1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into simpler forms suitable for subsequent 11 // analysis and transformation. 12 // 13 // If the trip count of a loop is computable, this pass also makes the following 14 // changes: 15 // 1. The exit condition for the loop is canonicalized to compare the 16 // induction value against the exit value. This turns loops like: 17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 18 // 2. Any use outside of the loop of an expression derived from the indvar 19 // is changed to compute the derived value outside of the loop, eliminating 20 // the dependence on the exit value of the induction variable. If the only 21 // purpose of the loop is to compute the exit value of some derived 22 // expression, this transformation will make the loop dead. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/None.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/ADT/iterator_range.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Analysis/ScalarEvolution.h" 41 #include "llvm/Analysis/ScalarEvolutionExpander.h" 42 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/TargetTransformInfo.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/ConstantRange.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PassManager.h" 63 #include "llvm/IR/PatternMatch.h" 64 #include "llvm/IR/Type.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/User.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/IR/ValueHandle.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/MathExtras.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/Scalar.h" 78 #include "llvm/Transforms/Scalar/LoopPassManager.h" 79 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 80 #include "llvm/Transforms/Utils/LoopUtils.h" 81 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 82 #include <cassert> 83 #include <cstdint> 84 #include <utility> 85 86 using namespace llvm; 87 88 #define DEBUG_TYPE "indvars" 89 90 STATISTIC(NumWidened , "Number of indvars widened"); 91 STATISTIC(NumReplaced , "Number of exit values replaced"); 92 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 93 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 94 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 95 96 // Trip count verification can be enabled by default under NDEBUG if we 97 // implement a strong expression equivalence checker in SCEV. Until then, we 98 // use the verify-indvars flag, which may assert in some cases. 99 static cl::opt<bool> VerifyIndvars( 100 "verify-indvars", cl::Hidden, 101 cl::desc("Verify the ScalarEvolution result after running indvars")); 102 103 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 104 105 static cl::opt<ReplaceExitVal> ReplaceExitValue( 106 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 107 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 108 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 109 clEnumValN(OnlyCheapRepl, "cheap", 110 "only replace exit value when the cost is cheap"), 111 clEnumValN(AlwaysRepl, "always", 112 "always replace exit value whenever possible"))); 113 114 static cl::opt<bool> UsePostIncrementRanges( 115 "indvars-post-increment-ranges", cl::Hidden, 116 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 117 cl::init(true)); 118 119 static cl::opt<bool> 120 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 121 cl::desc("Disable Linear Function Test Replace optimization")); 122 123 namespace { 124 125 struct RewritePhi; 126 127 class IndVarSimplify { 128 LoopInfo *LI; 129 ScalarEvolution *SE; 130 DominatorTree *DT; 131 const DataLayout &DL; 132 TargetLibraryInfo *TLI; 133 const TargetTransformInfo *TTI; 134 135 SmallVector<WeakTrackingVH, 16> DeadInsts; 136 137 bool isValidRewrite(Value *FromVal, Value *ToVal); 138 139 bool handleFloatingPointIV(Loop *L, PHINode *PH); 140 bool rewriteNonIntegerIVs(Loop *L); 141 142 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 143 144 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 145 bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 146 bool rewriteFirstIterationLoopExitValues(Loop *L); 147 bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const; 148 149 bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 150 const SCEV *BackedgeTakenCount, 151 PHINode *IndVar, SCEVExpander &Rewriter); 152 153 bool sinkUnusedInvariants(Loop *L); 154 155 public: 156 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 157 const DataLayout &DL, TargetLibraryInfo *TLI, 158 TargetTransformInfo *TTI) 159 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 160 161 bool run(Loop *L); 162 }; 163 164 } // end anonymous namespace 165 166 /// Return true if the SCEV expansion generated by the rewriter can replace the 167 /// original value. SCEV guarantees that it produces the same value, but the way 168 /// it is produced may be illegal IR. Ideally, this function will only be 169 /// called for verification. 170 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 171 // If an SCEV expression subsumed multiple pointers, its expansion could 172 // reassociate the GEP changing the base pointer. This is illegal because the 173 // final address produced by a GEP chain must be inbounds relative to its 174 // underlying object. Otherwise basic alias analysis, among other things, 175 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 176 // producing an expression involving multiple pointers. Until then, we must 177 // bail out here. 178 // 179 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 180 // because it understands lcssa phis while SCEV does not. 181 Value *FromPtr = FromVal; 182 Value *ToPtr = ToVal; 183 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 184 FromPtr = GEP->getPointerOperand(); 185 } 186 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 187 ToPtr = GEP->getPointerOperand(); 188 } 189 if (FromPtr != FromVal || ToPtr != ToVal) { 190 // Quickly check the common case 191 if (FromPtr == ToPtr) 192 return true; 193 194 // SCEV may have rewritten an expression that produces the GEP's pointer 195 // operand. That's ok as long as the pointer operand has the same base 196 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 197 // base of a recurrence. This handles the case in which SCEV expansion 198 // converts a pointer type recurrence into a nonrecurrent pointer base 199 // indexed by an integer recurrence. 200 201 // If the GEP base pointer is a vector of pointers, abort. 202 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 203 return false; 204 205 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 206 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 207 if (FromBase == ToBase) 208 return true; 209 210 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 211 << " != " << *ToBase << "\n"); 212 213 return false; 214 } 215 return true; 216 } 217 218 /// Determine the insertion point for this user. By default, insert immediately 219 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 220 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 221 /// common dominator for the incoming blocks. A nullptr can be returned if no 222 /// viable location is found: it may happen if User is a PHI and Def only comes 223 /// to this PHI from unreachable blocks. 224 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 225 DominatorTree *DT, LoopInfo *LI) { 226 PHINode *PHI = dyn_cast<PHINode>(User); 227 if (!PHI) 228 return User; 229 230 Instruction *InsertPt = nullptr; 231 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 232 if (PHI->getIncomingValue(i) != Def) 233 continue; 234 235 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 236 237 if (!DT->isReachableFromEntry(InsertBB)) 238 continue; 239 240 if (!InsertPt) { 241 InsertPt = InsertBB->getTerminator(); 242 continue; 243 } 244 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 245 InsertPt = InsertBB->getTerminator(); 246 } 247 248 // If we have skipped all inputs, it means that Def only comes to Phi from 249 // unreachable blocks. 250 if (!InsertPt) 251 return nullptr; 252 253 auto *DefI = dyn_cast<Instruction>(Def); 254 if (!DefI) 255 return InsertPt; 256 257 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 258 259 auto *L = LI->getLoopFor(DefI->getParent()); 260 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 261 262 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 263 if (LI->getLoopFor(DTN->getBlock()) == L) 264 return DTN->getBlock()->getTerminator(); 265 266 llvm_unreachable("DefI dominates InsertPt!"); 267 } 268 269 //===----------------------------------------------------------------------===// 270 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 271 //===----------------------------------------------------------------------===// 272 273 /// Convert APF to an integer, if possible. 274 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 275 bool isExact = false; 276 // See if we can convert this to an int64_t 277 uint64_t UIntVal; 278 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 279 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 280 !isExact) 281 return false; 282 IntVal = UIntVal; 283 return true; 284 } 285 286 /// If the loop has floating induction variable then insert corresponding 287 /// integer induction variable if possible. 288 /// For example, 289 /// for(double i = 0; i < 10000; ++i) 290 /// bar(i) 291 /// is converted into 292 /// for(int i = 0; i < 10000; ++i) 293 /// bar((double)i); 294 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 295 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 296 unsigned BackEdge = IncomingEdge^1; 297 298 // Check incoming value. 299 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 300 301 int64_t InitValue; 302 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 303 return false; 304 305 // Check IV increment. Reject this PN if increment operation is not 306 // an add or increment value can not be represented by an integer. 307 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 308 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 309 310 // If this is not an add of the PHI with a constantfp, or if the constant fp 311 // is not an integer, bail out. 312 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 313 int64_t IncValue; 314 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 315 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 316 return false; 317 318 // Check Incr uses. One user is PN and the other user is an exit condition 319 // used by the conditional terminator. 320 Value::user_iterator IncrUse = Incr->user_begin(); 321 Instruction *U1 = cast<Instruction>(*IncrUse++); 322 if (IncrUse == Incr->user_end()) return false; 323 Instruction *U2 = cast<Instruction>(*IncrUse++); 324 if (IncrUse != Incr->user_end()) return false; 325 326 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 327 // only used by a branch, we can't transform it. 328 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 329 if (!Compare) 330 Compare = dyn_cast<FCmpInst>(U2); 331 if (!Compare || !Compare->hasOneUse() || 332 !isa<BranchInst>(Compare->user_back())) 333 return false; 334 335 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 336 337 // We need to verify that the branch actually controls the iteration count 338 // of the loop. If not, the new IV can overflow and no one will notice. 339 // The branch block must be in the loop and one of the successors must be out 340 // of the loop. 341 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 342 if (!L->contains(TheBr->getParent()) || 343 (L->contains(TheBr->getSuccessor(0)) && 344 L->contains(TheBr->getSuccessor(1)))) 345 return false; 346 347 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 348 // transform it. 349 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 350 int64_t ExitValue; 351 if (ExitValueVal == nullptr || 352 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 353 return false; 354 355 // Find new predicate for integer comparison. 356 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 357 switch (Compare->getPredicate()) { 358 default: return false; // Unknown comparison. 359 case CmpInst::FCMP_OEQ: 360 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 361 case CmpInst::FCMP_ONE: 362 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 363 case CmpInst::FCMP_OGT: 364 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 365 case CmpInst::FCMP_OGE: 366 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 367 case CmpInst::FCMP_OLT: 368 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 369 case CmpInst::FCMP_OLE: 370 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 371 } 372 373 // We convert the floating point induction variable to a signed i32 value if 374 // we can. This is only safe if the comparison will not overflow in a way 375 // that won't be trapped by the integer equivalent operations. Check for this 376 // now. 377 // TODO: We could use i64 if it is native and the range requires it. 378 379 // The start/stride/exit values must all fit in signed i32. 380 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 381 return false; 382 383 // If not actually striding (add x, 0.0), avoid touching the code. 384 if (IncValue == 0) 385 return false; 386 387 // Positive and negative strides have different safety conditions. 388 if (IncValue > 0) { 389 // If we have a positive stride, we require the init to be less than the 390 // exit value. 391 if (InitValue >= ExitValue) 392 return false; 393 394 uint32_t Range = uint32_t(ExitValue-InitValue); 395 // Check for infinite loop, either: 396 // while (i <= Exit) or until (i > Exit) 397 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 398 if (++Range == 0) return false; // Range overflows. 399 } 400 401 unsigned Leftover = Range % uint32_t(IncValue); 402 403 // If this is an equality comparison, we require that the strided value 404 // exactly land on the exit value, otherwise the IV condition will wrap 405 // around and do things the fp IV wouldn't. 406 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 407 Leftover != 0) 408 return false; 409 410 // If the stride would wrap around the i32 before exiting, we can't 411 // transform the IV. 412 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 413 return false; 414 } else { 415 // If we have a negative stride, we require the init to be greater than the 416 // exit value. 417 if (InitValue <= ExitValue) 418 return false; 419 420 uint32_t Range = uint32_t(InitValue-ExitValue); 421 // Check for infinite loop, either: 422 // while (i >= Exit) or until (i < Exit) 423 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 424 if (++Range == 0) return false; // Range overflows. 425 } 426 427 unsigned Leftover = Range % uint32_t(-IncValue); 428 429 // If this is an equality comparison, we require that the strided value 430 // exactly land on the exit value, otherwise the IV condition will wrap 431 // around and do things the fp IV wouldn't. 432 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 433 Leftover != 0) 434 return false; 435 436 // If the stride would wrap around the i32 before exiting, we can't 437 // transform the IV. 438 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 439 return false; 440 } 441 442 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 443 444 // Insert new integer induction variable. 445 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 446 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 447 PN->getIncomingBlock(IncomingEdge)); 448 449 Value *NewAdd = 450 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 451 Incr->getName()+".int", Incr); 452 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 453 454 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 455 ConstantInt::get(Int32Ty, ExitValue), 456 Compare->getName()); 457 458 // In the following deletions, PN may become dead and may be deleted. 459 // Use a WeakTrackingVH to observe whether this happens. 460 WeakTrackingVH WeakPH = PN; 461 462 // Delete the old floating point exit comparison. The branch starts using the 463 // new comparison. 464 NewCompare->takeName(Compare); 465 Compare->replaceAllUsesWith(NewCompare); 466 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 467 468 // Delete the old floating point increment. 469 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 470 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 471 472 // If the FP induction variable still has uses, this is because something else 473 // in the loop uses its value. In order to canonicalize the induction 474 // variable, we chose to eliminate the IV and rewrite it in terms of an 475 // int->fp cast. 476 // 477 // We give preference to sitofp over uitofp because it is faster on most 478 // platforms. 479 if (WeakPH) { 480 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 481 &*PN->getParent()->getFirstInsertionPt()); 482 PN->replaceAllUsesWith(Conv); 483 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 484 } 485 return true; 486 } 487 488 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 489 // First step. Check to see if there are any floating-point recurrences. 490 // If there are, change them into integer recurrences, permitting analysis by 491 // the SCEV routines. 492 BasicBlock *Header = L->getHeader(); 493 494 SmallVector<WeakTrackingVH, 8> PHIs; 495 for (PHINode &PN : Header->phis()) 496 PHIs.push_back(&PN); 497 498 bool Changed = false; 499 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 500 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 501 Changed |= handleFloatingPointIV(L, PN); 502 503 // If the loop previously had floating-point IV, ScalarEvolution 504 // may not have been able to compute a trip count. Now that we've done some 505 // re-writing, the trip count may be computable. 506 if (Changed) 507 SE->forgetLoop(L); 508 return Changed; 509 } 510 511 namespace { 512 513 // Collect information about PHI nodes which can be transformed in 514 // rewriteLoopExitValues. 515 struct RewritePhi { 516 PHINode *PN; 517 518 // Ith incoming value. 519 unsigned Ith; 520 521 // Exit value after expansion. 522 Value *Val; 523 524 // High Cost when expansion. 525 bool HighCost; 526 527 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 528 : PN(P), Ith(I), Val(V), HighCost(H) {} 529 }; 530 531 } // end anonymous namespace 532 533 //===----------------------------------------------------------------------===// 534 // rewriteLoopExitValues - Optimize IV users outside the loop. 535 // As a side effect, reduces the amount of IV processing within the loop. 536 //===----------------------------------------------------------------------===// 537 538 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const { 539 SmallPtrSet<const Instruction *, 8> Visited; 540 SmallVector<const Instruction *, 8> WorkList; 541 Visited.insert(I); 542 WorkList.push_back(I); 543 while (!WorkList.empty()) { 544 const Instruction *Curr = WorkList.pop_back_val(); 545 // This use is outside the loop, nothing to do. 546 if (!L->contains(Curr)) 547 continue; 548 // Do we assume it is a "hard" use which will not be eliminated easily? 549 if (Curr->mayHaveSideEffects()) 550 return true; 551 // Otherwise, add all its users to worklist. 552 for (auto U : Curr->users()) { 553 auto *UI = cast<Instruction>(U); 554 if (Visited.insert(UI).second) 555 WorkList.push_back(UI); 556 } 557 } 558 return false; 559 } 560 561 /// Check to see if this loop has a computable loop-invariant execution count. 562 /// If so, this means that we can compute the final value of any expressions 563 /// that are recurrent in the loop, and substitute the exit values from the loop 564 /// into any instructions outside of the loop that use the final values of the 565 /// current expressions. 566 /// 567 /// This is mostly redundant with the regular IndVarSimplify activities that 568 /// happen later, except that it's more powerful in some cases, because it's 569 /// able to brute-force evaluate arbitrary instructions as long as they have 570 /// constant operands at the beginning of the loop. 571 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 572 // Check a pre-condition. 573 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 574 "Indvars did not preserve LCSSA!"); 575 576 SmallVector<BasicBlock*, 8> ExitBlocks; 577 L->getUniqueExitBlocks(ExitBlocks); 578 579 SmallVector<RewritePhi, 8> RewritePhiSet; 580 // Find all values that are computed inside the loop, but used outside of it. 581 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 582 // the exit blocks of the loop to find them. 583 for (BasicBlock *ExitBB : ExitBlocks) { 584 // If there are no PHI nodes in this exit block, then no values defined 585 // inside the loop are used on this path, skip it. 586 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 587 if (!PN) continue; 588 589 unsigned NumPreds = PN->getNumIncomingValues(); 590 591 // Iterate over all of the PHI nodes. 592 BasicBlock::iterator BBI = ExitBB->begin(); 593 while ((PN = dyn_cast<PHINode>(BBI++))) { 594 if (PN->use_empty()) 595 continue; // dead use, don't replace it 596 597 if (!SE->isSCEVable(PN->getType())) 598 continue; 599 600 // It's necessary to tell ScalarEvolution about this explicitly so that 601 // it can walk the def-use list and forget all SCEVs, as it may not be 602 // watching the PHI itself. Once the new exit value is in place, there 603 // may not be a def-use connection between the loop and every instruction 604 // which got a SCEVAddRecExpr for that loop. 605 SE->forgetValue(PN); 606 607 // Iterate over all of the values in all the PHI nodes. 608 for (unsigned i = 0; i != NumPreds; ++i) { 609 // If the value being merged in is not integer or is not defined 610 // in the loop, skip it. 611 Value *InVal = PN->getIncomingValue(i); 612 if (!isa<Instruction>(InVal)) 613 continue; 614 615 // If this pred is for a subloop, not L itself, skip it. 616 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 617 continue; // The Block is in a subloop, skip it. 618 619 // Check that InVal is defined in the loop. 620 Instruction *Inst = cast<Instruction>(InVal); 621 if (!L->contains(Inst)) 622 continue; 623 624 // Okay, this instruction has a user outside of the current loop 625 // and varies predictably *inside* the loop. Evaluate the value it 626 // contains when the loop exits, if possible. 627 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 628 if (!SE->isLoopInvariant(ExitValue, L) || 629 !isSafeToExpand(ExitValue, *SE)) 630 continue; 631 632 // Computing the value outside of the loop brings no benefit if it is 633 // definitely used inside the loop in a way which can not be optimized 634 // away. 635 if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 636 continue; 637 638 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 639 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 640 641 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 642 << '\n' 643 << " LoopVal = " << *Inst << "\n"); 644 645 if (!isValidRewrite(Inst, ExitVal)) { 646 DeadInsts.push_back(ExitVal); 647 continue; 648 } 649 650 #ifndef NDEBUG 651 // If we reuse an instruction from a loop which is neither L nor one of 652 // its containing loops, we end up breaking LCSSA form for this loop by 653 // creating a new use of its instruction. 654 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 655 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 656 if (EVL != L) 657 assert(EVL->contains(L) && "LCSSA breach detected!"); 658 #endif 659 660 // Collect all the candidate PHINodes to be rewritten. 661 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 662 } 663 } 664 } 665 666 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 667 668 bool Changed = false; 669 // Transformation. 670 for (const RewritePhi &Phi : RewritePhiSet) { 671 PHINode *PN = Phi.PN; 672 Value *ExitVal = Phi.Val; 673 674 // Only do the rewrite when the ExitValue can be expanded cheaply. 675 // If LoopCanBeDel is true, rewrite exit value aggressively. 676 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 677 DeadInsts.push_back(ExitVal); 678 continue; 679 } 680 681 Changed = true; 682 ++NumReplaced; 683 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 684 PN->setIncomingValue(Phi.Ith, ExitVal); 685 686 // If this instruction is dead now, delete it. Don't do it now to avoid 687 // invalidating iterators. 688 if (isInstructionTriviallyDead(Inst, TLI)) 689 DeadInsts.push_back(Inst); 690 691 // Replace PN with ExitVal if that is legal and does not break LCSSA. 692 if (PN->getNumIncomingValues() == 1 && 693 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 694 PN->replaceAllUsesWith(ExitVal); 695 PN->eraseFromParent(); 696 } 697 } 698 699 // The insertion point instruction may have been deleted; clear it out 700 // so that the rewriter doesn't trip over it later. 701 Rewriter.clearInsertPoint(); 702 return Changed; 703 } 704 705 //===---------------------------------------------------------------------===// 706 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 707 // they will exit at the first iteration. 708 //===---------------------------------------------------------------------===// 709 710 /// Check to see if this loop has loop invariant conditions which lead to loop 711 /// exits. If so, we know that if the exit path is taken, it is at the first 712 /// loop iteration. This lets us predict exit values of PHI nodes that live in 713 /// loop header. 714 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 715 // Verify the input to the pass is already in LCSSA form. 716 assert(L->isLCSSAForm(*DT)); 717 718 SmallVector<BasicBlock *, 8> ExitBlocks; 719 L->getUniqueExitBlocks(ExitBlocks); 720 721 bool MadeAnyChanges = false; 722 for (auto *ExitBB : ExitBlocks) { 723 // If there are no more PHI nodes in this exit block, then no more 724 // values defined inside the loop are used on this path. 725 for (PHINode &PN : ExitBB->phis()) { 726 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 727 IncomingValIdx != E; ++IncomingValIdx) { 728 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 729 730 // Can we prove that the exit must run on the first iteration if it 731 // runs at all? (i.e. early exits are fine for our purposes, but 732 // traces which lead to this exit being taken on the 2nd iteration 733 // aren't.) Note that this is about whether the exit branch is 734 // executed, not about whether it is taken. 735 if (!L->getLoopLatch() || 736 !DT->dominates(IncomingBB, L->getLoopLatch())) 737 continue; 738 739 // Get condition that leads to the exit path. 740 auto *TermInst = IncomingBB->getTerminator(); 741 742 Value *Cond = nullptr; 743 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 744 // Must be a conditional branch, otherwise the block 745 // should not be in the loop. 746 Cond = BI->getCondition(); 747 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 748 Cond = SI->getCondition(); 749 else 750 continue; 751 752 if (!L->isLoopInvariant(Cond)) 753 continue; 754 755 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 756 757 // Only deal with PHIs in the loop header. 758 if (!ExitVal || ExitVal->getParent() != L->getHeader()) 759 continue; 760 761 // If ExitVal is a PHI on the loop header, then we know its 762 // value along this exit because the exit can only be taken 763 // on the first iteration. 764 auto *LoopPreheader = L->getLoopPreheader(); 765 assert(LoopPreheader && "Invalid loop"); 766 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 767 if (PreheaderIdx != -1) { 768 assert(ExitVal->getParent() == L->getHeader() && 769 "ExitVal must be in loop header"); 770 MadeAnyChanges = true; 771 PN.setIncomingValue(IncomingValIdx, 772 ExitVal->getIncomingValue(PreheaderIdx)); 773 } 774 } 775 } 776 } 777 return MadeAnyChanges; 778 } 779 780 /// Check whether it is possible to delete the loop after rewriting exit 781 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 782 /// aggressively. 783 bool IndVarSimplify::canLoopBeDeleted( 784 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 785 BasicBlock *Preheader = L->getLoopPreheader(); 786 // If there is no preheader, the loop will not be deleted. 787 if (!Preheader) 788 return false; 789 790 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 791 // We obviate multiple ExitingBlocks case for simplicity. 792 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 793 // after exit value rewriting, we can enhance the logic here. 794 SmallVector<BasicBlock *, 4> ExitingBlocks; 795 L->getExitingBlocks(ExitingBlocks); 796 SmallVector<BasicBlock *, 8> ExitBlocks; 797 L->getUniqueExitBlocks(ExitBlocks); 798 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 799 return false; 800 801 BasicBlock *ExitBlock = ExitBlocks[0]; 802 BasicBlock::iterator BI = ExitBlock->begin(); 803 while (PHINode *P = dyn_cast<PHINode>(BI)) { 804 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 805 806 // If the Incoming value of P is found in RewritePhiSet, we know it 807 // could be rewritten to use a loop invariant value in transformation 808 // phase later. Skip it in the loop invariant check below. 809 bool found = false; 810 for (const RewritePhi &Phi : RewritePhiSet) { 811 unsigned i = Phi.Ith; 812 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 813 found = true; 814 break; 815 } 816 } 817 818 Instruction *I; 819 if (!found && (I = dyn_cast<Instruction>(Incoming))) 820 if (!L->hasLoopInvariantOperands(I)) 821 return false; 822 823 ++BI; 824 } 825 826 for (auto *BB : L->blocks()) 827 if (llvm::any_of(*BB, [](Instruction &I) { 828 return I.mayHaveSideEffects(); 829 })) 830 return false; 831 832 return true; 833 } 834 835 //===----------------------------------------------------------------------===// 836 // IV Widening - Extend the width of an IV to cover its widest uses. 837 //===----------------------------------------------------------------------===// 838 839 namespace { 840 841 // Collect information about induction variables that are used by sign/zero 842 // extend operations. This information is recorded by CollectExtend and provides 843 // the input to WidenIV. 844 struct WideIVInfo { 845 PHINode *NarrowIV = nullptr; 846 847 // Widest integer type created [sz]ext 848 Type *WidestNativeType = nullptr; 849 850 // Was a sext user seen before a zext? 851 bool IsSigned = false; 852 }; 853 854 } // end anonymous namespace 855 856 /// Update information about the induction variable that is extended by this 857 /// sign or zero extend operation. This is used to determine the final width of 858 /// the IV before actually widening it. 859 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 860 const TargetTransformInfo *TTI) { 861 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 862 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 863 return; 864 865 Type *Ty = Cast->getType(); 866 uint64_t Width = SE->getTypeSizeInBits(Ty); 867 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 868 return; 869 870 // Check that `Cast` actually extends the induction variable (we rely on this 871 // later). This takes care of cases where `Cast` is extending a truncation of 872 // the narrow induction variable, and thus can end up being narrower than the 873 // "narrow" induction variable. 874 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 875 if (NarrowIVWidth >= Width) 876 return; 877 878 // Cast is either an sext or zext up to this point. 879 // We should not widen an indvar if arithmetics on the wider indvar are more 880 // expensive than those on the narrower indvar. We check only the cost of ADD 881 // because at least an ADD is required to increment the induction variable. We 882 // could compute more comprehensively the cost of all instructions on the 883 // induction variable when necessary. 884 if (TTI && 885 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 886 TTI->getArithmeticInstrCost(Instruction::Add, 887 Cast->getOperand(0)->getType())) { 888 return; 889 } 890 891 if (!WI.WidestNativeType) { 892 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 893 WI.IsSigned = IsSigned; 894 return; 895 } 896 897 // We extend the IV to satisfy the sign of its first user, arbitrarily. 898 if (WI.IsSigned != IsSigned) 899 return; 900 901 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 902 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 903 } 904 905 namespace { 906 907 /// Record a link in the Narrow IV def-use chain along with the WideIV that 908 /// computes the same value as the Narrow IV def. This avoids caching Use* 909 /// pointers. 910 struct NarrowIVDefUse { 911 Instruction *NarrowDef = nullptr; 912 Instruction *NarrowUse = nullptr; 913 Instruction *WideDef = nullptr; 914 915 // True if the narrow def is never negative. Tracking this information lets 916 // us use a sign extension instead of a zero extension or vice versa, when 917 // profitable and legal. 918 bool NeverNegative = false; 919 920 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 921 bool NeverNegative) 922 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 923 NeverNegative(NeverNegative) {} 924 }; 925 926 /// The goal of this transform is to remove sign and zero extends without 927 /// creating any new induction variables. To do this, it creates a new phi of 928 /// the wider type and redirects all users, either removing extends or inserting 929 /// truncs whenever we stop propagating the type. 930 class WidenIV { 931 // Parameters 932 PHINode *OrigPhi; 933 Type *WideType; 934 935 // Context 936 LoopInfo *LI; 937 Loop *L; 938 ScalarEvolution *SE; 939 DominatorTree *DT; 940 941 // Does the module have any calls to the llvm.experimental.guard intrinsic 942 // at all? If not we can avoid scanning instructions looking for guards. 943 bool HasGuards; 944 945 // Result 946 PHINode *WidePhi = nullptr; 947 Instruction *WideInc = nullptr; 948 const SCEV *WideIncExpr = nullptr; 949 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 950 951 SmallPtrSet<Instruction *,16> Widened; 952 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 953 954 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 955 956 // A map tracking the kind of extension used to widen each narrow IV 957 // and narrow IV user. 958 // Key: pointer to a narrow IV or IV user. 959 // Value: the kind of extension used to widen this Instruction. 960 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 961 962 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 963 964 // A map with control-dependent ranges for post increment IV uses. The key is 965 // a pair of IV def and a use of this def denoting the context. The value is 966 // a ConstantRange representing possible values of the def at the given 967 // context. 968 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 969 970 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 971 Instruction *UseI) { 972 DefUserPair Key(Def, UseI); 973 auto It = PostIncRangeInfos.find(Key); 974 return It == PostIncRangeInfos.end() 975 ? Optional<ConstantRange>(None) 976 : Optional<ConstantRange>(It->second); 977 } 978 979 void calculatePostIncRanges(PHINode *OrigPhi); 980 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 981 982 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 983 DefUserPair Key(Def, UseI); 984 auto It = PostIncRangeInfos.find(Key); 985 if (It == PostIncRangeInfos.end()) 986 PostIncRangeInfos.insert({Key, R}); 987 else 988 It->second = R.intersectWith(It->second); 989 } 990 991 public: 992 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 993 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 994 bool HasGuards) 995 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 996 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 997 HasGuards(HasGuards), DeadInsts(DI) { 998 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 999 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 1000 } 1001 1002 PHINode *createWideIV(SCEVExpander &Rewriter); 1003 1004 protected: 1005 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1006 Instruction *Use); 1007 1008 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1009 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1010 const SCEVAddRecExpr *WideAR); 1011 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1012 1013 ExtendKind getExtendKind(Instruction *I); 1014 1015 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1016 1017 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1018 1019 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1020 1021 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1022 unsigned OpCode) const; 1023 1024 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1025 1026 bool widenLoopCompare(NarrowIVDefUse DU); 1027 bool widenWithVariantLoadUse(NarrowIVDefUse DU); 1028 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); 1029 1030 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1031 }; 1032 1033 } // end anonymous namespace 1034 1035 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1036 bool IsSigned, Instruction *Use) { 1037 // Set the debug location and conservative insertion point. 1038 IRBuilder<> Builder(Use); 1039 // Hoist the insertion point into loop preheaders as far as possible. 1040 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1041 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); 1042 L = L->getParentLoop()) 1043 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1044 1045 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1046 Builder.CreateZExt(NarrowOper, WideType); 1047 } 1048 1049 /// Instantiate a wide operation to replace a narrow operation. This only needs 1050 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1051 /// 0 for any operation we decide not to clone. 1052 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1053 const SCEVAddRecExpr *WideAR) { 1054 unsigned Opcode = DU.NarrowUse->getOpcode(); 1055 switch (Opcode) { 1056 default: 1057 return nullptr; 1058 case Instruction::Add: 1059 case Instruction::Mul: 1060 case Instruction::UDiv: 1061 case Instruction::Sub: 1062 return cloneArithmeticIVUser(DU, WideAR); 1063 1064 case Instruction::And: 1065 case Instruction::Or: 1066 case Instruction::Xor: 1067 case Instruction::Shl: 1068 case Instruction::LShr: 1069 case Instruction::AShr: 1070 return cloneBitwiseIVUser(DU); 1071 } 1072 } 1073 1074 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1075 Instruction *NarrowUse = DU.NarrowUse; 1076 Instruction *NarrowDef = DU.NarrowDef; 1077 Instruction *WideDef = DU.WideDef; 1078 1079 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1080 1081 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1082 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1083 // invariant and will be folded or hoisted. If it actually comes from a 1084 // widened IV, it should be removed during a future call to widenIVUse. 1085 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1086 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1087 ? WideDef 1088 : createExtendInst(NarrowUse->getOperand(0), WideType, 1089 IsSigned, NarrowUse); 1090 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1091 ? WideDef 1092 : createExtendInst(NarrowUse->getOperand(1), WideType, 1093 IsSigned, NarrowUse); 1094 1095 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1096 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1097 NarrowBO->getName()); 1098 IRBuilder<> Builder(NarrowUse); 1099 Builder.Insert(WideBO); 1100 WideBO->copyIRFlags(NarrowBO); 1101 return WideBO; 1102 } 1103 1104 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1105 const SCEVAddRecExpr *WideAR) { 1106 Instruction *NarrowUse = DU.NarrowUse; 1107 Instruction *NarrowDef = DU.NarrowDef; 1108 Instruction *WideDef = DU.WideDef; 1109 1110 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1111 1112 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1113 1114 // We're trying to find X such that 1115 // 1116 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1117 // 1118 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1119 // and check using SCEV if any of them are correct. 1120 1121 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1122 // correct solution to X. 1123 auto GuessNonIVOperand = [&](bool SignExt) { 1124 const SCEV *WideLHS; 1125 const SCEV *WideRHS; 1126 1127 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1128 if (SignExt) 1129 return SE->getSignExtendExpr(S, Ty); 1130 return SE->getZeroExtendExpr(S, Ty); 1131 }; 1132 1133 if (IVOpIdx == 0) { 1134 WideLHS = SE->getSCEV(WideDef); 1135 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1136 WideRHS = GetExtend(NarrowRHS, WideType); 1137 } else { 1138 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1139 WideLHS = GetExtend(NarrowLHS, WideType); 1140 WideRHS = SE->getSCEV(WideDef); 1141 } 1142 1143 // WideUse is "WideDef `op.wide` X" as described in the comment. 1144 const SCEV *WideUse = nullptr; 1145 1146 switch (NarrowUse->getOpcode()) { 1147 default: 1148 llvm_unreachable("No other possibility!"); 1149 1150 case Instruction::Add: 1151 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1152 break; 1153 1154 case Instruction::Mul: 1155 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1156 break; 1157 1158 case Instruction::UDiv: 1159 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1160 break; 1161 1162 case Instruction::Sub: 1163 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1164 break; 1165 } 1166 1167 return WideUse == WideAR; 1168 }; 1169 1170 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1171 if (!GuessNonIVOperand(SignExtend)) { 1172 SignExtend = !SignExtend; 1173 if (!GuessNonIVOperand(SignExtend)) 1174 return nullptr; 1175 } 1176 1177 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1178 ? WideDef 1179 : createExtendInst(NarrowUse->getOperand(0), WideType, 1180 SignExtend, NarrowUse); 1181 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1182 ? WideDef 1183 : createExtendInst(NarrowUse->getOperand(1), WideType, 1184 SignExtend, NarrowUse); 1185 1186 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1187 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1188 NarrowBO->getName()); 1189 1190 IRBuilder<> Builder(NarrowUse); 1191 Builder.Insert(WideBO); 1192 WideBO->copyIRFlags(NarrowBO); 1193 return WideBO; 1194 } 1195 1196 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1197 auto It = ExtendKindMap.find(I); 1198 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1199 return It->second; 1200 } 1201 1202 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1203 unsigned OpCode) const { 1204 if (OpCode == Instruction::Add) 1205 return SE->getAddExpr(LHS, RHS); 1206 if (OpCode == Instruction::Sub) 1207 return SE->getMinusSCEV(LHS, RHS); 1208 if (OpCode == Instruction::Mul) 1209 return SE->getMulExpr(LHS, RHS); 1210 1211 llvm_unreachable("Unsupported opcode."); 1212 } 1213 1214 /// No-wrap operations can transfer sign extension of their result to their 1215 /// operands. Generate the SCEV value for the widened operation without 1216 /// actually modifying the IR yet. If the expression after extending the 1217 /// operands is an AddRec for this loop, return the AddRec and the kind of 1218 /// extension used. 1219 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1220 // Handle the common case of add<nsw/nuw> 1221 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1222 // Only Add/Sub/Mul instructions supported yet. 1223 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1224 OpCode != Instruction::Mul) 1225 return {nullptr, Unknown}; 1226 1227 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1228 // if extending the other will lead to a recurrence. 1229 const unsigned ExtendOperIdx = 1230 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1231 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1232 1233 const SCEV *ExtendOperExpr = nullptr; 1234 const OverflowingBinaryOperator *OBO = 1235 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1236 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1237 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1238 ExtendOperExpr = SE->getSignExtendExpr( 1239 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1240 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1241 ExtendOperExpr = SE->getZeroExtendExpr( 1242 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1243 else 1244 return {nullptr, Unknown}; 1245 1246 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1247 // flags. This instruction may be guarded by control flow that the no-wrap 1248 // behavior depends on. Non-control-equivalent instructions can be mapped to 1249 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1250 // semantics to those operations. 1251 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1252 const SCEV *rhs = ExtendOperExpr; 1253 1254 // Let's swap operands to the initial order for the case of non-commutative 1255 // operations, like SUB. See PR21014. 1256 if (ExtendOperIdx == 0) 1257 std::swap(lhs, rhs); 1258 const SCEVAddRecExpr *AddRec = 1259 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1260 1261 if (!AddRec || AddRec->getLoop() != L) 1262 return {nullptr, Unknown}; 1263 1264 return {AddRec, ExtKind}; 1265 } 1266 1267 /// Is this instruction potentially interesting for further simplification after 1268 /// widening it's type? In other words, can the extend be safely hoisted out of 1269 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1270 /// so, return the extended recurrence and the kind of extension used. Otherwise 1271 /// return {nullptr, Unknown}. 1272 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1273 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1274 return {nullptr, Unknown}; 1275 1276 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1277 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1278 SE->getTypeSizeInBits(WideType)) { 1279 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1280 // index. So don't follow this use. 1281 return {nullptr, Unknown}; 1282 } 1283 1284 const SCEV *WideExpr; 1285 ExtendKind ExtKind; 1286 if (DU.NeverNegative) { 1287 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1288 if (isa<SCEVAddRecExpr>(WideExpr)) 1289 ExtKind = SignExtended; 1290 else { 1291 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1292 ExtKind = ZeroExtended; 1293 } 1294 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1295 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1296 ExtKind = SignExtended; 1297 } else { 1298 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1299 ExtKind = ZeroExtended; 1300 } 1301 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1302 if (!AddRec || AddRec->getLoop() != L) 1303 return {nullptr, Unknown}; 1304 return {AddRec, ExtKind}; 1305 } 1306 1307 /// This IV user cannot be widen. Replace this use of the original narrow IV 1308 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1309 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1310 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1311 if (!InsertPt) 1312 return; 1313 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1314 << *DU.NarrowUse << "\n"); 1315 IRBuilder<> Builder(InsertPt); 1316 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1317 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1318 } 1319 1320 /// If the narrow use is a compare instruction, then widen the compare 1321 // (and possibly the other operand). The extend operation is hoisted into the 1322 // loop preheader as far as possible. 1323 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1324 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1325 if (!Cmp) 1326 return false; 1327 1328 // We can legally widen the comparison in the following two cases: 1329 // 1330 // - The signedness of the IV extension and comparison match 1331 // 1332 // - The narrow IV is always positive (and thus its sign extension is equal 1333 // to its zero extension). For instance, let's say we're zero extending 1334 // %narrow for the following use 1335 // 1336 // icmp slt i32 %narrow, %val ... (A) 1337 // 1338 // and %narrow is always positive. Then 1339 // 1340 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1341 // == icmp slt i32 zext(%narrow), sext(%val) 1342 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1343 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1344 return false; 1345 1346 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1347 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1348 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1349 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1350 1351 // Widen the compare instruction. 1352 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1353 if (!InsertPt) 1354 return false; 1355 IRBuilder<> Builder(InsertPt); 1356 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1357 1358 // Widen the other operand of the compare, if necessary. 1359 if (CastWidth < IVWidth) { 1360 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1361 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1362 } 1363 return true; 1364 } 1365 1366 /// If the narrow use is an instruction whose two operands are the defining 1367 /// instruction of DU and a load instruction, then we have the following: 1368 /// if the load is hoisted outside the loop, then we do not reach this function 1369 /// as scalar evolution analysis works fine in widenIVUse with variables 1370 /// hoisted outside the loop and efficient code is subsequently generated by 1371 /// not emitting truncate instructions. But when the load is not hoisted 1372 /// (whether due to limitation in alias analysis or due to a true legality), 1373 /// then scalar evolution can not proceed with loop variant values and 1374 /// inefficient code is generated. This function handles the non-hoisted load 1375 /// special case by making the optimization generate the same type of code for 1376 /// hoisted and non-hoisted load (widen use and eliminate sign extend 1377 /// instruction). This special case is important especially when the induction 1378 /// variables are affecting addressing mode in code generation. 1379 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { 1380 Instruction *NarrowUse = DU.NarrowUse; 1381 Instruction *NarrowDef = DU.NarrowDef; 1382 Instruction *WideDef = DU.WideDef; 1383 1384 // Handle the common case of add<nsw/nuw> 1385 const unsigned OpCode = NarrowUse->getOpcode(); 1386 // Only Add/Sub/Mul instructions are supported. 1387 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1388 OpCode != Instruction::Mul) 1389 return false; 1390 1391 // The operand that is not defined by NarrowDef of DU. Let's call it the 1392 // other operand. 1393 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; 1394 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && 1395 "bad DU"); 1396 1397 const SCEV *ExtendOperExpr = nullptr; 1398 const OverflowingBinaryOperator *OBO = 1399 cast<OverflowingBinaryOperator>(NarrowUse); 1400 ExtendKind ExtKind = getExtendKind(NarrowDef); 1401 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1402 ExtendOperExpr = SE->getSignExtendExpr( 1403 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1404 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1405 ExtendOperExpr = SE->getZeroExtendExpr( 1406 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1407 else 1408 return false; 1409 1410 // We are interested in the other operand being a load instruction. 1411 // But, we should look into relaxing this restriction later on. 1412 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); 1413 if (I && I->getOpcode() != Instruction::Load) 1414 return false; 1415 1416 // Verifying that Defining operand is an AddRec 1417 const SCEV *Op1 = SE->getSCEV(WideDef); 1418 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1419 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1420 return false; 1421 // Verifying that other operand is an Extend. 1422 if (ExtKind == SignExtended) { 1423 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) 1424 return false; 1425 } else { 1426 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) 1427 return false; 1428 } 1429 1430 if (ExtKind == SignExtended) { 1431 for (Use &U : NarrowUse->uses()) { 1432 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1433 if (!User || User->getType() != WideType) 1434 return false; 1435 } 1436 } else { // ExtKind == ZeroExtended 1437 for (Use &U : NarrowUse->uses()) { 1438 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1439 if (!User || User->getType() != WideType) 1440 return false; 1441 } 1442 } 1443 1444 return true; 1445 } 1446 1447 /// Special Case for widening with variant Loads (see 1448 /// WidenIV::widenWithVariantLoadUse). This is the code generation part. 1449 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { 1450 Instruction *NarrowUse = DU.NarrowUse; 1451 Instruction *NarrowDef = DU.NarrowDef; 1452 Instruction *WideDef = DU.WideDef; 1453 1454 ExtendKind ExtKind = getExtendKind(NarrowDef); 1455 1456 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1457 1458 // Generating a widening use instruction. 1459 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1460 ? WideDef 1461 : createExtendInst(NarrowUse->getOperand(0), WideType, 1462 ExtKind, NarrowUse); 1463 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1464 ? WideDef 1465 : createExtendInst(NarrowUse->getOperand(1), WideType, 1466 ExtKind, NarrowUse); 1467 1468 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1469 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1470 NarrowBO->getName()); 1471 IRBuilder<> Builder(NarrowUse); 1472 Builder.Insert(WideBO); 1473 WideBO->copyIRFlags(NarrowBO); 1474 1475 if (ExtKind == SignExtended) 1476 ExtendKindMap[NarrowUse] = SignExtended; 1477 else 1478 ExtendKindMap[NarrowUse] = ZeroExtended; 1479 1480 // Update the Use. 1481 if (ExtKind == SignExtended) { 1482 for (Use &U : NarrowUse->uses()) { 1483 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1484 if (User && User->getType() == WideType) { 1485 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1486 << *WideBO << "\n"); 1487 ++NumElimExt; 1488 User->replaceAllUsesWith(WideBO); 1489 DeadInsts.emplace_back(User); 1490 } 1491 } 1492 } else { // ExtKind == ZeroExtended 1493 for (Use &U : NarrowUse->uses()) { 1494 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1495 if (User && User->getType() == WideType) { 1496 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1497 << *WideBO << "\n"); 1498 ++NumElimExt; 1499 User->replaceAllUsesWith(WideBO); 1500 DeadInsts.emplace_back(User); 1501 } 1502 } 1503 } 1504 } 1505 1506 /// Determine whether an individual user of the narrow IV can be widened. If so, 1507 /// return the wide clone of the user. 1508 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1509 assert(ExtendKindMap.count(DU.NarrowDef) && 1510 "Should already know the kind of extension used to widen NarrowDef"); 1511 1512 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1513 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1514 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1515 // For LCSSA phis, sink the truncate outside the loop. 1516 // After SimplifyCFG most loop exit targets have a single predecessor. 1517 // Otherwise fall back to a truncate within the loop. 1518 if (UsePhi->getNumOperands() != 1) 1519 truncateIVUse(DU, DT, LI); 1520 else { 1521 // Widening the PHI requires us to insert a trunc. The logical place 1522 // for this trunc is in the same BB as the PHI. This is not possible if 1523 // the BB is terminated by a catchswitch. 1524 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1525 return nullptr; 1526 1527 PHINode *WidePhi = 1528 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1529 UsePhi); 1530 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1531 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1532 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1533 UsePhi->replaceAllUsesWith(Trunc); 1534 DeadInsts.emplace_back(UsePhi); 1535 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1536 << *WidePhi << "\n"); 1537 } 1538 return nullptr; 1539 } 1540 } 1541 1542 // This narrow use can be widened by a sext if it's non-negative or its narrow 1543 // def was widended by a sext. Same for zext. 1544 auto canWidenBySExt = [&]() { 1545 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1546 }; 1547 auto canWidenByZExt = [&]() { 1548 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1549 }; 1550 1551 // Our raison d'etre! Eliminate sign and zero extension. 1552 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1553 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1554 Value *NewDef = DU.WideDef; 1555 if (DU.NarrowUse->getType() != WideType) { 1556 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1557 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1558 if (CastWidth < IVWidth) { 1559 // The cast isn't as wide as the IV, so insert a Trunc. 1560 IRBuilder<> Builder(DU.NarrowUse); 1561 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1562 } 1563 else { 1564 // A wider extend was hidden behind a narrower one. This may induce 1565 // another round of IV widening in which the intermediate IV becomes 1566 // dead. It should be very rare. 1567 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1568 << " not wide enough to subsume " << *DU.NarrowUse 1569 << "\n"); 1570 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1571 NewDef = DU.NarrowUse; 1572 } 1573 } 1574 if (NewDef != DU.NarrowUse) { 1575 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1576 << " replaced by " << *DU.WideDef << "\n"); 1577 ++NumElimExt; 1578 DU.NarrowUse->replaceAllUsesWith(NewDef); 1579 DeadInsts.emplace_back(DU.NarrowUse); 1580 } 1581 // Now that the extend is gone, we want to expose it's uses for potential 1582 // further simplification. We don't need to directly inform SimplifyIVUsers 1583 // of the new users, because their parent IV will be processed later as a 1584 // new loop phi. If we preserved IVUsers analysis, we would also want to 1585 // push the uses of WideDef here. 1586 1587 // No further widening is needed. The deceased [sz]ext had done it for us. 1588 return nullptr; 1589 } 1590 1591 // Does this user itself evaluate to a recurrence after widening? 1592 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1593 if (!WideAddRec.first) 1594 WideAddRec = getWideRecurrence(DU); 1595 1596 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1597 if (!WideAddRec.first) { 1598 // If use is a loop condition, try to promote the condition instead of 1599 // truncating the IV first. 1600 if (widenLoopCompare(DU)) 1601 return nullptr; 1602 1603 // We are here about to generate a truncate instruction that may hurt 1604 // performance because the scalar evolution expression computed earlier 1605 // in WideAddRec.first does not indicate a polynomial induction expression. 1606 // In that case, look at the operands of the use instruction to determine 1607 // if we can still widen the use instead of truncating its operand. 1608 if (widenWithVariantLoadUse(DU)) { 1609 widenWithVariantLoadUseCodegen(DU); 1610 return nullptr; 1611 } 1612 1613 // This user does not evaluate to a recurrence after widening, so don't 1614 // follow it. Instead insert a Trunc to kill off the original use, 1615 // eventually isolating the original narrow IV so it can be removed. 1616 truncateIVUse(DU, DT, LI); 1617 return nullptr; 1618 } 1619 // Assume block terminators cannot evaluate to a recurrence. We can't to 1620 // insert a Trunc after a terminator if there happens to be a critical edge. 1621 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1622 "SCEV is not expected to evaluate a block terminator"); 1623 1624 // Reuse the IV increment that SCEVExpander created as long as it dominates 1625 // NarrowUse. 1626 Instruction *WideUse = nullptr; 1627 if (WideAddRec.first == WideIncExpr && 1628 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1629 WideUse = WideInc; 1630 else { 1631 WideUse = cloneIVUser(DU, WideAddRec.first); 1632 if (!WideUse) 1633 return nullptr; 1634 } 1635 // Evaluation of WideAddRec ensured that the narrow expression could be 1636 // extended outside the loop without overflow. This suggests that the wide use 1637 // evaluates to the same expression as the extended narrow use, but doesn't 1638 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1639 // where it fails, we simply throw away the newly created wide use. 1640 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1641 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1642 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1643 << "\n"); 1644 DeadInsts.emplace_back(WideUse); 1645 return nullptr; 1646 } 1647 1648 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1649 // Returning WideUse pushes it on the worklist. 1650 return WideUse; 1651 } 1652 1653 /// Add eligible users of NarrowDef to NarrowIVUsers. 1654 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1655 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1656 bool NonNegativeDef = 1657 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1658 SE->getConstant(NarrowSCEV->getType(), 0)); 1659 for (User *U : NarrowDef->users()) { 1660 Instruction *NarrowUser = cast<Instruction>(U); 1661 1662 // Handle data flow merges and bizarre phi cycles. 1663 if (!Widened.insert(NarrowUser).second) 1664 continue; 1665 1666 bool NonNegativeUse = false; 1667 if (!NonNegativeDef) { 1668 // We might have a control-dependent range information for this context. 1669 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1670 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1671 } 1672 1673 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1674 NonNegativeDef || NonNegativeUse); 1675 } 1676 } 1677 1678 /// Process a single induction variable. First use the SCEVExpander to create a 1679 /// wide induction variable that evaluates to the same recurrence as the 1680 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1681 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1682 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1683 /// 1684 /// It would be simpler to delete uses as they are processed, but we must avoid 1685 /// invalidating SCEV expressions. 1686 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1687 // Is this phi an induction variable? 1688 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1689 if (!AddRec) 1690 return nullptr; 1691 1692 // Widen the induction variable expression. 1693 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1694 ? SE->getSignExtendExpr(AddRec, WideType) 1695 : SE->getZeroExtendExpr(AddRec, WideType); 1696 1697 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1698 "Expect the new IV expression to preserve its type"); 1699 1700 // Can the IV be extended outside the loop without overflow? 1701 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1702 if (!AddRec || AddRec->getLoop() != L) 1703 return nullptr; 1704 1705 // An AddRec must have loop-invariant operands. Since this AddRec is 1706 // materialized by a loop header phi, the expression cannot have any post-loop 1707 // operands, so they must dominate the loop header. 1708 assert( 1709 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1710 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1711 "Loop header phi recurrence inputs do not dominate the loop"); 1712 1713 // Iterate over IV uses (including transitive ones) looking for IV increments 1714 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1715 // the increment calculate control-dependent range information basing on 1716 // dominating conditions inside of the loop (e.g. a range check inside of the 1717 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1718 // 1719 // Control-dependent range information is later used to prove that a narrow 1720 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1721 // this on demand because when pushNarrowIVUsers needs this information some 1722 // of the dominating conditions might be already widened. 1723 if (UsePostIncrementRanges) 1724 calculatePostIncRanges(OrigPhi); 1725 1726 // The rewriter provides a value for the desired IV expression. This may 1727 // either find an existing phi or materialize a new one. Either way, we 1728 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1729 // of the phi-SCC dominates the loop entry. 1730 Instruction *InsertPt = &L->getHeader()->front(); 1731 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1732 1733 // Remembering the WideIV increment generated by SCEVExpander allows 1734 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1735 // employ a general reuse mechanism because the call above is the only call to 1736 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1737 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1738 WideInc = 1739 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1740 WideIncExpr = SE->getSCEV(WideInc); 1741 // Propagate the debug location associated with the original loop increment 1742 // to the new (widened) increment. 1743 auto *OrigInc = 1744 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1745 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1746 } 1747 1748 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1749 ++NumWidened; 1750 1751 // Traverse the def-use chain using a worklist starting at the original IV. 1752 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1753 1754 Widened.insert(OrigPhi); 1755 pushNarrowIVUsers(OrigPhi, WidePhi); 1756 1757 while (!NarrowIVUsers.empty()) { 1758 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1759 1760 // Process a def-use edge. This may replace the use, so don't hold a 1761 // use_iterator across it. 1762 Instruction *WideUse = widenIVUse(DU, Rewriter); 1763 1764 // Follow all def-use edges from the previous narrow use. 1765 if (WideUse) 1766 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1767 1768 // widenIVUse may have removed the def-use edge. 1769 if (DU.NarrowDef->use_empty()) 1770 DeadInsts.emplace_back(DU.NarrowDef); 1771 } 1772 1773 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1774 // evaluate the same recurrence, we can just copy the debug info over. 1775 SmallVector<DbgValueInst *, 1> DbgValues; 1776 llvm::findDbgValues(DbgValues, OrigPhi); 1777 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1778 ValueAsMetadata::get(WidePhi)); 1779 for (auto &DbgValue : DbgValues) 1780 DbgValue->setOperand(0, MDPhi); 1781 return WidePhi; 1782 } 1783 1784 /// Calculates control-dependent range for the given def at the given context 1785 /// by looking at dominating conditions inside of the loop 1786 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1787 Instruction *NarrowUser) { 1788 using namespace llvm::PatternMatch; 1789 1790 Value *NarrowDefLHS; 1791 const APInt *NarrowDefRHS; 1792 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1793 m_APInt(NarrowDefRHS))) || 1794 !NarrowDefRHS->isNonNegative()) 1795 return; 1796 1797 auto UpdateRangeFromCondition = [&] (Value *Condition, 1798 bool TrueDest) { 1799 CmpInst::Predicate Pred; 1800 Value *CmpRHS; 1801 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1802 m_Value(CmpRHS)))) 1803 return; 1804 1805 CmpInst::Predicate P = 1806 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1807 1808 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1809 auto CmpConstrainedLHSRange = 1810 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1811 auto NarrowDefRange = 1812 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1813 1814 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1815 }; 1816 1817 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1818 if (!HasGuards) 1819 return; 1820 1821 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1822 Ctx->getParent()->rend())) { 1823 Value *C = nullptr; 1824 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1825 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1826 } 1827 }; 1828 1829 UpdateRangeFromGuards(NarrowUser); 1830 1831 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1832 // If NarrowUserBB is statically unreachable asking dominator queries may 1833 // yield surprising results. (e.g. the block may not have a dom tree node) 1834 if (!DT->isReachableFromEntry(NarrowUserBB)) 1835 return; 1836 1837 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1838 L->contains(DTB->getBlock()); 1839 DTB = DTB->getIDom()) { 1840 auto *BB = DTB->getBlock(); 1841 auto *TI = BB->getTerminator(); 1842 UpdateRangeFromGuards(TI); 1843 1844 auto *BI = dyn_cast<BranchInst>(TI); 1845 if (!BI || !BI->isConditional()) 1846 continue; 1847 1848 auto *TrueSuccessor = BI->getSuccessor(0); 1849 auto *FalseSuccessor = BI->getSuccessor(1); 1850 1851 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1852 return BBE.isSingleEdge() && 1853 DT->dominates(BBE, NarrowUser->getParent()); 1854 }; 1855 1856 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1857 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1858 1859 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1860 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1861 } 1862 } 1863 1864 /// Calculates PostIncRangeInfos map for the given IV 1865 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1866 SmallPtrSet<Instruction *, 16> Visited; 1867 SmallVector<Instruction *, 6> Worklist; 1868 Worklist.push_back(OrigPhi); 1869 Visited.insert(OrigPhi); 1870 1871 while (!Worklist.empty()) { 1872 Instruction *NarrowDef = Worklist.pop_back_val(); 1873 1874 for (Use &U : NarrowDef->uses()) { 1875 auto *NarrowUser = cast<Instruction>(U.getUser()); 1876 1877 // Don't go looking outside the current loop. 1878 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1879 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1880 continue; 1881 1882 if (!Visited.insert(NarrowUser).second) 1883 continue; 1884 1885 Worklist.push_back(NarrowUser); 1886 1887 calculatePostIncRange(NarrowDef, NarrowUser); 1888 } 1889 } 1890 } 1891 1892 //===----------------------------------------------------------------------===// 1893 // Live IV Reduction - Minimize IVs live across the loop. 1894 //===----------------------------------------------------------------------===// 1895 1896 //===----------------------------------------------------------------------===// 1897 // Simplification of IV users based on SCEV evaluation. 1898 //===----------------------------------------------------------------------===// 1899 1900 namespace { 1901 1902 class IndVarSimplifyVisitor : public IVVisitor { 1903 ScalarEvolution *SE; 1904 const TargetTransformInfo *TTI; 1905 PHINode *IVPhi; 1906 1907 public: 1908 WideIVInfo WI; 1909 1910 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1911 const TargetTransformInfo *TTI, 1912 const DominatorTree *DTree) 1913 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1914 DT = DTree; 1915 WI.NarrowIV = IVPhi; 1916 } 1917 1918 // Implement the interface used by simplifyUsersOfIV. 1919 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1920 }; 1921 1922 } // end anonymous namespace 1923 1924 /// Iteratively perform simplification on a worklist of IV users. Each 1925 /// successive simplification may push more users which may themselves be 1926 /// candidates for simplification. 1927 /// 1928 /// Sign/Zero extend elimination is interleaved with IV simplification. 1929 bool IndVarSimplify::simplifyAndExtend(Loop *L, 1930 SCEVExpander &Rewriter, 1931 LoopInfo *LI) { 1932 SmallVector<WideIVInfo, 8> WideIVs; 1933 1934 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1935 Intrinsic::getName(Intrinsic::experimental_guard)); 1936 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1937 1938 SmallVector<PHINode*, 8> LoopPhis; 1939 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1940 LoopPhis.push_back(cast<PHINode>(I)); 1941 } 1942 // Each round of simplification iterates through the SimplifyIVUsers worklist 1943 // for all current phis, then determines whether any IVs can be 1944 // widened. Widening adds new phis to LoopPhis, inducing another round of 1945 // simplification on the wide IVs. 1946 bool Changed = false; 1947 while (!LoopPhis.empty()) { 1948 // Evaluate as many IV expressions as possible before widening any IVs. This 1949 // forces SCEV to set no-wrap flags before evaluating sign/zero 1950 // extension. The first time SCEV attempts to normalize sign/zero extension, 1951 // the result becomes final. So for the most predictable results, we delay 1952 // evaluation of sign/zero extend evaluation until needed, and avoid running 1953 // other SCEV based analysis prior to simplifyAndExtend. 1954 do { 1955 PHINode *CurrIV = LoopPhis.pop_back_val(); 1956 1957 // Information about sign/zero extensions of CurrIV. 1958 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1959 1960 Changed |= 1961 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1962 1963 if (Visitor.WI.WidestNativeType) { 1964 WideIVs.push_back(Visitor.WI); 1965 } 1966 } while(!LoopPhis.empty()); 1967 1968 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1969 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1970 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1971 Changed = true; 1972 LoopPhis.push_back(WidePhi); 1973 } 1974 } 1975 } 1976 return Changed; 1977 } 1978 1979 //===----------------------------------------------------------------------===// 1980 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1981 //===----------------------------------------------------------------------===// 1982 1983 /// Given an Value which is hoped to be part of an add recurance in the given 1984 /// loop, return the associated Phi node if so. Otherwise, return null. Note 1985 /// that this is less general than SCEVs AddRec checking. 1986 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { 1987 Instruction *IncI = dyn_cast<Instruction>(IncV); 1988 if (!IncI) 1989 return nullptr; 1990 1991 switch (IncI->getOpcode()) { 1992 case Instruction::Add: 1993 case Instruction::Sub: 1994 break; 1995 case Instruction::GetElementPtr: 1996 // An IV counter must preserve its type. 1997 if (IncI->getNumOperands() == 2) 1998 break; 1999 LLVM_FALLTHROUGH; 2000 default: 2001 return nullptr; 2002 } 2003 2004 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 2005 if (Phi && Phi->getParent() == L->getHeader()) { 2006 if (L->isLoopInvariant(IncI->getOperand(1))) 2007 return Phi; 2008 return nullptr; 2009 } 2010 if (IncI->getOpcode() == Instruction::GetElementPtr) 2011 return nullptr; 2012 2013 // Allow add/sub to be commuted. 2014 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 2015 if (Phi && Phi->getParent() == L->getHeader()) { 2016 if (L->isLoopInvariant(IncI->getOperand(0))) 2017 return Phi; 2018 } 2019 return nullptr; 2020 } 2021 2022 /// Given a loop with one backedge and one exit, return the ICmpInst 2023 /// controlling the sole loop exit. There is no guarantee that the exiting 2024 /// block is also the latch. 2025 static ICmpInst *getLoopTest(Loop *L, BasicBlock *ExitingBB) { 2026 2027 BasicBlock *LatchBlock = L->getLoopLatch(); 2028 // Don't bother with LFTR if the loop is not properly simplified. 2029 if (!LatchBlock) 2030 return nullptr; 2031 2032 BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator()); 2033 assert(BI && "expected exit branch"); 2034 2035 return dyn_cast<ICmpInst>(BI->getCondition()); 2036 } 2037 2038 /// linearFunctionTestReplace policy. Return true unless we can show that the 2039 /// current exit test is already sufficiently canonical. 2040 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) { 2041 // Do LFTR to simplify the exit condition to an ICMP. 2042 ICmpInst *Cond = getLoopTest(L, ExitingBB); 2043 if (!Cond) 2044 return true; 2045 2046 // Do LFTR to simplify the exit ICMP to EQ/NE 2047 ICmpInst::Predicate Pred = Cond->getPredicate(); 2048 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 2049 return true; 2050 2051 // Look for a loop invariant RHS 2052 Value *LHS = Cond->getOperand(0); 2053 Value *RHS = Cond->getOperand(1); 2054 if (!L->isLoopInvariant(RHS)) { 2055 if (!L->isLoopInvariant(LHS)) 2056 return true; 2057 std::swap(LHS, RHS); 2058 } 2059 // Look for a simple IV counter LHS 2060 PHINode *Phi = dyn_cast<PHINode>(LHS); 2061 if (!Phi) 2062 Phi = getLoopPhiForCounter(LHS, L); 2063 2064 if (!Phi) 2065 return true; 2066 2067 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 2068 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2069 if (Idx < 0) 2070 return true; 2071 2072 // Do LFTR if the exit condition's IV is *not* a simple counter. 2073 Value *IncV = Phi->getIncomingValue(Idx); 2074 return Phi != getLoopPhiForCounter(IncV, L); 2075 } 2076 2077 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 2078 /// down to checking that all operands are constant and listing instructions 2079 /// that may hide undef. 2080 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 2081 unsigned Depth) { 2082 if (isa<Constant>(V)) 2083 return !isa<UndefValue>(V); 2084 2085 if (Depth >= 6) 2086 return false; 2087 2088 // Conservatively handle non-constant non-instructions. For example, Arguments 2089 // may be undef. 2090 Instruction *I = dyn_cast<Instruction>(V); 2091 if (!I) 2092 return false; 2093 2094 // Load and return values may be undef. 2095 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 2096 return false; 2097 2098 // Optimistically handle other instructions. 2099 for (Value *Op : I->operands()) { 2100 if (!Visited.insert(Op).second) 2101 continue; 2102 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 2103 return false; 2104 } 2105 return true; 2106 } 2107 2108 /// Return true if the given value is concrete. We must prove that undef can 2109 /// never reach it. 2110 /// 2111 /// TODO: If we decide that this is a good approach to checking for undef, we 2112 /// may factor it into a common location. 2113 static bool hasConcreteDef(Value *V) { 2114 SmallPtrSet<Value*, 8> Visited; 2115 Visited.insert(V); 2116 return hasConcreteDefImpl(V, Visited, 0); 2117 } 2118 2119 /// Return true if this IV has any uses other than the (soon to be rewritten) 2120 /// loop exit test. 2121 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 2122 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2123 Value *IncV = Phi->getIncomingValue(LatchIdx); 2124 2125 for (User *U : Phi->users()) 2126 if (U != Cond && U != IncV) return false; 2127 2128 for (User *U : IncV->users()) 2129 if (U != Cond && U != Phi) return false; 2130 return true; 2131 } 2132 2133 /// Return true if the given phi is a "counter" in L. A counter is an 2134 /// add recurance (of integer or pointer type) with an arbitrary start, and a 2135 /// step of 1. Note that L must have exactly one latch. 2136 static bool isLoopCounter(PHINode* Phi, Loop *L, 2137 ScalarEvolution *SE) { 2138 assert(Phi->getParent() == L->getHeader()); 2139 assert(L->getLoopLatch()); 2140 2141 if (!SE->isSCEVable(Phi->getType())) 2142 return false; 2143 2144 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2145 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2146 return false; 2147 2148 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2149 if (!Step || !Step->isOne()) 2150 return false; 2151 2152 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2153 Value *IncV = Phi->getIncomingValue(LatchIdx); 2154 return (getLoopPhiForCounter(IncV, L) == Phi); 2155 } 2156 2157 /// Search the loop header for a loop counter (anadd rec w/step of one) 2158 /// suitable for use by LFTR. If multiple counters are available, select the 2159 /// "best" one based profitable heuristics. 2160 /// 2161 /// BECount may be an i8* pointer type. The pointer difference is already 2162 /// valid count without scaling the address stride, so it remains a pointer 2163 /// expression as far as SCEV is concerned. 2164 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB, 2165 const SCEV *BECount, ScalarEvolution *SE) { 2166 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2167 2168 Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition(); 2169 2170 // Loop over all of the PHI nodes, looking for a simple counter. 2171 PHINode *BestPhi = nullptr; 2172 const SCEV *BestInit = nullptr; 2173 BasicBlock *LatchBlock = L->getLoopLatch(); 2174 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2175 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2176 2177 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2178 PHINode *Phi = cast<PHINode>(I); 2179 if (!isLoopCounter(Phi, L, SE)) 2180 continue; 2181 2182 // Avoid comparing an integer IV against a pointer Limit. 2183 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2184 continue; 2185 2186 const auto *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2187 2188 // AR may be a pointer type, while BECount is an integer type. 2189 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2190 // AR may not be a narrower type, or we may never exit. 2191 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2192 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2193 continue; 2194 2195 // Avoid reusing a potentially undef value to compute other values that may 2196 // have originally had a concrete definition. 2197 if (!hasConcreteDef(Phi)) { 2198 // We explicitly allow unknown phis as long as they are already used by 2199 // the loop test. In this case we assume that performing LFTR could not 2200 // increase the number of undef users. 2201 // TODO: Generalize this to allow *any* loop exit which is known to 2202 // execute on each iteration 2203 if (L->getExitingBlock()) 2204 if (ICmpInst *Cond = getLoopTest(L, ExitingBB)) 2205 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L) && 2206 Phi != getLoopPhiForCounter(Cond->getOperand(1), L)) 2207 continue; 2208 } 2209 2210 const SCEV *Init = AR->getStart(); 2211 2212 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2213 // Don't force a live loop counter if another IV can be used. 2214 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2215 continue; 2216 2217 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2218 // also prefers integer to pointer IVs. 2219 if (BestInit->isZero() != Init->isZero()) { 2220 if (BestInit->isZero()) 2221 continue; 2222 } 2223 // If two IVs both count from zero or both count from nonzero then the 2224 // narrower is likely a dead phi that has been widened. Use the wider phi 2225 // to allow the other to be eliminated. 2226 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2227 continue; 2228 } 2229 BestPhi = Phi; 2230 BestInit = Init; 2231 } 2232 return BestPhi; 2233 } 2234 2235 /// Insert an IR expression which computes the value held by the IV IndVar 2236 /// (which must be an loop counter w/unit stride) after the backedge of loop L 2237 /// is taken IVCount times. 2238 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB, 2239 const SCEV *IVCount, Loop *L, 2240 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2241 assert(isLoopCounter(IndVar, L, SE)); 2242 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2243 const SCEV *IVInit = AR->getStart(); 2244 2245 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2246 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2247 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2248 // the existing GEPs whenever possible. 2249 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2250 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2251 // signed value. IVCount on the other hand represents the loop trip count, 2252 // which is an unsigned value. FindLoopCounter only allows induction 2253 // variables that have a positive unit stride of one. This means we don't 2254 // have to handle the case of negative offsets (yet) and just need to zero 2255 // extend IVCount. 2256 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2257 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2258 2259 // Expand the code for the iteration count. 2260 assert(SE->isLoopInvariant(IVOffset, L) && 2261 "Computed iteration count is not loop invariant!"); 2262 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 2263 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2264 2265 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2266 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2267 // We could handle pointer IVs other than i8*, but we need to compensate for 2268 // gep index scaling. 2269 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2270 cast<PointerType>(GEPBase->getType()) 2271 ->getElementType())->isOne() && 2272 "unit stride pointer IV must be i8*"); 2273 2274 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2275 return Builder.CreateGEP(GEPBase->getType()->getPointerElementType(), 2276 GEPBase, GEPOffset, "lftr.limit"); 2277 } else { 2278 // In any other case, convert both IVInit and IVCount to integers before 2279 // comparing. This may result in SCEV expansion of pointers, but in practice 2280 // SCEV will fold the pointer arithmetic away as such: 2281 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2282 // 2283 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2284 // for simple memset-style loops. 2285 // 2286 // IVInit integer and IVCount pointer would only occur if a canonical IV 2287 // were generated on top of case #2, which is not expected. 2288 2289 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2290 const SCEV *IVLimit = nullptr; 2291 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2292 // For non-zero Start, compute IVCount here. 2293 if (AR->getStart()->isZero()) 2294 IVLimit = IVCount; 2295 else { 2296 const SCEV *IVInit = AR->getStart(); 2297 2298 // For integer IVs, truncate the IV before computing IVInit + BECount. 2299 if (SE->getTypeSizeInBits(IVInit->getType()) 2300 > SE->getTypeSizeInBits(IVCount->getType())) 2301 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2302 2303 IVLimit = SE->getAddExpr(IVInit, IVCount); 2304 } 2305 // Expand the code for the iteration count. 2306 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 2307 IRBuilder<> Builder(BI); 2308 assert(SE->isLoopInvariant(IVLimit, L) && 2309 "Computed iteration count is not loop invariant!"); 2310 // Ensure that we generate the same type as IndVar, or a smaller integer 2311 // type. In the presence of null pointer values, we have an integer type 2312 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2313 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2314 IndVar->getType() : IVCount->getType(); 2315 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2316 } 2317 } 2318 2319 /// This method rewrites the exit condition of the loop to be a canonical != 2320 /// comparison against the incremented loop induction variable. This pass is 2321 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2322 /// determine a loop-invariant trip count of the loop, which is actually a much 2323 /// broader range than just linear tests. 2324 bool IndVarSimplify:: 2325 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB, 2326 const SCEV *BackedgeTakenCount, 2327 PHINode *IndVar, SCEVExpander &Rewriter) { 2328 // Initialize CmpIndVar and IVCount to their preincremented values. 2329 Value *CmpIndVar = IndVar; 2330 const SCEV *IVCount = BackedgeTakenCount; 2331 2332 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2333 2334 // If the exiting block is the same as the backedge block, we prefer to 2335 // compare against the post-incremented value, otherwise we must compare 2336 // against the preincremented value. 2337 if (ExitingBB == L->getLoopLatch()) { 2338 // Add one to the "backedge-taken" count to get the trip count. 2339 // This addition may overflow, which is valid as long as the comparison is 2340 // truncated to BackedgeTakenCount->getType(). 2341 IVCount = SE->getAddExpr(BackedgeTakenCount, 2342 SE->getOne(BackedgeTakenCount->getType())); 2343 // The BackedgeTaken expression contains the number of times that the 2344 // backedge branches to the loop header. This is one less than the 2345 // number of times the loop executes, so use the incremented indvar. 2346 CmpIndVar = IndVar->getIncomingValueForBlock(ExitingBB); 2347 } 2348 2349 // It may be necessary to drop nowrap flags on the incrementing instruction 2350 // if either LFTR moves from a pre-inc check to a post-inc check (in which 2351 // case the increment might have previously been poison on the last iteration 2352 // only) or if LFTR switches to a different IV that was previously dynamically 2353 // dead (and as such may be arbitrarily poison). We remove any nowrap flags 2354 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc 2355 // check), because the pre-inc addrec flags may be adopted from the original 2356 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. 2357 // TODO: This handling is inaccurate for one case: If we switch to a 2358 // dynamically dead IV that wraps on the first loop iteration only, which is 2359 // not covered by the post-inc addrec. (If the new IV was not dynamically 2360 // dead, it could not be poison on the first iteration in the first place.) 2361 Value *IncVar = IndVar->getIncomingValueForBlock(L->getLoopLatch()); 2362 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { 2363 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); 2364 if (BO->hasNoUnsignedWrap()) 2365 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); 2366 if (BO->hasNoSignedWrap()) 2367 BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); 2368 } 2369 2370 Value *ExitCnt = genLoopLimit(IndVar, ExitingBB, IVCount, L, Rewriter, SE); 2371 assert(ExitCnt->getType()->isPointerTy() == 2372 IndVar->getType()->isPointerTy() && 2373 "genLoopLimit missed a cast"); 2374 2375 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2376 BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator()); 2377 ICmpInst::Predicate P; 2378 if (L->contains(BI->getSuccessor(0))) 2379 P = ICmpInst::ICMP_NE; 2380 else 2381 P = ICmpInst::ICMP_EQ; 2382 2383 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2384 << " LHS:" << *CmpIndVar << '\n' 2385 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2386 << "\n" 2387 << " RHS:\t" << *ExitCnt << "\n" 2388 << " IVCount:\t" << *IVCount << "\n"); 2389 2390 IRBuilder<> Builder(BI); 2391 2392 // The new loop exit condition should reuse the debug location of the 2393 // original loop exit condition. 2394 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2395 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2396 2397 // LFTR can ignore IV overflow and truncate to the width of 2398 // BECount. This avoids materializing the add(zext(add)) expression. 2399 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2400 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2401 if (CmpIndVarSize > ExitCntSize) { 2402 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2403 const SCEV *ARStart = AR->getStart(); 2404 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2405 // For constant IVCount, avoid truncation. 2406 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2407 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2408 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2409 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2410 // above such that IVCount is now zero. 2411 if (IVCount != BackedgeTakenCount && Count == 0) { 2412 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2413 ++Count; 2414 } 2415 else 2416 Count = Count.zext(CmpIndVarSize); 2417 APInt NewLimit; 2418 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2419 NewLimit = Start - Count; 2420 else 2421 NewLimit = Start + Count; 2422 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2423 2424 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2425 } else { 2426 // We try to extend trip count first. If that doesn't work we truncate IV. 2427 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2428 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2429 // one of the two holds, extend the trip count, otherwise we truncate IV. 2430 bool Extended = false; 2431 const SCEV *IV = SE->getSCEV(CmpIndVar); 2432 const SCEV *ZExtTrunc = 2433 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2434 ExitCnt->getType()), 2435 CmpIndVar->getType()); 2436 2437 if (ZExtTrunc == IV) { 2438 Extended = true; 2439 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2440 "wide.trip.count"); 2441 } else { 2442 const SCEV *SExtTrunc = 2443 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2444 ExitCnt->getType()), 2445 CmpIndVar->getType()); 2446 if (SExtTrunc == IV) { 2447 Extended = true; 2448 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2449 "wide.trip.count"); 2450 } 2451 } 2452 2453 if (!Extended) 2454 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2455 "lftr.wideiv"); 2456 } 2457 } 2458 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2459 Value *OrigCond = BI->getCondition(); 2460 // It's tempting to use replaceAllUsesWith here to fully replace the old 2461 // comparison, but that's not immediately safe, since users of the old 2462 // comparison may not be dominated by the new comparison. Instead, just 2463 // update the branch to use the new comparison; in the common case this 2464 // will make old comparison dead. 2465 BI->setCondition(Cond); 2466 DeadInsts.push_back(OrigCond); 2467 2468 ++NumLFTR; 2469 return true; 2470 } 2471 2472 //===----------------------------------------------------------------------===// 2473 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2474 //===----------------------------------------------------------------------===// 2475 2476 /// If there's a single exit block, sink any loop-invariant values that 2477 /// were defined in the preheader but not used inside the loop into the 2478 /// exit block to reduce register pressure in the loop. 2479 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2480 BasicBlock *ExitBlock = L->getExitBlock(); 2481 if (!ExitBlock) return false; 2482 2483 BasicBlock *Preheader = L->getLoopPreheader(); 2484 if (!Preheader) return false; 2485 2486 bool MadeAnyChanges = false; 2487 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2488 BasicBlock::iterator I(Preheader->getTerminator()); 2489 while (I != Preheader->begin()) { 2490 --I; 2491 // New instructions were inserted at the end of the preheader. 2492 if (isa<PHINode>(I)) 2493 break; 2494 2495 // Don't move instructions which might have side effects, since the side 2496 // effects need to complete before instructions inside the loop. Also don't 2497 // move instructions which might read memory, since the loop may modify 2498 // memory. Note that it's okay if the instruction might have undefined 2499 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2500 // block. 2501 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2502 continue; 2503 2504 // Skip debug info intrinsics. 2505 if (isa<DbgInfoIntrinsic>(I)) 2506 continue; 2507 2508 // Skip eh pad instructions. 2509 if (I->isEHPad()) 2510 continue; 2511 2512 // Don't sink alloca: we never want to sink static alloca's out of the 2513 // entry block, and correctly sinking dynamic alloca's requires 2514 // checks for stacksave/stackrestore intrinsics. 2515 // FIXME: Refactor this check somehow? 2516 if (isa<AllocaInst>(I)) 2517 continue; 2518 2519 // Determine if there is a use in or before the loop (direct or 2520 // otherwise). 2521 bool UsedInLoop = false; 2522 for (Use &U : I->uses()) { 2523 Instruction *User = cast<Instruction>(U.getUser()); 2524 BasicBlock *UseBB = User->getParent(); 2525 if (PHINode *P = dyn_cast<PHINode>(User)) { 2526 unsigned i = 2527 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2528 UseBB = P->getIncomingBlock(i); 2529 } 2530 if (UseBB == Preheader || L->contains(UseBB)) { 2531 UsedInLoop = true; 2532 break; 2533 } 2534 } 2535 2536 // If there is, the def must remain in the preheader. 2537 if (UsedInLoop) 2538 continue; 2539 2540 // Otherwise, sink it to the exit block. 2541 Instruction *ToMove = &*I; 2542 bool Done = false; 2543 2544 if (I != Preheader->begin()) { 2545 // Skip debug info intrinsics. 2546 do { 2547 --I; 2548 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2549 2550 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2551 Done = true; 2552 } else { 2553 Done = true; 2554 } 2555 2556 MadeAnyChanges = true; 2557 ToMove->moveBefore(*ExitBlock, InsertPt); 2558 if (Done) break; 2559 InsertPt = ToMove->getIterator(); 2560 } 2561 2562 return MadeAnyChanges; 2563 } 2564 2565 //===----------------------------------------------------------------------===// 2566 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2567 //===----------------------------------------------------------------------===// 2568 2569 bool IndVarSimplify::run(Loop *L) { 2570 // We need (and expect!) the incoming loop to be in LCSSA. 2571 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2572 "LCSSA required to run indvars!"); 2573 bool Changed = false; 2574 2575 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2576 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2577 // canonicalization can be a pessimization without LSR to "clean up" 2578 // afterwards. 2579 // - We depend on having a preheader; in particular, 2580 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2581 // and we're in trouble if we can't find the induction variable even when 2582 // we've manually inserted one. 2583 // - LFTR relies on having a single backedge. 2584 if (!L->isLoopSimplifyForm()) 2585 return false; 2586 2587 // If there are any floating-point recurrences, attempt to 2588 // transform them to use integer recurrences. 2589 Changed |= rewriteNonIntegerIVs(L); 2590 2591 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2592 2593 // Create a rewriter object which we'll use to transform the code with. 2594 SCEVExpander Rewriter(*SE, DL, "indvars"); 2595 #ifndef NDEBUG 2596 Rewriter.setDebugType(DEBUG_TYPE); 2597 #endif 2598 2599 // Eliminate redundant IV users. 2600 // 2601 // Simplification works best when run before other consumers of SCEV. We 2602 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2603 // other expressions involving loop IVs have been evaluated. This helps SCEV 2604 // set no-wrap flags before normalizing sign/zero extension. 2605 Rewriter.disableCanonicalMode(); 2606 Changed |= simplifyAndExtend(L, Rewriter, LI); 2607 2608 // Check to see if this loop has a computable loop-invariant execution count. 2609 // If so, this means that we can compute the final value of any expressions 2610 // that are recurrent in the loop, and substitute the exit values from the 2611 // loop into any instructions outside of the loop that use the final values of 2612 // the current expressions. 2613 // 2614 if (ReplaceExitValue != NeverRepl && 2615 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2616 Changed |= rewriteLoopExitValues(L, Rewriter); 2617 2618 // Eliminate redundant IV cycles. 2619 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2620 2621 // If we have a trip count expression, rewrite the loop's exit condition 2622 // using it. 2623 if (!DisableLFTR) { 2624 // For the moment, we only do LFTR for single exit loops. The code is 2625 // structured as it is in the expectation of generalization to multi-exit 2626 // loops in the near future. See D62625 for context. 2627 SmallVector<BasicBlock*, 16> ExitingBlocks; 2628 if (auto *ExitingBB = L->getExitingBlock()) 2629 ExitingBlocks.push_back(ExitingBB); 2630 for (BasicBlock *ExitingBB : ExitingBlocks) { 2631 // Can't rewrite non-branch yet. 2632 if (!isa<BranchInst>(ExitingBB->getTerminator())) 2633 continue; 2634 2635 if (!needsLFTR(L, ExitingBB)) 2636 continue; 2637 2638 // Note: This block of code is here strictly to seperate an change into 2639 // two parts: one NFC, one not. What's happening here is that SCEV is 2640 // returning a more expensive expression for the BackedgeTakenCount for 2641 // the loop after widening in rare circumstances. In review, we decided 2642 // to accept that small difference - since it has minimal test suite 2643 // impact - but for ease of attribution, the functional diff will be it's 2644 // own change. 2645 const SCEV *BETakenCount = L->getExitingBlock() ? 2646 BackedgeTakenCount : SE->getExitCount(L, ExitingBB); 2647 if (isa<SCEVCouldNotCompute>(BETakenCount)) 2648 continue; 2649 2650 // Better to fold to true (TODO: do so!) 2651 if (BETakenCount->isZero()) 2652 continue; 2653 2654 PHINode *IndVar = FindLoopCounter(L, ExitingBB, BETakenCount, SE); 2655 if (!IndVar) 2656 continue; 2657 2658 // Avoid high cost expansions. Note: This heuristic is questionable in 2659 // that our definition of "high cost" is not exactly principled. 2660 if (Rewriter.isHighCostExpansion(BETakenCount, L)) 2661 continue; 2662 2663 // Check preconditions for proper SCEVExpander operation. SCEV does not 2664 // express SCEVExpander's dependencies, such as LoopSimplify. Instead 2665 // any pass that uses the SCEVExpander must do it. This does not work 2666 // well for loop passes because SCEVExpander makes assumptions about 2667 // all loops, while LoopPassManager only forces the current loop to be 2668 // simplified. 2669 // 2670 // FIXME: SCEV expansion has no way to bail out, so the caller must 2671 // explicitly check any assumptions made by SCEV. Brittle. 2672 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BETakenCount); 2673 if (!AR || AR->getLoop()->getLoopPreheader()) 2674 Changed |= linearFunctionTestReplace(L, ExitingBB, 2675 BETakenCount, IndVar, 2676 Rewriter); 2677 } 2678 } 2679 // Clear the rewriter cache, because values that are in the rewriter's cache 2680 // can be deleted in the loop below, causing the AssertingVH in the cache to 2681 // trigger. 2682 Rewriter.clear(); 2683 2684 // Now that we're done iterating through lists, clean up any instructions 2685 // which are now dead. 2686 while (!DeadInsts.empty()) 2687 if (Instruction *Inst = 2688 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2689 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2690 2691 // The Rewriter may not be used from this point on. 2692 2693 // Loop-invariant instructions in the preheader that aren't used in the 2694 // loop may be sunk below the loop to reduce register pressure. 2695 Changed |= sinkUnusedInvariants(L); 2696 2697 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2698 // trip count and therefore can further simplify exit values in addition to 2699 // rewriteLoopExitValues. 2700 Changed |= rewriteFirstIterationLoopExitValues(L); 2701 2702 // Clean up dead instructions. 2703 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2704 2705 // Check a post-condition. 2706 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2707 "Indvars did not preserve LCSSA!"); 2708 2709 // Verify that LFTR, and any other change have not interfered with SCEV's 2710 // ability to compute trip count. 2711 #ifndef NDEBUG 2712 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2713 SE->forgetLoop(L); 2714 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2715 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2716 SE->getTypeSizeInBits(NewBECount->getType())) 2717 NewBECount = SE->getTruncateOrNoop(NewBECount, 2718 BackedgeTakenCount->getType()); 2719 else 2720 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2721 NewBECount->getType()); 2722 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2723 } 2724 #endif 2725 2726 return Changed; 2727 } 2728 2729 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2730 LoopStandardAnalysisResults &AR, 2731 LPMUpdater &) { 2732 Function *F = L.getHeader()->getParent(); 2733 const DataLayout &DL = F->getParent()->getDataLayout(); 2734 2735 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2736 if (!IVS.run(&L)) 2737 return PreservedAnalyses::all(); 2738 2739 auto PA = getLoopPassPreservedAnalyses(); 2740 PA.preserveSet<CFGAnalyses>(); 2741 return PA; 2742 } 2743 2744 namespace { 2745 2746 struct IndVarSimplifyLegacyPass : public LoopPass { 2747 static char ID; // Pass identification, replacement for typeid 2748 2749 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2750 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2751 } 2752 2753 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2754 if (skipLoop(L)) 2755 return false; 2756 2757 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2758 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2759 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2760 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2761 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2762 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2763 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2764 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2765 2766 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2767 return IVS.run(L); 2768 } 2769 2770 void getAnalysisUsage(AnalysisUsage &AU) const override { 2771 AU.setPreservesCFG(); 2772 getLoopAnalysisUsage(AU); 2773 } 2774 }; 2775 2776 } // end anonymous namespace 2777 2778 char IndVarSimplifyLegacyPass::ID = 0; 2779 2780 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2781 "Induction Variable Simplification", false, false) 2782 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2783 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2784 "Induction Variable Simplification", false, false) 2785 2786 Pass *llvm::createIndVarSimplifyPass() { 2787 return new IndVarSimplifyLegacyPass(); 2788 } 2789