1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/ADT/APFloat.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/None.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/Analysis/ScalarEvolutionExpander.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/ConstantRange.h" 50 #include "llvm/IR/Constants.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/IR/ValueHandle.h" 70 #include "llvm/Pass.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/MathExtras.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/LoopPassManager.h" 80 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 81 #include "llvm/Transforms/Utils/LoopUtils.h" 82 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 83 #include <cassert> 84 #include <cstdint> 85 #include <utility> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "indvars" 90 91 STATISTIC(NumWidened , "Number of indvars widened"); 92 STATISTIC(NumReplaced , "Number of exit values replaced"); 93 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 94 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 95 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 96 97 // Trip count verification can be enabled by default under NDEBUG if we 98 // implement a strong expression equivalence checker in SCEV. Until then, we 99 // use the verify-indvars flag, which may assert in some cases. 100 static cl::opt<bool> VerifyIndvars( 101 "verify-indvars", cl::Hidden, 102 cl::desc("Verify the ScalarEvolution result after running indvars")); 103 104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 105 106 static cl::opt<ReplaceExitVal> ReplaceExitValue( 107 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 108 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 109 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 110 clEnumValN(OnlyCheapRepl, "cheap", 111 "only replace exit value when the cost is cheap"), 112 clEnumValN(AlwaysRepl, "always", 113 "always replace exit value whenever possible"))); 114 115 static cl::opt<bool> UsePostIncrementRanges( 116 "indvars-post-increment-ranges", cl::Hidden, 117 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 118 cl::init(true)); 119 120 static cl::opt<bool> 121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 122 cl::desc("Disable Linear Function Test Replace optimization")); 123 124 namespace { 125 126 struct RewritePhi; 127 128 class IndVarSimplify { 129 LoopInfo *LI; 130 ScalarEvolution *SE; 131 DominatorTree *DT; 132 const DataLayout &DL; 133 TargetLibraryInfo *TLI; 134 const TargetTransformInfo *TTI; 135 136 SmallVector<WeakTrackingVH, 16> DeadInsts; 137 138 bool isValidRewrite(Value *FromVal, Value *ToVal); 139 140 bool handleFloatingPointIV(Loop *L, PHINode *PH); 141 bool rewriteNonIntegerIVs(Loop *L); 142 143 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 144 145 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 146 bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 147 bool rewriteFirstIterationLoopExitValues(Loop *L); 148 149 bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 150 PHINode *IndVar, SCEVExpander &Rewriter); 151 152 bool sinkUnusedInvariants(Loop *L); 153 154 public: 155 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 156 const DataLayout &DL, TargetLibraryInfo *TLI, 157 TargetTransformInfo *TTI) 158 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 159 160 bool run(Loop *L); 161 }; 162 163 } // end anonymous namespace 164 165 /// Return true if the SCEV expansion generated by the rewriter can replace the 166 /// original value. SCEV guarantees that it produces the same value, but the way 167 /// it is produced may be illegal IR. Ideally, this function will only be 168 /// called for verification. 169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 170 // If an SCEV expression subsumed multiple pointers, its expansion could 171 // reassociate the GEP changing the base pointer. This is illegal because the 172 // final address produced by a GEP chain must be inbounds relative to its 173 // underlying object. Otherwise basic alias analysis, among other things, 174 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 175 // producing an expression involving multiple pointers. Until then, we must 176 // bail out here. 177 // 178 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 179 // because it understands lcssa phis while SCEV does not. 180 Value *FromPtr = FromVal; 181 Value *ToPtr = ToVal; 182 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 183 FromPtr = GEP->getPointerOperand(); 184 } 185 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 186 ToPtr = GEP->getPointerOperand(); 187 } 188 if (FromPtr != FromVal || ToPtr != ToVal) { 189 // Quickly check the common case 190 if (FromPtr == ToPtr) 191 return true; 192 193 // SCEV may have rewritten an expression that produces the GEP's pointer 194 // operand. That's ok as long as the pointer operand has the same base 195 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 196 // base of a recurrence. This handles the case in which SCEV expansion 197 // converts a pointer type recurrence into a nonrecurrent pointer base 198 // indexed by an integer recurrence. 199 200 // If the GEP base pointer is a vector of pointers, abort. 201 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 202 return false; 203 204 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 205 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 206 if (FromBase == ToBase) 207 return true; 208 209 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 210 << " != " << *ToBase << "\n"); 211 212 return false; 213 } 214 return true; 215 } 216 217 /// Determine the insertion point for this user. By default, insert immediately 218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 220 /// common dominator for the incoming blocks. 221 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 222 DominatorTree *DT, LoopInfo *LI) { 223 PHINode *PHI = dyn_cast<PHINode>(User); 224 if (!PHI) 225 return User; 226 227 Instruction *InsertPt = nullptr; 228 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 229 if (PHI->getIncomingValue(i) != Def) 230 continue; 231 232 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 233 if (!InsertPt) { 234 InsertPt = InsertBB->getTerminator(); 235 continue; 236 } 237 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 238 InsertPt = InsertBB->getTerminator(); 239 } 240 assert(InsertPt && "Missing phi operand"); 241 242 auto *DefI = dyn_cast<Instruction>(Def); 243 if (!DefI) 244 return InsertPt; 245 246 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 247 248 auto *L = LI->getLoopFor(DefI->getParent()); 249 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 250 251 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 252 if (LI->getLoopFor(DTN->getBlock()) == L) 253 return DTN->getBlock()->getTerminator(); 254 255 llvm_unreachable("DefI dominates InsertPt!"); 256 } 257 258 //===----------------------------------------------------------------------===// 259 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 260 //===----------------------------------------------------------------------===// 261 262 /// Convert APF to an integer, if possible. 263 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 264 bool isExact = false; 265 // See if we can convert this to an int64_t 266 uint64_t UIntVal; 267 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 268 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 269 !isExact) 270 return false; 271 IntVal = UIntVal; 272 return true; 273 } 274 275 /// If the loop has floating induction variable then insert corresponding 276 /// integer induction variable if possible. 277 /// For example, 278 /// for(double i = 0; i < 10000; ++i) 279 /// bar(i) 280 /// is converted into 281 /// for(int i = 0; i < 10000; ++i) 282 /// bar((double)i); 283 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 284 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 285 unsigned BackEdge = IncomingEdge^1; 286 287 // Check incoming value. 288 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 289 290 int64_t InitValue; 291 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 292 return false; 293 294 // Check IV increment. Reject this PN if increment operation is not 295 // an add or increment value can not be represented by an integer. 296 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 297 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 298 299 // If this is not an add of the PHI with a constantfp, or if the constant fp 300 // is not an integer, bail out. 301 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 302 int64_t IncValue; 303 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 304 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 305 return false; 306 307 // Check Incr uses. One user is PN and the other user is an exit condition 308 // used by the conditional terminator. 309 Value::user_iterator IncrUse = Incr->user_begin(); 310 Instruction *U1 = cast<Instruction>(*IncrUse++); 311 if (IncrUse == Incr->user_end()) return false; 312 Instruction *U2 = cast<Instruction>(*IncrUse++); 313 if (IncrUse != Incr->user_end()) return false; 314 315 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 316 // only used by a branch, we can't transform it. 317 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 318 if (!Compare) 319 Compare = dyn_cast<FCmpInst>(U2); 320 if (!Compare || !Compare->hasOneUse() || 321 !isa<BranchInst>(Compare->user_back())) 322 return false; 323 324 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 325 326 // We need to verify that the branch actually controls the iteration count 327 // of the loop. If not, the new IV can overflow and no one will notice. 328 // The branch block must be in the loop and one of the successors must be out 329 // of the loop. 330 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 331 if (!L->contains(TheBr->getParent()) || 332 (L->contains(TheBr->getSuccessor(0)) && 333 L->contains(TheBr->getSuccessor(1)))) 334 return false; 335 336 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 337 // transform it. 338 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 339 int64_t ExitValue; 340 if (ExitValueVal == nullptr || 341 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 342 return false; 343 344 // Find new predicate for integer comparison. 345 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 346 switch (Compare->getPredicate()) { 347 default: return false; // Unknown comparison. 348 case CmpInst::FCMP_OEQ: 349 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 350 case CmpInst::FCMP_ONE: 351 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 352 case CmpInst::FCMP_OGT: 353 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 354 case CmpInst::FCMP_OGE: 355 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 356 case CmpInst::FCMP_OLT: 357 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 358 case CmpInst::FCMP_OLE: 359 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 360 } 361 362 // We convert the floating point induction variable to a signed i32 value if 363 // we can. This is only safe if the comparison will not overflow in a way 364 // that won't be trapped by the integer equivalent operations. Check for this 365 // now. 366 // TODO: We could use i64 if it is native and the range requires it. 367 368 // The start/stride/exit values must all fit in signed i32. 369 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 370 return false; 371 372 // If not actually striding (add x, 0.0), avoid touching the code. 373 if (IncValue == 0) 374 return false; 375 376 // Positive and negative strides have different safety conditions. 377 if (IncValue > 0) { 378 // If we have a positive stride, we require the init to be less than the 379 // exit value. 380 if (InitValue >= ExitValue) 381 return false; 382 383 uint32_t Range = uint32_t(ExitValue-InitValue); 384 // Check for infinite loop, either: 385 // while (i <= Exit) or until (i > Exit) 386 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 387 if (++Range == 0) return false; // Range overflows. 388 } 389 390 unsigned Leftover = Range % uint32_t(IncValue); 391 392 // If this is an equality comparison, we require that the strided value 393 // exactly land on the exit value, otherwise the IV condition will wrap 394 // around and do things the fp IV wouldn't. 395 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 396 Leftover != 0) 397 return false; 398 399 // If the stride would wrap around the i32 before exiting, we can't 400 // transform the IV. 401 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 402 return false; 403 } else { 404 // If we have a negative stride, we require the init to be greater than the 405 // exit value. 406 if (InitValue <= ExitValue) 407 return false; 408 409 uint32_t Range = uint32_t(InitValue-ExitValue); 410 // Check for infinite loop, either: 411 // while (i >= Exit) or until (i < Exit) 412 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 413 if (++Range == 0) return false; // Range overflows. 414 } 415 416 unsigned Leftover = Range % uint32_t(-IncValue); 417 418 // If this is an equality comparison, we require that the strided value 419 // exactly land on the exit value, otherwise the IV condition will wrap 420 // around and do things the fp IV wouldn't. 421 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 422 Leftover != 0) 423 return false; 424 425 // If the stride would wrap around the i32 before exiting, we can't 426 // transform the IV. 427 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 428 return false; 429 } 430 431 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 432 433 // Insert new integer induction variable. 434 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 435 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 436 PN->getIncomingBlock(IncomingEdge)); 437 438 Value *NewAdd = 439 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 440 Incr->getName()+".int", Incr); 441 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 442 443 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 444 ConstantInt::get(Int32Ty, ExitValue), 445 Compare->getName()); 446 447 // In the following deletions, PN may become dead and may be deleted. 448 // Use a WeakTrackingVH to observe whether this happens. 449 WeakTrackingVH WeakPH = PN; 450 451 // Delete the old floating point exit comparison. The branch starts using the 452 // new comparison. 453 NewCompare->takeName(Compare); 454 Compare->replaceAllUsesWith(NewCompare); 455 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 456 457 // Delete the old floating point increment. 458 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 459 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 460 461 // If the FP induction variable still has uses, this is because something else 462 // in the loop uses its value. In order to canonicalize the induction 463 // variable, we chose to eliminate the IV and rewrite it in terms of an 464 // int->fp cast. 465 // 466 // We give preference to sitofp over uitofp because it is faster on most 467 // platforms. 468 if (WeakPH) { 469 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 470 &*PN->getParent()->getFirstInsertionPt()); 471 PN->replaceAllUsesWith(Conv); 472 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 473 } 474 return true; 475 } 476 477 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 478 // First step. Check to see if there are any floating-point recurrences. 479 // If there are, change them into integer recurrences, permitting analysis by 480 // the SCEV routines. 481 BasicBlock *Header = L->getHeader(); 482 483 SmallVector<WeakTrackingVH, 8> PHIs; 484 for (PHINode &PN : Header->phis()) 485 PHIs.push_back(&PN); 486 487 bool Changed = false; 488 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 489 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 490 Changed |= handleFloatingPointIV(L, PN); 491 492 // If the loop previously had floating-point IV, ScalarEvolution 493 // may not have been able to compute a trip count. Now that we've done some 494 // re-writing, the trip count may be computable. 495 if (Changed) 496 SE->forgetLoop(L); 497 return Changed; 498 } 499 500 namespace { 501 502 // Collect information about PHI nodes which can be transformed in 503 // rewriteLoopExitValues. 504 struct RewritePhi { 505 PHINode *PN; 506 507 // Ith incoming value. 508 unsigned Ith; 509 510 // Exit value after expansion. 511 Value *Val; 512 513 // High Cost when expansion. 514 bool HighCost; 515 516 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 517 : PN(P), Ith(I), Val(V), HighCost(H) {} 518 }; 519 520 } // end anonymous namespace 521 522 //===----------------------------------------------------------------------===// 523 // rewriteLoopExitValues - Optimize IV users outside the loop. 524 // As a side effect, reduces the amount of IV processing within the loop. 525 //===----------------------------------------------------------------------===// 526 527 /// Check to see if this loop has a computable loop-invariant execution count. 528 /// If so, this means that we can compute the final value of any expressions 529 /// that are recurrent in the loop, and substitute the exit values from the loop 530 /// into any instructions outside of the loop that use the final values of the 531 /// current expressions. 532 /// 533 /// This is mostly redundant with the regular IndVarSimplify activities that 534 /// happen later, except that it's more powerful in some cases, because it's 535 /// able to brute-force evaluate arbitrary instructions as long as they have 536 /// constant operands at the beginning of the loop. 537 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 538 // Check a pre-condition. 539 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 540 "Indvars did not preserve LCSSA!"); 541 542 SmallVector<BasicBlock*, 8> ExitBlocks; 543 L->getUniqueExitBlocks(ExitBlocks); 544 545 SmallVector<RewritePhi, 8> RewritePhiSet; 546 // Find all values that are computed inside the loop, but used outside of it. 547 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 548 // the exit blocks of the loop to find them. 549 for (BasicBlock *ExitBB : ExitBlocks) { 550 // If there are no PHI nodes in this exit block, then no values defined 551 // inside the loop are used on this path, skip it. 552 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 553 if (!PN) continue; 554 555 unsigned NumPreds = PN->getNumIncomingValues(); 556 557 // Iterate over all of the PHI nodes. 558 BasicBlock::iterator BBI = ExitBB->begin(); 559 while ((PN = dyn_cast<PHINode>(BBI++))) { 560 if (PN->use_empty()) 561 continue; // dead use, don't replace it 562 563 if (!SE->isSCEVable(PN->getType())) 564 continue; 565 566 // It's necessary to tell ScalarEvolution about this explicitly so that 567 // it can walk the def-use list and forget all SCEVs, as it may not be 568 // watching the PHI itself. Once the new exit value is in place, there 569 // may not be a def-use connection between the loop and every instruction 570 // which got a SCEVAddRecExpr for that loop. 571 SE->forgetValue(PN); 572 573 // Iterate over all of the values in all the PHI nodes. 574 for (unsigned i = 0; i != NumPreds; ++i) { 575 // If the value being merged in is not integer or is not defined 576 // in the loop, skip it. 577 Value *InVal = PN->getIncomingValue(i); 578 if (!isa<Instruction>(InVal)) 579 continue; 580 581 // If this pred is for a subloop, not L itself, skip it. 582 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 583 continue; // The Block is in a subloop, skip it. 584 585 // Check that InVal is defined in the loop. 586 Instruction *Inst = cast<Instruction>(InVal); 587 if (!L->contains(Inst)) 588 continue; 589 590 // Okay, this instruction has a user outside of the current loop 591 // and varies predictably *inside* the loop. Evaluate the value it 592 // contains when the loop exits, if possible. 593 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 594 if (!SE->isLoopInvariant(ExitValue, L) || 595 !isSafeToExpand(ExitValue, *SE)) 596 continue; 597 598 // Computing the value outside of the loop brings no benefit if : 599 // - it is definitely used inside the loop in a way which can not be 600 // optimized away. 601 // - no use outside of the loop can take advantage of hoisting the 602 // computation out of the loop 603 if (ExitValue->getSCEVType()>=scMulExpr) { 604 bool HasHardInternalUses = false; 605 bool HasSoftExternalUses = false; 606 unsigned NumUses = 0; 607 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 608 IB != IE && NumUses <= 6; ++IB) { 609 Instruction *UseInstr = cast<Instruction>(*IB); 610 unsigned Opc = UseInstr->getOpcode(); 611 NumUses++; 612 if (L->contains(UseInstr)) { 613 if (Opc == Instruction::Call) 614 HasHardInternalUses = true; 615 } else { 616 if (Opc == Instruction::PHI) { 617 // Do not count the Phi as a use. LCSSA may have inserted 618 // plenty of trivial ones. 619 NumUses--; 620 for (auto PB = UseInstr->user_begin(), 621 PE = UseInstr->user_end(); 622 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 623 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 624 if (PhiOpc != Instruction::Call && 625 PhiOpc != Instruction::Ret) { 626 HasSoftExternalUses = true; 627 break; 628 } 629 } 630 continue; 631 } 632 if (Opc != Instruction::Call && Opc != Instruction::Ret) { 633 HasSoftExternalUses = true; 634 break; 635 } 636 } 637 } 638 if (NumUses <= 6 && HasHardInternalUses && !HasSoftExternalUses) 639 continue; 640 } 641 642 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 643 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 644 645 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 646 << '\n' 647 << " LoopVal = " << *Inst << "\n"); 648 649 if (!isValidRewrite(Inst, ExitVal)) { 650 DeadInsts.push_back(ExitVal); 651 continue; 652 } 653 654 #ifndef NDEBUG 655 // If we reuse an instruction from a loop which is neither L nor one of 656 // its containing loops, we end up breaking LCSSA form for this loop by 657 // creating a new use of its instruction. 658 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 659 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 660 if (EVL != L) 661 assert(EVL->contains(L) && "LCSSA breach detected!"); 662 #endif 663 664 // Collect all the candidate PHINodes to be rewritten. 665 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 666 } 667 } 668 } 669 670 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 671 672 bool Changed = false; 673 // Transformation. 674 for (const RewritePhi &Phi : RewritePhiSet) { 675 PHINode *PN = Phi.PN; 676 Value *ExitVal = Phi.Val; 677 678 // Only do the rewrite when the ExitValue can be expanded cheaply. 679 // If LoopCanBeDel is true, rewrite exit value aggressively. 680 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 681 DeadInsts.push_back(ExitVal); 682 continue; 683 } 684 685 Changed = true; 686 ++NumReplaced; 687 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 688 PN->setIncomingValue(Phi.Ith, ExitVal); 689 690 // If this instruction is dead now, delete it. Don't do it now to avoid 691 // invalidating iterators. 692 if (isInstructionTriviallyDead(Inst, TLI)) 693 DeadInsts.push_back(Inst); 694 695 // Replace PN with ExitVal if that is legal and does not break LCSSA. 696 if (PN->getNumIncomingValues() == 1 && 697 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 698 PN->replaceAllUsesWith(ExitVal); 699 PN->eraseFromParent(); 700 } 701 } 702 703 // The insertion point instruction may have been deleted; clear it out 704 // so that the rewriter doesn't trip over it later. 705 Rewriter.clearInsertPoint(); 706 return Changed; 707 } 708 709 //===---------------------------------------------------------------------===// 710 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 711 // they will exit at the first iteration. 712 //===---------------------------------------------------------------------===// 713 714 /// Check to see if this loop has loop invariant conditions which lead to loop 715 /// exits. If so, we know that if the exit path is taken, it is at the first 716 /// loop iteration. This lets us predict exit values of PHI nodes that live in 717 /// loop header. 718 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 719 // Verify the input to the pass is already in LCSSA form. 720 assert(L->isLCSSAForm(*DT)); 721 722 SmallVector<BasicBlock *, 8> ExitBlocks; 723 L->getUniqueExitBlocks(ExitBlocks); 724 auto *LoopHeader = L->getHeader(); 725 assert(LoopHeader && "Invalid loop"); 726 727 bool MadeAnyChanges = false; 728 for (auto *ExitBB : ExitBlocks) { 729 // If there are no more PHI nodes in this exit block, then no more 730 // values defined inside the loop are used on this path. 731 for (PHINode &PN : ExitBB->phis()) { 732 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 733 IncomingValIdx != E; ++IncomingValIdx) { 734 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 735 736 // We currently only support loop exits from loop header. If the 737 // incoming block is not loop header, we need to recursively check 738 // all conditions starting from loop header are loop invariants. 739 // Additional support might be added in the future. 740 if (IncomingBB != LoopHeader) 741 continue; 742 743 // Get condition that leads to the exit path. 744 auto *TermInst = IncomingBB->getTerminator(); 745 746 Value *Cond = nullptr; 747 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 748 // Must be a conditional branch, otherwise the block 749 // should not be in the loop. 750 Cond = BI->getCondition(); 751 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 752 Cond = SI->getCondition(); 753 else 754 continue; 755 756 if (!L->isLoopInvariant(Cond)) 757 continue; 758 759 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 760 761 // Only deal with PHIs. 762 if (!ExitVal) 763 continue; 764 765 // If ExitVal is a PHI on the loop header, then we know its 766 // value along this exit because the exit can only be taken 767 // on the first iteration. 768 auto *LoopPreheader = L->getLoopPreheader(); 769 assert(LoopPreheader && "Invalid loop"); 770 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 771 if (PreheaderIdx != -1) { 772 assert(ExitVal->getParent() == LoopHeader && 773 "ExitVal must be in loop header"); 774 MadeAnyChanges = true; 775 PN.setIncomingValue(IncomingValIdx, 776 ExitVal->getIncomingValue(PreheaderIdx)); 777 } 778 } 779 } 780 } 781 return MadeAnyChanges; 782 } 783 784 /// Check whether it is possible to delete the loop after rewriting exit 785 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 786 /// aggressively. 787 bool IndVarSimplify::canLoopBeDeleted( 788 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 789 BasicBlock *Preheader = L->getLoopPreheader(); 790 // If there is no preheader, the loop will not be deleted. 791 if (!Preheader) 792 return false; 793 794 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 795 // We obviate multiple ExitingBlocks case for simplicity. 796 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 797 // after exit value rewriting, we can enhance the logic here. 798 SmallVector<BasicBlock *, 4> ExitingBlocks; 799 L->getExitingBlocks(ExitingBlocks); 800 SmallVector<BasicBlock *, 8> ExitBlocks; 801 L->getUniqueExitBlocks(ExitBlocks); 802 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 803 return false; 804 805 BasicBlock *ExitBlock = ExitBlocks[0]; 806 BasicBlock::iterator BI = ExitBlock->begin(); 807 while (PHINode *P = dyn_cast<PHINode>(BI)) { 808 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 809 810 // If the Incoming value of P is found in RewritePhiSet, we know it 811 // could be rewritten to use a loop invariant value in transformation 812 // phase later. Skip it in the loop invariant check below. 813 bool found = false; 814 for (const RewritePhi &Phi : RewritePhiSet) { 815 unsigned i = Phi.Ith; 816 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 817 found = true; 818 break; 819 } 820 } 821 822 Instruction *I; 823 if (!found && (I = dyn_cast<Instruction>(Incoming))) 824 if (!L->hasLoopInvariantOperands(I)) 825 return false; 826 827 ++BI; 828 } 829 830 for (auto *BB : L->blocks()) 831 if (llvm::any_of(*BB, [](Instruction &I) { 832 return I.mayHaveSideEffects(); 833 })) 834 return false; 835 836 return true; 837 } 838 839 //===----------------------------------------------------------------------===// 840 // IV Widening - Extend the width of an IV to cover its widest uses. 841 //===----------------------------------------------------------------------===// 842 843 namespace { 844 845 // Collect information about induction variables that are used by sign/zero 846 // extend operations. This information is recorded by CollectExtend and provides 847 // the input to WidenIV. 848 struct WideIVInfo { 849 PHINode *NarrowIV = nullptr; 850 851 // Widest integer type created [sz]ext 852 Type *WidestNativeType = nullptr; 853 854 // Was a sext user seen before a zext? 855 bool IsSigned = false; 856 }; 857 858 } // end anonymous namespace 859 860 /// Update information about the induction variable that is extended by this 861 /// sign or zero extend operation. This is used to determine the final width of 862 /// the IV before actually widening it. 863 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 864 const TargetTransformInfo *TTI) { 865 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 866 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 867 return; 868 869 Type *Ty = Cast->getType(); 870 uint64_t Width = SE->getTypeSizeInBits(Ty); 871 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 872 return; 873 874 // Check that `Cast` actually extends the induction variable (we rely on this 875 // later). This takes care of cases where `Cast` is extending a truncation of 876 // the narrow induction variable, and thus can end up being narrower than the 877 // "narrow" induction variable. 878 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 879 if (NarrowIVWidth >= Width) 880 return; 881 882 // Cast is either an sext or zext up to this point. 883 // We should not widen an indvar if arithmetics on the wider indvar are more 884 // expensive than those on the narrower indvar. We check only the cost of ADD 885 // because at least an ADD is required to increment the induction variable. We 886 // could compute more comprehensively the cost of all instructions on the 887 // induction variable when necessary. 888 if (TTI && 889 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 890 TTI->getArithmeticInstrCost(Instruction::Add, 891 Cast->getOperand(0)->getType())) { 892 return; 893 } 894 895 if (!WI.WidestNativeType) { 896 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 897 WI.IsSigned = IsSigned; 898 return; 899 } 900 901 // We extend the IV to satisfy the sign of its first user, arbitrarily. 902 if (WI.IsSigned != IsSigned) 903 return; 904 905 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 906 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 907 } 908 909 namespace { 910 911 /// Record a link in the Narrow IV def-use chain along with the WideIV that 912 /// computes the same value as the Narrow IV def. This avoids caching Use* 913 /// pointers. 914 struct NarrowIVDefUse { 915 Instruction *NarrowDef = nullptr; 916 Instruction *NarrowUse = nullptr; 917 Instruction *WideDef = nullptr; 918 919 // True if the narrow def is never negative. Tracking this information lets 920 // us use a sign extension instead of a zero extension or vice versa, when 921 // profitable and legal. 922 bool NeverNegative = false; 923 924 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 925 bool NeverNegative) 926 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 927 NeverNegative(NeverNegative) {} 928 }; 929 930 /// The goal of this transform is to remove sign and zero extends without 931 /// creating any new induction variables. To do this, it creates a new phi of 932 /// the wider type and redirects all users, either removing extends or inserting 933 /// truncs whenever we stop propagating the type. 934 class WidenIV { 935 // Parameters 936 PHINode *OrigPhi; 937 Type *WideType; 938 939 // Context 940 LoopInfo *LI; 941 Loop *L; 942 ScalarEvolution *SE; 943 DominatorTree *DT; 944 945 // Does the module have any calls to the llvm.experimental.guard intrinsic 946 // at all? If not we can avoid scanning instructions looking for guards. 947 bool HasGuards; 948 949 // Result 950 PHINode *WidePhi = nullptr; 951 Instruction *WideInc = nullptr; 952 const SCEV *WideIncExpr = nullptr; 953 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 954 955 SmallPtrSet<Instruction *,16> Widened; 956 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 957 958 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 959 960 // A map tracking the kind of extension used to widen each narrow IV 961 // and narrow IV user. 962 // Key: pointer to a narrow IV or IV user. 963 // Value: the kind of extension used to widen this Instruction. 964 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 965 966 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 967 968 // A map with control-dependent ranges for post increment IV uses. The key is 969 // a pair of IV def and a use of this def denoting the context. The value is 970 // a ConstantRange representing possible values of the def at the given 971 // context. 972 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 973 974 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 975 Instruction *UseI) { 976 DefUserPair Key(Def, UseI); 977 auto It = PostIncRangeInfos.find(Key); 978 return It == PostIncRangeInfos.end() 979 ? Optional<ConstantRange>(None) 980 : Optional<ConstantRange>(It->second); 981 } 982 983 void calculatePostIncRanges(PHINode *OrigPhi); 984 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 985 986 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 987 DefUserPair Key(Def, UseI); 988 auto It = PostIncRangeInfos.find(Key); 989 if (It == PostIncRangeInfos.end()) 990 PostIncRangeInfos.insert({Key, R}); 991 else 992 It->second = R.intersectWith(It->second); 993 } 994 995 public: 996 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 997 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 998 bool HasGuards) 999 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 1000 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 1001 HasGuards(HasGuards), DeadInsts(DI) { 1002 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 1003 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 1004 } 1005 1006 PHINode *createWideIV(SCEVExpander &Rewriter); 1007 1008 protected: 1009 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1010 Instruction *Use); 1011 1012 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1013 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1014 const SCEVAddRecExpr *WideAR); 1015 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1016 1017 ExtendKind getExtendKind(Instruction *I); 1018 1019 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1020 1021 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1022 1023 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1024 1025 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1026 unsigned OpCode) const; 1027 1028 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1029 1030 bool widenLoopCompare(NarrowIVDefUse DU); 1031 bool widenWithVariantLoadUse(NarrowIVDefUse DU); 1032 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); 1033 1034 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1035 }; 1036 1037 } // end anonymous namespace 1038 1039 /// Perform a quick domtree based check for loop invariance assuming that V is 1040 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 1041 /// purpose. 1042 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 1043 Instruction *Inst = dyn_cast<Instruction>(V); 1044 if (!Inst) 1045 return true; 1046 1047 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1048 } 1049 1050 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1051 bool IsSigned, Instruction *Use) { 1052 // Set the debug location and conservative insertion point. 1053 IRBuilder<> Builder(Use); 1054 // Hoist the insertion point into loop preheaders as far as possible. 1055 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1056 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1057 L = L->getParentLoop()) 1058 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1059 1060 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1061 Builder.CreateZExt(NarrowOper, WideType); 1062 } 1063 1064 /// Instantiate a wide operation to replace a narrow operation. This only needs 1065 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1066 /// 0 for any operation we decide not to clone. 1067 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1068 const SCEVAddRecExpr *WideAR) { 1069 unsigned Opcode = DU.NarrowUse->getOpcode(); 1070 switch (Opcode) { 1071 default: 1072 return nullptr; 1073 case Instruction::Add: 1074 case Instruction::Mul: 1075 case Instruction::UDiv: 1076 case Instruction::Sub: 1077 return cloneArithmeticIVUser(DU, WideAR); 1078 1079 case Instruction::And: 1080 case Instruction::Or: 1081 case Instruction::Xor: 1082 case Instruction::Shl: 1083 case Instruction::LShr: 1084 case Instruction::AShr: 1085 return cloneBitwiseIVUser(DU); 1086 } 1087 } 1088 1089 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1090 Instruction *NarrowUse = DU.NarrowUse; 1091 Instruction *NarrowDef = DU.NarrowDef; 1092 Instruction *WideDef = DU.WideDef; 1093 1094 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1095 1096 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1097 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1098 // invariant and will be folded or hoisted. If it actually comes from a 1099 // widened IV, it should be removed during a future call to widenIVUse. 1100 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1101 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1102 ? WideDef 1103 : createExtendInst(NarrowUse->getOperand(0), WideType, 1104 IsSigned, NarrowUse); 1105 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1106 ? WideDef 1107 : createExtendInst(NarrowUse->getOperand(1), WideType, 1108 IsSigned, NarrowUse); 1109 1110 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1111 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1112 NarrowBO->getName()); 1113 IRBuilder<> Builder(NarrowUse); 1114 Builder.Insert(WideBO); 1115 WideBO->copyIRFlags(NarrowBO); 1116 return WideBO; 1117 } 1118 1119 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1120 const SCEVAddRecExpr *WideAR) { 1121 Instruction *NarrowUse = DU.NarrowUse; 1122 Instruction *NarrowDef = DU.NarrowDef; 1123 Instruction *WideDef = DU.WideDef; 1124 1125 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1126 1127 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1128 1129 // We're trying to find X such that 1130 // 1131 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1132 // 1133 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1134 // and check using SCEV if any of them are correct. 1135 1136 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1137 // correct solution to X. 1138 auto GuessNonIVOperand = [&](bool SignExt) { 1139 const SCEV *WideLHS; 1140 const SCEV *WideRHS; 1141 1142 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1143 if (SignExt) 1144 return SE->getSignExtendExpr(S, Ty); 1145 return SE->getZeroExtendExpr(S, Ty); 1146 }; 1147 1148 if (IVOpIdx == 0) { 1149 WideLHS = SE->getSCEV(WideDef); 1150 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1151 WideRHS = GetExtend(NarrowRHS, WideType); 1152 } else { 1153 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1154 WideLHS = GetExtend(NarrowLHS, WideType); 1155 WideRHS = SE->getSCEV(WideDef); 1156 } 1157 1158 // WideUse is "WideDef `op.wide` X" as described in the comment. 1159 const SCEV *WideUse = nullptr; 1160 1161 switch (NarrowUse->getOpcode()) { 1162 default: 1163 llvm_unreachable("No other possibility!"); 1164 1165 case Instruction::Add: 1166 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1167 break; 1168 1169 case Instruction::Mul: 1170 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1171 break; 1172 1173 case Instruction::UDiv: 1174 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1175 break; 1176 1177 case Instruction::Sub: 1178 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1179 break; 1180 } 1181 1182 return WideUse == WideAR; 1183 }; 1184 1185 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1186 if (!GuessNonIVOperand(SignExtend)) { 1187 SignExtend = !SignExtend; 1188 if (!GuessNonIVOperand(SignExtend)) 1189 return nullptr; 1190 } 1191 1192 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1193 ? WideDef 1194 : createExtendInst(NarrowUse->getOperand(0), WideType, 1195 SignExtend, NarrowUse); 1196 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1197 ? WideDef 1198 : createExtendInst(NarrowUse->getOperand(1), WideType, 1199 SignExtend, NarrowUse); 1200 1201 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1202 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1203 NarrowBO->getName()); 1204 1205 IRBuilder<> Builder(NarrowUse); 1206 Builder.Insert(WideBO); 1207 WideBO->copyIRFlags(NarrowBO); 1208 return WideBO; 1209 } 1210 1211 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1212 auto It = ExtendKindMap.find(I); 1213 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1214 return It->second; 1215 } 1216 1217 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1218 unsigned OpCode) const { 1219 if (OpCode == Instruction::Add) 1220 return SE->getAddExpr(LHS, RHS); 1221 if (OpCode == Instruction::Sub) 1222 return SE->getMinusSCEV(LHS, RHS); 1223 if (OpCode == Instruction::Mul) 1224 return SE->getMulExpr(LHS, RHS); 1225 1226 llvm_unreachable("Unsupported opcode."); 1227 } 1228 1229 /// No-wrap operations can transfer sign extension of their result to their 1230 /// operands. Generate the SCEV value for the widened operation without 1231 /// actually modifying the IR yet. If the expression after extending the 1232 /// operands is an AddRec for this loop, return the AddRec and the kind of 1233 /// extension used. 1234 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1235 // Handle the common case of add<nsw/nuw> 1236 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1237 // Only Add/Sub/Mul instructions supported yet. 1238 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1239 OpCode != Instruction::Mul) 1240 return {nullptr, Unknown}; 1241 1242 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1243 // if extending the other will lead to a recurrence. 1244 const unsigned ExtendOperIdx = 1245 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1246 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1247 1248 const SCEV *ExtendOperExpr = nullptr; 1249 const OverflowingBinaryOperator *OBO = 1250 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1251 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1252 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1253 ExtendOperExpr = SE->getSignExtendExpr( 1254 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1255 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1256 ExtendOperExpr = SE->getZeroExtendExpr( 1257 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1258 else 1259 return {nullptr, Unknown}; 1260 1261 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1262 // flags. This instruction may be guarded by control flow that the no-wrap 1263 // behavior depends on. Non-control-equivalent instructions can be mapped to 1264 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1265 // semantics to those operations. 1266 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1267 const SCEV *rhs = ExtendOperExpr; 1268 1269 // Let's swap operands to the initial order for the case of non-commutative 1270 // operations, like SUB. See PR21014. 1271 if (ExtendOperIdx == 0) 1272 std::swap(lhs, rhs); 1273 const SCEVAddRecExpr *AddRec = 1274 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1275 1276 if (!AddRec || AddRec->getLoop() != L) 1277 return {nullptr, Unknown}; 1278 1279 return {AddRec, ExtKind}; 1280 } 1281 1282 /// Is this instruction potentially interesting for further simplification after 1283 /// widening it's type? In other words, can the extend be safely hoisted out of 1284 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1285 /// so, return the extended recurrence and the kind of extension used. Otherwise 1286 /// return {nullptr, Unknown}. 1287 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1288 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1289 return {nullptr, Unknown}; 1290 1291 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1292 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1293 SE->getTypeSizeInBits(WideType)) { 1294 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1295 // index. So don't follow this use. 1296 return {nullptr, Unknown}; 1297 } 1298 1299 const SCEV *WideExpr; 1300 ExtendKind ExtKind; 1301 if (DU.NeverNegative) { 1302 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1303 if (isa<SCEVAddRecExpr>(WideExpr)) 1304 ExtKind = SignExtended; 1305 else { 1306 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1307 ExtKind = ZeroExtended; 1308 } 1309 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1310 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1311 ExtKind = SignExtended; 1312 } else { 1313 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1314 ExtKind = ZeroExtended; 1315 } 1316 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1317 if (!AddRec || AddRec->getLoop() != L) 1318 return {nullptr, Unknown}; 1319 return {AddRec, ExtKind}; 1320 } 1321 1322 /// This IV user cannot be widen. Replace this use of the original narrow IV 1323 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1324 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1325 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1326 << *DU.NarrowUse << "\n"); 1327 IRBuilder<> Builder( 1328 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1329 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1330 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1331 } 1332 1333 /// If the narrow use is a compare instruction, then widen the compare 1334 // (and possibly the other operand). The extend operation is hoisted into the 1335 // loop preheader as far as possible. 1336 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1337 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1338 if (!Cmp) 1339 return false; 1340 1341 // We can legally widen the comparison in the following two cases: 1342 // 1343 // - The signedness of the IV extension and comparison match 1344 // 1345 // - The narrow IV is always positive (and thus its sign extension is equal 1346 // to its zero extension). For instance, let's say we're zero extending 1347 // %narrow for the following use 1348 // 1349 // icmp slt i32 %narrow, %val ... (A) 1350 // 1351 // and %narrow is always positive. Then 1352 // 1353 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1354 // == icmp slt i32 zext(%narrow), sext(%val) 1355 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1356 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1357 return false; 1358 1359 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1360 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1361 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1362 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1363 1364 // Widen the compare instruction. 1365 IRBuilder<> Builder( 1366 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1367 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1368 1369 // Widen the other operand of the compare, if necessary. 1370 if (CastWidth < IVWidth) { 1371 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1372 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1373 } 1374 return true; 1375 } 1376 1377 /// If the narrow use is an instruction whose two operands are the defining 1378 /// instruction of DU and a load instruction, then we have the following: 1379 /// if the load is hoisted outside the loop, then we do not reach this function 1380 /// as scalar evolution analysis works fine in widenIVUse with variables 1381 /// hoisted outside the loop and efficient code is subsequently generated by 1382 /// not emitting truncate instructions. But when the load is not hoisted 1383 /// (whether due to limitation in alias analysis or due to a true legality), 1384 /// then scalar evolution can not proceed with loop variant values and 1385 /// inefficient code is generated. This function handles the non-hoisted load 1386 /// special case by making the optimization generate the same type of code for 1387 /// hoisted and non-hoisted load (widen use and eliminate sign extend 1388 /// instruction). This special case is important especially when the induction 1389 /// variables are affecting addressing mode in code generation. 1390 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { 1391 Instruction *NarrowUse = DU.NarrowUse; 1392 Instruction *NarrowDef = DU.NarrowDef; 1393 Instruction *WideDef = DU.WideDef; 1394 1395 // Handle the common case of add<nsw/nuw> 1396 const unsigned OpCode = NarrowUse->getOpcode(); 1397 // Only Add/Sub/Mul instructions are supported. 1398 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1399 OpCode != Instruction::Mul) 1400 return false; 1401 1402 // The operand that is not defined by NarrowDef of DU. Let's call it the 1403 // other operand. 1404 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; 1405 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && 1406 "bad DU"); 1407 1408 const SCEV *ExtendOperExpr = nullptr; 1409 const OverflowingBinaryOperator *OBO = 1410 cast<OverflowingBinaryOperator>(NarrowUse); 1411 ExtendKind ExtKind = getExtendKind(NarrowDef); 1412 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1413 ExtendOperExpr = SE->getSignExtendExpr( 1414 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1415 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1416 ExtendOperExpr = SE->getZeroExtendExpr( 1417 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1418 else 1419 return false; 1420 1421 // We are interested in the other operand being a load instruction. 1422 // But, we should look into relaxing this restriction later on. 1423 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); 1424 if (I && I->getOpcode() != Instruction::Load) 1425 return false; 1426 1427 // Verifying that Defining operand is an AddRec 1428 const SCEV *Op1 = SE->getSCEV(WideDef); 1429 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1430 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1431 return false; 1432 // Verifying that other operand is an Extend. 1433 if (ExtKind == SignExtended) { 1434 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) 1435 return false; 1436 } else { 1437 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) 1438 return false; 1439 } 1440 1441 if (ExtKind == SignExtended) { 1442 for (Use &U : NarrowUse->uses()) { 1443 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1444 if (!User || User->getType() != WideType) 1445 return false; 1446 } 1447 } else { // ExtKind == ZeroExtended 1448 for (Use &U : NarrowUse->uses()) { 1449 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1450 if (!User || User->getType() != WideType) 1451 return false; 1452 } 1453 } 1454 1455 return true; 1456 } 1457 1458 /// Special Case for widening with variant Loads (see 1459 /// WidenIV::widenWithVariantLoadUse). This is the code generation part. 1460 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { 1461 Instruction *NarrowUse = DU.NarrowUse; 1462 Instruction *NarrowDef = DU.NarrowDef; 1463 Instruction *WideDef = DU.WideDef; 1464 1465 ExtendKind ExtKind = getExtendKind(NarrowDef); 1466 1467 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1468 1469 // Generating a widening use instruction. 1470 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1471 ? WideDef 1472 : createExtendInst(NarrowUse->getOperand(0), WideType, 1473 ExtKind, NarrowUse); 1474 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1475 ? WideDef 1476 : createExtendInst(NarrowUse->getOperand(1), WideType, 1477 ExtKind, NarrowUse); 1478 1479 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1480 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1481 NarrowBO->getName()); 1482 IRBuilder<> Builder(NarrowUse); 1483 Builder.Insert(WideBO); 1484 WideBO->copyIRFlags(NarrowBO); 1485 1486 if (ExtKind == SignExtended) 1487 ExtendKindMap[NarrowUse] = SignExtended; 1488 else 1489 ExtendKindMap[NarrowUse] = ZeroExtended; 1490 1491 // Update the Use. 1492 if (ExtKind == SignExtended) { 1493 for (Use &U : NarrowUse->uses()) { 1494 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1495 if (User && User->getType() == WideType) { 1496 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1497 << *WideBO << "\n"); 1498 ++NumElimExt; 1499 User->replaceAllUsesWith(WideBO); 1500 DeadInsts.emplace_back(User); 1501 } 1502 } 1503 } else { // ExtKind == ZeroExtended 1504 for (Use &U : NarrowUse->uses()) { 1505 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1506 if (User && User->getType() == WideType) { 1507 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1508 << *WideBO << "\n"); 1509 ++NumElimExt; 1510 User->replaceAllUsesWith(WideBO); 1511 DeadInsts.emplace_back(User); 1512 } 1513 } 1514 } 1515 } 1516 1517 /// Determine whether an individual user of the narrow IV can be widened. If so, 1518 /// return the wide clone of the user. 1519 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1520 assert(ExtendKindMap.count(DU.NarrowDef) && 1521 "Should already know the kind of extension used to widen NarrowDef"); 1522 1523 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1524 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1525 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1526 // For LCSSA phis, sink the truncate outside the loop. 1527 // After SimplifyCFG most loop exit targets have a single predecessor. 1528 // Otherwise fall back to a truncate within the loop. 1529 if (UsePhi->getNumOperands() != 1) 1530 truncateIVUse(DU, DT, LI); 1531 else { 1532 // Widening the PHI requires us to insert a trunc. The logical place 1533 // for this trunc is in the same BB as the PHI. This is not possible if 1534 // the BB is terminated by a catchswitch. 1535 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1536 return nullptr; 1537 1538 PHINode *WidePhi = 1539 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1540 UsePhi); 1541 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1542 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1543 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1544 UsePhi->replaceAllUsesWith(Trunc); 1545 DeadInsts.emplace_back(UsePhi); 1546 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1547 << *WidePhi << "\n"); 1548 } 1549 return nullptr; 1550 } 1551 } 1552 1553 // This narrow use can be widened by a sext if it's non-negative or its narrow 1554 // def was widended by a sext. Same for zext. 1555 auto canWidenBySExt = [&]() { 1556 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1557 }; 1558 auto canWidenByZExt = [&]() { 1559 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1560 }; 1561 1562 // Our raison d'etre! Eliminate sign and zero extension. 1563 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1564 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1565 Value *NewDef = DU.WideDef; 1566 if (DU.NarrowUse->getType() != WideType) { 1567 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1568 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1569 if (CastWidth < IVWidth) { 1570 // The cast isn't as wide as the IV, so insert a Trunc. 1571 IRBuilder<> Builder(DU.NarrowUse); 1572 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1573 } 1574 else { 1575 // A wider extend was hidden behind a narrower one. This may induce 1576 // another round of IV widening in which the intermediate IV becomes 1577 // dead. It should be very rare. 1578 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1579 << " not wide enough to subsume " << *DU.NarrowUse 1580 << "\n"); 1581 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1582 NewDef = DU.NarrowUse; 1583 } 1584 } 1585 if (NewDef != DU.NarrowUse) { 1586 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1587 << " replaced by " << *DU.WideDef << "\n"); 1588 ++NumElimExt; 1589 DU.NarrowUse->replaceAllUsesWith(NewDef); 1590 DeadInsts.emplace_back(DU.NarrowUse); 1591 } 1592 // Now that the extend is gone, we want to expose it's uses for potential 1593 // further simplification. We don't need to directly inform SimplifyIVUsers 1594 // of the new users, because their parent IV will be processed later as a 1595 // new loop phi. If we preserved IVUsers analysis, we would also want to 1596 // push the uses of WideDef here. 1597 1598 // No further widening is needed. The deceased [sz]ext had done it for us. 1599 return nullptr; 1600 } 1601 1602 // Does this user itself evaluate to a recurrence after widening? 1603 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1604 if (!WideAddRec.first) 1605 WideAddRec = getWideRecurrence(DU); 1606 1607 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1608 if (!WideAddRec.first) { 1609 // If use is a loop condition, try to promote the condition instead of 1610 // truncating the IV first. 1611 if (widenLoopCompare(DU)) 1612 return nullptr; 1613 1614 // We are here about to generate a truncate instruction that may hurt 1615 // performance because the scalar evolution expression computed earlier 1616 // in WideAddRec.first does not indicate a polynomial induction expression. 1617 // In that case, look at the operands of the use instruction to determine 1618 // if we can still widen the use instead of truncating its operand. 1619 if (widenWithVariantLoadUse(DU)) { 1620 widenWithVariantLoadUseCodegen(DU); 1621 return nullptr; 1622 } 1623 1624 // This user does not evaluate to a recurrence after widening, so don't 1625 // follow it. Instead insert a Trunc to kill off the original use, 1626 // eventually isolating the original narrow IV so it can be removed. 1627 truncateIVUse(DU, DT, LI); 1628 return nullptr; 1629 } 1630 // Assume block terminators cannot evaluate to a recurrence. We can't to 1631 // insert a Trunc after a terminator if there happens to be a critical edge. 1632 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1633 "SCEV is not expected to evaluate a block terminator"); 1634 1635 // Reuse the IV increment that SCEVExpander created as long as it dominates 1636 // NarrowUse. 1637 Instruction *WideUse = nullptr; 1638 if (WideAddRec.first == WideIncExpr && 1639 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1640 WideUse = WideInc; 1641 else { 1642 WideUse = cloneIVUser(DU, WideAddRec.first); 1643 if (!WideUse) 1644 return nullptr; 1645 } 1646 // Evaluation of WideAddRec ensured that the narrow expression could be 1647 // extended outside the loop without overflow. This suggests that the wide use 1648 // evaluates to the same expression as the extended narrow use, but doesn't 1649 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1650 // where it fails, we simply throw away the newly created wide use. 1651 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1652 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1653 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1654 << "\n"); 1655 DeadInsts.emplace_back(WideUse); 1656 return nullptr; 1657 } 1658 1659 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1660 // Returning WideUse pushes it on the worklist. 1661 return WideUse; 1662 } 1663 1664 /// Add eligible users of NarrowDef to NarrowIVUsers. 1665 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1666 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1667 bool NonNegativeDef = 1668 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1669 SE->getConstant(NarrowSCEV->getType(), 0)); 1670 for (User *U : NarrowDef->users()) { 1671 Instruction *NarrowUser = cast<Instruction>(U); 1672 1673 // Handle data flow merges and bizarre phi cycles. 1674 if (!Widened.insert(NarrowUser).second) 1675 continue; 1676 1677 bool NonNegativeUse = false; 1678 if (!NonNegativeDef) { 1679 // We might have a control-dependent range information for this context. 1680 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1681 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1682 } 1683 1684 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1685 NonNegativeDef || NonNegativeUse); 1686 } 1687 } 1688 1689 /// Process a single induction variable. First use the SCEVExpander to create a 1690 /// wide induction variable that evaluates to the same recurrence as the 1691 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1692 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1693 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1694 /// 1695 /// It would be simpler to delete uses as they are processed, but we must avoid 1696 /// invalidating SCEV expressions. 1697 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1698 // Is this phi an induction variable? 1699 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1700 if (!AddRec) 1701 return nullptr; 1702 1703 // Widen the induction variable expression. 1704 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1705 ? SE->getSignExtendExpr(AddRec, WideType) 1706 : SE->getZeroExtendExpr(AddRec, WideType); 1707 1708 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1709 "Expect the new IV expression to preserve its type"); 1710 1711 // Can the IV be extended outside the loop without overflow? 1712 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1713 if (!AddRec || AddRec->getLoop() != L) 1714 return nullptr; 1715 1716 // An AddRec must have loop-invariant operands. Since this AddRec is 1717 // materialized by a loop header phi, the expression cannot have any post-loop 1718 // operands, so they must dominate the loop header. 1719 assert( 1720 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1721 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1722 "Loop header phi recurrence inputs do not dominate the loop"); 1723 1724 // Iterate over IV uses (including transitive ones) looking for IV increments 1725 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1726 // the increment calculate control-dependent range information basing on 1727 // dominating conditions inside of the loop (e.g. a range check inside of the 1728 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1729 // 1730 // Control-dependent range information is later used to prove that a narrow 1731 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1732 // this on demand because when pushNarrowIVUsers needs this information some 1733 // of the dominating conditions might be already widened. 1734 if (UsePostIncrementRanges) 1735 calculatePostIncRanges(OrigPhi); 1736 1737 // The rewriter provides a value for the desired IV expression. This may 1738 // either find an existing phi or materialize a new one. Either way, we 1739 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1740 // of the phi-SCC dominates the loop entry. 1741 Instruction *InsertPt = &L->getHeader()->front(); 1742 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1743 1744 // Remembering the WideIV increment generated by SCEVExpander allows 1745 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1746 // employ a general reuse mechanism because the call above is the only call to 1747 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1748 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1749 WideInc = 1750 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1751 WideIncExpr = SE->getSCEV(WideInc); 1752 // Propagate the debug location associated with the original loop increment 1753 // to the new (widened) increment. 1754 auto *OrigInc = 1755 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1756 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1757 } 1758 1759 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1760 ++NumWidened; 1761 1762 // Traverse the def-use chain using a worklist starting at the original IV. 1763 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1764 1765 Widened.insert(OrigPhi); 1766 pushNarrowIVUsers(OrigPhi, WidePhi); 1767 1768 while (!NarrowIVUsers.empty()) { 1769 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1770 1771 // Process a def-use edge. This may replace the use, so don't hold a 1772 // use_iterator across it. 1773 Instruction *WideUse = widenIVUse(DU, Rewriter); 1774 1775 // Follow all def-use edges from the previous narrow use. 1776 if (WideUse) 1777 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1778 1779 // widenIVUse may have removed the def-use edge. 1780 if (DU.NarrowDef->use_empty()) 1781 DeadInsts.emplace_back(DU.NarrowDef); 1782 } 1783 1784 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1785 // evaluate the same recurrence, we can just copy the debug info over. 1786 SmallVector<DbgValueInst *, 1> DbgValues; 1787 llvm::findDbgValues(DbgValues, OrigPhi); 1788 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1789 ValueAsMetadata::get(WidePhi)); 1790 for (auto &DbgValue : DbgValues) 1791 DbgValue->setOperand(0, MDPhi); 1792 return WidePhi; 1793 } 1794 1795 /// Calculates control-dependent range for the given def at the given context 1796 /// by looking at dominating conditions inside of the loop 1797 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1798 Instruction *NarrowUser) { 1799 using namespace llvm::PatternMatch; 1800 1801 Value *NarrowDefLHS; 1802 const APInt *NarrowDefRHS; 1803 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1804 m_APInt(NarrowDefRHS))) || 1805 !NarrowDefRHS->isNonNegative()) 1806 return; 1807 1808 auto UpdateRangeFromCondition = [&] (Value *Condition, 1809 bool TrueDest) { 1810 CmpInst::Predicate Pred; 1811 Value *CmpRHS; 1812 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1813 m_Value(CmpRHS)))) 1814 return; 1815 1816 CmpInst::Predicate P = 1817 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1818 1819 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1820 auto CmpConstrainedLHSRange = 1821 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1822 auto NarrowDefRange = 1823 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1824 1825 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1826 }; 1827 1828 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1829 if (!HasGuards) 1830 return; 1831 1832 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1833 Ctx->getParent()->rend())) { 1834 Value *C = nullptr; 1835 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1836 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1837 } 1838 }; 1839 1840 UpdateRangeFromGuards(NarrowUser); 1841 1842 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1843 // If NarrowUserBB is statically unreachable asking dominator queries may 1844 // yield surprising results. (e.g. the block may not have a dom tree node) 1845 if (!DT->isReachableFromEntry(NarrowUserBB)) 1846 return; 1847 1848 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1849 L->contains(DTB->getBlock()); 1850 DTB = DTB->getIDom()) { 1851 auto *BB = DTB->getBlock(); 1852 auto *TI = BB->getTerminator(); 1853 UpdateRangeFromGuards(TI); 1854 1855 auto *BI = dyn_cast<BranchInst>(TI); 1856 if (!BI || !BI->isConditional()) 1857 continue; 1858 1859 auto *TrueSuccessor = BI->getSuccessor(0); 1860 auto *FalseSuccessor = BI->getSuccessor(1); 1861 1862 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1863 return BBE.isSingleEdge() && 1864 DT->dominates(BBE, NarrowUser->getParent()); 1865 }; 1866 1867 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1868 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1869 1870 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1871 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1872 } 1873 } 1874 1875 /// Calculates PostIncRangeInfos map for the given IV 1876 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1877 SmallPtrSet<Instruction *, 16> Visited; 1878 SmallVector<Instruction *, 6> Worklist; 1879 Worklist.push_back(OrigPhi); 1880 Visited.insert(OrigPhi); 1881 1882 while (!Worklist.empty()) { 1883 Instruction *NarrowDef = Worklist.pop_back_val(); 1884 1885 for (Use &U : NarrowDef->uses()) { 1886 auto *NarrowUser = cast<Instruction>(U.getUser()); 1887 1888 // Don't go looking outside the current loop. 1889 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1890 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1891 continue; 1892 1893 if (!Visited.insert(NarrowUser).second) 1894 continue; 1895 1896 Worklist.push_back(NarrowUser); 1897 1898 calculatePostIncRange(NarrowDef, NarrowUser); 1899 } 1900 } 1901 } 1902 1903 //===----------------------------------------------------------------------===// 1904 // Live IV Reduction - Minimize IVs live across the loop. 1905 //===----------------------------------------------------------------------===// 1906 1907 //===----------------------------------------------------------------------===// 1908 // Simplification of IV users based on SCEV evaluation. 1909 //===----------------------------------------------------------------------===// 1910 1911 namespace { 1912 1913 class IndVarSimplifyVisitor : public IVVisitor { 1914 ScalarEvolution *SE; 1915 const TargetTransformInfo *TTI; 1916 PHINode *IVPhi; 1917 1918 public: 1919 WideIVInfo WI; 1920 1921 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1922 const TargetTransformInfo *TTI, 1923 const DominatorTree *DTree) 1924 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1925 DT = DTree; 1926 WI.NarrowIV = IVPhi; 1927 } 1928 1929 // Implement the interface used by simplifyUsersOfIV. 1930 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1931 }; 1932 1933 } // end anonymous namespace 1934 1935 /// Iteratively perform simplification on a worklist of IV users. Each 1936 /// successive simplification may push more users which may themselves be 1937 /// candidates for simplification. 1938 /// 1939 /// Sign/Zero extend elimination is interleaved with IV simplification. 1940 bool IndVarSimplify::simplifyAndExtend(Loop *L, 1941 SCEVExpander &Rewriter, 1942 LoopInfo *LI) { 1943 SmallVector<WideIVInfo, 8> WideIVs; 1944 1945 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1946 Intrinsic::getName(Intrinsic::experimental_guard)); 1947 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1948 1949 SmallVector<PHINode*, 8> LoopPhis; 1950 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1951 LoopPhis.push_back(cast<PHINode>(I)); 1952 } 1953 // Each round of simplification iterates through the SimplifyIVUsers worklist 1954 // for all current phis, then determines whether any IVs can be 1955 // widened. Widening adds new phis to LoopPhis, inducing another round of 1956 // simplification on the wide IVs. 1957 bool Changed = false; 1958 while (!LoopPhis.empty()) { 1959 // Evaluate as many IV expressions as possible before widening any IVs. This 1960 // forces SCEV to set no-wrap flags before evaluating sign/zero 1961 // extension. The first time SCEV attempts to normalize sign/zero extension, 1962 // the result becomes final. So for the most predictable results, we delay 1963 // evaluation of sign/zero extend evaluation until needed, and avoid running 1964 // other SCEV based analysis prior to simplifyAndExtend. 1965 do { 1966 PHINode *CurrIV = LoopPhis.pop_back_val(); 1967 1968 // Information about sign/zero extensions of CurrIV. 1969 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1970 1971 Changed |= 1972 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1973 1974 if (Visitor.WI.WidestNativeType) { 1975 WideIVs.push_back(Visitor.WI); 1976 } 1977 } while(!LoopPhis.empty()); 1978 1979 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1980 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1981 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1982 Changed = true; 1983 LoopPhis.push_back(WidePhi); 1984 } 1985 } 1986 } 1987 return Changed; 1988 } 1989 1990 //===----------------------------------------------------------------------===// 1991 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1992 //===----------------------------------------------------------------------===// 1993 1994 /// Return true if this loop's backedge taken count expression can be safely and 1995 /// cheaply expanded into an instruction sequence that can be used by 1996 /// linearFunctionTestReplace. 1997 /// 1998 /// TODO: This fails for pointer-type loop counters with greater than one byte 1999 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 2000 /// we could skip this check in the case that the LFTR loop counter (chosen by 2001 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 2002 /// the loop test to an inequality test by checking the target data's alignment 2003 /// of element types (given that the initial pointer value originates from or is 2004 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 2005 /// However, we don't yet have a strong motivation for converting loop tests 2006 /// into inequality tests. 2007 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 2008 SCEVExpander &Rewriter) { 2009 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2010 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 2011 BackedgeTakenCount->isZero()) 2012 return false; 2013 2014 if (!L->getExitingBlock()) 2015 return false; 2016 2017 // Can't rewrite non-branch yet. 2018 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 2019 return false; 2020 2021 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 2022 return false; 2023 2024 return true; 2025 } 2026 2027 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 2028 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 2029 Instruction *IncI = dyn_cast<Instruction>(IncV); 2030 if (!IncI) 2031 return nullptr; 2032 2033 switch (IncI->getOpcode()) { 2034 case Instruction::Add: 2035 case Instruction::Sub: 2036 break; 2037 case Instruction::GetElementPtr: 2038 // An IV counter must preserve its type. 2039 if (IncI->getNumOperands() == 2) 2040 break; 2041 LLVM_FALLTHROUGH; 2042 default: 2043 return nullptr; 2044 } 2045 2046 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 2047 if (Phi && Phi->getParent() == L->getHeader()) { 2048 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 2049 return Phi; 2050 return nullptr; 2051 } 2052 if (IncI->getOpcode() == Instruction::GetElementPtr) 2053 return nullptr; 2054 2055 // Allow add/sub to be commuted. 2056 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 2057 if (Phi && Phi->getParent() == L->getHeader()) { 2058 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 2059 return Phi; 2060 } 2061 return nullptr; 2062 } 2063 2064 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 2065 static ICmpInst *getLoopTest(Loop *L) { 2066 assert(L->getExitingBlock() && "expected loop exit"); 2067 2068 BasicBlock *LatchBlock = L->getLoopLatch(); 2069 // Don't bother with LFTR if the loop is not properly simplified. 2070 if (!LatchBlock) 2071 return nullptr; 2072 2073 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2074 assert(BI && "expected exit branch"); 2075 2076 return dyn_cast<ICmpInst>(BI->getCondition()); 2077 } 2078 2079 /// linearFunctionTestReplace policy. Return true unless we can show that the 2080 /// current exit test is already sufficiently canonical. 2081 static bool needsLFTR(Loop *L, DominatorTree *DT) { 2082 // Do LFTR to simplify the exit condition to an ICMP. 2083 ICmpInst *Cond = getLoopTest(L); 2084 if (!Cond) 2085 return true; 2086 2087 // Do LFTR to simplify the exit ICMP to EQ/NE 2088 ICmpInst::Predicate Pred = Cond->getPredicate(); 2089 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 2090 return true; 2091 2092 // Look for a loop invariant RHS 2093 Value *LHS = Cond->getOperand(0); 2094 Value *RHS = Cond->getOperand(1); 2095 if (!isLoopInvariant(RHS, L, DT)) { 2096 if (!isLoopInvariant(LHS, L, DT)) 2097 return true; 2098 std::swap(LHS, RHS); 2099 } 2100 // Look for a simple IV counter LHS 2101 PHINode *Phi = dyn_cast<PHINode>(LHS); 2102 if (!Phi) 2103 Phi = getLoopPhiForCounter(LHS, L, DT); 2104 2105 if (!Phi) 2106 return true; 2107 2108 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 2109 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2110 if (Idx < 0) 2111 return true; 2112 2113 // Do LFTR if the exit condition's IV is *not* a simple counter. 2114 Value *IncV = Phi->getIncomingValue(Idx); 2115 return Phi != getLoopPhiForCounter(IncV, L, DT); 2116 } 2117 2118 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 2119 /// down to checking that all operands are constant and listing instructions 2120 /// that may hide undef. 2121 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 2122 unsigned Depth) { 2123 if (isa<Constant>(V)) 2124 return !isa<UndefValue>(V); 2125 2126 if (Depth >= 6) 2127 return false; 2128 2129 // Conservatively handle non-constant non-instructions. For example, Arguments 2130 // may be undef. 2131 Instruction *I = dyn_cast<Instruction>(V); 2132 if (!I) 2133 return false; 2134 2135 // Load and return values may be undef. 2136 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 2137 return false; 2138 2139 // Optimistically handle other instructions. 2140 for (Value *Op : I->operands()) { 2141 if (!Visited.insert(Op).second) 2142 continue; 2143 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 2144 return false; 2145 } 2146 return true; 2147 } 2148 2149 /// Return true if the given value is concrete. We must prove that undef can 2150 /// never reach it. 2151 /// 2152 /// TODO: If we decide that this is a good approach to checking for undef, we 2153 /// may factor it into a common location. 2154 static bool hasConcreteDef(Value *V) { 2155 SmallPtrSet<Value*, 8> Visited; 2156 Visited.insert(V); 2157 return hasConcreteDefImpl(V, Visited, 0); 2158 } 2159 2160 /// Return true if this IV has any uses other than the (soon to be rewritten) 2161 /// loop exit test. 2162 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 2163 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2164 Value *IncV = Phi->getIncomingValue(LatchIdx); 2165 2166 for (User *U : Phi->users()) 2167 if (U != Cond && U != IncV) return false; 2168 2169 for (User *U : IncV->users()) 2170 if (U != Cond && U != Phi) return false; 2171 return true; 2172 } 2173 2174 /// Find an affine IV in canonical form. 2175 /// 2176 /// BECount may be an i8* pointer type. The pointer difference is already 2177 /// valid count without scaling the address stride, so it remains a pointer 2178 /// expression as far as SCEV is concerned. 2179 /// 2180 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 2181 /// 2182 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 2183 /// 2184 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 2185 /// This is difficult in general for SCEV because of potential overflow. But we 2186 /// could at least handle constant BECounts. 2187 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2188 ScalarEvolution *SE, DominatorTree *DT) { 2189 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2190 2191 Value *Cond = 2192 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2193 2194 // Loop over all of the PHI nodes, looking for a simple counter. 2195 PHINode *BestPhi = nullptr; 2196 const SCEV *BestInit = nullptr; 2197 BasicBlock *LatchBlock = L->getLoopLatch(); 2198 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2199 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2200 2201 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2202 PHINode *Phi = cast<PHINode>(I); 2203 if (!SE->isSCEVable(Phi->getType())) 2204 continue; 2205 2206 // Avoid comparing an integer IV against a pointer Limit. 2207 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2208 continue; 2209 2210 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2211 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2212 continue; 2213 2214 // AR may be a pointer type, while BECount is an integer type. 2215 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2216 // AR may not be a narrower type, or we may never exit. 2217 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2218 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2219 continue; 2220 2221 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2222 if (!Step || !Step->isOne()) 2223 continue; 2224 2225 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2226 Value *IncV = Phi->getIncomingValue(LatchIdx); 2227 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2228 continue; 2229 2230 // Avoid reusing a potentially undef value to compute other values that may 2231 // have originally had a concrete definition. 2232 if (!hasConcreteDef(Phi)) { 2233 // We explicitly allow unknown phis as long as they are already used by 2234 // the loop test. In this case we assume that performing LFTR could not 2235 // increase the number of undef users. 2236 if (ICmpInst *Cond = getLoopTest(L)) { 2237 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2238 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2239 continue; 2240 } 2241 } 2242 } 2243 const SCEV *Init = AR->getStart(); 2244 2245 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2246 // Don't force a live loop counter if another IV can be used. 2247 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2248 continue; 2249 2250 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2251 // also prefers integer to pointer IVs. 2252 if (BestInit->isZero() != Init->isZero()) { 2253 if (BestInit->isZero()) 2254 continue; 2255 } 2256 // If two IVs both count from zero or both count from nonzero then the 2257 // narrower is likely a dead phi that has been widened. Use the wider phi 2258 // to allow the other to be eliminated. 2259 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2260 continue; 2261 } 2262 BestPhi = Phi; 2263 BestInit = Init; 2264 } 2265 return BestPhi; 2266 } 2267 2268 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2269 /// the new loop test. 2270 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2271 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2272 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2273 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2274 const SCEV *IVInit = AR->getStart(); 2275 2276 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2277 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2278 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2279 // the existing GEPs whenever possible. 2280 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2281 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2282 // signed value. IVCount on the other hand represents the loop trip count, 2283 // which is an unsigned value. FindLoopCounter only allows induction 2284 // variables that have a positive unit stride of one. This means we don't 2285 // have to handle the case of negative offsets (yet) and just need to zero 2286 // extend IVCount. 2287 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2288 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2289 2290 // Expand the code for the iteration count. 2291 assert(SE->isLoopInvariant(IVOffset, L) && 2292 "Computed iteration count is not loop invariant!"); 2293 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2294 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2295 2296 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2297 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2298 // We could handle pointer IVs other than i8*, but we need to compensate for 2299 // gep index scaling. See canExpandBackedgeTakenCount comments. 2300 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2301 cast<PointerType>(GEPBase->getType()) 2302 ->getElementType())->isOne() && 2303 "unit stride pointer IV must be i8*"); 2304 2305 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2306 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 2307 } else { 2308 // In any other case, convert both IVInit and IVCount to integers before 2309 // comparing. This may result in SCEV expansion of pointers, but in practice 2310 // SCEV will fold the pointer arithmetic away as such: 2311 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2312 // 2313 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2314 // for simple memset-style loops. 2315 // 2316 // IVInit integer and IVCount pointer would only occur if a canonical IV 2317 // were generated on top of case #2, which is not expected. 2318 2319 const SCEV *IVLimit = nullptr; 2320 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2321 // For non-zero Start, compute IVCount here. 2322 if (AR->getStart()->isZero()) 2323 IVLimit = IVCount; 2324 else { 2325 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2326 const SCEV *IVInit = AR->getStart(); 2327 2328 // For integer IVs, truncate the IV before computing IVInit + BECount. 2329 if (SE->getTypeSizeInBits(IVInit->getType()) 2330 > SE->getTypeSizeInBits(IVCount->getType())) 2331 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2332 2333 IVLimit = SE->getAddExpr(IVInit, IVCount); 2334 } 2335 // Expand the code for the iteration count. 2336 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2337 IRBuilder<> Builder(BI); 2338 assert(SE->isLoopInvariant(IVLimit, L) && 2339 "Computed iteration count is not loop invariant!"); 2340 // Ensure that we generate the same type as IndVar, or a smaller integer 2341 // type. In the presence of null pointer values, we have an integer type 2342 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2343 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2344 IndVar->getType() : IVCount->getType(); 2345 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2346 } 2347 } 2348 2349 /// This method rewrites the exit condition of the loop to be a canonical != 2350 /// comparison against the incremented loop induction variable. This pass is 2351 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2352 /// determine a loop-invariant trip count of the loop, which is actually a much 2353 /// broader range than just linear tests. 2354 bool IndVarSimplify:: 2355 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 2356 PHINode *IndVar, SCEVExpander &Rewriter) { 2357 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2358 2359 // Initialize CmpIndVar and IVCount to their preincremented values. 2360 Value *CmpIndVar = IndVar; 2361 const SCEV *IVCount = BackedgeTakenCount; 2362 2363 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2364 2365 // If the exiting block is the same as the backedge block, we prefer to 2366 // compare against the post-incremented value, otherwise we must compare 2367 // against the preincremented value. 2368 if (L->getExitingBlock() == L->getLoopLatch()) { 2369 // Add one to the "backedge-taken" count to get the trip count. 2370 // This addition may overflow, which is valid as long as the comparison is 2371 // truncated to BackedgeTakenCount->getType(). 2372 IVCount = SE->getAddExpr(BackedgeTakenCount, 2373 SE->getOne(BackedgeTakenCount->getType())); 2374 // The BackedgeTaken expression contains the number of times that the 2375 // backedge branches to the loop header. This is one less than the 2376 // number of times the loop executes, so use the incremented indvar. 2377 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2378 } 2379 2380 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2381 assert(ExitCnt->getType()->isPointerTy() == 2382 IndVar->getType()->isPointerTy() && 2383 "genLoopLimit missed a cast"); 2384 2385 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2386 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2387 ICmpInst::Predicate P; 2388 if (L->contains(BI->getSuccessor(0))) 2389 P = ICmpInst::ICMP_NE; 2390 else 2391 P = ICmpInst::ICMP_EQ; 2392 2393 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2394 << " LHS:" << *CmpIndVar << '\n' 2395 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2396 << "\n" 2397 << " RHS:\t" << *ExitCnt << "\n" 2398 << " IVCount:\t" << *IVCount << "\n"); 2399 2400 IRBuilder<> Builder(BI); 2401 2402 // The new loop exit condition should reuse the debug location of the 2403 // original loop exit condition. 2404 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2405 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2406 2407 // LFTR can ignore IV overflow and truncate to the width of 2408 // BECount. This avoids materializing the add(zext(add)) expression. 2409 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2410 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2411 if (CmpIndVarSize > ExitCntSize) { 2412 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2413 const SCEV *ARStart = AR->getStart(); 2414 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2415 // For constant IVCount, avoid truncation. 2416 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2417 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2418 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2419 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2420 // above such that IVCount is now zero. 2421 if (IVCount != BackedgeTakenCount && Count == 0) { 2422 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2423 ++Count; 2424 } 2425 else 2426 Count = Count.zext(CmpIndVarSize); 2427 APInt NewLimit; 2428 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2429 NewLimit = Start - Count; 2430 else 2431 NewLimit = Start + Count; 2432 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2433 2434 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2435 } else { 2436 // We try to extend trip count first. If that doesn't work we truncate IV. 2437 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2438 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2439 // one of the two holds, extend the trip count, otherwise we truncate IV. 2440 bool Extended = false; 2441 const SCEV *IV = SE->getSCEV(CmpIndVar); 2442 const SCEV *ZExtTrunc = 2443 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2444 ExitCnt->getType()), 2445 CmpIndVar->getType()); 2446 2447 if (ZExtTrunc == IV) { 2448 Extended = true; 2449 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2450 "wide.trip.count"); 2451 } else { 2452 const SCEV *SExtTrunc = 2453 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2454 ExitCnt->getType()), 2455 CmpIndVar->getType()); 2456 if (SExtTrunc == IV) { 2457 Extended = true; 2458 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2459 "wide.trip.count"); 2460 } 2461 } 2462 2463 if (!Extended) 2464 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2465 "lftr.wideiv"); 2466 } 2467 } 2468 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2469 Value *OrigCond = BI->getCondition(); 2470 // It's tempting to use replaceAllUsesWith here to fully replace the old 2471 // comparison, but that's not immediately safe, since users of the old 2472 // comparison may not be dominated by the new comparison. Instead, just 2473 // update the branch to use the new comparison; in the common case this 2474 // will make old comparison dead. 2475 BI->setCondition(Cond); 2476 DeadInsts.push_back(OrigCond); 2477 2478 ++NumLFTR; 2479 return true; 2480 } 2481 2482 //===----------------------------------------------------------------------===// 2483 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2484 //===----------------------------------------------------------------------===// 2485 2486 /// If there's a single exit block, sink any loop-invariant values that 2487 /// were defined in the preheader but not used inside the loop into the 2488 /// exit block to reduce register pressure in the loop. 2489 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2490 BasicBlock *ExitBlock = L->getExitBlock(); 2491 if (!ExitBlock) return false; 2492 2493 BasicBlock *Preheader = L->getLoopPreheader(); 2494 if (!Preheader) return false; 2495 2496 bool MadeAnyChanges = false; 2497 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2498 BasicBlock::iterator I(Preheader->getTerminator()); 2499 while (I != Preheader->begin()) { 2500 --I; 2501 // New instructions were inserted at the end of the preheader. 2502 if (isa<PHINode>(I)) 2503 break; 2504 2505 // Don't move instructions which might have side effects, since the side 2506 // effects need to complete before instructions inside the loop. Also don't 2507 // move instructions which might read memory, since the loop may modify 2508 // memory. Note that it's okay if the instruction might have undefined 2509 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2510 // block. 2511 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2512 continue; 2513 2514 // Skip debug info intrinsics. 2515 if (isa<DbgInfoIntrinsic>(I)) 2516 continue; 2517 2518 // Skip eh pad instructions. 2519 if (I->isEHPad()) 2520 continue; 2521 2522 // Don't sink alloca: we never want to sink static alloca's out of the 2523 // entry block, and correctly sinking dynamic alloca's requires 2524 // checks for stacksave/stackrestore intrinsics. 2525 // FIXME: Refactor this check somehow? 2526 if (isa<AllocaInst>(I)) 2527 continue; 2528 2529 // Determine if there is a use in or before the loop (direct or 2530 // otherwise). 2531 bool UsedInLoop = false; 2532 for (Use &U : I->uses()) { 2533 Instruction *User = cast<Instruction>(U.getUser()); 2534 BasicBlock *UseBB = User->getParent(); 2535 if (PHINode *P = dyn_cast<PHINode>(User)) { 2536 unsigned i = 2537 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2538 UseBB = P->getIncomingBlock(i); 2539 } 2540 if (UseBB == Preheader || L->contains(UseBB)) { 2541 UsedInLoop = true; 2542 break; 2543 } 2544 } 2545 2546 // If there is, the def must remain in the preheader. 2547 if (UsedInLoop) 2548 continue; 2549 2550 // Otherwise, sink it to the exit block. 2551 Instruction *ToMove = &*I; 2552 bool Done = false; 2553 2554 if (I != Preheader->begin()) { 2555 // Skip debug info intrinsics. 2556 do { 2557 --I; 2558 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2559 2560 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2561 Done = true; 2562 } else { 2563 Done = true; 2564 } 2565 2566 MadeAnyChanges = true; 2567 ToMove->moveBefore(*ExitBlock, InsertPt); 2568 if (Done) break; 2569 InsertPt = ToMove->getIterator(); 2570 } 2571 2572 return MadeAnyChanges; 2573 } 2574 2575 //===----------------------------------------------------------------------===// 2576 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2577 //===----------------------------------------------------------------------===// 2578 2579 bool IndVarSimplify::run(Loop *L) { 2580 // We need (and expect!) the incoming loop to be in LCSSA. 2581 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2582 "LCSSA required to run indvars!"); 2583 bool Changed = false; 2584 2585 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2586 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2587 // canonicalization can be a pessimization without LSR to "clean up" 2588 // afterwards. 2589 // - We depend on having a preheader; in particular, 2590 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2591 // and we're in trouble if we can't find the induction variable even when 2592 // we've manually inserted one. 2593 // - LFTR relies on having a single backedge. 2594 if (!L->isLoopSimplifyForm()) 2595 return false; 2596 2597 // If there are any floating-point recurrences, attempt to 2598 // transform them to use integer recurrences. 2599 Changed |= rewriteNonIntegerIVs(L); 2600 2601 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2602 2603 // Create a rewriter object which we'll use to transform the code with. 2604 SCEVExpander Rewriter(*SE, DL, "indvars"); 2605 #ifndef NDEBUG 2606 Rewriter.setDebugType(DEBUG_TYPE); 2607 #endif 2608 2609 // Eliminate redundant IV users. 2610 // 2611 // Simplification works best when run before other consumers of SCEV. We 2612 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2613 // other expressions involving loop IVs have been evaluated. This helps SCEV 2614 // set no-wrap flags before normalizing sign/zero extension. 2615 Rewriter.disableCanonicalMode(); 2616 Changed |= simplifyAndExtend(L, Rewriter, LI); 2617 2618 // Check to see if this loop has a computable loop-invariant execution count. 2619 // If so, this means that we can compute the final value of any expressions 2620 // that are recurrent in the loop, and substitute the exit values from the 2621 // loop into any instructions outside of the loop that use the final values of 2622 // the current expressions. 2623 // 2624 if (ReplaceExitValue != NeverRepl && 2625 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2626 Changed |= rewriteLoopExitValues(L, Rewriter); 2627 2628 // Eliminate redundant IV cycles. 2629 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2630 2631 // If we have a trip count expression, rewrite the loop's exit condition 2632 // using it. We can currently only handle loops with a single exit. 2633 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2634 needsLFTR(L, DT)) { 2635 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2636 if (IndVar) { 2637 // Check preconditions for proper SCEVExpander operation. SCEV does not 2638 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2639 // pass that uses the SCEVExpander must do it. This does not work well for 2640 // loop passes because SCEVExpander makes assumptions about all loops, 2641 // while LoopPassManager only forces the current loop to be simplified. 2642 // 2643 // FIXME: SCEV expansion has no way to bail out, so the caller must 2644 // explicitly check any assumptions made by SCEV. Brittle. 2645 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2646 if (!AR || AR->getLoop()->getLoopPreheader()) 2647 Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2648 Rewriter); 2649 } 2650 } 2651 // Clear the rewriter cache, because values that are in the rewriter's cache 2652 // can be deleted in the loop below, causing the AssertingVH in the cache to 2653 // trigger. 2654 Rewriter.clear(); 2655 2656 // Now that we're done iterating through lists, clean up any instructions 2657 // which are now dead. 2658 while (!DeadInsts.empty()) 2659 if (Instruction *Inst = 2660 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2661 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2662 2663 // The Rewriter may not be used from this point on. 2664 2665 // Loop-invariant instructions in the preheader that aren't used in the 2666 // loop may be sunk below the loop to reduce register pressure. 2667 Changed |= sinkUnusedInvariants(L); 2668 2669 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2670 // trip count and therefore can further simplify exit values in addition to 2671 // rewriteLoopExitValues. 2672 Changed |= rewriteFirstIterationLoopExitValues(L); 2673 2674 // Clean up dead instructions. 2675 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2676 2677 // Check a post-condition. 2678 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2679 "Indvars did not preserve LCSSA!"); 2680 2681 // Verify that LFTR, and any other change have not interfered with SCEV's 2682 // ability to compute trip count. 2683 #ifndef NDEBUG 2684 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2685 SE->forgetLoop(L); 2686 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2687 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2688 SE->getTypeSizeInBits(NewBECount->getType())) 2689 NewBECount = SE->getTruncateOrNoop(NewBECount, 2690 BackedgeTakenCount->getType()); 2691 else 2692 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2693 NewBECount->getType()); 2694 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2695 } 2696 #endif 2697 2698 return Changed; 2699 } 2700 2701 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2702 LoopStandardAnalysisResults &AR, 2703 LPMUpdater &) { 2704 Function *F = L.getHeader()->getParent(); 2705 const DataLayout &DL = F->getParent()->getDataLayout(); 2706 2707 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2708 if (!IVS.run(&L)) 2709 return PreservedAnalyses::all(); 2710 2711 auto PA = getLoopPassPreservedAnalyses(); 2712 PA.preserveSet<CFGAnalyses>(); 2713 return PA; 2714 } 2715 2716 namespace { 2717 2718 struct IndVarSimplifyLegacyPass : public LoopPass { 2719 static char ID; // Pass identification, replacement for typeid 2720 2721 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2722 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2723 } 2724 2725 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2726 if (skipLoop(L)) 2727 return false; 2728 2729 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2730 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2731 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2732 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2733 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2734 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2735 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2736 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2737 2738 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2739 return IVS.run(L); 2740 } 2741 2742 void getAnalysisUsage(AnalysisUsage &AU) const override { 2743 AU.setPreservesCFG(); 2744 getLoopAnalysisUsage(AU); 2745 } 2746 }; 2747 2748 } // end anonymous namespace 2749 2750 char IndVarSimplifyLegacyPass::ID = 0; 2751 2752 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2753 "Induction Variable Simplification", false, false) 2754 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2755 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2756 "Induction Variable Simplification", false, false) 2757 2758 Pass *llvm::createIndVarSimplifyPass() { 2759 return new IndVarSimplifyLegacyPass(); 2760 } 2761