xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 5fe3620261062fabc742708e76fad0be0c54a2a1)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/None.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/ScalarEvolutionExpander.h"
43 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/ConstantRange.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/PassManager.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/Use.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/IR/ValueHandle.h"
70 #include "llvm/Pass.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Scalar.h"
79 #include "llvm/Transforms/Scalar/LoopPassManager.h"
80 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
81 #include "llvm/Transforms/Utils/LoopUtils.h"
82 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
83 #include <cassert>
84 #include <cstdint>
85 #include <utility>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "indvars"
90 
91 STATISTIC(NumWidened     , "Number of indvars widened");
92 STATISTIC(NumReplaced    , "Number of exit values replaced");
93 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
94 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
95 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
96 
97 // Trip count verification can be enabled by default under NDEBUG if we
98 // implement a strong expression equivalence checker in SCEV. Until then, we
99 // use the verify-indvars flag, which may assert in some cases.
100 static cl::opt<bool> VerifyIndvars(
101   "verify-indvars", cl::Hidden,
102   cl::desc("Verify the ScalarEvolution result after running indvars"));
103 
104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
105 
106 static cl::opt<ReplaceExitVal> ReplaceExitValue(
107     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
108     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
109     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
110                clEnumValN(OnlyCheapRepl, "cheap",
111                           "only replace exit value when the cost is cheap"),
112                clEnumValN(AlwaysRepl, "always",
113                           "always replace exit value whenever possible")));
114 
115 static cl::opt<bool> UsePostIncrementRanges(
116   "indvars-post-increment-ranges", cl::Hidden,
117   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
118   cl::init(true));
119 
120 static cl::opt<bool>
121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
122             cl::desc("Disable Linear Function Test Replace optimization"));
123 
124 namespace {
125 
126 struct RewritePhi;
127 
128 class IndVarSimplify {
129   LoopInfo *LI;
130   ScalarEvolution *SE;
131   DominatorTree *DT;
132   const DataLayout &DL;
133   TargetLibraryInfo *TLI;
134   const TargetTransformInfo *TTI;
135 
136   SmallVector<WeakTrackingVH, 16> DeadInsts;
137 
138   bool isValidRewrite(Value *FromVal, Value *ToVal);
139 
140   bool handleFloatingPointIV(Loop *L, PHINode *PH);
141   bool rewriteNonIntegerIVs(Loop *L);
142 
143   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
144 
145   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
146   bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
147   bool rewriteFirstIterationLoopExitValues(Loop *L);
148 
149   bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
150                                  PHINode *IndVar, SCEVExpander &Rewriter);
151 
152   bool sinkUnusedInvariants(Loop *L);
153 
154 public:
155   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
156                  const DataLayout &DL, TargetLibraryInfo *TLI,
157                  TargetTransformInfo *TTI)
158       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
159 
160   bool run(Loop *L);
161 };
162 
163 } // end anonymous namespace
164 
165 /// Return true if the SCEV expansion generated by the rewriter can replace the
166 /// original value. SCEV guarantees that it produces the same value, but the way
167 /// it is produced may be illegal IR.  Ideally, this function will only be
168 /// called for verification.
169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
170   // If an SCEV expression subsumed multiple pointers, its expansion could
171   // reassociate the GEP changing the base pointer. This is illegal because the
172   // final address produced by a GEP chain must be inbounds relative to its
173   // underlying object. Otherwise basic alias analysis, among other things,
174   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
175   // producing an expression involving multiple pointers. Until then, we must
176   // bail out here.
177   //
178   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
179   // because it understands lcssa phis while SCEV does not.
180   Value *FromPtr = FromVal;
181   Value *ToPtr = ToVal;
182   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
183     FromPtr = GEP->getPointerOperand();
184   }
185   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
186     ToPtr = GEP->getPointerOperand();
187   }
188   if (FromPtr != FromVal || ToPtr != ToVal) {
189     // Quickly check the common case
190     if (FromPtr == ToPtr)
191       return true;
192 
193     // SCEV may have rewritten an expression that produces the GEP's pointer
194     // operand. That's ok as long as the pointer operand has the same base
195     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
196     // base of a recurrence. This handles the case in which SCEV expansion
197     // converts a pointer type recurrence into a nonrecurrent pointer base
198     // indexed by an integer recurrence.
199 
200     // If the GEP base pointer is a vector of pointers, abort.
201     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
202       return false;
203 
204     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
205     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
206     if (FromBase == ToBase)
207       return true;
208 
209     LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
210                       << " != " << *ToBase << "\n");
211 
212     return false;
213   }
214   return true;
215 }
216 
217 /// Determine the insertion point for this user. By default, insert immediately
218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
220 /// common dominator for the incoming blocks.
221 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
222                                           DominatorTree *DT, LoopInfo *LI) {
223   PHINode *PHI = dyn_cast<PHINode>(User);
224   if (!PHI)
225     return User;
226 
227   Instruction *InsertPt = nullptr;
228   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
229     if (PHI->getIncomingValue(i) != Def)
230       continue;
231 
232     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
233     if (!InsertPt) {
234       InsertPt = InsertBB->getTerminator();
235       continue;
236     }
237     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
238     InsertPt = InsertBB->getTerminator();
239   }
240   assert(InsertPt && "Missing phi operand");
241 
242   auto *DefI = dyn_cast<Instruction>(Def);
243   if (!DefI)
244     return InsertPt;
245 
246   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
247 
248   auto *L = LI->getLoopFor(DefI->getParent());
249   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
250 
251   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
252     if (LI->getLoopFor(DTN->getBlock()) == L)
253       return DTN->getBlock()->getTerminator();
254 
255   llvm_unreachable("DefI dominates InsertPt!");
256 }
257 
258 //===----------------------------------------------------------------------===//
259 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
260 //===----------------------------------------------------------------------===//
261 
262 /// Convert APF to an integer, if possible.
263 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
264   bool isExact = false;
265   // See if we can convert this to an int64_t
266   uint64_t UIntVal;
267   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
268                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
269       !isExact)
270     return false;
271   IntVal = UIntVal;
272   return true;
273 }
274 
275 /// If the loop has floating induction variable then insert corresponding
276 /// integer induction variable if possible.
277 /// For example,
278 /// for(double i = 0; i < 10000; ++i)
279 ///   bar(i)
280 /// is converted into
281 /// for(int i = 0; i < 10000; ++i)
282 ///   bar((double)i);
283 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
284   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
285   unsigned BackEdge     = IncomingEdge^1;
286 
287   // Check incoming value.
288   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
289 
290   int64_t InitValue;
291   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
292     return false;
293 
294   // Check IV increment. Reject this PN if increment operation is not
295   // an add or increment value can not be represented by an integer.
296   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
297   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
298 
299   // If this is not an add of the PHI with a constantfp, or if the constant fp
300   // is not an integer, bail out.
301   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
302   int64_t IncValue;
303   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
304       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
305     return false;
306 
307   // Check Incr uses. One user is PN and the other user is an exit condition
308   // used by the conditional terminator.
309   Value::user_iterator IncrUse = Incr->user_begin();
310   Instruction *U1 = cast<Instruction>(*IncrUse++);
311   if (IncrUse == Incr->user_end()) return false;
312   Instruction *U2 = cast<Instruction>(*IncrUse++);
313   if (IncrUse != Incr->user_end()) return false;
314 
315   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
316   // only used by a branch, we can't transform it.
317   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
318   if (!Compare)
319     Compare = dyn_cast<FCmpInst>(U2);
320   if (!Compare || !Compare->hasOneUse() ||
321       !isa<BranchInst>(Compare->user_back()))
322     return false;
323 
324   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
325 
326   // We need to verify that the branch actually controls the iteration count
327   // of the loop.  If not, the new IV can overflow and no one will notice.
328   // The branch block must be in the loop and one of the successors must be out
329   // of the loop.
330   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
331   if (!L->contains(TheBr->getParent()) ||
332       (L->contains(TheBr->getSuccessor(0)) &&
333        L->contains(TheBr->getSuccessor(1))))
334     return false;
335 
336   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
337   // transform it.
338   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
339   int64_t ExitValue;
340   if (ExitValueVal == nullptr ||
341       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
342     return false;
343 
344   // Find new predicate for integer comparison.
345   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
346   switch (Compare->getPredicate()) {
347   default: return false;  // Unknown comparison.
348   case CmpInst::FCMP_OEQ:
349   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
350   case CmpInst::FCMP_ONE:
351   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
352   case CmpInst::FCMP_OGT:
353   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
354   case CmpInst::FCMP_OGE:
355   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
356   case CmpInst::FCMP_OLT:
357   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
358   case CmpInst::FCMP_OLE:
359   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
360   }
361 
362   // We convert the floating point induction variable to a signed i32 value if
363   // we can.  This is only safe if the comparison will not overflow in a way
364   // that won't be trapped by the integer equivalent operations.  Check for this
365   // now.
366   // TODO: We could use i64 if it is native and the range requires it.
367 
368   // The start/stride/exit values must all fit in signed i32.
369   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
370     return false;
371 
372   // If not actually striding (add x, 0.0), avoid touching the code.
373   if (IncValue == 0)
374     return false;
375 
376   // Positive and negative strides have different safety conditions.
377   if (IncValue > 0) {
378     // If we have a positive stride, we require the init to be less than the
379     // exit value.
380     if (InitValue >= ExitValue)
381       return false;
382 
383     uint32_t Range = uint32_t(ExitValue-InitValue);
384     // Check for infinite loop, either:
385     // while (i <= Exit) or until (i > Exit)
386     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
387       if (++Range == 0) return false;  // Range overflows.
388     }
389 
390     unsigned Leftover = Range % uint32_t(IncValue);
391 
392     // If this is an equality comparison, we require that the strided value
393     // exactly land on the exit value, otherwise the IV condition will wrap
394     // around and do things the fp IV wouldn't.
395     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
396         Leftover != 0)
397       return false;
398 
399     // If the stride would wrap around the i32 before exiting, we can't
400     // transform the IV.
401     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
402       return false;
403   } else {
404     // If we have a negative stride, we require the init to be greater than the
405     // exit value.
406     if (InitValue <= ExitValue)
407       return false;
408 
409     uint32_t Range = uint32_t(InitValue-ExitValue);
410     // Check for infinite loop, either:
411     // while (i >= Exit) or until (i < Exit)
412     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
413       if (++Range == 0) return false;  // Range overflows.
414     }
415 
416     unsigned Leftover = Range % uint32_t(-IncValue);
417 
418     // If this is an equality comparison, we require that the strided value
419     // exactly land on the exit value, otherwise the IV condition will wrap
420     // around and do things the fp IV wouldn't.
421     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
422         Leftover != 0)
423       return false;
424 
425     // If the stride would wrap around the i32 before exiting, we can't
426     // transform the IV.
427     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
428       return false;
429   }
430 
431   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
432 
433   // Insert new integer induction variable.
434   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
435   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
436                       PN->getIncomingBlock(IncomingEdge));
437 
438   Value *NewAdd =
439     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
440                               Incr->getName()+".int", Incr);
441   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
442 
443   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
444                                       ConstantInt::get(Int32Ty, ExitValue),
445                                       Compare->getName());
446 
447   // In the following deletions, PN may become dead and may be deleted.
448   // Use a WeakTrackingVH to observe whether this happens.
449   WeakTrackingVH WeakPH = PN;
450 
451   // Delete the old floating point exit comparison.  The branch starts using the
452   // new comparison.
453   NewCompare->takeName(Compare);
454   Compare->replaceAllUsesWith(NewCompare);
455   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
456 
457   // Delete the old floating point increment.
458   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
459   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
460 
461   // If the FP induction variable still has uses, this is because something else
462   // in the loop uses its value.  In order to canonicalize the induction
463   // variable, we chose to eliminate the IV and rewrite it in terms of an
464   // int->fp cast.
465   //
466   // We give preference to sitofp over uitofp because it is faster on most
467   // platforms.
468   if (WeakPH) {
469     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
470                                  &*PN->getParent()->getFirstInsertionPt());
471     PN->replaceAllUsesWith(Conv);
472     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
473   }
474   return true;
475 }
476 
477 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
478   // First step.  Check to see if there are any floating-point recurrences.
479   // If there are, change them into integer recurrences, permitting analysis by
480   // the SCEV routines.
481   BasicBlock *Header = L->getHeader();
482 
483   SmallVector<WeakTrackingVH, 8> PHIs;
484   for (PHINode &PN : Header->phis())
485     PHIs.push_back(&PN);
486 
487   bool Changed = false;
488   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
489     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
490       Changed |= handleFloatingPointIV(L, PN);
491 
492   // If the loop previously had floating-point IV, ScalarEvolution
493   // may not have been able to compute a trip count. Now that we've done some
494   // re-writing, the trip count may be computable.
495   if (Changed)
496     SE->forgetLoop(L);
497   return Changed;
498 }
499 
500 namespace {
501 
502 // Collect information about PHI nodes which can be transformed in
503 // rewriteLoopExitValues.
504 struct RewritePhi {
505   PHINode *PN;
506 
507   // Ith incoming value.
508   unsigned Ith;
509 
510   // Exit value after expansion.
511   Value *Val;
512 
513   // High Cost when expansion.
514   bool HighCost;
515 
516   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
517       : PN(P), Ith(I), Val(V), HighCost(H) {}
518 };
519 
520 } // end anonymous namespace
521 
522 //===----------------------------------------------------------------------===//
523 // rewriteLoopExitValues - Optimize IV users outside the loop.
524 // As a side effect, reduces the amount of IV processing within the loop.
525 //===----------------------------------------------------------------------===//
526 
527 /// Check to see if this loop has a computable loop-invariant execution count.
528 /// If so, this means that we can compute the final value of any expressions
529 /// that are recurrent in the loop, and substitute the exit values from the loop
530 /// into any instructions outside of the loop that use the final values of the
531 /// current expressions.
532 ///
533 /// This is mostly redundant with the regular IndVarSimplify activities that
534 /// happen later, except that it's more powerful in some cases, because it's
535 /// able to brute-force evaluate arbitrary instructions as long as they have
536 /// constant operands at the beginning of the loop.
537 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
538   // Check a pre-condition.
539   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
540          "Indvars did not preserve LCSSA!");
541 
542   SmallVector<BasicBlock*, 8> ExitBlocks;
543   L->getUniqueExitBlocks(ExitBlocks);
544 
545   SmallVector<RewritePhi, 8> RewritePhiSet;
546   // Find all values that are computed inside the loop, but used outside of it.
547   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
548   // the exit blocks of the loop to find them.
549   for (BasicBlock *ExitBB : ExitBlocks) {
550     // If there are no PHI nodes in this exit block, then no values defined
551     // inside the loop are used on this path, skip it.
552     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
553     if (!PN) continue;
554 
555     unsigned NumPreds = PN->getNumIncomingValues();
556 
557     // Iterate over all of the PHI nodes.
558     BasicBlock::iterator BBI = ExitBB->begin();
559     while ((PN = dyn_cast<PHINode>(BBI++))) {
560       if (PN->use_empty())
561         continue; // dead use, don't replace it
562 
563       if (!SE->isSCEVable(PN->getType()))
564         continue;
565 
566       // It's necessary to tell ScalarEvolution about this explicitly so that
567       // it can walk the def-use list and forget all SCEVs, as it may not be
568       // watching the PHI itself. Once the new exit value is in place, there
569       // may not be a def-use connection between the loop and every instruction
570       // which got a SCEVAddRecExpr for that loop.
571       SE->forgetValue(PN);
572 
573       // Iterate over all of the values in all the PHI nodes.
574       for (unsigned i = 0; i != NumPreds; ++i) {
575         // If the value being merged in is not integer or is not defined
576         // in the loop, skip it.
577         Value *InVal = PN->getIncomingValue(i);
578         if (!isa<Instruction>(InVal))
579           continue;
580 
581         // If this pred is for a subloop, not L itself, skip it.
582         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
583           continue; // The Block is in a subloop, skip it.
584 
585         // Check that InVal is defined in the loop.
586         Instruction *Inst = cast<Instruction>(InVal);
587         if (!L->contains(Inst))
588           continue;
589 
590         // Okay, this instruction has a user outside of the current loop
591         // and varies predictably *inside* the loop.  Evaluate the value it
592         // contains when the loop exits, if possible.
593         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
594         if (!SE->isLoopInvariant(ExitValue, L) ||
595             !isSafeToExpand(ExitValue, *SE))
596           continue;
597 
598         // Computing the value outside of the loop brings no benefit if :
599         //  - it is definitely used inside the loop in a way which can not be
600         //    optimized away.
601         //  - no use outside of the loop can take advantage of hoisting the
602         //    computation out of the loop
603         if (ExitValue->getSCEVType()>=scMulExpr) {
604           bool HasHardInternalUses = false;
605           bool HasSoftExternalUses = false;
606           unsigned NumUses = 0;
607           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
608                IB != IE && NumUses <= 6; ++IB) {
609             Instruction *UseInstr = cast<Instruction>(*IB);
610             unsigned Opc = UseInstr->getOpcode();
611             NumUses++;
612             if (L->contains(UseInstr)) {
613               if (Opc == Instruction::Call)
614                 HasHardInternalUses = true;
615             } else {
616               if (Opc == Instruction::PHI) {
617                 // Do not count the Phi as a use. LCSSA may have inserted
618                 // plenty of trivial ones.
619                 NumUses--;
620                 for (auto PB = UseInstr->user_begin(),
621                           PE = UseInstr->user_end();
622                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
623                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
624                   if (PhiOpc != Instruction::Call &&
625                       PhiOpc != Instruction::Ret) {
626                     HasSoftExternalUses = true;
627                     break;
628                   }
629                 }
630                 continue;
631               }
632               if (Opc != Instruction::Call && Opc != Instruction::Ret) {
633                 HasSoftExternalUses = true;
634                 break;
635               }
636             }
637           }
638           if (NumUses <= 6 && HasHardInternalUses && !HasSoftExternalUses)
639             continue;
640         }
641 
642         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
643         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
644 
645         LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
646                           << '\n'
647                           << "  LoopVal = " << *Inst << "\n");
648 
649         if (!isValidRewrite(Inst, ExitVal)) {
650           DeadInsts.push_back(ExitVal);
651           continue;
652         }
653 
654 #ifndef NDEBUG
655         // If we reuse an instruction from a loop which is neither L nor one of
656         // its containing loops, we end up breaking LCSSA form for this loop by
657         // creating a new use of its instruction.
658         if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
659           if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
660             if (EVL != L)
661               assert(EVL->contains(L) && "LCSSA breach detected!");
662 #endif
663 
664         // Collect all the candidate PHINodes to be rewritten.
665         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
666       }
667     }
668   }
669 
670   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
671 
672   bool Changed = false;
673   // Transformation.
674   for (const RewritePhi &Phi : RewritePhiSet) {
675     PHINode *PN = Phi.PN;
676     Value *ExitVal = Phi.Val;
677 
678     // Only do the rewrite when the ExitValue can be expanded cheaply.
679     // If LoopCanBeDel is true, rewrite exit value aggressively.
680     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
681       DeadInsts.push_back(ExitVal);
682       continue;
683     }
684 
685     Changed = true;
686     ++NumReplaced;
687     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
688     PN->setIncomingValue(Phi.Ith, ExitVal);
689 
690     // If this instruction is dead now, delete it. Don't do it now to avoid
691     // invalidating iterators.
692     if (isInstructionTriviallyDead(Inst, TLI))
693       DeadInsts.push_back(Inst);
694 
695     // Replace PN with ExitVal if that is legal and does not break LCSSA.
696     if (PN->getNumIncomingValues() == 1 &&
697         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
698       PN->replaceAllUsesWith(ExitVal);
699       PN->eraseFromParent();
700     }
701   }
702 
703   // The insertion point instruction may have been deleted; clear it out
704   // so that the rewriter doesn't trip over it later.
705   Rewriter.clearInsertPoint();
706   return Changed;
707 }
708 
709 //===---------------------------------------------------------------------===//
710 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
711 // they will exit at the first iteration.
712 //===---------------------------------------------------------------------===//
713 
714 /// Check to see if this loop has loop invariant conditions which lead to loop
715 /// exits. If so, we know that if the exit path is taken, it is at the first
716 /// loop iteration. This lets us predict exit values of PHI nodes that live in
717 /// loop header.
718 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
719   // Verify the input to the pass is already in LCSSA form.
720   assert(L->isLCSSAForm(*DT));
721 
722   SmallVector<BasicBlock *, 8> ExitBlocks;
723   L->getUniqueExitBlocks(ExitBlocks);
724   auto *LoopHeader = L->getHeader();
725   assert(LoopHeader && "Invalid loop");
726 
727   bool MadeAnyChanges = false;
728   for (auto *ExitBB : ExitBlocks) {
729     // If there are no more PHI nodes in this exit block, then no more
730     // values defined inside the loop are used on this path.
731     for (PHINode &PN : ExitBB->phis()) {
732       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
733            IncomingValIdx != E; ++IncomingValIdx) {
734         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
735 
736         // We currently only support loop exits from loop header. If the
737         // incoming block is not loop header, we need to recursively check
738         // all conditions starting from loop header are loop invariants.
739         // Additional support might be added in the future.
740         if (IncomingBB != LoopHeader)
741           continue;
742 
743         // Get condition that leads to the exit path.
744         auto *TermInst = IncomingBB->getTerminator();
745 
746         Value *Cond = nullptr;
747         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
748           // Must be a conditional branch, otherwise the block
749           // should not be in the loop.
750           Cond = BI->getCondition();
751         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
752           Cond = SI->getCondition();
753         else
754           continue;
755 
756         if (!L->isLoopInvariant(Cond))
757           continue;
758 
759         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
760 
761         // Only deal with PHIs.
762         if (!ExitVal)
763           continue;
764 
765         // If ExitVal is a PHI on the loop header, then we know its
766         // value along this exit because the exit can only be taken
767         // on the first iteration.
768         auto *LoopPreheader = L->getLoopPreheader();
769         assert(LoopPreheader && "Invalid loop");
770         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
771         if (PreheaderIdx != -1) {
772           assert(ExitVal->getParent() == LoopHeader &&
773                  "ExitVal must be in loop header");
774           MadeAnyChanges = true;
775           PN.setIncomingValue(IncomingValIdx,
776                               ExitVal->getIncomingValue(PreheaderIdx));
777         }
778       }
779     }
780   }
781   return MadeAnyChanges;
782 }
783 
784 /// Check whether it is possible to delete the loop after rewriting exit
785 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
786 /// aggressively.
787 bool IndVarSimplify::canLoopBeDeleted(
788     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
789   BasicBlock *Preheader = L->getLoopPreheader();
790   // If there is no preheader, the loop will not be deleted.
791   if (!Preheader)
792     return false;
793 
794   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
795   // We obviate multiple ExitingBlocks case for simplicity.
796   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
797   // after exit value rewriting, we can enhance the logic here.
798   SmallVector<BasicBlock *, 4> ExitingBlocks;
799   L->getExitingBlocks(ExitingBlocks);
800   SmallVector<BasicBlock *, 8> ExitBlocks;
801   L->getUniqueExitBlocks(ExitBlocks);
802   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
803     return false;
804 
805   BasicBlock *ExitBlock = ExitBlocks[0];
806   BasicBlock::iterator BI = ExitBlock->begin();
807   while (PHINode *P = dyn_cast<PHINode>(BI)) {
808     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
809 
810     // If the Incoming value of P is found in RewritePhiSet, we know it
811     // could be rewritten to use a loop invariant value in transformation
812     // phase later. Skip it in the loop invariant check below.
813     bool found = false;
814     for (const RewritePhi &Phi : RewritePhiSet) {
815       unsigned i = Phi.Ith;
816       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
817         found = true;
818         break;
819       }
820     }
821 
822     Instruction *I;
823     if (!found && (I = dyn_cast<Instruction>(Incoming)))
824       if (!L->hasLoopInvariantOperands(I))
825         return false;
826 
827     ++BI;
828   }
829 
830   for (auto *BB : L->blocks())
831     if (llvm::any_of(*BB, [](Instruction &I) {
832           return I.mayHaveSideEffects();
833         }))
834       return false;
835 
836   return true;
837 }
838 
839 //===----------------------------------------------------------------------===//
840 //  IV Widening - Extend the width of an IV to cover its widest uses.
841 //===----------------------------------------------------------------------===//
842 
843 namespace {
844 
845 // Collect information about induction variables that are used by sign/zero
846 // extend operations. This information is recorded by CollectExtend and provides
847 // the input to WidenIV.
848 struct WideIVInfo {
849   PHINode *NarrowIV = nullptr;
850 
851   // Widest integer type created [sz]ext
852   Type *WidestNativeType = nullptr;
853 
854   // Was a sext user seen before a zext?
855   bool IsSigned = false;
856 };
857 
858 } // end anonymous namespace
859 
860 /// Update information about the induction variable that is extended by this
861 /// sign or zero extend operation. This is used to determine the final width of
862 /// the IV before actually widening it.
863 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
864                         const TargetTransformInfo *TTI) {
865   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
866   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
867     return;
868 
869   Type *Ty = Cast->getType();
870   uint64_t Width = SE->getTypeSizeInBits(Ty);
871   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
872     return;
873 
874   // Check that `Cast` actually extends the induction variable (we rely on this
875   // later).  This takes care of cases where `Cast` is extending a truncation of
876   // the narrow induction variable, and thus can end up being narrower than the
877   // "narrow" induction variable.
878   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
879   if (NarrowIVWidth >= Width)
880     return;
881 
882   // Cast is either an sext or zext up to this point.
883   // We should not widen an indvar if arithmetics on the wider indvar are more
884   // expensive than those on the narrower indvar. We check only the cost of ADD
885   // because at least an ADD is required to increment the induction variable. We
886   // could compute more comprehensively the cost of all instructions on the
887   // induction variable when necessary.
888   if (TTI &&
889       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
890           TTI->getArithmeticInstrCost(Instruction::Add,
891                                       Cast->getOperand(0)->getType())) {
892     return;
893   }
894 
895   if (!WI.WidestNativeType) {
896     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
897     WI.IsSigned = IsSigned;
898     return;
899   }
900 
901   // We extend the IV to satisfy the sign of its first user, arbitrarily.
902   if (WI.IsSigned != IsSigned)
903     return;
904 
905   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
906     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
907 }
908 
909 namespace {
910 
911 /// Record a link in the Narrow IV def-use chain along with the WideIV that
912 /// computes the same value as the Narrow IV def.  This avoids caching Use*
913 /// pointers.
914 struct NarrowIVDefUse {
915   Instruction *NarrowDef = nullptr;
916   Instruction *NarrowUse = nullptr;
917   Instruction *WideDef = nullptr;
918 
919   // True if the narrow def is never negative.  Tracking this information lets
920   // us use a sign extension instead of a zero extension or vice versa, when
921   // profitable and legal.
922   bool NeverNegative = false;
923 
924   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
925                  bool NeverNegative)
926       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
927         NeverNegative(NeverNegative) {}
928 };
929 
930 /// The goal of this transform is to remove sign and zero extends without
931 /// creating any new induction variables. To do this, it creates a new phi of
932 /// the wider type and redirects all users, either removing extends or inserting
933 /// truncs whenever we stop propagating the type.
934 class WidenIV {
935   // Parameters
936   PHINode *OrigPhi;
937   Type *WideType;
938 
939   // Context
940   LoopInfo        *LI;
941   Loop            *L;
942   ScalarEvolution *SE;
943   DominatorTree   *DT;
944 
945   // Does the module have any calls to the llvm.experimental.guard intrinsic
946   // at all? If not we can avoid scanning instructions looking for guards.
947   bool HasGuards;
948 
949   // Result
950   PHINode *WidePhi = nullptr;
951   Instruction *WideInc = nullptr;
952   const SCEV *WideIncExpr = nullptr;
953   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
954 
955   SmallPtrSet<Instruction *,16> Widened;
956   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
957 
958   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
959 
960   // A map tracking the kind of extension used to widen each narrow IV
961   // and narrow IV user.
962   // Key: pointer to a narrow IV or IV user.
963   // Value: the kind of extension used to widen this Instruction.
964   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
965 
966   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
967 
968   // A map with control-dependent ranges for post increment IV uses. The key is
969   // a pair of IV def and a use of this def denoting the context. The value is
970   // a ConstantRange representing possible values of the def at the given
971   // context.
972   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
973 
974   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
975                                               Instruction *UseI) {
976     DefUserPair Key(Def, UseI);
977     auto It = PostIncRangeInfos.find(Key);
978     return It == PostIncRangeInfos.end()
979                ? Optional<ConstantRange>(None)
980                : Optional<ConstantRange>(It->second);
981   }
982 
983   void calculatePostIncRanges(PHINode *OrigPhi);
984   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
985 
986   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
987     DefUserPair Key(Def, UseI);
988     auto It = PostIncRangeInfos.find(Key);
989     if (It == PostIncRangeInfos.end())
990       PostIncRangeInfos.insert({Key, R});
991     else
992       It->second = R.intersectWith(It->second);
993   }
994 
995 public:
996   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
997           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
998           bool HasGuards)
999       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1000         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1001         HasGuards(HasGuards), DeadInsts(DI) {
1002     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1003     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1004   }
1005 
1006   PHINode *createWideIV(SCEVExpander &Rewriter);
1007 
1008 protected:
1009   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1010                           Instruction *Use);
1011 
1012   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1013   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1014                                      const SCEVAddRecExpr *WideAR);
1015   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1016 
1017   ExtendKind getExtendKind(Instruction *I);
1018 
1019   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1020 
1021   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1022 
1023   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1024 
1025   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1026                               unsigned OpCode) const;
1027 
1028   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1029 
1030   bool widenLoopCompare(NarrowIVDefUse DU);
1031   bool widenWithVariantLoadUse(NarrowIVDefUse DU);
1032   void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
1033 
1034   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1035 };
1036 
1037 } // end anonymous namespace
1038 
1039 /// Perform a quick domtree based check for loop invariance assuming that V is
1040 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
1041 /// purpose.
1042 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
1043   Instruction *Inst = dyn_cast<Instruction>(V);
1044   if (!Inst)
1045     return true;
1046 
1047   return DT->properlyDominates(Inst->getParent(), L->getHeader());
1048 }
1049 
1050 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1051                                  bool IsSigned, Instruction *Use) {
1052   // Set the debug location and conservative insertion point.
1053   IRBuilder<> Builder(Use);
1054   // Hoist the insertion point into loop preheaders as far as possible.
1055   for (const Loop *L = LI->getLoopFor(Use->getParent());
1056        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
1057        L = L->getParentLoop())
1058     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1059 
1060   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1061                     Builder.CreateZExt(NarrowOper, WideType);
1062 }
1063 
1064 /// Instantiate a wide operation to replace a narrow operation. This only needs
1065 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1066 /// 0 for any operation we decide not to clone.
1067 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1068                                   const SCEVAddRecExpr *WideAR) {
1069   unsigned Opcode = DU.NarrowUse->getOpcode();
1070   switch (Opcode) {
1071   default:
1072     return nullptr;
1073   case Instruction::Add:
1074   case Instruction::Mul:
1075   case Instruction::UDiv:
1076   case Instruction::Sub:
1077     return cloneArithmeticIVUser(DU, WideAR);
1078 
1079   case Instruction::And:
1080   case Instruction::Or:
1081   case Instruction::Xor:
1082   case Instruction::Shl:
1083   case Instruction::LShr:
1084   case Instruction::AShr:
1085     return cloneBitwiseIVUser(DU);
1086   }
1087 }
1088 
1089 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1090   Instruction *NarrowUse = DU.NarrowUse;
1091   Instruction *NarrowDef = DU.NarrowDef;
1092   Instruction *WideDef = DU.WideDef;
1093 
1094   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1095 
1096   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1097   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1098   // invariant and will be folded or hoisted. If it actually comes from a
1099   // widened IV, it should be removed during a future call to widenIVUse.
1100   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1101   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1102                    ? WideDef
1103                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1104                                       IsSigned, NarrowUse);
1105   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1106                    ? WideDef
1107                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1108                                       IsSigned, NarrowUse);
1109 
1110   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1111   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1112                                         NarrowBO->getName());
1113   IRBuilder<> Builder(NarrowUse);
1114   Builder.Insert(WideBO);
1115   WideBO->copyIRFlags(NarrowBO);
1116   return WideBO;
1117 }
1118 
1119 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1120                                             const SCEVAddRecExpr *WideAR) {
1121   Instruction *NarrowUse = DU.NarrowUse;
1122   Instruction *NarrowDef = DU.NarrowDef;
1123   Instruction *WideDef = DU.WideDef;
1124 
1125   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1126 
1127   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1128 
1129   // We're trying to find X such that
1130   //
1131   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1132   //
1133   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1134   // and check using SCEV if any of them are correct.
1135 
1136   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1137   // correct solution to X.
1138   auto GuessNonIVOperand = [&](bool SignExt) {
1139     const SCEV *WideLHS;
1140     const SCEV *WideRHS;
1141 
1142     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1143       if (SignExt)
1144         return SE->getSignExtendExpr(S, Ty);
1145       return SE->getZeroExtendExpr(S, Ty);
1146     };
1147 
1148     if (IVOpIdx == 0) {
1149       WideLHS = SE->getSCEV(WideDef);
1150       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1151       WideRHS = GetExtend(NarrowRHS, WideType);
1152     } else {
1153       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1154       WideLHS = GetExtend(NarrowLHS, WideType);
1155       WideRHS = SE->getSCEV(WideDef);
1156     }
1157 
1158     // WideUse is "WideDef `op.wide` X" as described in the comment.
1159     const SCEV *WideUse = nullptr;
1160 
1161     switch (NarrowUse->getOpcode()) {
1162     default:
1163       llvm_unreachable("No other possibility!");
1164 
1165     case Instruction::Add:
1166       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1167       break;
1168 
1169     case Instruction::Mul:
1170       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1171       break;
1172 
1173     case Instruction::UDiv:
1174       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1175       break;
1176 
1177     case Instruction::Sub:
1178       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1179       break;
1180     }
1181 
1182     return WideUse == WideAR;
1183   };
1184 
1185   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1186   if (!GuessNonIVOperand(SignExtend)) {
1187     SignExtend = !SignExtend;
1188     if (!GuessNonIVOperand(SignExtend))
1189       return nullptr;
1190   }
1191 
1192   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1193                    ? WideDef
1194                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1195                                       SignExtend, NarrowUse);
1196   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1197                    ? WideDef
1198                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1199                                       SignExtend, NarrowUse);
1200 
1201   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1202   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1203                                         NarrowBO->getName());
1204 
1205   IRBuilder<> Builder(NarrowUse);
1206   Builder.Insert(WideBO);
1207   WideBO->copyIRFlags(NarrowBO);
1208   return WideBO;
1209 }
1210 
1211 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1212   auto It = ExtendKindMap.find(I);
1213   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1214   return It->second;
1215 }
1216 
1217 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1218                                      unsigned OpCode) const {
1219   if (OpCode == Instruction::Add)
1220     return SE->getAddExpr(LHS, RHS);
1221   if (OpCode == Instruction::Sub)
1222     return SE->getMinusSCEV(LHS, RHS);
1223   if (OpCode == Instruction::Mul)
1224     return SE->getMulExpr(LHS, RHS);
1225 
1226   llvm_unreachable("Unsupported opcode.");
1227 }
1228 
1229 /// No-wrap operations can transfer sign extension of their result to their
1230 /// operands. Generate the SCEV value for the widened operation without
1231 /// actually modifying the IR yet. If the expression after extending the
1232 /// operands is an AddRec for this loop, return the AddRec and the kind of
1233 /// extension used.
1234 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1235   // Handle the common case of add<nsw/nuw>
1236   const unsigned OpCode = DU.NarrowUse->getOpcode();
1237   // Only Add/Sub/Mul instructions supported yet.
1238   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1239       OpCode != Instruction::Mul)
1240     return {nullptr, Unknown};
1241 
1242   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1243   // if extending the other will lead to a recurrence.
1244   const unsigned ExtendOperIdx =
1245       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1246   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1247 
1248   const SCEV *ExtendOperExpr = nullptr;
1249   const OverflowingBinaryOperator *OBO =
1250     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1251   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1252   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1253     ExtendOperExpr = SE->getSignExtendExpr(
1254       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1255   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1256     ExtendOperExpr = SE->getZeroExtendExpr(
1257       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1258   else
1259     return {nullptr, Unknown};
1260 
1261   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1262   // flags. This instruction may be guarded by control flow that the no-wrap
1263   // behavior depends on. Non-control-equivalent instructions can be mapped to
1264   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1265   // semantics to those operations.
1266   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1267   const SCEV *rhs = ExtendOperExpr;
1268 
1269   // Let's swap operands to the initial order for the case of non-commutative
1270   // operations, like SUB. See PR21014.
1271   if (ExtendOperIdx == 0)
1272     std::swap(lhs, rhs);
1273   const SCEVAddRecExpr *AddRec =
1274       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1275 
1276   if (!AddRec || AddRec->getLoop() != L)
1277     return {nullptr, Unknown};
1278 
1279   return {AddRec, ExtKind};
1280 }
1281 
1282 /// Is this instruction potentially interesting for further simplification after
1283 /// widening it's type? In other words, can the extend be safely hoisted out of
1284 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1285 /// so, return the extended recurrence and the kind of extension used. Otherwise
1286 /// return {nullptr, Unknown}.
1287 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1288   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1289     return {nullptr, Unknown};
1290 
1291   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1292   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1293       SE->getTypeSizeInBits(WideType)) {
1294     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1295     // index. So don't follow this use.
1296     return {nullptr, Unknown};
1297   }
1298 
1299   const SCEV *WideExpr;
1300   ExtendKind ExtKind;
1301   if (DU.NeverNegative) {
1302     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1303     if (isa<SCEVAddRecExpr>(WideExpr))
1304       ExtKind = SignExtended;
1305     else {
1306       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1307       ExtKind = ZeroExtended;
1308     }
1309   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1310     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1311     ExtKind = SignExtended;
1312   } else {
1313     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1314     ExtKind = ZeroExtended;
1315   }
1316   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1317   if (!AddRec || AddRec->getLoop() != L)
1318     return {nullptr, Unknown};
1319   return {AddRec, ExtKind};
1320 }
1321 
1322 /// This IV user cannot be widen. Replace this use of the original narrow IV
1323 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1324 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1325   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1326                     << *DU.NarrowUse << "\n");
1327   IRBuilder<> Builder(
1328       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1329   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1330   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1331 }
1332 
1333 /// If the narrow use is a compare instruction, then widen the compare
1334 //  (and possibly the other operand).  The extend operation is hoisted into the
1335 // loop preheader as far as possible.
1336 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1337   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1338   if (!Cmp)
1339     return false;
1340 
1341   // We can legally widen the comparison in the following two cases:
1342   //
1343   //  - The signedness of the IV extension and comparison match
1344   //
1345   //  - The narrow IV is always positive (and thus its sign extension is equal
1346   //    to its zero extension).  For instance, let's say we're zero extending
1347   //    %narrow for the following use
1348   //
1349   //      icmp slt i32 %narrow, %val   ... (A)
1350   //
1351   //    and %narrow is always positive.  Then
1352   //
1353   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1354   //          == icmp slt i32 zext(%narrow), sext(%val)
1355   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1356   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1357     return false;
1358 
1359   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1360   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1361   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1362   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1363 
1364   // Widen the compare instruction.
1365   IRBuilder<> Builder(
1366       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1367   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1368 
1369   // Widen the other operand of the compare, if necessary.
1370   if (CastWidth < IVWidth) {
1371     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1372     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1373   }
1374   return true;
1375 }
1376 
1377 /// If the narrow use is an instruction whose two operands are the defining
1378 /// instruction of DU and a load instruction, then we have the following:
1379 /// if the load is hoisted outside the loop, then we do not reach this function
1380 /// as scalar evolution analysis works fine in widenIVUse with variables
1381 /// hoisted outside the loop and efficient code is subsequently generated by
1382 /// not emitting truncate instructions. But when the load is not hoisted
1383 /// (whether due to limitation in alias analysis or due to a true legality),
1384 /// then scalar evolution can not proceed with loop variant values and
1385 /// inefficient code is generated. This function handles the non-hoisted load
1386 /// special case by making the optimization generate the same type of code for
1387 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1388 /// instruction). This special case is important especially when the induction
1389 /// variables are affecting addressing mode in code generation.
1390 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
1391   Instruction *NarrowUse = DU.NarrowUse;
1392   Instruction *NarrowDef = DU.NarrowDef;
1393   Instruction *WideDef = DU.WideDef;
1394 
1395   // Handle the common case of add<nsw/nuw>
1396   const unsigned OpCode = NarrowUse->getOpcode();
1397   // Only Add/Sub/Mul instructions are supported.
1398   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1399       OpCode != Instruction::Mul)
1400     return false;
1401 
1402   // The operand that is not defined by NarrowDef of DU. Let's call it the
1403   // other operand.
1404   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
1405   assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
1406          "bad DU");
1407 
1408   const SCEV *ExtendOperExpr = nullptr;
1409   const OverflowingBinaryOperator *OBO =
1410     cast<OverflowingBinaryOperator>(NarrowUse);
1411   ExtendKind ExtKind = getExtendKind(NarrowDef);
1412   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1413     ExtendOperExpr = SE->getSignExtendExpr(
1414       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1415   else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1416     ExtendOperExpr = SE->getZeroExtendExpr(
1417       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1418   else
1419     return false;
1420 
1421   // We are interested in the other operand being a load instruction.
1422   // But, we should look into relaxing this restriction later on.
1423   auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
1424   if (I && I->getOpcode() != Instruction::Load)
1425     return false;
1426 
1427   // Verifying that Defining operand is an AddRec
1428   const SCEV *Op1 = SE->getSCEV(WideDef);
1429   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1430   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1431     return false;
1432   // Verifying that other operand is an Extend.
1433   if (ExtKind == SignExtended) {
1434     if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
1435       return false;
1436   } else {
1437     if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
1438       return false;
1439   }
1440 
1441   if (ExtKind == SignExtended) {
1442     for (Use &U : NarrowUse->uses()) {
1443       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1444       if (!User || User->getType() != WideType)
1445         return false;
1446     }
1447   } else { // ExtKind == ZeroExtended
1448     for (Use &U : NarrowUse->uses()) {
1449       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1450       if (!User || User->getType() != WideType)
1451         return false;
1452     }
1453   }
1454 
1455   return true;
1456 }
1457 
1458 /// Special Case for widening with variant Loads (see
1459 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1460 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
1461   Instruction *NarrowUse = DU.NarrowUse;
1462   Instruction *NarrowDef = DU.NarrowDef;
1463   Instruction *WideDef = DU.WideDef;
1464 
1465   ExtendKind ExtKind = getExtendKind(NarrowDef);
1466 
1467   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1468 
1469   // Generating a widening use instruction.
1470   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1471                    ? WideDef
1472                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1473                                       ExtKind, NarrowUse);
1474   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1475                    ? WideDef
1476                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1477                                       ExtKind, NarrowUse);
1478 
1479   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1480   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1481                                         NarrowBO->getName());
1482   IRBuilder<> Builder(NarrowUse);
1483   Builder.Insert(WideBO);
1484   WideBO->copyIRFlags(NarrowBO);
1485 
1486   if (ExtKind == SignExtended)
1487     ExtendKindMap[NarrowUse] = SignExtended;
1488   else
1489     ExtendKindMap[NarrowUse] = ZeroExtended;
1490 
1491   // Update the Use.
1492   if (ExtKind == SignExtended) {
1493     for (Use &U : NarrowUse->uses()) {
1494       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1495       if (User && User->getType() == WideType) {
1496         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1497                           << *WideBO << "\n");
1498         ++NumElimExt;
1499         User->replaceAllUsesWith(WideBO);
1500         DeadInsts.emplace_back(User);
1501       }
1502     }
1503   } else { // ExtKind == ZeroExtended
1504     for (Use &U : NarrowUse->uses()) {
1505       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1506       if (User && User->getType() == WideType) {
1507         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1508                           << *WideBO << "\n");
1509         ++NumElimExt;
1510         User->replaceAllUsesWith(WideBO);
1511         DeadInsts.emplace_back(User);
1512       }
1513     }
1514   }
1515 }
1516 
1517 /// Determine whether an individual user of the narrow IV can be widened. If so,
1518 /// return the wide clone of the user.
1519 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1520   assert(ExtendKindMap.count(DU.NarrowDef) &&
1521          "Should already know the kind of extension used to widen NarrowDef");
1522 
1523   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1524   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1525     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1526       // For LCSSA phis, sink the truncate outside the loop.
1527       // After SimplifyCFG most loop exit targets have a single predecessor.
1528       // Otherwise fall back to a truncate within the loop.
1529       if (UsePhi->getNumOperands() != 1)
1530         truncateIVUse(DU, DT, LI);
1531       else {
1532         // Widening the PHI requires us to insert a trunc.  The logical place
1533         // for this trunc is in the same BB as the PHI.  This is not possible if
1534         // the BB is terminated by a catchswitch.
1535         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1536           return nullptr;
1537 
1538         PHINode *WidePhi =
1539           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1540                           UsePhi);
1541         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1542         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1543         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1544         UsePhi->replaceAllUsesWith(Trunc);
1545         DeadInsts.emplace_back(UsePhi);
1546         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1547                           << *WidePhi << "\n");
1548       }
1549       return nullptr;
1550     }
1551   }
1552 
1553   // This narrow use can be widened by a sext if it's non-negative or its narrow
1554   // def was widended by a sext. Same for zext.
1555   auto canWidenBySExt = [&]() {
1556     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1557   };
1558   auto canWidenByZExt = [&]() {
1559     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1560   };
1561 
1562   // Our raison d'etre! Eliminate sign and zero extension.
1563   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1564       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1565     Value *NewDef = DU.WideDef;
1566     if (DU.NarrowUse->getType() != WideType) {
1567       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1568       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1569       if (CastWidth < IVWidth) {
1570         // The cast isn't as wide as the IV, so insert a Trunc.
1571         IRBuilder<> Builder(DU.NarrowUse);
1572         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1573       }
1574       else {
1575         // A wider extend was hidden behind a narrower one. This may induce
1576         // another round of IV widening in which the intermediate IV becomes
1577         // dead. It should be very rare.
1578         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1579                           << " not wide enough to subsume " << *DU.NarrowUse
1580                           << "\n");
1581         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1582         NewDef = DU.NarrowUse;
1583       }
1584     }
1585     if (NewDef != DU.NarrowUse) {
1586       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1587                         << " replaced by " << *DU.WideDef << "\n");
1588       ++NumElimExt;
1589       DU.NarrowUse->replaceAllUsesWith(NewDef);
1590       DeadInsts.emplace_back(DU.NarrowUse);
1591     }
1592     // Now that the extend is gone, we want to expose it's uses for potential
1593     // further simplification. We don't need to directly inform SimplifyIVUsers
1594     // of the new users, because their parent IV will be processed later as a
1595     // new loop phi. If we preserved IVUsers analysis, we would also want to
1596     // push the uses of WideDef here.
1597 
1598     // No further widening is needed. The deceased [sz]ext had done it for us.
1599     return nullptr;
1600   }
1601 
1602   // Does this user itself evaluate to a recurrence after widening?
1603   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1604   if (!WideAddRec.first)
1605     WideAddRec = getWideRecurrence(DU);
1606 
1607   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1608   if (!WideAddRec.first) {
1609     // If use is a loop condition, try to promote the condition instead of
1610     // truncating the IV first.
1611     if (widenLoopCompare(DU))
1612       return nullptr;
1613 
1614     // We are here about to generate a truncate instruction that may hurt
1615     // performance because the scalar evolution expression computed earlier
1616     // in WideAddRec.first does not indicate a polynomial induction expression.
1617     // In that case, look at the operands of the use instruction to determine
1618     // if we can still widen the use instead of truncating its operand.
1619     if (widenWithVariantLoadUse(DU)) {
1620       widenWithVariantLoadUseCodegen(DU);
1621       return nullptr;
1622     }
1623 
1624     // This user does not evaluate to a recurrence after widening, so don't
1625     // follow it. Instead insert a Trunc to kill off the original use,
1626     // eventually isolating the original narrow IV so it can be removed.
1627     truncateIVUse(DU, DT, LI);
1628     return nullptr;
1629   }
1630   // Assume block terminators cannot evaluate to a recurrence. We can't to
1631   // insert a Trunc after a terminator if there happens to be a critical edge.
1632   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1633          "SCEV is not expected to evaluate a block terminator");
1634 
1635   // Reuse the IV increment that SCEVExpander created as long as it dominates
1636   // NarrowUse.
1637   Instruction *WideUse = nullptr;
1638   if (WideAddRec.first == WideIncExpr &&
1639       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1640     WideUse = WideInc;
1641   else {
1642     WideUse = cloneIVUser(DU, WideAddRec.first);
1643     if (!WideUse)
1644       return nullptr;
1645   }
1646   // Evaluation of WideAddRec ensured that the narrow expression could be
1647   // extended outside the loop without overflow. This suggests that the wide use
1648   // evaluates to the same expression as the extended narrow use, but doesn't
1649   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1650   // where it fails, we simply throw away the newly created wide use.
1651   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1652     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1653                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1654                       << "\n");
1655     DeadInsts.emplace_back(WideUse);
1656     return nullptr;
1657   }
1658 
1659   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1660   // Returning WideUse pushes it on the worklist.
1661   return WideUse;
1662 }
1663 
1664 /// Add eligible users of NarrowDef to NarrowIVUsers.
1665 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1666   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1667   bool NonNegativeDef =
1668       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1669                            SE->getConstant(NarrowSCEV->getType(), 0));
1670   for (User *U : NarrowDef->users()) {
1671     Instruction *NarrowUser = cast<Instruction>(U);
1672 
1673     // Handle data flow merges and bizarre phi cycles.
1674     if (!Widened.insert(NarrowUser).second)
1675       continue;
1676 
1677     bool NonNegativeUse = false;
1678     if (!NonNegativeDef) {
1679       // We might have a control-dependent range information for this context.
1680       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1681         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1682     }
1683 
1684     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1685                                NonNegativeDef || NonNegativeUse);
1686   }
1687 }
1688 
1689 /// Process a single induction variable. First use the SCEVExpander to create a
1690 /// wide induction variable that evaluates to the same recurrence as the
1691 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1692 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1693 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1694 ///
1695 /// It would be simpler to delete uses as they are processed, but we must avoid
1696 /// invalidating SCEV expressions.
1697 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1698   // Is this phi an induction variable?
1699   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1700   if (!AddRec)
1701     return nullptr;
1702 
1703   // Widen the induction variable expression.
1704   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1705                                ? SE->getSignExtendExpr(AddRec, WideType)
1706                                : SE->getZeroExtendExpr(AddRec, WideType);
1707 
1708   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1709          "Expect the new IV expression to preserve its type");
1710 
1711   // Can the IV be extended outside the loop without overflow?
1712   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1713   if (!AddRec || AddRec->getLoop() != L)
1714     return nullptr;
1715 
1716   // An AddRec must have loop-invariant operands. Since this AddRec is
1717   // materialized by a loop header phi, the expression cannot have any post-loop
1718   // operands, so they must dominate the loop header.
1719   assert(
1720       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1721       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1722       "Loop header phi recurrence inputs do not dominate the loop");
1723 
1724   // Iterate over IV uses (including transitive ones) looking for IV increments
1725   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1726   // the increment calculate control-dependent range information basing on
1727   // dominating conditions inside of the loop (e.g. a range check inside of the
1728   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1729   //
1730   // Control-dependent range information is later used to prove that a narrow
1731   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1732   // this on demand because when pushNarrowIVUsers needs this information some
1733   // of the dominating conditions might be already widened.
1734   if (UsePostIncrementRanges)
1735     calculatePostIncRanges(OrigPhi);
1736 
1737   // The rewriter provides a value for the desired IV expression. This may
1738   // either find an existing phi or materialize a new one. Either way, we
1739   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1740   // of the phi-SCC dominates the loop entry.
1741   Instruction *InsertPt = &L->getHeader()->front();
1742   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1743 
1744   // Remembering the WideIV increment generated by SCEVExpander allows
1745   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1746   // employ a general reuse mechanism because the call above is the only call to
1747   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1748   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1749     WideInc =
1750       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1751     WideIncExpr = SE->getSCEV(WideInc);
1752     // Propagate the debug location associated with the original loop increment
1753     // to the new (widened) increment.
1754     auto *OrigInc =
1755       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1756     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1757   }
1758 
1759   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1760   ++NumWidened;
1761 
1762   // Traverse the def-use chain using a worklist starting at the original IV.
1763   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1764 
1765   Widened.insert(OrigPhi);
1766   pushNarrowIVUsers(OrigPhi, WidePhi);
1767 
1768   while (!NarrowIVUsers.empty()) {
1769     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1770 
1771     // Process a def-use edge. This may replace the use, so don't hold a
1772     // use_iterator across it.
1773     Instruction *WideUse = widenIVUse(DU, Rewriter);
1774 
1775     // Follow all def-use edges from the previous narrow use.
1776     if (WideUse)
1777       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1778 
1779     // widenIVUse may have removed the def-use edge.
1780     if (DU.NarrowDef->use_empty())
1781       DeadInsts.emplace_back(DU.NarrowDef);
1782   }
1783 
1784   // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1785   // evaluate the same recurrence, we can just copy the debug info over.
1786   SmallVector<DbgValueInst *, 1> DbgValues;
1787   llvm::findDbgValues(DbgValues, OrigPhi);
1788   auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1789                                      ValueAsMetadata::get(WidePhi));
1790   for (auto &DbgValue : DbgValues)
1791     DbgValue->setOperand(0, MDPhi);
1792   return WidePhi;
1793 }
1794 
1795 /// Calculates control-dependent range for the given def at the given context
1796 /// by looking at dominating conditions inside of the loop
1797 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1798                                     Instruction *NarrowUser) {
1799   using namespace llvm::PatternMatch;
1800 
1801   Value *NarrowDefLHS;
1802   const APInt *NarrowDefRHS;
1803   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1804                                  m_APInt(NarrowDefRHS))) ||
1805       !NarrowDefRHS->isNonNegative())
1806     return;
1807 
1808   auto UpdateRangeFromCondition = [&] (Value *Condition,
1809                                        bool TrueDest) {
1810     CmpInst::Predicate Pred;
1811     Value *CmpRHS;
1812     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1813                                  m_Value(CmpRHS))))
1814       return;
1815 
1816     CmpInst::Predicate P =
1817             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1818 
1819     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1820     auto CmpConstrainedLHSRange =
1821             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1822     auto NarrowDefRange =
1823             CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1824 
1825     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1826   };
1827 
1828   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1829     if (!HasGuards)
1830       return;
1831 
1832     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1833                                      Ctx->getParent()->rend())) {
1834       Value *C = nullptr;
1835       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1836         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1837     }
1838   };
1839 
1840   UpdateRangeFromGuards(NarrowUser);
1841 
1842   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1843   // If NarrowUserBB is statically unreachable asking dominator queries may
1844   // yield surprising results. (e.g. the block may not have a dom tree node)
1845   if (!DT->isReachableFromEntry(NarrowUserBB))
1846     return;
1847 
1848   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1849        L->contains(DTB->getBlock());
1850        DTB = DTB->getIDom()) {
1851     auto *BB = DTB->getBlock();
1852     auto *TI = BB->getTerminator();
1853     UpdateRangeFromGuards(TI);
1854 
1855     auto *BI = dyn_cast<BranchInst>(TI);
1856     if (!BI || !BI->isConditional())
1857       continue;
1858 
1859     auto *TrueSuccessor = BI->getSuccessor(0);
1860     auto *FalseSuccessor = BI->getSuccessor(1);
1861 
1862     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1863       return BBE.isSingleEdge() &&
1864              DT->dominates(BBE, NarrowUser->getParent());
1865     };
1866 
1867     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1868       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1869 
1870     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1871       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1872   }
1873 }
1874 
1875 /// Calculates PostIncRangeInfos map for the given IV
1876 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1877   SmallPtrSet<Instruction *, 16> Visited;
1878   SmallVector<Instruction *, 6> Worklist;
1879   Worklist.push_back(OrigPhi);
1880   Visited.insert(OrigPhi);
1881 
1882   while (!Worklist.empty()) {
1883     Instruction *NarrowDef = Worklist.pop_back_val();
1884 
1885     for (Use &U : NarrowDef->uses()) {
1886       auto *NarrowUser = cast<Instruction>(U.getUser());
1887 
1888       // Don't go looking outside the current loop.
1889       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1890       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1891         continue;
1892 
1893       if (!Visited.insert(NarrowUser).second)
1894         continue;
1895 
1896       Worklist.push_back(NarrowUser);
1897 
1898       calculatePostIncRange(NarrowDef, NarrowUser);
1899     }
1900   }
1901 }
1902 
1903 //===----------------------------------------------------------------------===//
1904 //  Live IV Reduction - Minimize IVs live across the loop.
1905 //===----------------------------------------------------------------------===//
1906 
1907 //===----------------------------------------------------------------------===//
1908 //  Simplification of IV users based on SCEV evaluation.
1909 //===----------------------------------------------------------------------===//
1910 
1911 namespace {
1912 
1913 class IndVarSimplifyVisitor : public IVVisitor {
1914   ScalarEvolution *SE;
1915   const TargetTransformInfo *TTI;
1916   PHINode *IVPhi;
1917 
1918 public:
1919   WideIVInfo WI;
1920 
1921   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1922                         const TargetTransformInfo *TTI,
1923                         const DominatorTree *DTree)
1924     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1925     DT = DTree;
1926     WI.NarrowIV = IVPhi;
1927   }
1928 
1929   // Implement the interface used by simplifyUsersOfIV.
1930   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1931 };
1932 
1933 } // end anonymous namespace
1934 
1935 /// Iteratively perform simplification on a worklist of IV users. Each
1936 /// successive simplification may push more users which may themselves be
1937 /// candidates for simplification.
1938 ///
1939 /// Sign/Zero extend elimination is interleaved with IV simplification.
1940 bool IndVarSimplify::simplifyAndExtend(Loop *L,
1941                                        SCEVExpander &Rewriter,
1942                                        LoopInfo *LI) {
1943   SmallVector<WideIVInfo, 8> WideIVs;
1944 
1945   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1946           Intrinsic::getName(Intrinsic::experimental_guard));
1947   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1948 
1949   SmallVector<PHINode*, 8> LoopPhis;
1950   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1951     LoopPhis.push_back(cast<PHINode>(I));
1952   }
1953   // Each round of simplification iterates through the SimplifyIVUsers worklist
1954   // for all current phis, then determines whether any IVs can be
1955   // widened. Widening adds new phis to LoopPhis, inducing another round of
1956   // simplification on the wide IVs.
1957   bool Changed = false;
1958   while (!LoopPhis.empty()) {
1959     // Evaluate as many IV expressions as possible before widening any IVs. This
1960     // forces SCEV to set no-wrap flags before evaluating sign/zero
1961     // extension. The first time SCEV attempts to normalize sign/zero extension,
1962     // the result becomes final. So for the most predictable results, we delay
1963     // evaluation of sign/zero extend evaluation until needed, and avoid running
1964     // other SCEV based analysis prior to simplifyAndExtend.
1965     do {
1966       PHINode *CurrIV = LoopPhis.pop_back_val();
1967 
1968       // Information about sign/zero extensions of CurrIV.
1969       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1970 
1971       Changed |=
1972           simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1973 
1974       if (Visitor.WI.WidestNativeType) {
1975         WideIVs.push_back(Visitor.WI);
1976       }
1977     } while(!LoopPhis.empty());
1978 
1979     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1980       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1981       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1982         Changed = true;
1983         LoopPhis.push_back(WidePhi);
1984       }
1985     }
1986   }
1987   return Changed;
1988 }
1989 
1990 //===----------------------------------------------------------------------===//
1991 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1992 //===----------------------------------------------------------------------===//
1993 
1994 /// Return true if this loop's backedge taken count expression can be safely and
1995 /// cheaply expanded into an instruction sequence that can be used by
1996 /// linearFunctionTestReplace.
1997 ///
1998 /// TODO: This fails for pointer-type loop counters with greater than one byte
1999 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
2000 /// we could skip this check in the case that the LFTR loop counter (chosen by
2001 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
2002 /// the loop test to an inequality test by checking the target data's alignment
2003 /// of element types (given that the initial pointer value originates from or is
2004 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
2005 /// However, we don't yet have a strong motivation for converting loop tests
2006 /// into inequality tests.
2007 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
2008                                         SCEVExpander &Rewriter) {
2009   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2010   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
2011       BackedgeTakenCount->isZero())
2012     return false;
2013 
2014   if (!L->getExitingBlock())
2015     return false;
2016 
2017   // Can't rewrite non-branch yet.
2018   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
2019     return false;
2020 
2021   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
2022     return false;
2023 
2024   return true;
2025 }
2026 
2027 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
2028 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
2029   Instruction *IncI = dyn_cast<Instruction>(IncV);
2030   if (!IncI)
2031     return nullptr;
2032 
2033   switch (IncI->getOpcode()) {
2034   case Instruction::Add:
2035   case Instruction::Sub:
2036     break;
2037   case Instruction::GetElementPtr:
2038     // An IV counter must preserve its type.
2039     if (IncI->getNumOperands() == 2)
2040       break;
2041     LLVM_FALLTHROUGH;
2042   default:
2043     return nullptr;
2044   }
2045 
2046   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
2047   if (Phi && Phi->getParent() == L->getHeader()) {
2048     if (isLoopInvariant(IncI->getOperand(1), L, DT))
2049       return Phi;
2050     return nullptr;
2051   }
2052   if (IncI->getOpcode() == Instruction::GetElementPtr)
2053     return nullptr;
2054 
2055   // Allow add/sub to be commuted.
2056   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
2057   if (Phi && Phi->getParent() == L->getHeader()) {
2058     if (isLoopInvariant(IncI->getOperand(0), L, DT))
2059       return Phi;
2060   }
2061   return nullptr;
2062 }
2063 
2064 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
2065 static ICmpInst *getLoopTest(Loop *L) {
2066   assert(L->getExitingBlock() && "expected loop exit");
2067 
2068   BasicBlock *LatchBlock = L->getLoopLatch();
2069   // Don't bother with LFTR if the loop is not properly simplified.
2070   if (!LatchBlock)
2071     return nullptr;
2072 
2073   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
2074   assert(BI && "expected exit branch");
2075 
2076   return dyn_cast<ICmpInst>(BI->getCondition());
2077 }
2078 
2079 /// linearFunctionTestReplace policy. Return true unless we can show that the
2080 /// current exit test is already sufficiently canonical.
2081 static bool needsLFTR(Loop *L, DominatorTree *DT) {
2082   // Do LFTR to simplify the exit condition to an ICMP.
2083   ICmpInst *Cond = getLoopTest(L);
2084   if (!Cond)
2085     return true;
2086 
2087   // Do LFTR to simplify the exit ICMP to EQ/NE
2088   ICmpInst::Predicate Pred = Cond->getPredicate();
2089   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
2090     return true;
2091 
2092   // Look for a loop invariant RHS
2093   Value *LHS = Cond->getOperand(0);
2094   Value *RHS = Cond->getOperand(1);
2095   if (!isLoopInvariant(RHS, L, DT)) {
2096     if (!isLoopInvariant(LHS, L, DT))
2097       return true;
2098     std::swap(LHS, RHS);
2099   }
2100   // Look for a simple IV counter LHS
2101   PHINode *Phi = dyn_cast<PHINode>(LHS);
2102   if (!Phi)
2103     Phi = getLoopPhiForCounter(LHS, L, DT);
2104 
2105   if (!Phi)
2106     return true;
2107 
2108   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2109   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
2110   if (Idx < 0)
2111     return true;
2112 
2113   // Do LFTR if the exit condition's IV is *not* a simple counter.
2114   Value *IncV = Phi->getIncomingValue(Idx);
2115   return Phi != getLoopPhiForCounter(IncV, L, DT);
2116 }
2117 
2118 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2119 /// down to checking that all operands are constant and listing instructions
2120 /// that may hide undef.
2121 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
2122                                unsigned Depth) {
2123   if (isa<Constant>(V))
2124     return !isa<UndefValue>(V);
2125 
2126   if (Depth >= 6)
2127     return false;
2128 
2129   // Conservatively handle non-constant non-instructions. For example, Arguments
2130   // may be undef.
2131   Instruction *I = dyn_cast<Instruction>(V);
2132   if (!I)
2133     return false;
2134 
2135   // Load and return values may be undef.
2136   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
2137     return false;
2138 
2139   // Optimistically handle other instructions.
2140   for (Value *Op : I->operands()) {
2141     if (!Visited.insert(Op).second)
2142       continue;
2143     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
2144       return false;
2145   }
2146   return true;
2147 }
2148 
2149 /// Return true if the given value is concrete. We must prove that undef can
2150 /// never reach it.
2151 ///
2152 /// TODO: If we decide that this is a good approach to checking for undef, we
2153 /// may factor it into a common location.
2154 static bool hasConcreteDef(Value *V) {
2155   SmallPtrSet<Value*, 8> Visited;
2156   Visited.insert(V);
2157   return hasConcreteDefImpl(V, Visited, 0);
2158 }
2159 
2160 /// Return true if this IV has any uses other than the (soon to be rewritten)
2161 /// loop exit test.
2162 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2163   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2164   Value *IncV = Phi->getIncomingValue(LatchIdx);
2165 
2166   for (User *U : Phi->users())
2167     if (U != Cond && U != IncV) return false;
2168 
2169   for (User *U : IncV->users())
2170     if (U != Cond && U != Phi) return false;
2171   return true;
2172 }
2173 
2174 /// Find an affine IV in canonical form.
2175 ///
2176 /// BECount may be an i8* pointer type. The pointer difference is already
2177 /// valid count without scaling the address stride, so it remains a pointer
2178 /// expression as far as SCEV is concerned.
2179 ///
2180 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
2181 ///
2182 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
2183 ///
2184 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
2185 /// This is difficult in general for SCEV because of potential overflow. But we
2186 /// could at least handle constant BECounts.
2187 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
2188                                 ScalarEvolution *SE, DominatorTree *DT) {
2189   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2190 
2191   Value *Cond =
2192     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
2193 
2194   // Loop over all of the PHI nodes, looking for a simple counter.
2195   PHINode *BestPhi = nullptr;
2196   const SCEV *BestInit = nullptr;
2197   BasicBlock *LatchBlock = L->getLoopLatch();
2198   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
2199   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2200 
2201   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2202     PHINode *Phi = cast<PHINode>(I);
2203     if (!SE->isSCEVable(Phi->getType()))
2204       continue;
2205 
2206     // Avoid comparing an integer IV against a pointer Limit.
2207     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2208       continue;
2209 
2210     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2211     if (!AR || AR->getLoop() != L || !AR->isAffine())
2212       continue;
2213 
2214     // AR may be a pointer type, while BECount is an integer type.
2215     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2216     // AR may not be a narrower type, or we may never exit.
2217     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2218     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2219       continue;
2220 
2221     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2222     if (!Step || !Step->isOne())
2223       continue;
2224 
2225     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2226     Value *IncV = Phi->getIncomingValue(LatchIdx);
2227     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
2228       continue;
2229 
2230     // Avoid reusing a potentially undef value to compute other values that may
2231     // have originally had a concrete definition.
2232     if (!hasConcreteDef(Phi)) {
2233       // We explicitly allow unknown phis as long as they are already used by
2234       // the loop test. In this case we assume that performing LFTR could not
2235       // increase the number of undef users.
2236       if (ICmpInst *Cond = getLoopTest(L)) {
2237         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) &&
2238             Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
2239           continue;
2240         }
2241       }
2242     }
2243     const SCEV *Init = AR->getStart();
2244 
2245     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2246       // Don't force a live loop counter if another IV can be used.
2247       if (AlmostDeadIV(Phi, LatchBlock, Cond))
2248         continue;
2249 
2250       // Prefer to count-from-zero. This is a more "canonical" counter form. It
2251       // also prefers integer to pointer IVs.
2252       if (BestInit->isZero() != Init->isZero()) {
2253         if (BestInit->isZero())
2254           continue;
2255       }
2256       // If two IVs both count from zero or both count from nonzero then the
2257       // narrower is likely a dead phi that has been widened. Use the wider phi
2258       // to allow the other to be eliminated.
2259       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2260         continue;
2261     }
2262     BestPhi = Phi;
2263     BestInit = Init;
2264   }
2265   return BestPhi;
2266 }
2267 
2268 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
2269 /// the new loop test.
2270 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
2271                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
2272   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2273   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
2274   const SCEV *IVInit = AR->getStart();
2275 
2276   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
2277   // finds a valid pointer IV. Sign extend BECount in order to materialize a
2278   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2279   // the existing GEPs whenever possible.
2280   if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
2281     // IVOffset will be the new GEP offset that is interpreted by GEP as a
2282     // signed value. IVCount on the other hand represents the loop trip count,
2283     // which is an unsigned value. FindLoopCounter only allows induction
2284     // variables that have a positive unit stride of one. This means we don't
2285     // have to handle the case of negative offsets (yet) and just need to zero
2286     // extend IVCount.
2287     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2288     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
2289 
2290     // Expand the code for the iteration count.
2291     assert(SE->isLoopInvariant(IVOffset, L) &&
2292            "Computed iteration count is not loop invariant!");
2293     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2294     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
2295 
2296     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
2297     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
2298     // We could handle pointer IVs other than i8*, but we need to compensate for
2299     // gep index scaling. See canExpandBackedgeTakenCount comments.
2300     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2301                              cast<PointerType>(GEPBase->getType())
2302                                  ->getElementType())->isOne() &&
2303            "unit stride pointer IV must be i8*");
2304 
2305     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2306     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
2307   } else {
2308     // In any other case, convert both IVInit and IVCount to integers before
2309     // comparing. This may result in SCEV expansion of pointers, but in practice
2310     // SCEV will fold the pointer arithmetic away as such:
2311     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2312     //
2313     // Valid Cases: (1) both integers is most common; (2) both may be pointers
2314     // for simple memset-style loops.
2315     //
2316     // IVInit integer and IVCount pointer would only occur if a canonical IV
2317     // were generated on top of case #2, which is not expected.
2318 
2319     const SCEV *IVLimit = nullptr;
2320     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
2321     // For non-zero Start, compute IVCount here.
2322     if (AR->getStart()->isZero())
2323       IVLimit = IVCount;
2324     else {
2325       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2326       const SCEV *IVInit = AR->getStart();
2327 
2328       // For integer IVs, truncate the IV before computing IVInit + BECount.
2329       if (SE->getTypeSizeInBits(IVInit->getType())
2330           > SE->getTypeSizeInBits(IVCount->getType()))
2331         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
2332 
2333       IVLimit = SE->getAddExpr(IVInit, IVCount);
2334     }
2335     // Expand the code for the iteration count.
2336     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2337     IRBuilder<> Builder(BI);
2338     assert(SE->isLoopInvariant(IVLimit, L) &&
2339            "Computed iteration count is not loop invariant!");
2340     // Ensure that we generate the same type as IndVar, or a smaller integer
2341     // type. In the presence of null pointer values, we have an integer type
2342     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2343     Type *LimitTy = IVCount->getType()->isPointerTy() ?
2344       IndVar->getType() : IVCount->getType();
2345     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2346   }
2347 }
2348 
2349 /// This method rewrites the exit condition of the loop to be a canonical !=
2350 /// comparison against the incremented loop induction variable.  This pass is
2351 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2352 /// determine a loop-invariant trip count of the loop, which is actually a much
2353 /// broader range than just linear tests.
2354 bool IndVarSimplify::
2355 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
2356                           PHINode *IndVar, SCEVExpander &Rewriter) {
2357   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
2358 
2359   // Initialize CmpIndVar and IVCount to their preincremented values.
2360   Value *CmpIndVar = IndVar;
2361   const SCEV *IVCount = BackedgeTakenCount;
2362 
2363   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2364 
2365   // If the exiting block is the same as the backedge block, we prefer to
2366   // compare against the post-incremented value, otherwise we must compare
2367   // against the preincremented value.
2368   if (L->getExitingBlock() == L->getLoopLatch()) {
2369     // Add one to the "backedge-taken" count to get the trip count.
2370     // This addition may overflow, which is valid as long as the comparison is
2371     // truncated to BackedgeTakenCount->getType().
2372     IVCount = SE->getAddExpr(BackedgeTakenCount,
2373                              SE->getOne(BackedgeTakenCount->getType()));
2374     // The BackedgeTaken expression contains the number of times that the
2375     // backedge branches to the loop header.  This is one less than the
2376     // number of times the loop executes, so use the incremented indvar.
2377     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
2378   }
2379 
2380   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
2381   assert(ExitCnt->getType()->isPointerTy() ==
2382              IndVar->getType()->isPointerTy() &&
2383          "genLoopLimit missed a cast");
2384 
2385   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2386   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2387   ICmpInst::Predicate P;
2388   if (L->contains(BI->getSuccessor(0)))
2389     P = ICmpInst::ICMP_NE;
2390   else
2391     P = ICmpInst::ICMP_EQ;
2392 
2393   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2394                     << "      LHS:" << *CmpIndVar << '\n'
2395                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
2396                     << "\n"
2397                     << "      RHS:\t" << *ExitCnt << "\n"
2398                     << "  IVCount:\t" << *IVCount << "\n");
2399 
2400   IRBuilder<> Builder(BI);
2401 
2402   // The new loop exit condition should reuse the debug location of the
2403   // original loop exit condition.
2404   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2405     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2406 
2407   // LFTR can ignore IV overflow and truncate to the width of
2408   // BECount. This avoids materializing the add(zext(add)) expression.
2409   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2410   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2411   if (CmpIndVarSize > ExitCntSize) {
2412     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2413     const SCEV *ARStart = AR->getStart();
2414     const SCEV *ARStep = AR->getStepRecurrence(*SE);
2415     // For constant IVCount, avoid truncation.
2416     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2417       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2418       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2419       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2420       // above such that IVCount is now zero.
2421       if (IVCount != BackedgeTakenCount && Count == 0) {
2422         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2423         ++Count;
2424       }
2425       else
2426         Count = Count.zext(CmpIndVarSize);
2427       APInt NewLimit;
2428       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2429         NewLimit = Start - Count;
2430       else
2431         NewLimit = Start + Count;
2432       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2433 
2434       LLVM_DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2435     } else {
2436       // We try to extend trip count first. If that doesn't work we truncate IV.
2437       // Zext(trunc(IV)) == IV implies equivalence of the following two:
2438       // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2439       // one of the two holds, extend the trip count, otherwise we truncate IV.
2440       bool Extended = false;
2441       const SCEV *IV = SE->getSCEV(CmpIndVar);
2442       const SCEV *ZExtTrunc =
2443            SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2444                                                      ExitCnt->getType()),
2445                                  CmpIndVar->getType());
2446 
2447       if (ZExtTrunc == IV) {
2448         Extended = true;
2449         ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2450                                      "wide.trip.count");
2451       } else {
2452         const SCEV *SExtTrunc =
2453           SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2454                                                     ExitCnt->getType()),
2455                                 CmpIndVar->getType());
2456         if (SExtTrunc == IV) {
2457           Extended = true;
2458           ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2459                                        "wide.trip.count");
2460         }
2461       }
2462 
2463       if (!Extended)
2464         CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2465                                         "lftr.wideiv");
2466     }
2467   }
2468   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2469   Value *OrigCond = BI->getCondition();
2470   // It's tempting to use replaceAllUsesWith here to fully replace the old
2471   // comparison, but that's not immediately safe, since users of the old
2472   // comparison may not be dominated by the new comparison. Instead, just
2473   // update the branch to use the new comparison; in the common case this
2474   // will make old comparison dead.
2475   BI->setCondition(Cond);
2476   DeadInsts.push_back(OrigCond);
2477 
2478   ++NumLFTR;
2479   return true;
2480 }
2481 
2482 //===----------------------------------------------------------------------===//
2483 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2484 //===----------------------------------------------------------------------===//
2485 
2486 /// If there's a single exit block, sink any loop-invariant values that
2487 /// were defined in the preheader but not used inside the loop into the
2488 /// exit block to reduce register pressure in the loop.
2489 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2490   BasicBlock *ExitBlock = L->getExitBlock();
2491   if (!ExitBlock) return false;
2492 
2493   BasicBlock *Preheader = L->getLoopPreheader();
2494   if (!Preheader) return false;
2495 
2496   bool MadeAnyChanges = false;
2497   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2498   BasicBlock::iterator I(Preheader->getTerminator());
2499   while (I != Preheader->begin()) {
2500     --I;
2501     // New instructions were inserted at the end of the preheader.
2502     if (isa<PHINode>(I))
2503       break;
2504 
2505     // Don't move instructions which might have side effects, since the side
2506     // effects need to complete before instructions inside the loop.  Also don't
2507     // move instructions which might read memory, since the loop may modify
2508     // memory. Note that it's okay if the instruction might have undefined
2509     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2510     // block.
2511     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2512       continue;
2513 
2514     // Skip debug info intrinsics.
2515     if (isa<DbgInfoIntrinsic>(I))
2516       continue;
2517 
2518     // Skip eh pad instructions.
2519     if (I->isEHPad())
2520       continue;
2521 
2522     // Don't sink alloca: we never want to sink static alloca's out of the
2523     // entry block, and correctly sinking dynamic alloca's requires
2524     // checks for stacksave/stackrestore intrinsics.
2525     // FIXME: Refactor this check somehow?
2526     if (isa<AllocaInst>(I))
2527       continue;
2528 
2529     // Determine if there is a use in or before the loop (direct or
2530     // otherwise).
2531     bool UsedInLoop = false;
2532     for (Use &U : I->uses()) {
2533       Instruction *User = cast<Instruction>(U.getUser());
2534       BasicBlock *UseBB = User->getParent();
2535       if (PHINode *P = dyn_cast<PHINode>(User)) {
2536         unsigned i =
2537           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2538         UseBB = P->getIncomingBlock(i);
2539       }
2540       if (UseBB == Preheader || L->contains(UseBB)) {
2541         UsedInLoop = true;
2542         break;
2543       }
2544     }
2545 
2546     // If there is, the def must remain in the preheader.
2547     if (UsedInLoop)
2548       continue;
2549 
2550     // Otherwise, sink it to the exit block.
2551     Instruction *ToMove = &*I;
2552     bool Done = false;
2553 
2554     if (I != Preheader->begin()) {
2555       // Skip debug info intrinsics.
2556       do {
2557         --I;
2558       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2559 
2560       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2561         Done = true;
2562     } else {
2563       Done = true;
2564     }
2565 
2566     MadeAnyChanges = true;
2567     ToMove->moveBefore(*ExitBlock, InsertPt);
2568     if (Done) break;
2569     InsertPt = ToMove->getIterator();
2570   }
2571 
2572   return MadeAnyChanges;
2573 }
2574 
2575 //===----------------------------------------------------------------------===//
2576 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2577 //===----------------------------------------------------------------------===//
2578 
2579 bool IndVarSimplify::run(Loop *L) {
2580   // We need (and expect!) the incoming loop to be in LCSSA.
2581   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2582          "LCSSA required to run indvars!");
2583   bool Changed = false;
2584 
2585   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2586   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2587   //    canonicalization can be a pessimization without LSR to "clean up"
2588   //    afterwards.
2589   //  - We depend on having a preheader; in particular,
2590   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2591   //    and we're in trouble if we can't find the induction variable even when
2592   //    we've manually inserted one.
2593   //  - LFTR relies on having a single backedge.
2594   if (!L->isLoopSimplifyForm())
2595     return false;
2596 
2597   // If there are any floating-point recurrences, attempt to
2598   // transform them to use integer recurrences.
2599   Changed |= rewriteNonIntegerIVs(L);
2600 
2601   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2602 
2603   // Create a rewriter object which we'll use to transform the code with.
2604   SCEVExpander Rewriter(*SE, DL, "indvars");
2605 #ifndef NDEBUG
2606   Rewriter.setDebugType(DEBUG_TYPE);
2607 #endif
2608 
2609   // Eliminate redundant IV users.
2610   //
2611   // Simplification works best when run before other consumers of SCEV. We
2612   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2613   // other expressions involving loop IVs have been evaluated. This helps SCEV
2614   // set no-wrap flags before normalizing sign/zero extension.
2615   Rewriter.disableCanonicalMode();
2616   Changed |= simplifyAndExtend(L, Rewriter, LI);
2617 
2618   // Check to see if this loop has a computable loop-invariant execution count.
2619   // If so, this means that we can compute the final value of any expressions
2620   // that are recurrent in the loop, and substitute the exit values from the
2621   // loop into any instructions outside of the loop that use the final values of
2622   // the current expressions.
2623   //
2624   if (ReplaceExitValue != NeverRepl &&
2625       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2626     Changed |= rewriteLoopExitValues(L, Rewriter);
2627 
2628   // Eliminate redundant IV cycles.
2629   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2630 
2631   // If we have a trip count expression, rewrite the loop's exit condition
2632   // using it.  We can currently only handle loops with a single exit.
2633   if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) &&
2634       needsLFTR(L, DT)) {
2635     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2636     if (IndVar) {
2637       // Check preconditions for proper SCEVExpander operation. SCEV does not
2638       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2639       // pass that uses the SCEVExpander must do it. This does not work well for
2640       // loop passes because SCEVExpander makes assumptions about all loops,
2641       // while LoopPassManager only forces the current loop to be simplified.
2642       //
2643       // FIXME: SCEV expansion has no way to bail out, so the caller must
2644       // explicitly check any assumptions made by SCEV. Brittle.
2645       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2646       if (!AR || AR->getLoop()->getLoopPreheader())
2647         Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2648                                              Rewriter);
2649     }
2650   }
2651   // Clear the rewriter cache, because values that are in the rewriter's cache
2652   // can be deleted in the loop below, causing the AssertingVH in the cache to
2653   // trigger.
2654   Rewriter.clear();
2655 
2656   // Now that we're done iterating through lists, clean up any instructions
2657   // which are now dead.
2658   while (!DeadInsts.empty())
2659     if (Instruction *Inst =
2660             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2661       Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2662 
2663   // The Rewriter may not be used from this point on.
2664 
2665   // Loop-invariant instructions in the preheader that aren't used in the
2666   // loop may be sunk below the loop to reduce register pressure.
2667   Changed |= sinkUnusedInvariants(L);
2668 
2669   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2670   // trip count and therefore can further simplify exit values in addition to
2671   // rewriteLoopExitValues.
2672   Changed |= rewriteFirstIterationLoopExitValues(L);
2673 
2674   // Clean up dead instructions.
2675   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2676 
2677   // Check a post-condition.
2678   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2679          "Indvars did not preserve LCSSA!");
2680 
2681   // Verify that LFTR, and any other change have not interfered with SCEV's
2682   // ability to compute trip count.
2683 #ifndef NDEBUG
2684   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2685     SE->forgetLoop(L);
2686     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2687     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2688         SE->getTypeSizeInBits(NewBECount->getType()))
2689       NewBECount = SE->getTruncateOrNoop(NewBECount,
2690                                          BackedgeTakenCount->getType());
2691     else
2692       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2693                                                  NewBECount->getType());
2694     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2695   }
2696 #endif
2697 
2698   return Changed;
2699 }
2700 
2701 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2702                                           LoopStandardAnalysisResults &AR,
2703                                           LPMUpdater &) {
2704   Function *F = L.getHeader()->getParent();
2705   const DataLayout &DL = F->getParent()->getDataLayout();
2706 
2707   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2708   if (!IVS.run(&L))
2709     return PreservedAnalyses::all();
2710 
2711   auto PA = getLoopPassPreservedAnalyses();
2712   PA.preserveSet<CFGAnalyses>();
2713   return PA;
2714 }
2715 
2716 namespace {
2717 
2718 struct IndVarSimplifyLegacyPass : public LoopPass {
2719   static char ID; // Pass identification, replacement for typeid
2720 
2721   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2722     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2723   }
2724 
2725   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2726     if (skipLoop(L))
2727       return false;
2728 
2729     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2730     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2731     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2732     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2733     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2734     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2735     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2736     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2737 
2738     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2739     return IVS.run(L);
2740   }
2741 
2742   void getAnalysisUsage(AnalysisUsage &AU) const override {
2743     AU.setPreservesCFG();
2744     getLoopAnalysisUsage(AU);
2745   }
2746 };
2747 
2748 } // end anonymous namespace
2749 
2750 char IndVarSimplifyLegacyPass::ID = 0;
2751 
2752 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2753                       "Induction Variable Simplification", false, false)
2754 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2755 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2756                     "Induction Variable Simplification", false, false)
2757 
2758 Pass *llvm::createIndVarSimplifyPass() {
2759   return new IndVarSimplifyLegacyPass();
2760 }
2761