1238 
1239     // Don't sink alloca: we never want to sink static alloca's out of the
1240     // entry block, and correctly sinking dynamic alloca's requires
1241     // checks for stacksave/stackrestore intrinsics.
1242     // FIXME: Refactor this check somehow?
1243     if (isa<AllocaInst>(I))
1244       continue;
1245 
1246     // Determine if there is a use in or before the loop (direct or
1247     // otherwise).
1248     bool UsedInLoop = false;
1249     for (Use &U : I->uses()) {
1250       Instruction *User = cast<Instruction>(U.getUser());
1251       BasicBlock *UseBB = User->getParent();
1252       if (PHINode *P = dyn_cast<PHINode>(User)) {
1253         unsigned i =
1254           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1255         UseBB = P->getIncomingBlock(i);
1256       }
1257       if (UseBB == Preheader || L->contains(UseBB)) {
1258         UsedInLoop = true;
1259         break;
1260       }
1261     }
1262 
1263     // If there is, the def must remain in the preheader.
1264     if (UsedInLoop)
1265       continue;
1266 
1267     // Otherwise, sink it to the exit block.
1268     Instruction *ToMove = &*I;
1269     bool Done = false;
1270 
1271     if (I != Preheader->begin()) {
1272       // Skip debug info intrinsics.
1273       do {
1274         --I;
1275       } while (I->isDebugOrPseudoInst() && I != Preheader->begin());
1276 
1277       if (I->isDebugOrPseudoInst() && I == Preheader->begin())
1278         Done = true;
1279     } else {
1280       Done = true;
1281     }
1282 
1283     MadeAnyChanges = true;
1284     ToMove->moveBefore(*ExitBlock, InsertPt);
1285     SE->forgetValue(ToMove);
1286     if (Done) break;
1287     InsertPt = ToMove->getIterator();
1288   }
1289 
1290   return MadeAnyChanges;
1291 }
1292 
1293 static void replaceExitCond(BranchInst *BI, Value *NewCond,
1294                             SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1295   auto *OldCond = BI->getCondition();
1296   LLVM_DEBUG(dbgs() << "Replacing condition of loop-exiting branch " << *BI
1297                     << " with " << *NewCond << "\n");
1298   BI->setCondition(NewCond);
1299   if (OldCond->use_empty())
1300     DeadInsts.emplace_back(OldCond);
1301 }
1302 
1303 static Constant *createFoldedExitCond(const Loop *L, BasicBlock *ExitingBB,
1304                                       bool IsTaken) {
1305   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1306   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1307   auto *OldCond = BI->getCondition();
1308   return ConstantInt::get(OldCond->getType(),
1309                           IsTaken ? ExitIfTrue : !ExitIfTrue);
1310 }
1311 
1312 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken,
1313                      SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1314   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1315   auto *NewCond = createFoldedExitCond(L, ExitingBB, IsTaken);
1316   replaceExitCond(BI, NewCond, DeadInsts);
1317 }
1318 
1319 static void replaceLoopPHINodesWithPreheaderValues(
1320     LoopInfo *LI, Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1321     ScalarEvolution &SE) {
1322   assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!");
1323   auto *LoopPreheader = L->getLoopPreheader();
1324   auto *LoopHeader = L->getHeader();
1325   SmallVector<Instruction *> Worklist;
1326   for (auto &PN : LoopHeader->phis()) {
1327     auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader);
1328     for (User *U : PN.users())
1329       Worklist.push_back(cast<Instruction>(U));
1330     SE.forgetValue(&PN);
1331     PN.replaceAllUsesWith(PreheaderIncoming);
1332     DeadInsts.emplace_back(&PN);
1333   }
1334 
1335   // Replacing with the preheader value will often allow IV users to simplify
1336   // (especially if the preheader value is a constant).
1337   SmallPtrSet<Instruction *, 16> Visited;
1338   while (!Worklist.empty()) {
1339     auto *I = cast<Instruction>(Worklist.pop_back_val());
1340     if (!Visited.insert(I).second)
1341       continue;
1342 
1343     // Don't simplify instructions outside the loop.
1344     if (!L->contains(I))
1345       continue;
1346 
1347     Value *Res = simplifyInstruction(I, I->getModule()->getDataLayout());
1348     if (Res && LI->replacementPreservesLCSSAForm(I, Res)) {
1349       for (User *U : I->users())
1350         Worklist.push_back(cast<Instruction>(U));
1351       I->replaceAllUsesWith(Res);
1352       DeadInsts.emplace_back(I);
1353     }
1354   }
1355 }
1356 
1357 static Value *
1358 createInvariantCond(const Loop *L, BasicBlock *ExitingBB,
1359                     const ScalarEvolution::LoopInvariantPredicate &LIP,
1360                     SCEVExpander &Rewriter) {
1361   ICmpInst::Predicate InvariantPred = LIP.Pred;
1362   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1363   Rewriter.setInsertPoint(BI);
1364   auto *LHSV = Rewriter.expandCodeFor(LIP.LHS);
1365   auto *RHSV = Rewriter.expandCodeFor(LIP.RHS);
1366   bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1367   if (ExitIfTrue)
1368     InvariantPred = ICmpInst::getInversePredicate(InvariantPred);
1369   IRBuilder<> Builder(BI);
1370   return Builder.CreateICmp(InvariantPred, LHSV, RHSV,
1371                             BI->getCondition()->getName());
1372 }
1373 
1374 static std::optional<Value *>
1375 createReplacement(ICmpInst *ICmp, const Loop *L, BasicBlock *ExitingBB,
1376                   const SCEV *MaxIter, bool Inverted, bool SkipLastIter,
1377                   ScalarEvolution *SE, SCEVExpander &Rewriter) {
1378   ICmpInst::Predicate Pred = ICmp->getPredicate();
1379   Value *LHS = ICmp->getOperand(0);
1380   Value *RHS = ICmp->getOperand(1);
1381 
1382   // 'LHS pred RHS' should now mean that we stay in loop.
1383   auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1384   if (Inverted)
1385     Pred = CmpInst::getInversePredicate(Pred);
1386 
1387   const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
1388   const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
1389   // Can we prove it to be trivially true or false?
1390   if (auto EV = SE->evaluatePredicateAt(Pred, LHSS, RHSS, BI))
1391     return createFoldedExitCond(L, ExitingBB, /*IsTaken*/ !*EV);
1392 
1393   auto *ARTy = LHSS->getType();
1394   auto *MaxIterTy = MaxIter->getType();
1395   // If possible, adjust types.
1396   if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy))
1397     MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy);
1398   else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) {
1399     const SCEV *MinusOne = SE->getMinusOne(ARTy);
1400     auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy);
1401     if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI))
1402       MaxIter = SE->getTruncateExpr(MaxIter, ARTy);
1403   }
1404 
1405   if (SkipLastIter) {
1406     const SCEV *One = SE->getOne(MaxIter->getType());
1407     MaxIter = SE->getMinusSCEV(MaxIter, One);
1408   }
1409 
1410   // Check if there is a loop-invariant predicate equivalent to our check.
1411   auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS,
1412                                                                L, BI, MaxIter);
1413   if (!LIP)
1414     return std::nullopt;
1415 
1416   // Can we prove it to be trivially true?
1417   if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI))
1418     return createFoldedExitCond(L, ExitingBB, /*IsTaken*/ false);
1419   else
1420     return createInvariantCond(L, ExitingBB, *LIP, Rewriter);
1421 }
1422 
1423 static bool optimizeLoopExitWithUnknownExitCount(
1424     const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, const SCEV *MaxIter,
1425     bool SkipLastIter, ScalarEvolution *SE, SCEVExpander &Rewriter,
1426     SmallVectorImpl<WeakTrackingVH> &DeadInsts) {
1427   assert(
1428       (L->contains(BI->getSuccessor(0)) != L->contains(BI->getSuccessor(1))) &&
1429       "Not a loop exit!");
1430 
1431   // For branch that stays in loop by TRUE condition, go through AND. For branch
1432   // that stays in loop by FALSE condition, go through OR. Both gives the
1433   // similar logic: "stay in loop iff all conditions are true(false)".
1434   bool Inverted = L->contains(BI->getSuccessor(1));
1435   SmallVector<ICmpInst *, 4> LeafConditions;
1436   SmallVector<Value *, 4> Worklist;
1437   SmallPtrSet<Value *, 4> Visited;
1438   Value *OldCond = BI->getCondition();
1439   Visited.insert(OldCond);
1440   Worklist.push_back(OldCond);
1441 
1442   auto GoThrough = [&](Value *V) {
1443     Value *LHS = nullptr, *RHS = nullptr;
1444     if (Inverted) {
1445       if (!match(V, m_LogicalOr(m_Value(LHS), m_Value(RHS))))
1446         return false;
1447     } else {
1448       if (!match(V, m_LogicalAnd(m_Value(LHS), m_Value(RHS))))
1449         return false;
1450     }
1451     if (Visited.insert(LHS).second)
1452       Worklist.push_back(LHS);
1453     if (Visited.insert(RHS).second)
1454       Worklist.push_back(RHS);
1455     return true;
1456   };
1457 
1458   do {
1459     Value *Curr = Worklist.pop_back_val();
1460     // Go through AND/OR conditions. Collect leaf ICMPs. We only care about
1461     // those with one use, to avoid instruction duplication.
1462     if (Curr->hasOneUse())
1463       if (!GoThrough(Curr))
1464         if (auto *ICmp = dyn_cast<ICmpInst>(Curr))
1465           LeafConditions.push_back(ICmp);
1466   } while (!Worklist.empty());
1467 
1468   // If the current basic block has the same exit count as the whole loop, and
1469   // it consists of multiple icmp's, try to collect all icmp's that give exact
1470   // same exit count. For all other icmp's, we could use one less iteration,
1471   // because their value on the last iteration doesn't really matter.
1472   SmallPtrSet<ICmpInst *, 4> ICmpsFailingOnLastIter;
1473   if (!SkipLastIter && LeafConditions.size() > 1 &&
1474       SE->getExitCount(L, ExitingBB,
1475                        ScalarEvolution::ExitCountKind::SymbolicMaximum) ==
1476           MaxIter)
1477     for (auto *ICmp : LeafConditions) {
1478       auto EL = SE->computeExitLimitFromCond(L, ICmp, Inverted,
1479                                              /*ControlsExit*/ false);
1480       auto *ExitMax = EL.SymbolicMaxNotTaken;
1481       if (isa<SCEVCouldNotCompute>(ExitMax))
1482         continue;
1483       // They could be of different types (specifically this happens after
1484       // IV widening).
1485       auto *WiderType =
1486           SE->getWiderType(ExitMax->getType(), MaxIter->getType());
1487       auto *WideExitMax = SE->getNoopOrZeroExtend(ExitMax, WiderType);
1488       auto *WideMaxIter = SE->getNoopOrZeroExtend(MaxIter, WiderType);
1489       if (WideExitMax == WideMaxIter)
1490         ICmpsFailingOnLastIter.insert(ICmp);
1491     }
1492 
1493   bool Changed = false;
1494   for (auto *OldCond : LeafConditions) {
1495     // Skip last iteration for this icmp under one of two conditions:
1496     // - We do it for all conditions;
1497     // - There is another ICmp that would fail on last iter, so this one doesn't
1498     // really matter.
1499     bool OptimisticSkipLastIter = SkipLastIter;
1500     if (!OptimisticSkipLastIter) {
1501       if (ICmpsFailingOnLastIter.size() > 1)
1502         OptimisticSkipLastIter = true;
1503       else if (ICmpsFailingOnLastIter.size() == 1)
1504         OptimisticSkipLastIter = !ICmpsFailingOnLastIter.count(OldCond);
1505     }
1506     if (auto Replaced =
1507             createReplacement(OldCond, L, ExitingBB, MaxIter, Inverted,
1508                               OptimisticSkipLastIter, SE, Rewriter)) {
1509       Changed = true;
1510       auto *NewCond = *Replaced;
1511       if (auto *NCI = dyn_cast<Instruction>(NewCond)) {
1512         NCI->setName(OldCond->getName() + ".first_iter");
1513         NCI->moveBefore(cast<Instruction>(OldCond));
1514       }
1515       LLVM_DEBUG(dbgs() << "Unknown exit count: Replacing " << *OldCond
1516                         << " with " << *NewCond << "\n");
1517       assert(OldCond->hasOneUse() && "Must be!");
1518       OldCond->replaceAllUsesWith(NewCond);
1519       DeadInsts.push_back(OldCond);
1520       // Make sure we no longer consider this condition as failing on last
1521       // iteration.
1522       ICmpsFailingOnLastIter.erase(OldCond);
1523     }
1524   }
1525   return Changed;
1526 }
1527 
1528 bool IndVarSimplify::canonicalizeExitCondition(Loop *L) {
1529   // Note: This is duplicating a particular part on SimplifyIndVars reasoning.
1530   // We need to duplicate it because given icmp zext(small-iv), C, IVUsers
1531   // never reaches the icmp since the zext doesn't fold to an AddRec unless
1532   // it already has flags.  The alternative to this would be to extending the
1533   // set of "interesting" IV users to include the icmp, but doing that
1534   // regresses results in practice by querying SCEVs before trip counts which
1535   // rely on them which results in SCEV caching sub-optimal answers.  The
1536   // concern about caching sub-optimal results is why we only query SCEVs of
1537   // the loop invariant RHS here.
1538   SmallVector<BasicBlock*, 16> ExitingBlocks;
1539   L->getExitingBlocks(ExitingBlocks);
1540   bool Changed = false;
1541   for (auto *ExitingBB : ExitingBlocks) {
1542     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1543     if (!BI)
1544       continue;
1545     assert(BI->isConditional() && "exit branch must be conditional");
1546 
1547     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1548     if (!ICmp || !ICmp->hasOneUse())
1549       continue;
1550 
1551     auto *LHS = ICmp->getOperand(0);
1552     auto *RHS = ICmp->getOperand(1);
1553     // For the range reasoning, avoid computing SCEVs in the loop to avoid
1554     // poisoning cache with sub-optimal results.  For the must-execute case,
1555     // this is a neccessary precondition for correctness.
1556     if (!L->isLoopInvariant(RHS)) {
1557       if (!L->isLoopInvariant(LHS))
1558         continue;
1559       // Same logic applies for the inverse case
1560       std::swap(LHS, RHS);
1561     }
1562 
1563     // Match (icmp signed-cond zext, RHS)
1564     Value *LHSOp = nullptr;
1565     if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned())
1566       continue;
1567 
1568     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1569     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1570     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1571     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1572     FullCR = FullCR.zeroExtend(OuterBitWidth);
1573     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1574     if (FullCR.contains(RHSCR)) {
1575       // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus
1576       // replace the signed condition with the unsigned version.
1577       ICmp->setPredicate(ICmp->getUnsignedPredicate());
1578       Changed = true;
1579       // Note: No SCEV invalidation needed.  We've changed the predicate, but
1580       // have not changed exit counts, or the values produced by the compare.
1581       continue;
1582     }
1583   }
1584 
1585   // Now that we've canonicalized the condition to match the extend,
1586   // see if we can rotate the extend out of the loop.
1587   for (auto *ExitingBB : ExitingBlocks) {
1588     auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1589     if (!BI)
1590       continue;
1591     assert(BI->isConditional() && "exit branch must be conditional");
1592 
1593     auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
1594     if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned())
1595       continue;
1596 
1597     bool Swapped = false;
1598     auto *LHS = ICmp->getOperand(0);
1599     auto *RHS = ICmp->getOperand(1);
1600     if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS))
1601       // Nothing to rotate
1602       continue;
1603     if (L->isLoopInvariant(LHS)) {
1604       // Same logic applies for the inverse case until we actually pick
1605       // which operand of the compare to update.
1606       Swapped = true;
1607       std::swap(LHS, RHS);
1608     }
1609     assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS));
1610 
1611     // Match (icmp unsigned-cond zext, RHS)
1612     // TODO: Extend to handle corresponding sext/signed-cmp case
1613     // TODO: Extend to other invertible functions
1614     Value *LHSOp = nullptr;
1615     if (!match(LHS, m_ZExt(m_Value(LHSOp))))
1616       continue;
1617 
1618     // In general, we only rotate if we can do so without increasing the number
1619     // of instructions.  The exception is when we have an zext(add-rec).  The
1620     // reason for allowing this exception is that we know we need to get rid
1621     // of the zext for SCEV to be able to compute a trip count for said loops;
1622     // we consider the new trip count valuable enough to increase instruction
1623     // count by one.
1624     if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp)))
1625       continue;
1626 
1627     // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS
1628     // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS)
1629     // when zext is loop varying and RHS is loop invariant.  This converts
1630     // loop varying work to loop-invariant work.
1631     auto doRotateTransform = [&]() {
1632       assert(ICmp->isUnsigned() && "must have proven unsigned already");
1633       auto *NewRHS =
1634         CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "",
1635                          L->getLoopPreheader()->getTerminator());
1636       ICmp->setOperand(Swapped ? 1 : 0, LHSOp);
1637       ICmp->setOperand(Swapped ? 0 : 1, NewRHS);
1638       if (LHS->use_empty())
1639         DeadInsts.push_back(LHS);
1640     };
1641 
1642 
1643     const DataLayout &DL = ExitingBB->getModule()->getDataLayout();
1644     const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType());
1645     const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType());
1646     auto FullCR = ConstantRange::getFull(InnerBitWidth);
1647     FullCR = FullCR.zeroExtend(OuterBitWidth);
1648     auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L));
1649     if (FullCR.contains(RHSCR)) {
1650       doRotateTransform();
1651       Changed = true;
1652       // Note, we are leaving SCEV in an unfortunately imprecise case here
1653       // as rotation tends to reveal information about trip counts not
1654       // previously visible.
1655       continue;
1656     }
1657   }
1658 
1659   return Changed;
1660 }
1661 
1662 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
1663   SmallVector<BasicBlock*, 16> ExitingBlocks;
1664   L->getExitingBlocks(ExitingBlocks);
1665 
1666   // Remove all exits which aren't both rewriteable and execute on every
1667   // iteration.
1668   llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1669     // If our exitting block exits multiple loops, we can only rewrite the
1670     // innermost one.  Otherwise, we're changing how many times the innermost
1671     // loop runs before it exits.
1672     if (LI->getLoopFor(ExitingBB) != L)
1673       return true;
1674 
1675     // Can't rewrite non-branch yet.
1676     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1677     if (!BI)
1678       return true;
1679 
1680     // Likewise, the loop latch must be dominated by the exiting BB.
1681     if (!DT->dominates(ExitingBB, L->getLoopLatch()))
1682       return true;
1683 
1684     if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
1685       // If already constant, nothing to do. However, if this is an
1686       // unconditional exit, we can still replace header phis with their
1687       // preheader value.
1688       if (!L->contains(BI->getSuccessor(CI->isNullValue())))
1689         replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE);
1690       return true;
1691     }
1692 
1693     return false;
1694   });
1695 
1696   if (ExitingBlocks.empty())
1697     return false;
1698 
1699   // Get a symbolic upper bound on the loop backedge taken count.
1700   const SCEV *MaxBECount = SE->getSymbolicMaxBackedgeTakenCount(L);
1701   if (isa<SCEVCouldNotCompute>(MaxBECount))
1702     return false;
1703 
1704   // Visit our exit blocks in order of dominance. We know from the fact that
1705   // all exits must dominate the latch, so there is a total dominance order
1706   // between them.
1707   llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
1708                // std::sort sorts in ascending order, so we want the inverse of
1709                // the normal dominance relation.
1710                if (A == B) return false;
1711                if (DT->properlyDominates(A, B))
1712                  return true;
1713                else {
1714                  assert(DT->properlyDominates(B, A) &&
1715                         "expected total dominance order!");
1716                  return false;
1717                }
1718   });
1719 #ifdef ASSERT
1720   for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
1721     assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
1722   }
1723 #endif
1724 
1725   bool Changed = false;
1726   bool SkipLastIter = false;
1727   SmallSet<const SCEV *, 8> DominatingExactExitCounts;
1728   for (BasicBlock *ExitingBB : ExitingBlocks) {
1729     const SCEV *ExactExitCount = SE->getExitCount(L, ExitingBB);
1730     const SCEV *MaxExitCount = SE->getExitCount(
1731         L, ExitingBB, ScalarEvolution::ExitCountKind::SymbolicMaximum);
1732     if (isa<SCEVCouldNotCompute>(ExactExitCount)) {
1733       // Okay, we do not know the exit count here. Can we at least prove that it
1734       // will remain the same within iteration space?
1735       auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1736       auto OptimizeCond = [&](bool SkipLastIter) {
1737         return optimizeLoopExitWithUnknownExitCount(L, BI, ExitingBB,
1738                                                     MaxBECount, SkipLastIter,
1739                                                     SE, Rewriter, DeadInsts);
1740       };
1741 
1742       // TODO: We might have proved that we can skip the last iteration for
1743       // this check. In this case, we only want to check the condition on the
1744       // pre-last iteration (MaxBECount - 1). However, there is a nasty
1745       // corner case:
1746       //
1747       //   for (i = len; i != 0; i--) { ... check (i ult X) ... }
1748       //
1749       // If we could not prove that len != 0, then we also could not prove that
1750       // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
1751       // OptimizeCond will likely not prove anything for it, even if it could
1752       // prove the same fact for len.
1753       //
1754       // As a temporary solution, we query both last and pre-last iterations in
1755       // hope that we will be able to prove triviality for at least one of
1756       // them. We can stop querying MaxBECount for this case once SCEV
1757       // understands that (MaxBECount - 1) will not overflow here.
1758       if (OptimizeCond(false))
1759         Changed = true;
1760       else if (SkipLastIter && OptimizeCond(true))
1761         Changed = true;
1762       if (MaxBECount == MaxExitCount)
1763         // If the loop has more than 1 iteration, all further checks will be
1764         // executed 1 iteration less.
1765         SkipLastIter = true;
1766       continue;
1767     }
1768 
1769     if (MaxBECount == MaxExitCount)
1770       // If the loop has more than 1 iteration, all further checks will be
1771       // executed 1 iteration less.
1772       SkipLastIter = true;
1773 
1774     // If we know we'd exit on the first iteration, rewrite the exit to
1775     // reflect this.  This does not imply the loop must exit through this
1776     // exit; there may be an earlier one taken on the first iteration.
1777     // We know that the backedge can't be taken, so we replace all
1778     // the header PHIs with values coming from the preheader.
1779     if (ExactExitCount->isZero()) {
1780       foldExit(L, ExitingBB, true, DeadInsts);
1781       replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE);
1782       Changed = true;
1783       continue;
1784     }
1785 
1786     assert(ExactExitCount->getType()->isIntegerTy() &&
1787            MaxBECount->getType()->isIntegerTy() &&
1788            "Exit counts must be integers");
1789 
1790     Type *WiderType =
1791         SE->getWiderType(MaxBECount->getType(), ExactExitCount->getType());
1792     ExactExitCount = SE->getNoopOrZeroExtend(ExactExitCount, WiderType);
1793     MaxBECount = SE->getNoopOrZeroExtend(MaxBECount, WiderType);
1794     assert(MaxBECount->getType() == ExactExitCount->getType());
1795 
1796     // Can we prove that some other exit must be taken strictly before this
1797     // one?
1798     if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, MaxBECount,
1799                                      ExactExitCount)) {
1800       foldExit(L, ExitingBB, false, DeadInsts);
1801       Changed = true;
1802       continue;
1803     }
1804 
1805     // As we run, keep track of which exit counts we've encountered.  If we
1806     // find a duplicate, we've found an exit which would have exited on the
1807     // exiting iteration, but (from the visit order) strictly follows another
1808     // which does the same and is thus dead.
1809     if (!DominatingExactExitCounts.insert(ExactExitCount).second) {
1810       foldExit(L, ExitingBB, false, DeadInsts);
1811       Changed = true;
1812       continue;
1813     }
1814 
1815     // TODO: There might be another oppurtunity to leverage SCEV's reasoning
1816     // here.  If we kept track of the min of dominanting exits so far, we could
1817     // discharge exits with EC >= MDEC. This is less powerful than the existing
1818     // transform (since later exits aren't considered), but potentially more
1819     // powerful for any case where SCEV can prove a >=u b, but neither a == b
1820     // or a >u b.  Such a case is not currently known.
1821   }
1822   return Changed;
1823 }
1824 
1825 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1826   SmallVector<BasicBlock*, 16> ExitingBlocks;
1827   L->getExitingBlocks(ExitingBlocks);
1828 
1829   // Finally, see if we can rewrite our exit conditions into a loop invariant
1830   // form. If we have a read-only loop, and we can tell that we must exit down
1831   // a path which does not need any of the values computed within the loop, we
1832   // can rewrite the loop to exit on the first iteration.  Note that this
1833   // doesn't either a) tell us the loop exits on the first iteration (unless
1834   // *all* exits are predicateable) or b) tell us *which* exit might be taken.
1835   // This transformation looks a lot like a restricted form of dead loop
1836   // elimination, but restricted to read-only loops and without neccesssarily
1837   // needing to kill the loop entirely.
1838   if (!LoopPredication)
1839     return false;
1840 
1841   // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
1842   // through *explicit* control flow.  We have to eliminate the possibility of
1843   // implicit exits (see below) before we know it's truly exact.
1844   const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1845   if (isa<SCEVCouldNotCompute>(ExactBTC) || !Rewriter.isSafeToExpand(ExactBTC))
1846     return false;
1847 
1848   assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant");
1849   assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer");
1850 
1851   auto BadExit = [&](BasicBlock *ExitingBB) {
1852     // If our exiting block exits multiple loops, we can only rewrite the
1853     // innermost one.  Otherwise, we're changing how many times the innermost
1854     // loop runs before it exits.
1855     if (LI->getLoopFor(ExitingBB) != L)
1856       return true;
1857 
1858     // Can't rewrite non-branch yet.
1859     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1860     if (!BI)
1861       return true;
1862 
1863     // If already constant, nothing to do.
1864     if (isa<Constant>(BI->getCondition()))
1865       return true;
1866 
1867     // If the exit block has phis, we need to be able to compute the values
1868     // within the loop which contains them.  This assumes trivially lcssa phis
1869     // have already been removed; TODO: generalize
1870     BasicBlock *ExitBlock =
1871     BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
1872     if (!ExitBlock->phis().empty())
1873       return true;
1874 
1875     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1876     if (isa<SCEVCouldNotCompute>(ExitCount) ||
1877         !Rewriter.isSafeToExpand(ExitCount))
1878       return true;
1879 
1880     assert(SE->isLoopInvariant(ExitCount, L) &&
1881            "Exit count must be loop invariant");
1882     assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer");
1883     return false;
1884   };
1885 
1886   // If we have any exits which can't be predicated themselves, than we can't
1887   // predicate any exit which isn't guaranteed to execute before it.  Consider
1888   // two exits (a) and (b) which would both exit on the same iteration.  If we
1889   // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
1890   // we could convert a loop from exiting through (a) to one exiting through
1891   // (b).  Note that this problem exists only for exits with the same exit
1892   // count, and we could be more aggressive when exit counts are known inequal.
1893   llvm::sort(ExitingBlocks,
1894             [&](BasicBlock *A, BasicBlock *B) {
1895               // std::sort sorts in ascending order, so we want the inverse of
1896               // the normal dominance relation, plus a tie breaker for blocks
1897               // unordered by dominance.
1898               if (DT->properlyDominates(A, B)) return true;
1899               if (DT->properlyDominates(B, A)) return false;
1900               return A->getName() < B->getName();
1901             });
1902   // Check to see if our exit blocks are a total order (i.e. a linear chain of
1903   // exits before the backedge).  If they aren't, reasoning about reachability
1904   // is complicated and we choose not to for now.
1905   for (unsigned i = 1; i < ExitingBlocks.size(); i++)
1906     if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
1907       return false;
1908 
1909   // Given our sorted total order, we know that exit[j] must be evaluated
1910   // after all exit[i] such j > i.
1911   for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1912     if (BadExit(ExitingBlocks[i])) {
1913       ExitingBlocks.resize(i);
1914       break;
1915     }
1916 
1917   if (ExitingBlocks.empty())
1918     return false;
1919 
1920   // We rely on not being able to reach an exiting block on a later iteration
1921   // then it's statically compute exit count.  The implementaton of
1922   // getExitCount currently has this invariant, but assert it here so that
1923   // breakage is obvious if this ever changes..
1924   assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1925         return DT->dominates(ExitingBB, L->getLoopLatch());
1926       }));
1927 
1928   // At this point, ExitingBlocks consists of only those blocks which are
1929   // predicatable.  Given that, we know we have at least one exit we can
1930   // predicate if the loop is doesn't have side effects and doesn't have any
1931   // implicit exits (because then our exact BTC isn't actually exact).
1932   // @Reviewers - As structured, this is O(I^2) for loop nests.  Any
1933   // suggestions on how to improve this?  I can obviously bail out for outer
1934   // loops, but that seems less than ideal.  MemorySSA can find memory writes,
1935   // is that enough for *all* side effects?
1936   for (BasicBlock *BB : L->blocks())
1937     for (auto &I : *BB)
1938       // TODO:isGuaranteedToTransfer
1939       if (I.mayHaveSideEffects())
1940         return false;
1941 
1942   bool Changed = false;
1943   // Finally, do the actual predication for all predicatable blocks.  A couple
1944   // of notes here:
1945   // 1) We don't bother to constant fold dominated exits with identical exit
1946   //    counts; that's simply a form of CSE/equality propagation and we leave
1947   //    it for dedicated passes.
1948   // 2) We insert the comparison at the branch.  Hoisting introduces additional
1949   //    legality constraints and we leave that to dedicated logic.  We want to
1950   //    predicate even if we can't insert a loop invariant expression as
1951   //    peeling or unrolling will likely reduce the cost of the otherwise loop
1952   //    varying check.
1953   Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
1954   IRBuilder<> B(L->getLoopPreheader()->getTerminator());
1955   Value *ExactBTCV = nullptr; // Lazily generated if needed.
1956   for (BasicBlock *ExitingBB : ExitingBlocks) {
1957     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1958 
1959     auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1960     Value *NewCond;
1961     if (ExitCount == ExactBTC) {
1962       NewCond = L->contains(BI->getSuccessor(0)) ?
1963         B.getFalse() : B.getTrue();
1964     } else {
1965       Value *ECV = Rewriter.expandCodeFor(ExitCount);
1966       if (!ExactBTCV)
1967         ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
1968       Value *RHS = ExactBTCV;
1969       if (ECV->getType() != RHS->getType()) {
1970         Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1971         ECV = B.CreateZExt(ECV, WiderTy);
1972         RHS = B.CreateZExt(RHS, WiderTy);
1973       }
1974       auto Pred = L->contains(BI->getSuccessor(0)) ?
1975         ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1976       NewCond = B.CreateICmp(Pred, ECV, RHS);
1977     }
1978     Value *OldCond = BI->getCondition();
1979     BI->setCondition(NewCond);
1980     if (OldCond->use_empty())
1981       DeadInsts.emplace_back(OldCond);
1982     Changed = true;
1983   }
1984 
1985   return Changed;
1986 }
1987 
1988 //===----------------------------------------------------------------------===//
1989 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1990 //===----------------------------------------------------------------------===//
1991 
1992 bool IndVarSimplify::run(Loop *L) {
1993   // We need (and expect!) the incoming loop to be in LCSSA.
1994   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1995          "LCSSA required to run indvars!");
1996 
1997   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1998   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1999   //    canonicalization can be a pessimization without LSR to "clean up"
2000   //    afterwards.
2001   //  - We depend on having a preheader; in particular,
2002   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2003   //    and we're in trouble if we can't find the induction variable even when
2004   //    we've manually inserted one.
2005   //  - LFTR relies on having a single backedge.
2006   if (!L->isLoopSimplifyForm())
2007     return false;
2008 
2009 #ifndef NDEBUG
2010   // Used below for a consistency check only
2011   // Note: Since the result returned by ScalarEvolution may depend on the order
2012   // in which previous results are added to its cache, the call to
2013   // getBackedgeTakenCount() may change following SCEV queries.
2014   const SCEV *BackedgeTakenCount;
2015   if (VerifyIndvars)
2016     BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2017 #endif
2018 
2019   bool Changed = false;
2020   // If there are any floating-point recurrences, attempt to
2021   // transform them to use integer recurrences.
2022   Changed |= rewriteNonIntegerIVs(L);
2023 
2024   // Create a rewriter object which we'll use to transform the code with.
2025   SCEVExpander Rewriter(*SE, DL, "indvars");
2026 #ifndef NDEBUG
2027   Rewriter.setDebugType(DEBUG_TYPE);
2028 #endif
2029 
2030   // Eliminate redundant IV users.
2031   //
2032   // Simplification works best when run before other consumers of SCEV. We
2033   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2034   // other expressions involving loop IVs have been evaluated. This helps SCEV
2035   // set no-wrap flags before normalizing sign/zero extension.
2036   Rewriter.disableCanonicalMode();
2037   Changed |= simplifyAndExtend(L, Rewriter, LI);
2038 
2039   // Check to see if we can compute the final value of any expressions
2040   // that are recurrent in the loop, and substitute the exit values from the
2041   // loop into any instructions outside of the loop that use the final values
2042   // of the current expressions.
2043   if (ReplaceExitValue != NeverRepl) {
2044     if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
2045                                              ReplaceExitValue, DeadInsts)) {
2046       NumReplaced += Rewrites;
2047       Changed = true;
2048     }
2049   }
2050 
2051   // Eliminate redundant IV cycles.
2052   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI);
2053 
2054   // Try to convert exit conditions to unsigned and rotate computation
2055   // out of the loop.  Note: Handles invalidation internally if needed.
2056   Changed |= canonicalizeExitCondition(L);
2057 
2058   // Try to eliminate loop exits based on analyzeable exit counts
2059   if (optimizeLoopExits(L, Rewriter))  {
2060     Changed = true;
2061     // Given we've changed exit counts, notify SCEV
2062     // Some nested loops may share same folded exit basic block,
2063     // thus we need to notify top most loop.
2064     SE->forgetTopmostLoop(L);
2065   }
2066 
2067   // Try to form loop invariant tests for loop exits by changing how many
2068   // iterations of the loop run when that is unobservable.
2069   if (predicateLoopExits(L, Rewriter)) {
2070     Changed = true;
2071     // Given we've changed exit counts, notify SCEV
2072     SE->forgetLoop(L);
2073   }
2074 
2075   // If we have a trip count expression, rewrite the loop's exit condition
2076   // using it.
2077   if (!DisableLFTR) {
2078     BasicBlock *PreHeader = L->getLoopPreheader();
2079 
2080     SmallVector<BasicBlock*, 16> ExitingBlocks;
2081     L->getExitingBlocks(ExitingBlocks);
2082     for (BasicBlock *ExitingBB : ExitingBlocks) {
2083       // Can't rewrite non-branch yet.
2084       if (!isa<BranchInst>(ExitingBB->getTerminator()))
2085         continue;
2086 
2087       // If our exitting block exits multiple loops, we can only rewrite the
2088       // innermost one.  Otherwise, we're changing how many times the innermost
2089       // loop runs before it exits.
2090       if (LI->getLoopFor(ExitingBB) != L)
2091         continue;
2092 
2093       if (!needsLFTR(L, ExitingBB))
2094         continue;
2095 
2096       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
2097       if (isa<SCEVCouldNotCompute>(ExitCount))
2098         continue;
2099 
2100       // This was handled above, but as we form SCEVs, we can sometimes refine
2101       // existing ones; this allows exit counts to be folded to zero which
2102       // weren't when optimizeLoopExits saw them.  Arguably, we should iterate
2103       // until stable to handle cases like this better.
2104       if (ExitCount->isZero())
2105         continue;
2106 
2107       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
2108       if (!IndVar)
2109         continue;
2110 
2111       // Avoid high cost expansions.  Note: This heuristic is questionable in
2112       // that our definition of "high cost" is not exactly principled.
2113       if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
2114                                        TTI, PreHeader->getTerminator()))
2115         continue;
2116 
2117       // Check preconditions for proper SCEVExpander operation. SCEV does not
2118       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
2119       // any pass that uses the SCEVExpander must do it. This does not work
2120       // well for loop passes because SCEVExpander makes assumptions about
2121       // all loops, while LoopPassManager only forces the current loop to be
2122       // simplified.
2123       //
2124       // FIXME: SCEV expansion has no way to bail out, so the caller must
2125       // explicitly check any assumptions made by SCEV. Brittle.
2126       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
2127       if (!AR || AR->getLoop()->getLoopPreheader())
2128         Changed |= linearFunctionTestReplace(L, ExitingBB,
2129                                              ExitCount, IndVar,
2130                                              Rewriter);
2131     }
2132   }
2133   // Clear the rewriter cache, because values that are in the rewriter's cache
2134   // can be deleted in the loop below, causing the AssertingVH in the cache to
2135   // trigger.
2136   Rewriter.clear();
2137 
2138   // Now that we're done iterating through lists, clean up any instructions
2139   // which are now dead.
2140   while (!DeadInsts.empty()) {
2141     Value *V = DeadInsts.pop_back_val();
2142 
2143     if (PHINode *PHI = dyn_cast_or_null<PHINode>(V))
2144       Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get());
2145     else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V))
2146       Changed |=
2147           RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
2148   }
2149 
2150   // The Rewriter may not be used from this point on.
2151 
2152   // Loop-invariant instructions in the preheader that aren't used in the
2153   // loop may be sunk below the loop to reduce register pressure.
2154   Changed |= sinkUnusedInvariants(L);
2155 
2156   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2157   // trip count and therefore can further simplify exit values in addition to
2158   // rewriteLoopExitValues.
2159   Changed |= rewriteFirstIterationLoopExitValues(L);
2160 
2161   // Clean up dead instructions.
2162   Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
2163 
2164   // Check a post-condition.
2165   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2166          "Indvars did not preserve LCSSA!");
2167 
2168   // Verify that LFTR, and any other change have not interfered with SCEV's
2169   // ability to compute trip count.  We may have *changed* the exit count, but
2170   // only by reducing it.
2171 #ifndef NDEBUG
2172   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2173     SE->forgetLoop(L);
2174     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2175     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2176         SE->getTypeSizeInBits(NewBECount->getType()))
2177       NewBECount = SE->getTruncateOrNoop(NewBECount,
2178                                          BackedgeTakenCount->getType());
2179     else
2180       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2181                                                  NewBECount->getType());
2182     assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
2183                                  NewBECount) && "indvars must preserve SCEV");
2184   }
2185   if (VerifyMemorySSA && MSSAU)
2186     MSSAU->getMemorySSA()->verifyMemorySSA();
2187 #endif
2188 
2189   return Changed;
2190 }
2191 
2192 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2193                                           LoopStandardAnalysisResults &AR,
2194                                           LPMUpdater &) {
2195   Function *F = L.getHeader()->getParent();
2196   const DataLayout &DL = F->getParent()->getDataLayout();
2197 
2198   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
2199                      WidenIndVars && AllowIVWidening);
2200   if (!IVS.run(&L))
2201     return PreservedAnalyses::all();
2202 
2203   auto PA = getLoopPassPreservedAnalyses();
2204   PA.preserveSet<CFGAnalyses>();
2205   if (AR.MSSA)
2206     PA.preserve<MemorySSAAnalysis>();
2207   return PA;
2208 }
2209 
2210 namespace {
2211 
2212 struct IndVarSimplifyLegacyPass : public LoopPass {
2213   static char ID; // Pass identification, replacement for typeid
2214 
2215   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2216     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2217   }
2218 
2219   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2220     if (skipLoop(L))
2221       return false;
2222 
2223     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2224     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2225     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2226     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2227     auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
2228     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2229     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2230     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2231     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
2232     MemorySSA *MSSA = nullptr;
2233     if (MSSAAnalysis)
2234       MSSA = &MSSAAnalysis->getMSSA();
2235 
2236     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
2237     return IVS.run(L);
2238   }
2239 
2240   void getAnalysisUsage(AnalysisUsage &AU) const override {
2241     AU.setPreservesCFG();
2242     AU.addPreserved<MemorySSAWrapperPass>();
2243     getLoopAnalysisUsage(AU);
2244   }
2245 };
2246 
2247 } // end anonymous namespace
2248 
2249 char IndVarSimplifyLegacyPass::ID = 0;
2250 
2251 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2252                       "Induction Variable Simplification", false, false)
2253 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2254 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2255                     "Induction Variable Simplification", false, false)
2256 
2257 Pass *llvm::createIndVarSimplifyPass() {
2258   return new IndVarSimplifyLegacyPass();
2259 }
2260