1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into simpler forms suitable for subsequent 11 // analysis and transformation. 12 // 13 // If the trip count of a loop is computable, this pass also makes the following 14 // changes: 15 // 1. The exit condition for the loop is canonicalized to compare the 16 // induction value against the exit value. This turns loops like: 17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 18 // 2. Any use outside of the loop of an expression derived from the indvar 19 // is changed to compute the derived value outside of the loop, eliminating 20 // the dependence on the exit value of the induction variable. If the only 21 // purpose of the loop is to compute the exit value of some derived 22 // expression, this transformation will make the loop dead. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/ArrayRef.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/Statistic.h" 34 #include "llvm/ADT/iterator_range.h" 35 #include "llvm/Analysis/LoopInfo.h" 36 #include "llvm/Analysis/LoopPass.h" 37 #include "llvm/Analysis/MemorySSA.h" 38 #include "llvm/Analysis/MemorySSAUpdater.h" 39 #include "llvm/Analysis/ScalarEvolution.h" 40 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 41 #include "llvm/Analysis/TargetLibraryInfo.h" 42 #include "llvm/Analysis/TargetTransformInfo.h" 43 #include "llvm/Analysis/ValueTracking.h" 44 #include "llvm/IR/BasicBlock.h" 45 #include "llvm/IR/Constant.h" 46 #include "llvm/IR/ConstantRange.h" 47 #include "llvm/IR/Constants.h" 48 #include "llvm/IR/DataLayout.h" 49 #include "llvm/IR/DerivedTypes.h" 50 #include "llvm/IR/Dominators.h" 51 #include "llvm/IR/Function.h" 52 #include "llvm/IR/IRBuilder.h" 53 #include "llvm/IR/InstrTypes.h" 54 #include "llvm/IR/Instruction.h" 55 #include "llvm/IR/Instructions.h" 56 #include "llvm/IR/IntrinsicInst.h" 57 #include "llvm/IR/Intrinsics.h" 58 #include "llvm/IR/Module.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/PassManager.h" 61 #include "llvm/IR/PatternMatch.h" 62 #include "llvm/IR/Type.h" 63 #include "llvm/IR/Use.h" 64 #include "llvm/IR/User.h" 65 #include "llvm/IR/Value.h" 66 #include "llvm/IR/ValueHandle.h" 67 #include "llvm/InitializePasses.h" 68 #include "llvm/Pass.h" 69 #include "llvm/Support/Casting.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/Compiler.h" 72 #include "llvm/Support/Debug.h" 73 #include "llvm/Support/MathExtras.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include "llvm/Transforms/Scalar.h" 76 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 77 #include "llvm/Transforms/Utils/Local.h" 78 #include "llvm/Transforms/Utils/LoopUtils.h" 79 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" 80 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 81 #include <cassert> 82 #include <cstdint> 83 #include <utility> 84 85 using namespace llvm; 86 using namespace PatternMatch; 87 88 #define DEBUG_TYPE "indvars" 89 90 STATISTIC(NumWidened , "Number of indvars widened"); 91 STATISTIC(NumReplaced , "Number of exit values replaced"); 92 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 93 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 94 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 95 96 // Trip count verification can be enabled by default under NDEBUG if we 97 // implement a strong expression equivalence checker in SCEV. Until then, we 98 // use the verify-indvars flag, which may assert in some cases. 99 static cl::opt<bool> VerifyIndvars( 100 "verify-indvars", cl::Hidden, 101 cl::desc("Verify the ScalarEvolution result after running indvars. Has no " 102 "effect in release builds. (Note: this adds additional SCEV " 103 "queries potentially changing the analysis result)")); 104 105 static cl::opt<ReplaceExitVal> ReplaceExitValue( 106 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 107 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 108 cl::values( 109 clEnumValN(NeverRepl, "never", "never replace exit value"), 110 clEnumValN(OnlyCheapRepl, "cheap", 111 "only replace exit value when the cost is cheap"), 112 clEnumValN( 113 UnusedIndVarInLoop, "unusedindvarinloop", 114 "only replace exit value when it is an unused " 115 "induction variable in the loop and has cheap replacement cost"), 116 clEnumValN(NoHardUse, "noharduse", 117 "only replace exit values when loop def likely dead"), 118 clEnumValN(AlwaysRepl, "always", 119 "always replace exit value whenever possible"))); 120 121 static cl::opt<bool> UsePostIncrementRanges( 122 "indvars-post-increment-ranges", cl::Hidden, 123 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 124 cl::init(true)); 125 126 static cl::opt<bool> 127 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 128 cl::desc("Disable Linear Function Test Replace optimization")); 129 130 static cl::opt<bool> 131 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true), 132 cl::desc("Predicate conditions in read only loops")); 133 134 static cl::opt<bool> 135 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true), 136 cl::desc("Allow widening of indvars to eliminate s/zext")); 137 138 namespace { 139 140 class IndVarSimplify { 141 LoopInfo *LI; 142 ScalarEvolution *SE; 143 DominatorTree *DT; 144 const DataLayout &DL; 145 TargetLibraryInfo *TLI; 146 const TargetTransformInfo *TTI; 147 std::unique_ptr<MemorySSAUpdater> MSSAU; 148 149 SmallVector<WeakTrackingVH, 16> DeadInsts; 150 bool WidenIndVars; 151 152 bool handleFloatingPointIV(Loop *L, PHINode *PH); 153 bool rewriteNonIntegerIVs(Loop *L); 154 155 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 156 /// Try to improve our exit conditions by converting condition from signed 157 /// to unsigned or rotating computation out of the loop. 158 /// (See inline comment about why this is duplicated from simplifyAndExtend) 159 bool canonicalizeExitCondition(Loop *L); 160 /// Try to eliminate loop exits based on analyzeable exit counts 161 bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter); 162 /// Try to form loop invariant tests for loop exits by changing how many 163 /// iterations of the loop run when that is unobservable. 164 bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter); 165 166 bool rewriteFirstIterationLoopExitValues(Loop *L); 167 168 bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 169 const SCEV *ExitCount, 170 PHINode *IndVar, SCEVExpander &Rewriter); 171 172 bool sinkUnusedInvariants(Loop *L); 173 174 public: 175 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 176 const DataLayout &DL, TargetLibraryInfo *TLI, 177 TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars) 178 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI), 179 WidenIndVars(WidenIndVars) { 180 if (MSSA) 181 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA); 182 } 183 184 bool run(Loop *L); 185 }; 186 187 } // end anonymous namespace 188 189 //===----------------------------------------------------------------------===// 190 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 191 //===----------------------------------------------------------------------===// 192 193 /// Convert APF to an integer, if possible. 194 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 195 bool isExact = false; 196 // See if we can convert this to an int64_t 197 uint64_t UIntVal; 198 if (APF.convertToInteger(MutableArrayRef(UIntVal), 64, true, 199 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 200 !isExact) 201 return false; 202 IntVal = UIntVal; 203 return true; 204 } 205 206 /// If the loop has floating induction variable then insert corresponding 207 /// integer induction variable if possible. 208 /// For example, 209 /// for(double i = 0; i < 10000; ++i) 210 /// bar(i) 211 /// is converted into 212 /// for(int i = 0; i < 10000; ++i) 213 /// bar((double)i); 214 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 215 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 216 unsigned BackEdge = IncomingEdge^1; 217 218 // Check incoming value. 219 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 220 221 int64_t InitValue; 222 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 223 return false; 224 225 // Check IV increment. Reject this PN if increment operation is not 226 // an add or increment value can not be represented by an integer. 227 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 228 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 229 230 // If this is not an add of the PHI with a constantfp, or if the constant fp 231 // is not an integer, bail out. 232 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 233 int64_t IncValue; 234 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 235 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 236 return false; 237 238 // Check Incr uses. One user is PN and the other user is an exit condition 239 // used by the conditional terminator. 240 Value::user_iterator IncrUse = Incr->user_begin(); 241 Instruction *U1 = cast<Instruction>(*IncrUse++); 242 if (IncrUse == Incr->user_end()) return false; 243 Instruction *U2 = cast<Instruction>(*IncrUse++); 244 if (IncrUse != Incr->user_end()) return false; 245 246 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 247 // only used by a branch, we can't transform it. 248 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 249 if (!Compare) 250 Compare = dyn_cast<FCmpInst>(U2); 251 if (!Compare || !Compare->hasOneUse() || 252 !isa<BranchInst>(Compare->user_back())) 253 return false; 254 255 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 256 257 // We need to verify that the branch actually controls the iteration count 258 // of the loop. If not, the new IV can overflow and no one will notice. 259 // The branch block must be in the loop and one of the successors must be out 260 // of the loop. 261 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 262 if (!L->contains(TheBr->getParent()) || 263 (L->contains(TheBr->getSuccessor(0)) && 264 L->contains(TheBr->getSuccessor(1)))) 265 return false; 266 267 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 268 // transform it. 269 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 270 int64_t ExitValue; 271 if (ExitValueVal == nullptr || 272 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 273 return false; 274 275 // Find new predicate for integer comparison. 276 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 277 switch (Compare->getPredicate()) { 278 default: return false; // Unknown comparison. 279 case CmpInst::FCMP_OEQ: 280 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 281 case CmpInst::FCMP_ONE: 282 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 283 case CmpInst::FCMP_OGT: 284 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 285 case CmpInst::FCMP_OGE: 286 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 287 case CmpInst::FCMP_OLT: 288 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 289 case CmpInst::FCMP_OLE: 290 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 291 } 292 293 // We convert the floating point induction variable to a signed i32 value if 294 // we can. This is only safe if the comparison will not overflow in a way 295 // that won't be trapped by the integer equivalent operations. Check for this 296 // now. 297 // TODO: We could use i64 if it is native and the range requires it. 298 299 // The start/stride/exit values must all fit in signed i32. 300 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 301 return false; 302 303 // If not actually striding (add x, 0.0), avoid touching the code. 304 if (IncValue == 0) 305 return false; 306 307 // Positive and negative strides have different safety conditions. 308 if (IncValue > 0) { 309 // If we have a positive stride, we require the init to be less than the 310 // exit value. 311 if (InitValue >= ExitValue) 312 return false; 313 314 uint32_t Range = uint32_t(ExitValue-InitValue); 315 // Check for infinite loop, either: 316 // while (i <= Exit) or until (i > Exit) 317 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 318 if (++Range == 0) return false; // Range overflows. 319 } 320 321 unsigned Leftover = Range % uint32_t(IncValue); 322 323 // If this is an equality comparison, we require that the strided value 324 // exactly land on the exit value, otherwise the IV condition will wrap 325 // around and do things the fp IV wouldn't. 326 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 327 Leftover != 0) 328 return false; 329 330 // If the stride would wrap around the i32 before exiting, we can't 331 // transform the IV. 332 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 333 return false; 334 } else { 335 // If we have a negative stride, we require the init to be greater than the 336 // exit value. 337 if (InitValue <= ExitValue) 338 return false; 339 340 uint32_t Range = uint32_t(InitValue-ExitValue); 341 // Check for infinite loop, either: 342 // while (i >= Exit) or until (i < Exit) 343 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 344 if (++Range == 0) return false; // Range overflows. 345 } 346 347 unsigned Leftover = Range % uint32_t(-IncValue); 348 349 // If this is an equality comparison, we require that the strided value 350 // exactly land on the exit value, otherwise the IV condition will wrap 351 // around and do things the fp IV wouldn't. 352 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 353 Leftover != 0) 354 return false; 355 356 // If the stride would wrap around the i32 before exiting, we can't 357 // transform the IV. 358 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 359 return false; 360 } 361 362 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 363 364 // Insert new integer induction variable. 365 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 366 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 367 PN->getIncomingBlock(IncomingEdge)); 368 369 Value *NewAdd = 370 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 371 Incr->getName()+".int", Incr); 372 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 373 374 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 375 ConstantInt::get(Int32Ty, ExitValue), 376 Compare->getName()); 377 378 // In the following deletions, PN may become dead and may be deleted. 379 // Use a WeakTrackingVH to observe whether this happens. 380 WeakTrackingVH WeakPH = PN; 381 382 // Delete the old floating point exit comparison. The branch starts using the 383 // new comparison. 384 NewCompare->takeName(Compare); 385 Compare->replaceAllUsesWith(NewCompare); 386 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get()); 387 388 // Delete the old floating point increment. 389 Incr->replaceAllUsesWith(PoisonValue::get(Incr->getType())); 390 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get()); 391 392 // If the FP induction variable still has uses, this is because something else 393 // in the loop uses its value. In order to canonicalize the induction 394 // variable, we chose to eliminate the IV and rewrite it in terms of an 395 // int->fp cast. 396 // 397 // We give preference to sitofp over uitofp because it is faster on most 398 // platforms. 399 if (WeakPH) { 400 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 401 &*PN->getParent()->getFirstInsertionPt()); 402 PN->replaceAllUsesWith(Conv); 403 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get()); 404 } 405 return true; 406 } 407 408 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 409 // First step. Check to see if there are any floating-point recurrences. 410 // If there are, change them into integer recurrences, permitting analysis by 411 // the SCEV routines. 412 BasicBlock *Header = L->getHeader(); 413 414 SmallVector<WeakTrackingVH, 8> PHIs; 415 for (PHINode &PN : Header->phis()) 416 PHIs.push_back(&PN); 417 418 bool Changed = false; 419 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 420 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 421 Changed |= handleFloatingPointIV(L, PN); 422 423 // If the loop previously had floating-point IV, ScalarEvolution 424 // may not have been able to compute a trip count. Now that we've done some 425 // re-writing, the trip count may be computable. 426 if (Changed) 427 SE->forgetLoop(L); 428 return Changed; 429 } 430 431 //===---------------------------------------------------------------------===// 432 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 433 // they will exit at the first iteration. 434 //===---------------------------------------------------------------------===// 435 436 /// Check to see if this loop has loop invariant conditions which lead to loop 437 /// exits. If so, we know that if the exit path is taken, it is at the first 438 /// loop iteration. This lets us predict exit values of PHI nodes that live in 439 /// loop header. 440 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 441 // Verify the input to the pass is already in LCSSA form. 442 assert(L->isLCSSAForm(*DT)); 443 444 SmallVector<BasicBlock *, 8> ExitBlocks; 445 L->getUniqueExitBlocks(ExitBlocks); 446 447 bool MadeAnyChanges = false; 448 for (auto *ExitBB : ExitBlocks) { 449 // If there are no more PHI nodes in this exit block, then no more 450 // values defined inside the loop are used on this path. 451 for (PHINode &PN : ExitBB->phis()) { 452 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 453 IncomingValIdx != E; ++IncomingValIdx) { 454 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 455 456 // Can we prove that the exit must run on the first iteration if it 457 // runs at all? (i.e. early exits are fine for our purposes, but 458 // traces which lead to this exit being taken on the 2nd iteration 459 // aren't.) Note that this is about whether the exit branch is 460 // executed, not about whether it is taken. 461 if (!L->getLoopLatch() || 462 !DT->dominates(IncomingBB, L->getLoopLatch())) 463 continue; 464 465 // Get condition that leads to the exit path. 466 auto *TermInst = IncomingBB->getTerminator(); 467 468 Value *Cond = nullptr; 469 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 470 // Must be a conditional branch, otherwise the block 471 // should not be in the loop. 472 Cond = BI->getCondition(); 473 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 474 Cond = SI->getCondition(); 475 else 476 continue; 477 478 if (!L->isLoopInvariant(Cond)) 479 continue; 480 481 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 482 483 // Only deal with PHIs in the loop header. 484 if (!ExitVal || ExitVal->getParent() != L->getHeader()) 485 continue; 486 487 // If ExitVal is a PHI on the loop header, then we know its 488 // value along this exit because the exit can only be taken 489 // on the first iteration. 490 auto *LoopPreheader = L->getLoopPreheader(); 491 assert(LoopPreheader && "Invalid loop"); 492 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 493 if (PreheaderIdx != -1) { 494 assert(ExitVal->getParent() == L->getHeader() && 495 "ExitVal must be in loop header"); 496 MadeAnyChanges = true; 497 PN.setIncomingValue(IncomingValIdx, 498 ExitVal->getIncomingValue(PreheaderIdx)); 499 SE->forgetValue(&PN); 500 } 501 } 502 } 503 } 504 return MadeAnyChanges; 505 } 506 507 //===----------------------------------------------------------------------===// 508 // IV Widening - Extend the width of an IV to cover its widest uses. 509 //===----------------------------------------------------------------------===// 510 511 /// Update information about the induction variable that is extended by this 512 /// sign or zero extend operation. This is used to determine the final width of 513 /// the IV before actually widening it. 514 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, 515 ScalarEvolution *SE, 516 const TargetTransformInfo *TTI) { 517 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 518 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 519 return; 520 521 Type *Ty = Cast->getType(); 522 uint64_t Width = SE->getTypeSizeInBits(Ty); 523 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 524 return; 525 526 // Check that `Cast` actually extends the induction variable (we rely on this 527 // later). This takes care of cases where `Cast` is extending a truncation of 528 // the narrow induction variable, and thus can end up being narrower than the 529 // "narrow" induction variable. 530 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 531 if (NarrowIVWidth >= Width) 532 return; 533 534 // Cast is either an sext or zext up to this point. 535 // We should not widen an indvar if arithmetics on the wider indvar are more 536 // expensive than those on the narrower indvar. We check only the cost of ADD 537 // because at least an ADD is required to increment the induction variable. We 538 // could compute more comprehensively the cost of all instructions on the 539 // induction variable when necessary. 540 if (TTI && 541 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 542 TTI->getArithmeticInstrCost(Instruction::Add, 543 Cast->getOperand(0)->getType())) { 544 return; 545 } 546 547 if (!WI.WidestNativeType || 548 Width > SE->getTypeSizeInBits(WI.WidestNativeType)) { 549 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 550 WI.IsSigned = IsSigned; 551 return; 552 } 553 554 // We extend the IV to satisfy the sign of its user(s), or 'signed' 555 // if there are multiple users with both sign- and zero extensions, 556 // in order not to introduce nondeterministic behaviour based on the 557 // unspecified order of a PHI nodes' users-iterator. 558 WI.IsSigned |= IsSigned; 559 } 560 561 //===----------------------------------------------------------------------===// 562 // Live IV Reduction - Minimize IVs live across the loop. 563 //===----------------------------------------------------------------------===// 564 565 //===----------------------------------------------------------------------===// 566 // Simplification of IV users based on SCEV evaluation. 567 //===----------------------------------------------------------------------===// 568 569 namespace { 570 571 class IndVarSimplifyVisitor : public IVVisitor { 572 ScalarEvolution *SE; 573 const TargetTransformInfo *TTI; 574 PHINode *IVPhi; 575 576 public: 577 WideIVInfo WI; 578 579 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 580 const TargetTransformInfo *TTI, 581 const DominatorTree *DTree) 582 : SE(SCEV), TTI(TTI), IVPhi(IV) { 583 DT = DTree; 584 WI.NarrowIV = IVPhi; 585 } 586 587 // Implement the interface used by simplifyUsersOfIV. 588 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 589 }; 590 591 } // end anonymous namespace 592 593 /// Iteratively perform simplification on a worklist of IV users. Each 594 /// successive simplification may push more users which may themselves be 595 /// candidates for simplification. 596 /// 597 /// Sign/Zero extend elimination is interleaved with IV simplification. 598 bool IndVarSimplify::simplifyAndExtend(Loop *L, 599 SCEVExpander &Rewriter, 600 LoopInfo *LI) { 601 SmallVector<WideIVInfo, 8> WideIVs; 602 603 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 604 Intrinsic::getName(Intrinsic::experimental_guard)); 605 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 606 607 SmallVector<PHINode *, 8> LoopPhis; 608 for (PHINode &PN : L->getHeader()->phis()) 609 LoopPhis.push_back(&PN); 610 611 // Each round of simplification iterates through the SimplifyIVUsers worklist 612 // for all current phis, then determines whether any IVs can be 613 // widened. Widening adds new phis to LoopPhis, inducing another round of 614 // simplification on the wide IVs. 615 bool Changed = false; 616 while (!LoopPhis.empty()) { 617 // Evaluate as many IV expressions as possible before widening any IVs. This 618 // forces SCEV to set no-wrap flags before evaluating sign/zero 619 // extension. The first time SCEV attempts to normalize sign/zero extension, 620 // the result becomes final. So for the most predictable results, we delay 621 // evaluation of sign/zero extend evaluation until needed, and avoid running 622 // other SCEV based analysis prior to simplifyAndExtend. 623 do { 624 PHINode *CurrIV = LoopPhis.pop_back_val(); 625 626 // Information about sign/zero extensions of CurrIV. 627 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 628 629 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter, 630 &Visitor); 631 632 if (Visitor.WI.WidestNativeType) { 633 WideIVs.push_back(Visitor.WI); 634 } 635 } while(!LoopPhis.empty()); 636 637 // Continue if we disallowed widening. 638 if (!WidenIndVars) 639 continue; 640 641 for (; !WideIVs.empty(); WideIVs.pop_back()) { 642 unsigned ElimExt; 643 unsigned Widened; 644 if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter, 645 DT, DeadInsts, ElimExt, Widened, 646 HasGuards, UsePostIncrementRanges)) { 647 NumElimExt += ElimExt; 648 NumWidened += Widened; 649 Changed = true; 650 LoopPhis.push_back(WidePhi); 651 } 652 } 653 } 654 return Changed; 655 } 656 657 //===----------------------------------------------------------------------===// 658 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 659 //===----------------------------------------------------------------------===// 660 661 /// Given an Value which is hoped to be part of an add recurance in the given 662 /// loop, return the associated Phi node if so. Otherwise, return null. Note 663 /// that this is less general than SCEVs AddRec checking. 664 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { 665 Instruction *IncI = dyn_cast<Instruction>(IncV); 666 if (!IncI) 667 return nullptr; 668 669 switch (IncI->getOpcode()) { 670 case Instruction::Add: 671 case Instruction::Sub: 672 break; 673 case Instruction::GetElementPtr: 674 // An IV counter must preserve its type. 675 if (IncI->getNumOperands() == 2) 676 break; 677 [[fallthrough]]; 678 default: 679 return nullptr; 680 } 681 682 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 683 if (Phi && Phi->getParent() == L->getHeader()) { 684 if (L->isLoopInvariant(IncI->getOperand(1))) 685 return Phi; 686 return nullptr; 687 } 688 if (IncI->getOpcode() == Instruction::GetElementPtr) 689 return nullptr; 690 691 // Allow add/sub to be commuted. 692 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 693 if (Phi && Phi->getParent() == L->getHeader()) { 694 if (L->isLoopInvariant(IncI->getOperand(0))) 695 return Phi; 696 } 697 return nullptr; 698 } 699 700 /// Whether the current loop exit test is based on this value. Currently this 701 /// is limited to a direct use in the loop condition. 702 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) { 703 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 704 ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 705 // TODO: Allow non-icmp loop test. 706 if (!ICmp) 707 return false; 708 709 // TODO: Allow indirect use. 710 return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V; 711 } 712 713 /// linearFunctionTestReplace policy. Return true unless we can show that the 714 /// current exit test is already sufficiently canonical. 715 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { 716 assert(L->getLoopLatch() && "Must be in simplified form"); 717 718 // Avoid converting a constant or loop invariant test back to a runtime 719 // test. This is critical for when SCEV's cached ExitCount is less precise 720 // than the current IR (such as after we've proven a particular exit is 721 // actually dead and thus the BE count never reaches our ExitCount.) 722 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 723 if (L->isLoopInvariant(BI->getCondition())) 724 return false; 725 726 // Do LFTR to simplify the exit condition to an ICMP. 727 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 728 if (!Cond) 729 return true; 730 731 // Do LFTR to simplify the exit ICMP to EQ/NE 732 ICmpInst::Predicate Pred = Cond->getPredicate(); 733 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 734 return true; 735 736 // Look for a loop invariant RHS 737 Value *LHS = Cond->getOperand(0); 738 Value *RHS = Cond->getOperand(1); 739 if (!L->isLoopInvariant(RHS)) { 740 if (!L->isLoopInvariant(LHS)) 741 return true; 742 std::swap(LHS, RHS); 743 } 744 // Look for a simple IV counter LHS 745 PHINode *Phi = dyn_cast<PHINode>(LHS); 746 if (!Phi) 747 Phi = getLoopPhiForCounter(LHS, L); 748 749 if (!Phi) 750 return true; 751 752 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 753 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 754 if (Idx < 0) 755 return true; 756 757 // Do LFTR if the exit condition's IV is *not* a simple counter. 758 Value *IncV = Phi->getIncomingValue(Idx); 759 return Phi != getLoopPhiForCounter(IncV, L); 760 } 761 762 /// Return true if undefined behavior would provable be executed on the path to 763 /// OnPathTo if Root produced a posion result. Note that this doesn't say 764 /// anything about whether OnPathTo is actually executed or whether Root is 765 /// actually poison. This can be used to assess whether a new use of Root can 766 /// be added at a location which is control equivalent with OnPathTo (such as 767 /// immediately before it) without introducing UB which didn't previously 768 /// exist. Note that a false result conveys no information. 769 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root, 770 Instruction *OnPathTo, 771 DominatorTree *DT) { 772 // Basic approach is to assume Root is poison, propagate poison forward 773 // through all users we can easily track, and then check whether any of those 774 // users are provable UB and must execute before out exiting block might 775 // exit. 776 777 // The set of all recursive users we've visited (which are assumed to all be 778 // poison because of said visit) 779 SmallSet<const Value *, 16> KnownPoison; 780 SmallVector<const Instruction*, 16> Worklist; 781 Worklist.push_back(Root); 782 while (!Worklist.empty()) { 783 const Instruction *I = Worklist.pop_back_val(); 784 785 // If we know this must trigger UB on a path leading our target. 786 if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo)) 787 return true; 788 789 // If we can't analyze propagation through this instruction, just skip it 790 // and transitive users. Safe as false is a conservative result. 791 if (I != Root && !any_of(I->operands(), [&KnownPoison](const Use &U) { 792 return KnownPoison.contains(U) && propagatesPoison(U); 793 })) 794 continue; 795 796 if (KnownPoison.insert(I).second) 797 for (const User *User : I->users()) 798 Worklist.push_back(cast<Instruction>(User)); 799 } 800 801 // Might be non-UB, or might have a path we couldn't prove must execute on 802 // way to exiting bb. 803 return false; 804 } 805 806 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 807 /// down to checking that all operands are constant and listing instructions 808 /// that may hide undef. 809 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 810 unsigned Depth) { 811 if (isa<Constant>(V)) 812 return !isa<UndefValue>(V); 813 814 if (Depth >= 6) 815 return false; 816 817 // Conservatively handle non-constant non-instructions. For example, Arguments 818 // may be undef. 819 Instruction *I = dyn_cast<Instruction>(V); 820 if (!I) 821 return false; 822 823 // Load and return values may be undef. 824 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 825 return false; 826 827 // Optimistically handle other instructions. 828 for (Value *Op : I->operands()) { 829 if (!Visited.insert(Op).second) 830 continue; 831 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 832 return false; 833 } 834 return true; 835 } 836 837 /// Return true if the given value is concrete. We must prove that undef can 838 /// never reach it. 839 /// 840 /// TODO: If we decide that this is a good approach to checking for undef, we 841 /// may factor it into a common location. 842 static bool hasConcreteDef(Value *V) { 843 SmallPtrSet<Value*, 8> Visited; 844 Visited.insert(V); 845 return hasConcreteDefImpl(V, Visited, 0); 846 } 847 848 /// Return true if this IV has any uses other than the (soon to be rewritten) 849 /// loop exit test. 850 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 851 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 852 Value *IncV = Phi->getIncomingValue(LatchIdx); 853 854 for (User *U : Phi->users()) 855 if (U != Cond && U != IncV) return false; 856 857 for (User *U : IncV->users()) 858 if (U != Cond && U != Phi) return false; 859 return true; 860 } 861 862 /// Return true if the given phi is a "counter" in L. A counter is an 863 /// add recurance (of integer or pointer type) with an arbitrary start, and a 864 /// step of 1. Note that L must have exactly one latch. 865 static bool isLoopCounter(PHINode* Phi, Loop *L, 866 ScalarEvolution *SE) { 867 assert(Phi->getParent() == L->getHeader()); 868 assert(L->getLoopLatch()); 869 870 if (!SE->isSCEVable(Phi->getType())) 871 return false; 872 873 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 874 if (!AR || AR->getLoop() != L || !AR->isAffine()) 875 return false; 876 877 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 878 if (!Step || !Step->isOne()) 879 return false; 880 881 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); 882 Value *IncV = Phi->getIncomingValue(LatchIdx); 883 return (getLoopPhiForCounter(IncV, L) == Phi && 884 isa<SCEVAddRecExpr>(SE->getSCEV(IncV))); 885 } 886 887 /// Search the loop header for a loop counter (anadd rec w/step of one) 888 /// suitable for use by LFTR. If multiple counters are available, select the 889 /// "best" one based profitable heuristics. 890 /// 891 /// BECount may be an i8* pointer type. The pointer difference is already 892 /// valid count without scaling the address stride, so it remains a pointer 893 /// expression as far as SCEV is concerned. 894 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, 895 const SCEV *BECount, 896 ScalarEvolution *SE, DominatorTree *DT) { 897 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 898 899 Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); 900 901 // Loop over all of the PHI nodes, looking for a simple counter. 902 PHINode *BestPhi = nullptr; 903 const SCEV *BestInit = nullptr; 904 BasicBlock *LatchBlock = L->getLoopLatch(); 905 assert(LatchBlock && "Must be in simplified form"); 906 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 907 908 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 909 PHINode *Phi = cast<PHINode>(I); 910 if (!isLoopCounter(Phi, L, SE)) 911 continue; 912 913 // Avoid comparing an integer IV against a pointer Limit. 914 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 915 continue; 916 917 const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 918 919 // AR may be a pointer type, while BECount is an integer type. 920 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 921 // AR may not be a narrower type, or we may never exit. 922 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 923 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 924 continue; 925 926 // Avoid reusing a potentially undef value to compute other values that may 927 // have originally had a concrete definition. 928 if (!hasConcreteDef(Phi)) { 929 // We explicitly allow unknown phis as long as they are already used by 930 // the loop exit test. This is legal since performing LFTR could not 931 // increase the number of undef users. 932 Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock); 933 if (!isLoopExitTestBasedOn(Phi, ExitingBB) && 934 !isLoopExitTestBasedOn(IncPhi, ExitingBB)) 935 continue; 936 } 937 938 // Avoid introducing undefined behavior due to poison which didn't exist in 939 // the original program. (Annoyingly, the rules for poison and undef 940 // propagation are distinct, so this does NOT cover the undef case above.) 941 // We have to ensure that we don't introduce UB by introducing a use on an 942 // iteration where said IV produces poison. Our strategy here differs for 943 // pointers and integer IVs. For integers, we strip and reinfer as needed, 944 // see code in linearFunctionTestReplace. For pointers, we restrict 945 // transforms as there is no good way to reinfer inbounds once lost. 946 if (!Phi->getType()->isIntegerTy() && 947 !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT)) 948 continue; 949 950 const SCEV *Init = AR->getStart(); 951 952 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 953 // Don't force a live loop counter if another IV can be used. 954 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 955 continue; 956 957 // Prefer to count-from-zero. This is a more "canonical" counter form. It 958 // also prefers integer to pointer IVs. 959 if (BestInit->isZero() != Init->isZero()) { 960 if (BestInit->isZero()) 961 continue; 962 } 963 // If two IVs both count from zero or both count from nonzero then the 964 // narrower is likely a dead phi that has been widened. Use the wider phi 965 // to allow the other to be eliminated. 966 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 967 continue; 968 } 969 BestPhi = Phi; 970 BestInit = Init; 971 } 972 return BestPhi; 973 } 974 975 /// Insert an IR expression which computes the value held by the IV IndVar 976 /// (which must be an loop counter w/unit stride) after the backedge of loop L 977 /// is taken ExitCount times. 978 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, 979 const SCEV *ExitCount, bool UsePostInc, Loop *L, 980 SCEVExpander &Rewriter, ScalarEvolution *SE) { 981 assert(isLoopCounter(IndVar, L, SE)); 982 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 983 const SCEV *IVInit = AR->getStart(); 984 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 985 986 // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter 987 // finds a valid pointer IV. Sign extend ExitCount in order to materialize a 988 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 989 // the existing GEPs whenever possible. 990 if (IndVar->getType()->isPointerTy() && 991 !ExitCount->getType()->isPointerTy()) { 992 // IVOffset will be the new GEP offset that is interpreted by GEP as a 993 // signed value. ExitCount on the other hand represents the loop trip count, 994 // which is an unsigned value. FindLoopCounter only allows induction 995 // variables that have a positive unit stride of one. This means we don't 996 // have to handle the case of negative offsets (yet) and just need to zero 997 // extend ExitCount. 998 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 999 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy); 1000 if (UsePostInc) 1001 IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy)); 1002 1003 // Expand the code for the iteration count. 1004 assert(SE->isLoopInvariant(IVOffset, L) && 1005 "Computed iteration count is not loop invariant!"); 1006 1007 const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset); 1008 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1009 return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI); 1010 } else { 1011 // In any other case, convert both IVInit and ExitCount to integers before 1012 // comparing. This may result in SCEV expansion of pointers, but in practice 1013 // SCEV will fold the pointer arithmetic away as such: 1014 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1015 // 1016 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1017 // for simple memset-style loops. 1018 // 1019 // IVInit integer and ExitCount pointer would only occur if a canonical IV 1020 // were generated on top of case #2, which is not expected. 1021 1022 // For unit stride, IVCount = Start + ExitCount with 2's complement 1023 // overflow. 1024 1025 // For integer IVs, truncate the IV before computing IVInit + BECount, 1026 // unless we know apriori that the limit must be a constant when evaluated 1027 // in the bitwidth of the IV. We prefer (potentially) keeping a truncate 1028 // of the IV in the loop over a (potentially) expensive expansion of the 1029 // widened exit count add(zext(add)) expression. 1030 if (SE->getTypeSizeInBits(IVInit->getType()) 1031 > SE->getTypeSizeInBits(ExitCount->getType())) { 1032 if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount)) 1033 ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType()); 1034 else 1035 IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType()); 1036 } 1037 1038 const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount); 1039 1040 if (UsePostInc) 1041 IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType())); 1042 1043 // Expand the code for the iteration count. 1044 assert(SE->isLoopInvariant(IVLimit, L) && 1045 "Computed iteration count is not loop invariant!"); 1046 // Ensure that we generate the same type as IndVar, or a smaller integer 1047 // type. In the presence of null pointer values, we have an integer type 1048 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1049 Type *LimitTy = ExitCount->getType()->isPointerTy() ? 1050 IndVar->getType() : ExitCount->getType(); 1051 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1052 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1053 } 1054 } 1055 1056 /// This method rewrites the exit condition of the loop to be a canonical != 1057 /// comparison against the incremented loop induction variable. This pass is 1058 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1059 /// determine a loop-invariant trip count of the loop, which is actually a much 1060 /// broader range than just linear tests. 1061 bool IndVarSimplify:: 1062 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 1063 const SCEV *ExitCount, 1064 PHINode *IndVar, SCEVExpander &Rewriter) { 1065 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 1066 assert(isLoopCounter(IndVar, L, SE)); 1067 Instruction * const IncVar = 1068 cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch())); 1069 1070 // Initialize CmpIndVar to the preincremented IV. 1071 Value *CmpIndVar = IndVar; 1072 bool UsePostInc = false; 1073 1074 // If the exiting block is the same as the backedge block, we prefer to 1075 // compare against the post-incremented value, otherwise we must compare 1076 // against the preincremented value. 1077 if (ExitingBB == L->getLoopLatch()) { 1078 // For pointer IVs, we chose to not strip inbounds which requires us not 1079 // to add a potentially UB introducing use. We need to either a) show 1080 // the loop test we're modifying is already in post-inc form, or b) show 1081 // that adding a use must not introduce UB. 1082 bool SafeToPostInc = 1083 IndVar->getType()->isIntegerTy() || 1084 isLoopExitTestBasedOn(IncVar, ExitingBB) || 1085 mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT); 1086 if (SafeToPostInc) { 1087 UsePostInc = true; 1088 CmpIndVar = IncVar; 1089 } 1090 } 1091 1092 // It may be necessary to drop nowrap flags on the incrementing instruction 1093 // if either LFTR moves from a pre-inc check to a post-inc check (in which 1094 // case the increment might have previously been poison on the last iteration 1095 // only) or if LFTR switches to a different IV that was previously dynamically 1096 // dead (and as such may be arbitrarily poison). We remove any nowrap flags 1097 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc 1098 // check), because the pre-inc addrec flags may be adopted from the original 1099 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. 1100 // TODO: This handling is inaccurate for one case: If we switch to a 1101 // dynamically dead IV that wraps on the first loop iteration only, which is 1102 // not covered by the post-inc addrec. (If the new IV was not dynamically 1103 // dead, it could not be poison on the first iteration in the first place.) 1104 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { 1105 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); 1106 if (BO->hasNoUnsignedWrap()) 1107 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); 1108 if (BO->hasNoSignedWrap()) 1109 BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); 1110 } 1111 1112 Value *ExitCnt = genLoopLimit( 1113 IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE); 1114 assert(ExitCnt->getType()->isPointerTy() == 1115 IndVar->getType()->isPointerTy() && 1116 "genLoopLimit missed a cast"); 1117 1118 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1119 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1120 ICmpInst::Predicate P; 1121 if (L->contains(BI->getSuccessor(0))) 1122 P = ICmpInst::ICMP_NE; 1123 else 1124 P = ICmpInst::ICMP_EQ; 1125 1126 IRBuilder<> Builder(BI); 1127 1128 // The new loop exit condition should reuse the debug location of the 1129 // original loop exit condition. 1130 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 1131 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 1132 1133 // For integer IVs, if we evaluated the limit in the narrower bitwidth to 1134 // avoid the expensive expansion of the limit expression in the wider type, 1135 // emit a truncate to narrow the IV to the ExitCount type. This is safe 1136 // since we know (from the exit count bitwidth), that we can't self-wrap in 1137 // the narrower type. 1138 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1139 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1140 if (CmpIndVarSize > ExitCntSize) { 1141 assert(!CmpIndVar->getType()->isPointerTy() && 1142 !ExitCnt->getType()->isPointerTy()); 1143 1144 // Before resorting to actually inserting the truncate, use the same 1145 // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend 1146 // the other side of the comparison instead. We still evaluate the limit 1147 // in the narrower bitwidth, we just prefer a zext/sext outside the loop to 1148 // a truncate within in. 1149 bool Extended = false; 1150 const SCEV *IV = SE->getSCEV(CmpIndVar); 1151 const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 1152 ExitCnt->getType()); 1153 const SCEV *ZExtTrunc = 1154 SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType()); 1155 1156 if (ZExtTrunc == IV) { 1157 Extended = true; 1158 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 1159 "wide.trip.count"); 1160 } else { 1161 const SCEV *SExtTrunc = 1162 SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType()); 1163 if (SExtTrunc == IV) { 1164 Extended = true; 1165 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 1166 "wide.trip.count"); 1167 } 1168 } 1169 1170 if (Extended) { 1171 bool Discard; 1172 L->makeLoopInvariant(ExitCnt, Discard); 1173 } else 1174 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1175 "lftr.wideiv"); 1176 } 1177 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1178 << " LHS:" << *CmpIndVar << '\n' 1179 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 1180 << "\n" 1181 << " RHS:\t" << *ExitCnt << "\n" 1182 << "ExitCount:\t" << *ExitCount << "\n" 1183 << " was: " << *BI->getCondition() << "\n"); 1184 1185 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1186 Value *OrigCond = BI->getCondition(); 1187 // It's tempting to use replaceAllUsesWith here to fully replace the old 1188 // comparison, but that's not immediately safe, since users of the old 1189 // comparison may not be dominated by the new comparison. Instead, just 1190 // update the branch to use the new comparison; in the common case this 1191 // will make old comparison dead. 1192 BI->setCondition(Cond); 1193 DeadInsts.emplace_back(OrigCond); 1194 1195 ++NumLFTR; 1196 return true; 1197 } 1198 1199 //===----------------------------------------------------------------------===// 1200 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1201 //===----------------------------------------------------------------------===// 1202 1203 /// If there's a single exit block, sink any loop-invariant values that 1204 /// were defined in the preheader but not used inside the loop into the 1205 /// exit block to reduce register pressure in the loop. 1206 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 1207 BasicBlock *ExitBlock = L->getExitBlock(); 1208 if (!ExitBlock) return false; 1209 1210 BasicBlock *Preheader = L->getLoopPreheader(); 1211 if (!Preheader) return false; 1212 1213 bool MadeAnyChanges = false; 1214 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 1215 BasicBlock::iterator I(Preheader->getTerminator()); 1216 while (I != Preheader->begin()) { 1217 --I; 1218 // New instructions were inserted at the end of the preheader. 1219 if (isa<PHINode>(I)) 1220 break; 1221 1222 // Don't move instructions which might have side effects, since the side 1223 // effects need to complete before instructions inside the loop. Also don't 1224 // move instructions which might read memory, since the loop may modify 1225 // memory. Note that it's okay if the instruction might have undefined 1226 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1227 // block. 1228 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1229 continue; 1230 1231 // Skip debug info intrinsics. 1232 if (isa<DbgInfoIntrinsic>(I)) 1233 continue; 1234 1235 // Skip eh pad instructions. 1236 if (I->isEHPad()) 1237 continue; 1238 1239 // Don't sink alloca: we never want to sink static alloca's out of the 1240 // entry block, and correctly sinking dynamic alloca's requires 1241 // checks for stacksave/stackrestore intrinsics. 1242 // FIXME: Refactor this check somehow? 1243 if (isa<AllocaInst>(I)) 1244 continue; 1245 1246 // Determine if there is a use in or before the loop (direct or 1247 // otherwise). 1248 bool UsedInLoop = false; 1249 for (Use &U : I->uses()) { 1250 Instruction *User = cast<Instruction>(U.getUser()); 1251 BasicBlock *UseBB = User->getParent(); 1252 if (PHINode *P = dyn_cast<PHINode>(User)) { 1253 unsigned i = 1254 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1255 UseBB = P->getIncomingBlock(i); 1256 } 1257 if (UseBB == Preheader || L->contains(UseBB)) { 1258 UsedInLoop = true; 1259 break; 1260 } 1261 } 1262 1263 // If there is, the def must remain in the preheader. 1264 if (UsedInLoop) 1265 continue; 1266 1267 // Otherwise, sink it to the exit block. 1268 Instruction *ToMove = &*I; 1269 bool Done = false; 1270 1271 if (I != Preheader->begin()) { 1272 // Skip debug info intrinsics. 1273 do { 1274 --I; 1275 } while (I->isDebugOrPseudoInst() && I != Preheader->begin()); 1276 1277 if (I->isDebugOrPseudoInst() && I == Preheader->begin()) 1278 Done = true; 1279 } else { 1280 Done = true; 1281 } 1282 1283 MadeAnyChanges = true; 1284 ToMove->moveBefore(*ExitBlock, InsertPt); 1285 SE->forgetValue(ToMove); 1286 if (Done) break; 1287 InsertPt = ToMove->getIterator(); 1288 } 1289 1290 return MadeAnyChanges; 1291 } 1292 1293 static void replaceExitCond(BranchInst *BI, Value *NewCond, 1294 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1295 auto *OldCond = BI->getCondition(); 1296 LLVM_DEBUG(dbgs() << "Replacing condition of loop-exiting branch " << *BI 1297 << " with " << *NewCond << "\n"); 1298 BI->setCondition(NewCond); 1299 if (OldCond->use_empty()) 1300 DeadInsts.emplace_back(OldCond); 1301 } 1302 1303 static Constant *createFoldedExitCond(const Loop *L, BasicBlock *ExitingBB, 1304 bool IsTaken) { 1305 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1306 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1307 auto *OldCond = BI->getCondition(); 1308 return ConstantInt::get(OldCond->getType(), 1309 IsTaken ? ExitIfTrue : !ExitIfTrue); 1310 } 1311 1312 static void foldExit(const Loop *L, BasicBlock *ExitingBB, bool IsTaken, 1313 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1314 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1315 auto *NewCond = createFoldedExitCond(L, ExitingBB, IsTaken); 1316 replaceExitCond(BI, NewCond, DeadInsts); 1317 } 1318 1319 static void replaceLoopPHINodesWithPreheaderValues( 1320 LoopInfo *LI, Loop *L, SmallVectorImpl<WeakTrackingVH> &DeadInsts, 1321 ScalarEvolution &SE) { 1322 assert(L->isLoopSimplifyForm() && "Should only do it in simplify form!"); 1323 auto *LoopPreheader = L->getLoopPreheader(); 1324 auto *LoopHeader = L->getHeader(); 1325 SmallVector<Instruction *> Worklist; 1326 for (auto &PN : LoopHeader->phis()) { 1327 auto *PreheaderIncoming = PN.getIncomingValueForBlock(LoopPreheader); 1328 for (User *U : PN.users()) 1329 Worklist.push_back(cast<Instruction>(U)); 1330 SE.forgetValue(&PN); 1331 PN.replaceAllUsesWith(PreheaderIncoming); 1332 DeadInsts.emplace_back(&PN); 1333 } 1334 1335 // Replacing with the preheader value will often allow IV users to simplify 1336 // (especially if the preheader value is a constant). 1337 SmallPtrSet<Instruction *, 16> Visited; 1338 while (!Worklist.empty()) { 1339 auto *I = cast<Instruction>(Worklist.pop_back_val()); 1340 if (!Visited.insert(I).second) 1341 continue; 1342 1343 // Don't simplify instructions outside the loop. 1344 if (!L->contains(I)) 1345 continue; 1346 1347 Value *Res = simplifyInstruction(I, I->getModule()->getDataLayout()); 1348 if (Res && LI->replacementPreservesLCSSAForm(I, Res)) { 1349 for (User *U : I->users()) 1350 Worklist.push_back(cast<Instruction>(U)); 1351 I->replaceAllUsesWith(Res); 1352 DeadInsts.emplace_back(I); 1353 } 1354 } 1355 } 1356 1357 static Value * 1358 createInvariantCond(const Loop *L, BasicBlock *ExitingBB, 1359 const ScalarEvolution::LoopInvariantPredicate &LIP, 1360 SCEVExpander &Rewriter) { 1361 ICmpInst::Predicate InvariantPred = LIP.Pred; 1362 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1363 Rewriter.setInsertPoint(BI); 1364 auto *LHSV = Rewriter.expandCodeFor(LIP.LHS); 1365 auto *RHSV = Rewriter.expandCodeFor(LIP.RHS); 1366 bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB)); 1367 if (ExitIfTrue) 1368 InvariantPred = ICmpInst::getInversePredicate(InvariantPred); 1369 IRBuilder<> Builder(BI); 1370 return Builder.CreateICmp(InvariantPred, LHSV, RHSV, 1371 BI->getCondition()->getName()); 1372 } 1373 1374 static std::optional<Value *> 1375 createReplacement(ICmpInst *ICmp, const Loop *L, BasicBlock *ExitingBB, 1376 const SCEV *MaxIter, bool Inverted, bool SkipLastIter, 1377 ScalarEvolution *SE, SCEVExpander &Rewriter) { 1378 ICmpInst::Predicate Pred = ICmp->getPredicate(); 1379 Value *LHS = ICmp->getOperand(0); 1380 Value *RHS = ICmp->getOperand(1); 1381 1382 // 'LHS pred RHS' should now mean that we stay in loop. 1383 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1384 if (Inverted) 1385 Pred = CmpInst::getInversePredicate(Pred); 1386 1387 const SCEV *LHSS = SE->getSCEVAtScope(LHS, L); 1388 const SCEV *RHSS = SE->getSCEVAtScope(RHS, L); 1389 // Can we prove it to be trivially true or false? 1390 if (auto EV = SE->evaluatePredicateAt(Pred, LHSS, RHSS, BI)) 1391 return createFoldedExitCond(L, ExitingBB, /*IsTaken*/ !*EV); 1392 1393 auto *ARTy = LHSS->getType(); 1394 auto *MaxIterTy = MaxIter->getType(); 1395 // If possible, adjust types. 1396 if (SE->getTypeSizeInBits(ARTy) > SE->getTypeSizeInBits(MaxIterTy)) 1397 MaxIter = SE->getZeroExtendExpr(MaxIter, ARTy); 1398 else if (SE->getTypeSizeInBits(ARTy) < SE->getTypeSizeInBits(MaxIterTy)) { 1399 const SCEV *MinusOne = SE->getMinusOne(ARTy); 1400 auto *MaxAllowedIter = SE->getZeroExtendExpr(MinusOne, MaxIterTy); 1401 if (SE->isKnownPredicateAt(ICmpInst::ICMP_ULE, MaxIter, MaxAllowedIter, BI)) 1402 MaxIter = SE->getTruncateExpr(MaxIter, ARTy); 1403 } 1404 1405 if (SkipLastIter) { 1406 const SCEV *One = SE->getOne(MaxIter->getType()); 1407 MaxIter = SE->getMinusSCEV(MaxIter, One); 1408 } 1409 1410 // Check if there is a loop-invariant predicate equivalent to our check. 1411 auto LIP = SE->getLoopInvariantExitCondDuringFirstIterations(Pred, LHSS, RHSS, 1412 L, BI, MaxIter); 1413 if (!LIP) 1414 return std::nullopt; 1415 1416 // Can we prove it to be trivially true? 1417 if (SE->isKnownPredicateAt(LIP->Pred, LIP->LHS, LIP->RHS, BI)) 1418 return createFoldedExitCond(L, ExitingBB, /*IsTaken*/ false); 1419 else 1420 return createInvariantCond(L, ExitingBB, *LIP, Rewriter); 1421 } 1422 1423 static bool optimizeLoopExitWithUnknownExitCount( 1424 const Loop *L, BranchInst *BI, BasicBlock *ExitingBB, const SCEV *MaxIter, 1425 bool SkipLastIter, ScalarEvolution *SE, SCEVExpander &Rewriter, 1426 SmallVectorImpl<WeakTrackingVH> &DeadInsts) { 1427 assert( 1428 (L->contains(BI->getSuccessor(0)) != L->contains(BI->getSuccessor(1))) && 1429 "Not a loop exit!"); 1430 1431 // For branch that stays in loop by TRUE condition, go through AND. For branch 1432 // that stays in loop by FALSE condition, go through OR. Both gives the 1433 // similar logic: "stay in loop iff all conditions are true(false)". 1434 bool Inverted = L->contains(BI->getSuccessor(1)); 1435 SmallVector<ICmpInst *, 4> LeafConditions; 1436 SmallVector<Value *, 4> Worklist; 1437 SmallPtrSet<Value *, 4> Visited; 1438 Value *OldCond = BI->getCondition(); 1439 Visited.insert(OldCond); 1440 Worklist.push_back(OldCond); 1441 1442 auto GoThrough = [&](Value *V) { 1443 Value *LHS = nullptr, *RHS = nullptr; 1444 if (Inverted) { 1445 if (!match(V, m_LogicalOr(m_Value(LHS), m_Value(RHS)))) 1446 return false; 1447 } else { 1448 if (!match(V, m_LogicalAnd(m_Value(LHS), m_Value(RHS)))) 1449 return false; 1450 } 1451 if (Visited.insert(LHS).second) 1452 Worklist.push_back(LHS); 1453 if (Visited.insert(RHS).second) 1454 Worklist.push_back(RHS); 1455 return true; 1456 }; 1457 1458 do { 1459 Value *Curr = Worklist.pop_back_val(); 1460 // Go through AND/OR conditions. Collect leaf ICMPs. We only care about 1461 // those with one use, to avoid instruction duplication. 1462 if (Curr->hasOneUse()) 1463 if (!GoThrough(Curr)) 1464 if (auto *ICmp = dyn_cast<ICmpInst>(Curr)) 1465 LeafConditions.push_back(ICmp); 1466 } while (!Worklist.empty()); 1467 1468 // If the current basic block has the same exit count as the whole loop, and 1469 // it consists of multiple icmp's, try to collect all icmp's that give exact 1470 // same exit count. For all other icmp's, we could use one less iteration, 1471 // because their value on the last iteration doesn't really matter. 1472 SmallPtrSet<ICmpInst *, 4> ICmpsFailingOnLastIter; 1473 if (!SkipLastIter && LeafConditions.size() > 1 && 1474 SE->getExitCount(L, ExitingBB, 1475 ScalarEvolution::ExitCountKind::SymbolicMaximum) == 1476 MaxIter) 1477 for (auto *ICmp : LeafConditions) { 1478 auto EL = SE->computeExitLimitFromCond(L, ICmp, Inverted, 1479 /*ControlsExit*/ false); 1480 auto *ExitMax = EL.SymbolicMaxNotTaken; 1481 if (isa<SCEVCouldNotCompute>(ExitMax)) 1482 continue; 1483 // They could be of different types (specifically this happens after 1484 // IV widening). 1485 auto *WiderType = 1486 SE->getWiderType(ExitMax->getType(), MaxIter->getType()); 1487 auto *WideExitMax = SE->getNoopOrZeroExtend(ExitMax, WiderType); 1488 auto *WideMaxIter = SE->getNoopOrZeroExtend(MaxIter, WiderType); 1489 if (WideExitMax == WideMaxIter) 1490 ICmpsFailingOnLastIter.insert(ICmp); 1491 } 1492 1493 bool Changed = false; 1494 for (auto *OldCond : LeafConditions) { 1495 // Skip last iteration for this icmp under one of two conditions: 1496 // - We do it for all conditions; 1497 // - There is another ICmp that would fail on last iter, so this one doesn't 1498 // really matter. 1499 bool OptimisticSkipLastIter = SkipLastIter; 1500 if (!OptimisticSkipLastIter) { 1501 if (ICmpsFailingOnLastIter.size() > 1) 1502 OptimisticSkipLastIter = true; 1503 else if (ICmpsFailingOnLastIter.size() == 1) 1504 OptimisticSkipLastIter = !ICmpsFailingOnLastIter.count(OldCond); 1505 } 1506 if (auto Replaced = 1507 createReplacement(OldCond, L, ExitingBB, MaxIter, Inverted, 1508 OptimisticSkipLastIter, SE, Rewriter)) { 1509 Changed = true; 1510 auto *NewCond = *Replaced; 1511 if (auto *NCI = dyn_cast<Instruction>(NewCond)) { 1512 NCI->setName(OldCond->getName() + ".first_iter"); 1513 NCI->moveBefore(cast<Instruction>(OldCond)); 1514 } 1515 LLVM_DEBUG(dbgs() << "Unknown exit count: Replacing " << *OldCond 1516 << " with " << *NewCond << "\n"); 1517 assert(OldCond->hasOneUse() && "Must be!"); 1518 OldCond->replaceAllUsesWith(NewCond); 1519 DeadInsts.push_back(OldCond); 1520 // Make sure we no longer consider this condition as failing on last 1521 // iteration. 1522 ICmpsFailingOnLastIter.erase(OldCond); 1523 } 1524 } 1525 return Changed; 1526 } 1527 1528 bool IndVarSimplify::canonicalizeExitCondition(Loop *L) { 1529 // Note: This is duplicating a particular part on SimplifyIndVars reasoning. 1530 // We need to duplicate it because given icmp zext(small-iv), C, IVUsers 1531 // never reaches the icmp since the zext doesn't fold to an AddRec unless 1532 // it already has flags. The alternative to this would be to extending the 1533 // set of "interesting" IV users to include the icmp, but doing that 1534 // regresses results in practice by querying SCEVs before trip counts which 1535 // rely on them which results in SCEV caching sub-optimal answers. The 1536 // concern about caching sub-optimal results is why we only query SCEVs of 1537 // the loop invariant RHS here. 1538 SmallVector<BasicBlock*, 16> ExitingBlocks; 1539 L->getExitingBlocks(ExitingBlocks); 1540 bool Changed = false; 1541 for (auto *ExitingBB : ExitingBlocks) { 1542 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1543 if (!BI) 1544 continue; 1545 assert(BI->isConditional() && "exit branch must be conditional"); 1546 1547 auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 1548 if (!ICmp || !ICmp->hasOneUse()) 1549 continue; 1550 1551 auto *LHS = ICmp->getOperand(0); 1552 auto *RHS = ICmp->getOperand(1); 1553 // For the range reasoning, avoid computing SCEVs in the loop to avoid 1554 // poisoning cache with sub-optimal results. For the must-execute case, 1555 // this is a neccessary precondition for correctness. 1556 if (!L->isLoopInvariant(RHS)) { 1557 if (!L->isLoopInvariant(LHS)) 1558 continue; 1559 // Same logic applies for the inverse case 1560 std::swap(LHS, RHS); 1561 } 1562 1563 // Match (icmp signed-cond zext, RHS) 1564 Value *LHSOp = nullptr; 1565 if (!match(LHS, m_ZExt(m_Value(LHSOp))) || !ICmp->isSigned()) 1566 continue; 1567 1568 const DataLayout &DL = ExitingBB->getModule()->getDataLayout(); 1569 const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); 1570 const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); 1571 auto FullCR = ConstantRange::getFull(InnerBitWidth); 1572 FullCR = FullCR.zeroExtend(OuterBitWidth); 1573 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); 1574 if (FullCR.contains(RHSCR)) { 1575 // We have now matched icmp signed-cond zext(X), zext(Y'), and can thus 1576 // replace the signed condition with the unsigned version. 1577 ICmp->setPredicate(ICmp->getUnsignedPredicate()); 1578 Changed = true; 1579 // Note: No SCEV invalidation needed. We've changed the predicate, but 1580 // have not changed exit counts, or the values produced by the compare. 1581 continue; 1582 } 1583 } 1584 1585 // Now that we've canonicalized the condition to match the extend, 1586 // see if we can rotate the extend out of the loop. 1587 for (auto *ExitingBB : ExitingBlocks) { 1588 auto *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1589 if (!BI) 1590 continue; 1591 assert(BI->isConditional() && "exit branch must be conditional"); 1592 1593 auto *ICmp = dyn_cast<ICmpInst>(BI->getCondition()); 1594 if (!ICmp || !ICmp->hasOneUse() || !ICmp->isUnsigned()) 1595 continue; 1596 1597 bool Swapped = false; 1598 auto *LHS = ICmp->getOperand(0); 1599 auto *RHS = ICmp->getOperand(1); 1600 if (L->isLoopInvariant(LHS) == L->isLoopInvariant(RHS)) 1601 // Nothing to rotate 1602 continue; 1603 if (L->isLoopInvariant(LHS)) { 1604 // Same logic applies for the inverse case until we actually pick 1605 // which operand of the compare to update. 1606 Swapped = true; 1607 std::swap(LHS, RHS); 1608 } 1609 assert(!L->isLoopInvariant(LHS) && L->isLoopInvariant(RHS)); 1610 1611 // Match (icmp unsigned-cond zext, RHS) 1612 // TODO: Extend to handle corresponding sext/signed-cmp case 1613 // TODO: Extend to other invertible functions 1614 Value *LHSOp = nullptr; 1615 if (!match(LHS, m_ZExt(m_Value(LHSOp)))) 1616 continue; 1617 1618 // In general, we only rotate if we can do so without increasing the number 1619 // of instructions. The exception is when we have an zext(add-rec). The 1620 // reason for allowing this exception is that we know we need to get rid 1621 // of the zext for SCEV to be able to compute a trip count for said loops; 1622 // we consider the new trip count valuable enough to increase instruction 1623 // count by one. 1624 if (!LHS->hasOneUse() && !isa<SCEVAddRecExpr>(SE->getSCEV(LHSOp))) 1625 continue; 1626 1627 // Given a icmp unsigned-cond zext(Op) where zext(trunc(RHS)) == RHS 1628 // replace with an icmp of the form icmp unsigned-cond Op, trunc(RHS) 1629 // when zext is loop varying and RHS is loop invariant. This converts 1630 // loop varying work to loop-invariant work. 1631 auto doRotateTransform = [&]() { 1632 assert(ICmp->isUnsigned() && "must have proven unsigned already"); 1633 auto *NewRHS = 1634 CastInst::Create(Instruction::Trunc, RHS, LHSOp->getType(), "", 1635 L->getLoopPreheader()->getTerminator()); 1636 ICmp->setOperand(Swapped ? 1 : 0, LHSOp); 1637 ICmp->setOperand(Swapped ? 0 : 1, NewRHS); 1638 if (LHS->use_empty()) 1639 DeadInsts.push_back(LHS); 1640 }; 1641 1642 1643 const DataLayout &DL = ExitingBB->getModule()->getDataLayout(); 1644 const unsigned InnerBitWidth = DL.getTypeSizeInBits(LHSOp->getType()); 1645 const unsigned OuterBitWidth = DL.getTypeSizeInBits(RHS->getType()); 1646 auto FullCR = ConstantRange::getFull(InnerBitWidth); 1647 FullCR = FullCR.zeroExtend(OuterBitWidth); 1648 auto RHSCR = SE->getUnsignedRange(SE->applyLoopGuards(SE->getSCEV(RHS), L)); 1649 if (FullCR.contains(RHSCR)) { 1650 doRotateTransform(); 1651 Changed = true; 1652 // Note, we are leaving SCEV in an unfortunately imprecise case here 1653 // as rotation tends to reveal information about trip counts not 1654 // previously visible. 1655 continue; 1656 } 1657 } 1658 1659 return Changed; 1660 } 1661 1662 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) { 1663 SmallVector<BasicBlock*, 16> ExitingBlocks; 1664 L->getExitingBlocks(ExitingBlocks); 1665 1666 // Remove all exits which aren't both rewriteable and execute on every 1667 // iteration. 1668 llvm::erase_if(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1669 // If our exitting block exits multiple loops, we can only rewrite the 1670 // innermost one. Otherwise, we're changing how many times the innermost 1671 // loop runs before it exits. 1672 if (LI->getLoopFor(ExitingBB) != L) 1673 return true; 1674 1675 // Can't rewrite non-branch yet. 1676 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1677 if (!BI) 1678 return true; 1679 1680 // Likewise, the loop latch must be dominated by the exiting BB. 1681 if (!DT->dominates(ExitingBB, L->getLoopLatch())) 1682 return true; 1683 1684 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 1685 // If already constant, nothing to do. However, if this is an 1686 // unconditional exit, we can still replace header phis with their 1687 // preheader value. 1688 if (!L->contains(BI->getSuccessor(CI->isNullValue()))) 1689 replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE); 1690 return true; 1691 } 1692 1693 return false; 1694 }); 1695 1696 if (ExitingBlocks.empty()) 1697 return false; 1698 1699 // Get a symbolic upper bound on the loop backedge taken count. 1700 const SCEV *MaxBECount = SE->getSymbolicMaxBackedgeTakenCount(L); 1701 if (isa<SCEVCouldNotCompute>(MaxBECount)) 1702 return false; 1703 1704 // Visit our exit blocks in order of dominance. We know from the fact that 1705 // all exits must dominate the latch, so there is a total dominance order 1706 // between them. 1707 llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) { 1708 // std::sort sorts in ascending order, so we want the inverse of 1709 // the normal dominance relation. 1710 if (A == B) return false; 1711 if (DT->properlyDominates(A, B)) 1712 return true; 1713 else { 1714 assert(DT->properlyDominates(B, A) && 1715 "expected total dominance order!"); 1716 return false; 1717 } 1718 }); 1719 #ifdef ASSERT 1720 for (unsigned i = 1; i < ExitingBlocks.size(); i++) { 1721 assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])); 1722 } 1723 #endif 1724 1725 bool Changed = false; 1726 bool SkipLastIter = false; 1727 SmallSet<const SCEV *, 8> DominatingExactExitCounts; 1728 for (BasicBlock *ExitingBB : ExitingBlocks) { 1729 const SCEV *ExactExitCount = SE->getExitCount(L, ExitingBB); 1730 const SCEV *MaxExitCount = SE->getExitCount( 1731 L, ExitingBB, ScalarEvolution::ExitCountKind::SymbolicMaximum); 1732 if (isa<SCEVCouldNotCompute>(ExactExitCount)) { 1733 // Okay, we do not know the exit count here. Can we at least prove that it 1734 // will remain the same within iteration space? 1735 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1736 auto OptimizeCond = [&](bool SkipLastIter) { 1737 return optimizeLoopExitWithUnknownExitCount(L, BI, ExitingBB, 1738 MaxBECount, SkipLastIter, 1739 SE, Rewriter, DeadInsts); 1740 }; 1741 1742 // TODO: We might have proved that we can skip the last iteration for 1743 // this check. In this case, we only want to check the condition on the 1744 // pre-last iteration (MaxBECount - 1). However, there is a nasty 1745 // corner case: 1746 // 1747 // for (i = len; i != 0; i--) { ... check (i ult X) ... } 1748 // 1749 // If we could not prove that len != 0, then we also could not prove that 1750 // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then 1751 // OptimizeCond will likely not prove anything for it, even if it could 1752 // prove the same fact for len. 1753 // 1754 // As a temporary solution, we query both last and pre-last iterations in 1755 // hope that we will be able to prove triviality for at least one of 1756 // them. We can stop querying MaxBECount for this case once SCEV 1757 // understands that (MaxBECount - 1) will not overflow here. 1758 if (OptimizeCond(false)) 1759 Changed = true; 1760 else if (SkipLastIter && OptimizeCond(true)) 1761 Changed = true; 1762 if (MaxBECount == MaxExitCount) 1763 // If the loop has more than 1 iteration, all further checks will be 1764 // executed 1 iteration less. 1765 SkipLastIter = true; 1766 continue; 1767 } 1768 1769 if (MaxBECount == MaxExitCount) 1770 // If the loop has more than 1 iteration, all further checks will be 1771 // executed 1 iteration less. 1772 SkipLastIter = true; 1773 1774 // If we know we'd exit on the first iteration, rewrite the exit to 1775 // reflect this. This does not imply the loop must exit through this 1776 // exit; there may be an earlier one taken on the first iteration. 1777 // We know that the backedge can't be taken, so we replace all 1778 // the header PHIs with values coming from the preheader. 1779 if (ExactExitCount->isZero()) { 1780 foldExit(L, ExitingBB, true, DeadInsts); 1781 replaceLoopPHINodesWithPreheaderValues(LI, L, DeadInsts, *SE); 1782 Changed = true; 1783 continue; 1784 } 1785 1786 assert(ExactExitCount->getType()->isIntegerTy() && 1787 MaxBECount->getType()->isIntegerTy() && 1788 "Exit counts must be integers"); 1789 1790 Type *WiderType = 1791 SE->getWiderType(MaxBECount->getType(), ExactExitCount->getType()); 1792 ExactExitCount = SE->getNoopOrZeroExtend(ExactExitCount, WiderType); 1793 MaxBECount = SE->getNoopOrZeroExtend(MaxBECount, WiderType); 1794 assert(MaxBECount->getType() == ExactExitCount->getType()); 1795 1796 // Can we prove that some other exit must be taken strictly before this 1797 // one? 1798 if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT, MaxBECount, 1799 ExactExitCount)) { 1800 foldExit(L, ExitingBB, false, DeadInsts); 1801 Changed = true; 1802 continue; 1803 } 1804 1805 // As we run, keep track of which exit counts we've encountered. If we 1806 // find a duplicate, we've found an exit which would have exited on the 1807 // exiting iteration, but (from the visit order) strictly follows another 1808 // which does the same and is thus dead. 1809 if (!DominatingExactExitCounts.insert(ExactExitCount).second) { 1810 foldExit(L, ExitingBB, false, DeadInsts); 1811 Changed = true; 1812 continue; 1813 } 1814 1815 // TODO: There might be another oppurtunity to leverage SCEV's reasoning 1816 // here. If we kept track of the min of dominanting exits so far, we could 1817 // discharge exits with EC >= MDEC. This is less powerful than the existing 1818 // transform (since later exits aren't considered), but potentially more 1819 // powerful for any case where SCEV can prove a >=u b, but neither a == b 1820 // or a >u b. Such a case is not currently known. 1821 } 1822 return Changed; 1823 } 1824 1825 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) { 1826 SmallVector<BasicBlock*, 16> ExitingBlocks; 1827 L->getExitingBlocks(ExitingBlocks); 1828 1829 // Finally, see if we can rewrite our exit conditions into a loop invariant 1830 // form. If we have a read-only loop, and we can tell that we must exit down 1831 // a path which does not need any of the values computed within the loop, we 1832 // can rewrite the loop to exit on the first iteration. Note that this 1833 // doesn't either a) tell us the loop exits on the first iteration (unless 1834 // *all* exits are predicateable) or b) tell us *which* exit might be taken. 1835 // This transformation looks a lot like a restricted form of dead loop 1836 // elimination, but restricted to read-only loops and without neccesssarily 1837 // needing to kill the loop entirely. 1838 if (!LoopPredication) 1839 return false; 1840 1841 // Note: ExactBTC is the exact backedge taken count *iff* the loop exits 1842 // through *explicit* control flow. We have to eliminate the possibility of 1843 // implicit exits (see below) before we know it's truly exact. 1844 const SCEV *ExactBTC = SE->getBackedgeTakenCount(L); 1845 if (isa<SCEVCouldNotCompute>(ExactBTC) || !Rewriter.isSafeToExpand(ExactBTC)) 1846 return false; 1847 1848 assert(SE->isLoopInvariant(ExactBTC, L) && "BTC must be loop invariant"); 1849 assert(ExactBTC->getType()->isIntegerTy() && "BTC must be integer"); 1850 1851 auto BadExit = [&](BasicBlock *ExitingBB) { 1852 // If our exiting block exits multiple loops, we can only rewrite the 1853 // innermost one. Otherwise, we're changing how many times the innermost 1854 // loop runs before it exits. 1855 if (LI->getLoopFor(ExitingBB) != L) 1856 return true; 1857 1858 // Can't rewrite non-branch yet. 1859 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 1860 if (!BI) 1861 return true; 1862 1863 // If already constant, nothing to do. 1864 if (isa<Constant>(BI->getCondition())) 1865 return true; 1866 1867 // If the exit block has phis, we need to be able to compute the values 1868 // within the loop which contains them. This assumes trivially lcssa phis 1869 // have already been removed; TODO: generalize 1870 BasicBlock *ExitBlock = 1871 BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0); 1872 if (!ExitBlock->phis().empty()) 1873 return true; 1874 1875 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1876 if (isa<SCEVCouldNotCompute>(ExitCount) || 1877 !Rewriter.isSafeToExpand(ExitCount)) 1878 return true; 1879 1880 assert(SE->isLoopInvariant(ExitCount, L) && 1881 "Exit count must be loop invariant"); 1882 assert(ExitCount->getType()->isIntegerTy() && "Exit count must be integer"); 1883 return false; 1884 }; 1885 1886 // If we have any exits which can't be predicated themselves, than we can't 1887 // predicate any exit which isn't guaranteed to execute before it. Consider 1888 // two exits (a) and (b) which would both exit on the same iteration. If we 1889 // can predicate (b), but not (a), and (a) preceeds (b) along some path, then 1890 // we could convert a loop from exiting through (a) to one exiting through 1891 // (b). Note that this problem exists only for exits with the same exit 1892 // count, and we could be more aggressive when exit counts are known inequal. 1893 llvm::sort(ExitingBlocks, 1894 [&](BasicBlock *A, BasicBlock *B) { 1895 // std::sort sorts in ascending order, so we want the inverse of 1896 // the normal dominance relation, plus a tie breaker for blocks 1897 // unordered by dominance. 1898 if (DT->properlyDominates(A, B)) return true; 1899 if (DT->properlyDominates(B, A)) return false; 1900 return A->getName() < B->getName(); 1901 }); 1902 // Check to see if our exit blocks are a total order (i.e. a linear chain of 1903 // exits before the backedge). If they aren't, reasoning about reachability 1904 // is complicated and we choose not to for now. 1905 for (unsigned i = 1; i < ExitingBlocks.size(); i++) 1906 if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i])) 1907 return false; 1908 1909 // Given our sorted total order, we know that exit[j] must be evaluated 1910 // after all exit[i] such j > i. 1911 for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++) 1912 if (BadExit(ExitingBlocks[i])) { 1913 ExitingBlocks.resize(i); 1914 break; 1915 } 1916 1917 if (ExitingBlocks.empty()) 1918 return false; 1919 1920 // We rely on not being able to reach an exiting block on a later iteration 1921 // then it's statically compute exit count. The implementaton of 1922 // getExitCount currently has this invariant, but assert it here so that 1923 // breakage is obvious if this ever changes.. 1924 assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) { 1925 return DT->dominates(ExitingBB, L->getLoopLatch()); 1926 })); 1927 1928 // At this point, ExitingBlocks consists of only those blocks which are 1929 // predicatable. Given that, we know we have at least one exit we can 1930 // predicate if the loop is doesn't have side effects and doesn't have any 1931 // implicit exits (because then our exact BTC isn't actually exact). 1932 // @Reviewers - As structured, this is O(I^2) for loop nests. Any 1933 // suggestions on how to improve this? I can obviously bail out for outer 1934 // loops, but that seems less than ideal. MemorySSA can find memory writes, 1935 // is that enough for *all* side effects? 1936 for (BasicBlock *BB : L->blocks()) 1937 for (auto &I : *BB) 1938 // TODO:isGuaranteedToTransfer 1939 if (I.mayHaveSideEffects()) 1940 return false; 1941 1942 bool Changed = false; 1943 // Finally, do the actual predication for all predicatable blocks. A couple 1944 // of notes here: 1945 // 1) We don't bother to constant fold dominated exits with identical exit 1946 // counts; that's simply a form of CSE/equality propagation and we leave 1947 // it for dedicated passes. 1948 // 2) We insert the comparison at the branch. Hoisting introduces additional 1949 // legality constraints and we leave that to dedicated logic. We want to 1950 // predicate even if we can't insert a loop invariant expression as 1951 // peeling or unrolling will likely reduce the cost of the otherwise loop 1952 // varying check. 1953 Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator()); 1954 IRBuilder<> B(L->getLoopPreheader()->getTerminator()); 1955 Value *ExactBTCV = nullptr; // Lazily generated if needed. 1956 for (BasicBlock *ExitingBB : ExitingBlocks) { 1957 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 1958 1959 auto *BI = cast<BranchInst>(ExitingBB->getTerminator()); 1960 Value *NewCond; 1961 if (ExitCount == ExactBTC) { 1962 NewCond = L->contains(BI->getSuccessor(0)) ? 1963 B.getFalse() : B.getTrue(); 1964 } else { 1965 Value *ECV = Rewriter.expandCodeFor(ExitCount); 1966 if (!ExactBTCV) 1967 ExactBTCV = Rewriter.expandCodeFor(ExactBTC); 1968 Value *RHS = ExactBTCV; 1969 if (ECV->getType() != RHS->getType()) { 1970 Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType()); 1971 ECV = B.CreateZExt(ECV, WiderTy); 1972 RHS = B.CreateZExt(RHS, WiderTy); 1973 } 1974 auto Pred = L->contains(BI->getSuccessor(0)) ? 1975 ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ; 1976 NewCond = B.CreateICmp(Pred, ECV, RHS); 1977 } 1978 Value *OldCond = BI->getCondition(); 1979 BI->setCondition(NewCond); 1980 if (OldCond->use_empty()) 1981 DeadInsts.emplace_back(OldCond); 1982 Changed = true; 1983 } 1984 1985 return Changed; 1986 } 1987 1988 //===----------------------------------------------------------------------===// 1989 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1990 //===----------------------------------------------------------------------===// 1991 1992 bool IndVarSimplify::run(Loop *L) { 1993 // We need (and expect!) the incoming loop to be in LCSSA. 1994 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 1995 "LCSSA required to run indvars!"); 1996 1997 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1998 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1999 // canonicalization can be a pessimization without LSR to "clean up" 2000 // afterwards. 2001 // - We depend on having a preheader; in particular, 2002 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2003 // and we're in trouble if we can't find the induction variable even when 2004 // we've manually inserted one. 2005 // - LFTR relies on having a single backedge. 2006 if (!L->isLoopSimplifyForm()) 2007 return false; 2008 2009 #ifndef NDEBUG 2010 // Used below for a consistency check only 2011 // Note: Since the result returned by ScalarEvolution may depend on the order 2012 // in which previous results are added to its cache, the call to 2013 // getBackedgeTakenCount() may change following SCEV queries. 2014 const SCEV *BackedgeTakenCount; 2015 if (VerifyIndvars) 2016 BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2017 #endif 2018 2019 bool Changed = false; 2020 // If there are any floating-point recurrences, attempt to 2021 // transform them to use integer recurrences. 2022 Changed |= rewriteNonIntegerIVs(L); 2023 2024 // Create a rewriter object which we'll use to transform the code with. 2025 SCEVExpander Rewriter(*SE, DL, "indvars"); 2026 #ifndef NDEBUG 2027 Rewriter.setDebugType(DEBUG_TYPE); 2028 #endif 2029 2030 // Eliminate redundant IV users. 2031 // 2032 // Simplification works best when run before other consumers of SCEV. We 2033 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2034 // other expressions involving loop IVs have been evaluated. This helps SCEV 2035 // set no-wrap flags before normalizing sign/zero extension. 2036 Rewriter.disableCanonicalMode(); 2037 Changed |= simplifyAndExtend(L, Rewriter, LI); 2038 2039 // Check to see if we can compute the final value of any expressions 2040 // that are recurrent in the loop, and substitute the exit values from the 2041 // loop into any instructions outside of the loop that use the final values 2042 // of the current expressions. 2043 if (ReplaceExitValue != NeverRepl) { 2044 if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT, 2045 ReplaceExitValue, DeadInsts)) { 2046 NumReplaced += Rewrites; 2047 Changed = true; 2048 } 2049 } 2050 2051 // Eliminate redundant IV cycles. 2052 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts, TTI); 2053 2054 // Try to convert exit conditions to unsigned and rotate computation 2055 // out of the loop. Note: Handles invalidation internally if needed. 2056 Changed |= canonicalizeExitCondition(L); 2057 2058 // Try to eliminate loop exits based on analyzeable exit counts 2059 if (optimizeLoopExits(L, Rewriter)) { 2060 Changed = true; 2061 // Given we've changed exit counts, notify SCEV 2062 // Some nested loops may share same folded exit basic block, 2063 // thus we need to notify top most loop. 2064 SE->forgetTopmostLoop(L); 2065 } 2066 2067 // Try to form loop invariant tests for loop exits by changing how many 2068 // iterations of the loop run when that is unobservable. 2069 if (predicateLoopExits(L, Rewriter)) { 2070 Changed = true; 2071 // Given we've changed exit counts, notify SCEV 2072 SE->forgetLoop(L); 2073 } 2074 2075 // If we have a trip count expression, rewrite the loop's exit condition 2076 // using it. 2077 if (!DisableLFTR) { 2078 BasicBlock *PreHeader = L->getLoopPreheader(); 2079 2080 SmallVector<BasicBlock*, 16> ExitingBlocks; 2081 L->getExitingBlocks(ExitingBlocks); 2082 for (BasicBlock *ExitingBB : ExitingBlocks) { 2083 // Can't rewrite non-branch yet. 2084 if (!isa<BranchInst>(ExitingBB->getTerminator())) 2085 continue; 2086 2087 // If our exitting block exits multiple loops, we can only rewrite the 2088 // innermost one. Otherwise, we're changing how many times the innermost 2089 // loop runs before it exits. 2090 if (LI->getLoopFor(ExitingBB) != L) 2091 continue; 2092 2093 if (!needsLFTR(L, ExitingBB)) 2094 continue; 2095 2096 const SCEV *ExitCount = SE->getExitCount(L, ExitingBB); 2097 if (isa<SCEVCouldNotCompute>(ExitCount)) 2098 continue; 2099 2100 // This was handled above, but as we form SCEVs, we can sometimes refine 2101 // existing ones; this allows exit counts to be folded to zero which 2102 // weren't when optimizeLoopExits saw them. Arguably, we should iterate 2103 // until stable to handle cases like this better. 2104 if (ExitCount->isZero()) 2105 continue; 2106 2107 PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT); 2108 if (!IndVar) 2109 continue; 2110 2111 // Avoid high cost expansions. Note: This heuristic is questionable in 2112 // that our definition of "high cost" is not exactly principled. 2113 if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget, 2114 TTI, PreHeader->getTerminator())) 2115 continue; 2116 2117 // Check preconditions for proper SCEVExpander operation. SCEV does not 2118 // express SCEVExpander's dependencies, such as LoopSimplify. Instead 2119 // any pass that uses the SCEVExpander must do it. This does not work 2120 // well for loop passes because SCEVExpander makes assumptions about 2121 // all loops, while LoopPassManager only forces the current loop to be 2122 // simplified. 2123 // 2124 // FIXME: SCEV expansion has no way to bail out, so the caller must 2125 // explicitly check any assumptions made by SCEV. Brittle. 2126 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount); 2127 if (!AR || AR->getLoop()->getLoopPreheader()) 2128 Changed |= linearFunctionTestReplace(L, ExitingBB, 2129 ExitCount, IndVar, 2130 Rewriter); 2131 } 2132 } 2133 // Clear the rewriter cache, because values that are in the rewriter's cache 2134 // can be deleted in the loop below, causing the AssertingVH in the cache to 2135 // trigger. 2136 Rewriter.clear(); 2137 2138 // Now that we're done iterating through lists, clean up any instructions 2139 // which are now dead. 2140 while (!DeadInsts.empty()) { 2141 Value *V = DeadInsts.pop_back_val(); 2142 2143 if (PHINode *PHI = dyn_cast_or_null<PHINode>(V)) 2144 Changed |= RecursivelyDeleteDeadPHINode(PHI, TLI, MSSAU.get()); 2145 else if (Instruction *Inst = dyn_cast_or_null<Instruction>(V)) 2146 Changed |= 2147 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get()); 2148 } 2149 2150 // The Rewriter may not be used from this point on. 2151 2152 // Loop-invariant instructions in the preheader that aren't used in the 2153 // loop may be sunk below the loop to reduce register pressure. 2154 Changed |= sinkUnusedInvariants(L); 2155 2156 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2157 // trip count and therefore can further simplify exit values in addition to 2158 // rewriteLoopExitValues. 2159 Changed |= rewriteFirstIterationLoopExitValues(L); 2160 2161 // Clean up dead instructions. 2162 Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get()); 2163 2164 // Check a post-condition. 2165 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2166 "Indvars did not preserve LCSSA!"); 2167 2168 // Verify that LFTR, and any other change have not interfered with SCEV's 2169 // ability to compute trip count. We may have *changed* the exit count, but 2170 // only by reducing it. 2171 #ifndef NDEBUG 2172 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2173 SE->forgetLoop(L); 2174 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2175 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2176 SE->getTypeSizeInBits(NewBECount->getType())) 2177 NewBECount = SE->getTruncateOrNoop(NewBECount, 2178 BackedgeTakenCount->getType()); 2179 else 2180 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2181 NewBECount->getType()); 2182 assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount, 2183 NewBECount) && "indvars must preserve SCEV"); 2184 } 2185 if (VerifyMemorySSA && MSSAU) 2186 MSSAU->getMemorySSA()->verifyMemorySSA(); 2187 #endif 2188 2189 return Changed; 2190 } 2191 2192 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2193 LoopStandardAnalysisResults &AR, 2194 LPMUpdater &) { 2195 Function *F = L.getHeader()->getParent(); 2196 const DataLayout &DL = F->getParent()->getDataLayout(); 2197 2198 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA, 2199 WidenIndVars && AllowIVWidening); 2200 if (!IVS.run(&L)) 2201 return PreservedAnalyses::all(); 2202 2203 auto PA = getLoopPassPreservedAnalyses(); 2204 PA.preserveSet<CFGAnalyses>(); 2205 if (AR.MSSA) 2206 PA.preserve<MemorySSAAnalysis>(); 2207 return PA; 2208 } 2209 2210 namespace { 2211 2212 struct IndVarSimplifyLegacyPass : public LoopPass { 2213 static char ID; // Pass identification, replacement for typeid 2214 2215 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2216 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2217 } 2218 2219 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2220 if (skipLoop(L)) 2221 return false; 2222 2223 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2224 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2225 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2226 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2227 auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr; 2228 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2229 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2230 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2231 auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); 2232 MemorySSA *MSSA = nullptr; 2233 if (MSSAAnalysis) 2234 MSSA = &MSSAAnalysis->getMSSA(); 2235 2236 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening); 2237 return IVS.run(L); 2238 } 2239 2240 void getAnalysisUsage(AnalysisUsage &AU) const override { 2241 AU.setPreservesCFG(); 2242 AU.addPreserved<MemorySSAWrapperPass>(); 2243 getLoopAnalysisUsage(AU); 2244 } 2245 }; 2246 2247 } // end anonymous namespace 2248 2249 char IndVarSimplifyLegacyPass::ID = 0; 2250 2251 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2252 "Induction Variable Simplification", false, false) 2253 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2254 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2255 "Induction Variable Simplification", false, false) 2256 2257 Pass *llvm::createIndVarSimplifyPass() { 2258 return new IndVarSimplifyLegacyPass(); 2259 } 2260