xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 5d84ccb2303ba627cd3f755fe326bb2c875234b9)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallVector.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/ADT/iterator_range.h"
38 #include "llvm/Analysis/LoopInfo.h"
39 #include "llvm/Analysis/LoopPass.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/ScalarEvolutionExpander.h"
42 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/TargetTransformInfo.h"
45 #include "llvm/Transforms/Utils/Local.h"
46 #include "llvm/IR/BasicBlock.h"
47 #include "llvm/IR/Constant.h"
48 #include "llvm/IR/ConstantRange.h"
49 #include "llvm/IR/Constants.h"
50 #include "llvm/IR/DataLayout.h"
51 #include "llvm/IR/DerivedTypes.h"
52 #include "llvm/IR/Dominators.h"
53 #include "llvm/IR/Function.h"
54 #include "llvm/IR/IRBuilder.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/IntrinsicInst.h"
59 #include "llvm/IR/Intrinsics.h"
60 #include "llvm/IR/Module.h"
61 #include "llvm/IR/Operator.h"
62 #include "llvm/IR/PassManager.h"
63 #include "llvm/IR/PatternMatch.h"
64 #include "llvm/IR/Type.h"
65 #include "llvm/IR/Use.h"
66 #include "llvm/IR/User.h"
67 #include "llvm/IR/Value.h"
68 #include "llvm/IR/ValueHandle.h"
69 #include "llvm/Pass.h"
70 #include "llvm/Support/Casting.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/Compiler.h"
73 #include "llvm/Support/Debug.h"
74 #include "llvm/Support/ErrorHandling.h"
75 #include "llvm/Support/MathExtras.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include "llvm/Transforms/Scalar.h"
78 #include "llvm/Transforms/Scalar/LoopPassManager.h"
79 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
80 #include "llvm/Transforms/Utils/LoopUtils.h"
81 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
82 #include <cassert>
83 #include <cstdint>
84 #include <utility>
85 
86 using namespace llvm;
87 
88 #define DEBUG_TYPE "indvars"
89 
90 STATISTIC(NumWidened     , "Number of indvars widened");
91 STATISTIC(NumReplaced    , "Number of exit values replaced");
92 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
93 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
94 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
95 
96 // Trip count verification can be enabled by default under NDEBUG if we
97 // implement a strong expression equivalence checker in SCEV. Until then, we
98 // use the verify-indvars flag, which may assert in some cases.
99 static cl::opt<bool> VerifyIndvars(
100   "verify-indvars", cl::Hidden,
101   cl::desc("Verify the ScalarEvolution result after running indvars"));
102 
103 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
104 
105 static cl::opt<ReplaceExitVal> ReplaceExitValue(
106     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
107     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
108     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
109                clEnumValN(OnlyCheapRepl, "cheap",
110                           "only replace exit value when the cost is cheap"),
111                clEnumValN(AlwaysRepl, "always",
112                           "always replace exit value whenever possible")));
113 
114 static cl::opt<bool> UsePostIncrementRanges(
115   "indvars-post-increment-ranges", cl::Hidden,
116   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
117   cl::init(true));
118 
119 static cl::opt<bool>
120 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
121             cl::desc("Disable Linear Function Test Replace optimization"));
122 
123 namespace {
124 
125 struct RewritePhi;
126 
127 class IndVarSimplify {
128   LoopInfo *LI;
129   ScalarEvolution *SE;
130   DominatorTree *DT;
131   const DataLayout &DL;
132   TargetLibraryInfo *TLI;
133   const TargetTransformInfo *TTI;
134 
135   SmallVector<WeakTrackingVH, 16> DeadInsts;
136 
137   bool isValidRewrite(Value *FromVal, Value *ToVal);
138 
139   bool handleFloatingPointIV(Loop *L, PHINode *PH);
140   bool rewriteNonIntegerIVs(Loop *L);
141 
142   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
143 
144   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
145   bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
146   bool rewriteFirstIterationLoopExitValues(Loop *L);
147   bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const;
148 
149   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
150                                  const SCEV *BackedgeTakenCount,
151                                  PHINode *IndVar, SCEVExpander &Rewriter);
152 
153   bool sinkUnusedInvariants(Loop *L);
154 
155 public:
156   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
157                  const DataLayout &DL, TargetLibraryInfo *TLI,
158                  TargetTransformInfo *TTI)
159       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
160 
161   bool run(Loop *L);
162 };
163 
164 } // end anonymous namespace
165 
166 /// Return true if the SCEV expansion generated by the rewriter can replace the
167 /// original value. SCEV guarantees that it produces the same value, but the way
168 /// it is produced may be illegal IR.  Ideally, this function will only be
169 /// called for verification.
170 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
171   // If an SCEV expression subsumed multiple pointers, its expansion could
172   // reassociate the GEP changing the base pointer. This is illegal because the
173   // final address produced by a GEP chain must be inbounds relative to its
174   // underlying object. Otherwise basic alias analysis, among other things,
175   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
176   // producing an expression involving multiple pointers. Until then, we must
177   // bail out here.
178   //
179   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
180   // because it understands lcssa phis while SCEV does not.
181   Value *FromPtr = FromVal;
182   Value *ToPtr = ToVal;
183   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
184     FromPtr = GEP->getPointerOperand();
185   }
186   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
187     ToPtr = GEP->getPointerOperand();
188   }
189   if (FromPtr != FromVal || ToPtr != ToVal) {
190     // Quickly check the common case
191     if (FromPtr == ToPtr)
192       return true;
193 
194     // SCEV may have rewritten an expression that produces the GEP's pointer
195     // operand. That's ok as long as the pointer operand has the same base
196     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
197     // base of a recurrence. This handles the case in which SCEV expansion
198     // converts a pointer type recurrence into a nonrecurrent pointer base
199     // indexed by an integer recurrence.
200 
201     // If the GEP base pointer is a vector of pointers, abort.
202     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
203       return false;
204 
205     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
206     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
207     if (FromBase == ToBase)
208       return true;
209 
210     LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
211                       << " != " << *ToBase << "\n");
212 
213     return false;
214   }
215   return true;
216 }
217 
218 /// Determine the insertion point for this user. By default, insert immediately
219 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
220 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
221 /// common dominator for the incoming blocks. A nullptr can be returned if no
222 /// viable location is found: it may happen if User is a PHI and Def only comes
223 /// to this PHI from unreachable blocks.
224 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
225                                           DominatorTree *DT, LoopInfo *LI) {
226   PHINode *PHI = dyn_cast<PHINode>(User);
227   if (!PHI)
228     return User;
229 
230   Instruction *InsertPt = nullptr;
231   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
232     if (PHI->getIncomingValue(i) != Def)
233       continue;
234 
235     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
236 
237     if (!DT->isReachableFromEntry(InsertBB))
238       continue;
239 
240     if (!InsertPt) {
241       InsertPt = InsertBB->getTerminator();
242       continue;
243     }
244     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
245     InsertPt = InsertBB->getTerminator();
246   }
247 
248   // If we have skipped all inputs, it means that Def only comes to Phi from
249   // unreachable blocks.
250   if (!InsertPt)
251     return nullptr;
252 
253   auto *DefI = dyn_cast<Instruction>(Def);
254   if (!DefI)
255     return InsertPt;
256 
257   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
258 
259   auto *L = LI->getLoopFor(DefI->getParent());
260   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
261 
262   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
263     if (LI->getLoopFor(DTN->getBlock()) == L)
264       return DTN->getBlock()->getTerminator();
265 
266   llvm_unreachable("DefI dominates InsertPt!");
267 }
268 
269 //===----------------------------------------------------------------------===//
270 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
271 //===----------------------------------------------------------------------===//
272 
273 /// Convert APF to an integer, if possible.
274 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
275   bool isExact = false;
276   // See if we can convert this to an int64_t
277   uint64_t UIntVal;
278   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
279                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
280       !isExact)
281     return false;
282   IntVal = UIntVal;
283   return true;
284 }
285 
286 /// If the loop has floating induction variable then insert corresponding
287 /// integer induction variable if possible.
288 /// For example,
289 /// for(double i = 0; i < 10000; ++i)
290 ///   bar(i)
291 /// is converted into
292 /// for(int i = 0; i < 10000; ++i)
293 ///   bar((double)i);
294 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
295   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
296   unsigned BackEdge     = IncomingEdge^1;
297 
298   // Check incoming value.
299   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
300 
301   int64_t InitValue;
302   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
303     return false;
304 
305   // Check IV increment. Reject this PN if increment operation is not
306   // an add or increment value can not be represented by an integer.
307   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
308   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
309 
310   // If this is not an add of the PHI with a constantfp, or if the constant fp
311   // is not an integer, bail out.
312   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
313   int64_t IncValue;
314   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
315       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
316     return false;
317 
318   // Check Incr uses. One user is PN and the other user is an exit condition
319   // used by the conditional terminator.
320   Value::user_iterator IncrUse = Incr->user_begin();
321   Instruction *U1 = cast<Instruction>(*IncrUse++);
322   if (IncrUse == Incr->user_end()) return false;
323   Instruction *U2 = cast<Instruction>(*IncrUse++);
324   if (IncrUse != Incr->user_end()) return false;
325 
326   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
327   // only used by a branch, we can't transform it.
328   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
329   if (!Compare)
330     Compare = dyn_cast<FCmpInst>(U2);
331   if (!Compare || !Compare->hasOneUse() ||
332       !isa<BranchInst>(Compare->user_back()))
333     return false;
334 
335   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
336 
337   // We need to verify that the branch actually controls the iteration count
338   // of the loop.  If not, the new IV can overflow and no one will notice.
339   // The branch block must be in the loop and one of the successors must be out
340   // of the loop.
341   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
342   if (!L->contains(TheBr->getParent()) ||
343       (L->contains(TheBr->getSuccessor(0)) &&
344        L->contains(TheBr->getSuccessor(1))))
345     return false;
346 
347   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
348   // transform it.
349   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
350   int64_t ExitValue;
351   if (ExitValueVal == nullptr ||
352       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
353     return false;
354 
355   // Find new predicate for integer comparison.
356   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
357   switch (Compare->getPredicate()) {
358   default: return false;  // Unknown comparison.
359   case CmpInst::FCMP_OEQ:
360   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
361   case CmpInst::FCMP_ONE:
362   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
363   case CmpInst::FCMP_OGT:
364   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
365   case CmpInst::FCMP_OGE:
366   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
367   case CmpInst::FCMP_OLT:
368   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
369   case CmpInst::FCMP_OLE:
370   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
371   }
372 
373   // We convert the floating point induction variable to a signed i32 value if
374   // we can.  This is only safe if the comparison will not overflow in a way
375   // that won't be trapped by the integer equivalent operations.  Check for this
376   // now.
377   // TODO: We could use i64 if it is native and the range requires it.
378 
379   // The start/stride/exit values must all fit in signed i32.
380   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
381     return false;
382 
383   // If not actually striding (add x, 0.0), avoid touching the code.
384   if (IncValue == 0)
385     return false;
386 
387   // Positive and negative strides have different safety conditions.
388   if (IncValue > 0) {
389     // If we have a positive stride, we require the init to be less than the
390     // exit value.
391     if (InitValue >= ExitValue)
392       return false;
393 
394     uint32_t Range = uint32_t(ExitValue-InitValue);
395     // Check for infinite loop, either:
396     // while (i <= Exit) or until (i > Exit)
397     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
398       if (++Range == 0) return false;  // Range overflows.
399     }
400 
401     unsigned Leftover = Range % uint32_t(IncValue);
402 
403     // If this is an equality comparison, we require that the strided value
404     // exactly land on the exit value, otherwise the IV condition will wrap
405     // around and do things the fp IV wouldn't.
406     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
407         Leftover != 0)
408       return false;
409 
410     // If the stride would wrap around the i32 before exiting, we can't
411     // transform the IV.
412     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
413       return false;
414   } else {
415     // If we have a negative stride, we require the init to be greater than the
416     // exit value.
417     if (InitValue <= ExitValue)
418       return false;
419 
420     uint32_t Range = uint32_t(InitValue-ExitValue);
421     // Check for infinite loop, either:
422     // while (i >= Exit) or until (i < Exit)
423     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
424       if (++Range == 0) return false;  // Range overflows.
425     }
426 
427     unsigned Leftover = Range % uint32_t(-IncValue);
428 
429     // If this is an equality comparison, we require that the strided value
430     // exactly land on the exit value, otherwise the IV condition will wrap
431     // around and do things the fp IV wouldn't.
432     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
433         Leftover != 0)
434       return false;
435 
436     // If the stride would wrap around the i32 before exiting, we can't
437     // transform the IV.
438     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
439       return false;
440   }
441 
442   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
443 
444   // Insert new integer induction variable.
445   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
446   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
447                       PN->getIncomingBlock(IncomingEdge));
448 
449   Value *NewAdd =
450     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
451                               Incr->getName()+".int", Incr);
452   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
453 
454   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
455                                       ConstantInt::get(Int32Ty, ExitValue),
456                                       Compare->getName());
457 
458   // In the following deletions, PN may become dead and may be deleted.
459   // Use a WeakTrackingVH to observe whether this happens.
460   WeakTrackingVH WeakPH = PN;
461 
462   // Delete the old floating point exit comparison.  The branch starts using the
463   // new comparison.
464   NewCompare->takeName(Compare);
465   Compare->replaceAllUsesWith(NewCompare);
466   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
467 
468   // Delete the old floating point increment.
469   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
470   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
471 
472   // If the FP induction variable still has uses, this is because something else
473   // in the loop uses its value.  In order to canonicalize the induction
474   // variable, we chose to eliminate the IV and rewrite it in terms of an
475   // int->fp cast.
476   //
477   // We give preference to sitofp over uitofp because it is faster on most
478   // platforms.
479   if (WeakPH) {
480     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
481                                  &*PN->getParent()->getFirstInsertionPt());
482     PN->replaceAllUsesWith(Conv);
483     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
484   }
485   return true;
486 }
487 
488 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
489   // First step.  Check to see if there are any floating-point recurrences.
490   // If there are, change them into integer recurrences, permitting analysis by
491   // the SCEV routines.
492   BasicBlock *Header = L->getHeader();
493 
494   SmallVector<WeakTrackingVH, 8> PHIs;
495   for (PHINode &PN : Header->phis())
496     PHIs.push_back(&PN);
497 
498   bool Changed = false;
499   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
500     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
501       Changed |= handleFloatingPointIV(L, PN);
502 
503   // If the loop previously had floating-point IV, ScalarEvolution
504   // may not have been able to compute a trip count. Now that we've done some
505   // re-writing, the trip count may be computable.
506   if (Changed)
507     SE->forgetLoop(L);
508   return Changed;
509 }
510 
511 namespace {
512 
513 // Collect information about PHI nodes which can be transformed in
514 // rewriteLoopExitValues.
515 struct RewritePhi {
516   PHINode *PN;
517 
518   // Ith incoming value.
519   unsigned Ith;
520 
521   // Exit value after expansion.
522   Value *Val;
523 
524   // High Cost when expansion.
525   bool HighCost;
526 
527   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
528       : PN(P), Ith(I), Val(V), HighCost(H) {}
529 };
530 
531 } // end anonymous namespace
532 
533 //===----------------------------------------------------------------------===//
534 // rewriteLoopExitValues - Optimize IV users outside the loop.
535 // As a side effect, reduces the amount of IV processing within the loop.
536 //===----------------------------------------------------------------------===//
537 
538 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const {
539   SmallPtrSet<const Instruction *, 8> Visited;
540   SmallVector<const Instruction *, 8> WorkList;
541   Visited.insert(I);
542   WorkList.push_back(I);
543   while (!WorkList.empty()) {
544     const Instruction *Curr = WorkList.pop_back_val();
545     // This use is outside the loop, nothing to do.
546     if (!L->contains(Curr))
547       continue;
548     // Do we assume it is a "hard" use which will not be eliminated easily?
549     if (Curr->mayHaveSideEffects())
550       return true;
551     // Otherwise, add all its users to worklist.
552     for (auto U : Curr->users()) {
553       auto *UI = cast<Instruction>(U);
554       if (Visited.insert(UI).second)
555         WorkList.push_back(UI);
556     }
557   }
558   return false;
559 }
560 
561 /// Check to see if this loop has a computable loop-invariant execution count.
562 /// If so, this means that we can compute the final value of any expressions
563 /// that are recurrent in the loop, and substitute the exit values from the loop
564 /// into any instructions outside of the loop that use the final values of the
565 /// current expressions.
566 ///
567 /// This is mostly redundant with the regular IndVarSimplify activities that
568 /// happen later, except that it's more powerful in some cases, because it's
569 /// able to brute-force evaluate arbitrary instructions as long as they have
570 /// constant operands at the beginning of the loop.
571 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
572   // Check a pre-condition.
573   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
574          "Indvars did not preserve LCSSA!");
575 
576   SmallVector<BasicBlock*, 8> ExitBlocks;
577   L->getUniqueExitBlocks(ExitBlocks);
578 
579   SmallVector<RewritePhi, 8> RewritePhiSet;
580   // Find all values that are computed inside the loop, but used outside of it.
581   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
582   // the exit blocks of the loop to find them.
583   for (BasicBlock *ExitBB : ExitBlocks) {
584     // If there are no PHI nodes in this exit block, then no values defined
585     // inside the loop are used on this path, skip it.
586     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
587     if (!PN) continue;
588 
589     unsigned NumPreds = PN->getNumIncomingValues();
590 
591     // Iterate over all of the PHI nodes.
592     BasicBlock::iterator BBI = ExitBB->begin();
593     while ((PN = dyn_cast<PHINode>(BBI++))) {
594       if (PN->use_empty())
595         continue; // dead use, don't replace it
596 
597       if (!SE->isSCEVable(PN->getType()))
598         continue;
599 
600       // It's necessary to tell ScalarEvolution about this explicitly so that
601       // it can walk the def-use list and forget all SCEVs, as it may not be
602       // watching the PHI itself. Once the new exit value is in place, there
603       // may not be a def-use connection between the loop and every instruction
604       // which got a SCEVAddRecExpr for that loop.
605       SE->forgetValue(PN);
606 
607       // Iterate over all of the values in all the PHI nodes.
608       for (unsigned i = 0; i != NumPreds; ++i) {
609         // If the value being merged in is not integer or is not defined
610         // in the loop, skip it.
611         Value *InVal = PN->getIncomingValue(i);
612         if (!isa<Instruction>(InVal))
613           continue;
614 
615         // If this pred is for a subloop, not L itself, skip it.
616         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
617           continue; // The Block is in a subloop, skip it.
618 
619         // Check that InVal is defined in the loop.
620         Instruction *Inst = cast<Instruction>(InVal);
621         if (!L->contains(Inst))
622           continue;
623 
624         // Okay, this instruction has a user outside of the current loop
625         // and varies predictably *inside* the loop.  Evaluate the value it
626         // contains when the loop exits, if possible.
627         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
628         if (!SE->isLoopInvariant(ExitValue, L) ||
629             !isSafeToExpand(ExitValue, *SE))
630           continue;
631 
632         // Computing the value outside of the loop brings no benefit if it is
633         // definitely used inside the loop in a way which can not be optimized
634         // away.
635         if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst))
636           continue;
637 
638         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
639         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
640 
641         LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
642                           << '\n'
643                           << "  LoopVal = " << *Inst << "\n");
644 
645         if (!isValidRewrite(Inst, ExitVal)) {
646           DeadInsts.push_back(ExitVal);
647           continue;
648         }
649 
650 #ifndef NDEBUG
651         // If we reuse an instruction from a loop which is neither L nor one of
652         // its containing loops, we end up breaking LCSSA form for this loop by
653         // creating a new use of its instruction.
654         if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
655           if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
656             if (EVL != L)
657               assert(EVL->contains(L) && "LCSSA breach detected!");
658 #endif
659 
660         // Collect all the candidate PHINodes to be rewritten.
661         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
662       }
663     }
664   }
665 
666   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
667 
668   bool Changed = false;
669   // Transformation.
670   for (const RewritePhi &Phi : RewritePhiSet) {
671     PHINode *PN = Phi.PN;
672     Value *ExitVal = Phi.Val;
673 
674     // Only do the rewrite when the ExitValue can be expanded cheaply.
675     // If LoopCanBeDel is true, rewrite exit value aggressively.
676     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
677       DeadInsts.push_back(ExitVal);
678       continue;
679     }
680 
681     Changed = true;
682     ++NumReplaced;
683     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
684     PN->setIncomingValue(Phi.Ith, ExitVal);
685 
686     // If this instruction is dead now, delete it. Don't do it now to avoid
687     // invalidating iterators.
688     if (isInstructionTriviallyDead(Inst, TLI))
689       DeadInsts.push_back(Inst);
690 
691     // Replace PN with ExitVal if that is legal and does not break LCSSA.
692     if (PN->getNumIncomingValues() == 1 &&
693         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
694       PN->replaceAllUsesWith(ExitVal);
695       PN->eraseFromParent();
696     }
697   }
698 
699   // The insertion point instruction may have been deleted; clear it out
700   // so that the rewriter doesn't trip over it later.
701   Rewriter.clearInsertPoint();
702   return Changed;
703 }
704 
705 //===---------------------------------------------------------------------===//
706 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
707 // they will exit at the first iteration.
708 //===---------------------------------------------------------------------===//
709 
710 /// Check to see if this loop has loop invariant conditions which lead to loop
711 /// exits. If so, we know that if the exit path is taken, it is at the first
712 /// loop iteration. This lets us predict exit values of PHI nodes that live in
713 /// loop header.
714 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
715   // Verify the input to the pass is already in LCSSA form.
716   assert(L->isLCSSAForm(*DT));
717 
718   SmallVector<BasicBlock *, 8> ExitBlocks;
719   L->getUniqueExitBlocks(ExitBlocks);
720 
721   bool MadeAnyChanges = false;
722   for (auto *ExitBB : ExitBlocks) {
723     // If there are no more PHI nodes in this exit block, then no more
724     // values defined inside the loop are used on this path.
725     for (PHINode &PN : ExitBB->phis()) {
726       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
727            IncomingValIdx != E; ++IncomingValIdx) {
728         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
729 
730         // Can we prove that the exit must run on the first iteration if it
731         // runs at all?  (i.e. early exits are fine for our purposes, but
732         // traces which lead to this exit being taken on the 2nd iteration
733         // aren't.)  Note that this is about whether the exit branch is
734         // executed, not about whether it is taken.
735         if (!L->getLoopLatch() ||
736             !DT->dominates(IncomingBB, L->getLoopLatch()))
737           continue;
738 
739         // Get condition that leads to the exit path.
740         auto *TermInst = IncomingBB->getTerminator();
741 
742         Value *Cond = nullptr;
743         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
744           // Must be a conditional branch, otherwise the block
745           // should not be in the loop.
746           Cond = BI->getCondition();
747         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
748           Cond = SI->getCondition();
749         else
750           continue;
751 
752         if (!L->isLoopInvariant(Cond))
753           continue;
754 
755         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
756 
757         // Only deal with PHIs in the loop header.
758         if (!ExitVal || ExitVal->getParent() != L->getHeader())
759           continue;
760 
761         // If ExitVal is a PHI on the loop header, then we know its
762         // value along this exit because the exit can only be taken
763         // on the first iteration.
764         auto *LoopPreheader = L->getLoopPreheader();
765         assert(LoopPreheader && "Invalid loop");
766         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
767         if (PreheaderIdx != -1) {
768           assert(ExitVal->getParent() == L->getHeader() &&
769                  "ExitVal must be in loop header");
770           MadeAnyChanges = true;
771           PN.setIncomingValue(IncomingValIdx,
772                               ExitVal->getIncomingValue(PreheaderIdx));
773         }
774       }
775     }
776   }
777   return MadeAnyChanges;
778 }
779 
780 /// Check whether it is possible to delete the loop after rewriting exit
781 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
782 /// aggressively.
783 bool IndVarSimplify::canLoopBeDeleted(
784     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
785   BasicBlock *Preheader = L->getLoopPreheader();
786   // If there is no preheader, the loop will not be deleted.
787   if (!Preheader)
788     return false;
789 
790   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
791   // We obviate multiple ExitingBlocks case for simplicity.
792   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
793   // after exit value rewriting, we can enhance the logic here.
794   SmallVector<BasicBlock *, 4> ExitingBlocks;
795   L->getExitingBlocks(ExitingBlocks);
796   SmallVector<BasicBlock *, 8> ExitBlocks;
797   L->getUniqueExitBlocks(ExitBlocks);
798   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
799     return false;
800 
801   BasicBlock *ExitBlock = ExitBlocks[0];
802   BasicBlock::iterator BI = ExitBlock->begin();
803   while (PHINode *P = dyn_cast<PHINode>(BI)) {
804     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
805 
806     // If the Incoming value of P is found in RewritePhiSet, we know it
807     // could be rewritten to use a loop invariant value in transformation
808     // phase later. Skip it in the loop invariant check below.
809     bool found = false;
810     for (const RewritePhi &Phi : RewritePhiSet) {
811       unsigned i = Phi.Ith;
812       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
813         found = true;
814         break;
815       }
816     }
817 
818     Instruction *I;
819     if (!found && (I = dyn_cast<Instruction>(Incoming)))
820       if (!L->hasLoopInvariantOperands(I))
821         return false;
822 
823     ++BI;
824   }
825 
826   for (auto *BB : L->blocks())
827     if (llvm::any_of(*BB, [](Instruction &I) {
828           return I.mayHaveSideEffects();
829         }))
830       return false;
831 
832   return true;
833 }
834 
835 //===----------------------------------------------------------------------===//
836 //  IV Widening - Extend the width of an IV to cover its widest uses.
837 //===----------------------------------------------------------------------===//
838 
839 namespace {
840 
841 // Collect information about induction variables that are used by sign/zero
842 // extend operations. This information is recorded by CollectExtend and provides
843 // the input to WidenIV.
844 struct WideIVInfo {
845   PHINode *NarrowIV = nullptr;
846 
847   // Widest integer type created [sz]ext
848   Type *WidestNativeType = nullptr;
849 
850   // Was a sext user seen before a zext?
851   bool IsSigned = false;
852 };
853 
854 } // end anonymous namespace
855 
856 /// Update information about the induction variable that is extended by this
857 /// sign or zero extend operation. This is used to determine the final width of
858 /// the IV before actually widening it.
859 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
860                         const TargetTransformInfo *TTI) {
861   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
862   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
863     return;
864 
865   Type *Ty = Cast->getType();
866   uint64_t Width = SE->getTypeSizeInBits(Ty);
867   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
868     return;
869 
870   // Check that `Cast` actually extends the induction variable (we rely on this
871   // later).  This takes care of cases where `Cast` is extending a truncation of
872   // the narrow induction variable, and thus can end up being narrower than the
873   // "narrow" induction variable.
874   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
875   if (NarrowIVWidth >= Width)
876     return;
877 
878   // Cast is either an sext or zext up to this point.
879   // We should not widen an indvar if arithmetics on the wider indvar are more
880   // expensive than those on the narrower indvar. We check only the cost of ADD
881   // because at least an ADD is required to increment the induction variable. We
882   // could compute more comprehensively the cost of all instructions on the
883   // induction variable when necessary.
884   if (TTI &&
885       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
886           TTI->getArithmeticInstrCost(Instruction::Add,
887                                       Cast->getOperand(0)->getType())) {
888     return;
889   }
890 
891   if (!WI.WidestNativeType) {
892     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
893     WI.IsSigned = IsSigned;
894     return;
895   }
896 
897   // We extend the IV to satisfy the sign of its first user, arbitrarily.
898   if (WI.IsSigned != IsSigned)
899     return;
900 
901   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
902     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
903 }
904 
905 namespace {
906 
907 /// Record a link in the Narrow IV def-use chain along with the WideIV that
908 /// computes the same value as the Narrow IV def.  This avoids caching Use*
909 /// pointers.
910 struct NarrowIVDefUse {
911   Instruction *NarrowDef = nullptr;
912   Instruction *NarrowUse = nullptr;
913   Instruction *WideDef = nullptr;
914 
915   // True if the narrow def is never negative.  Tracking this information lets
916   // us use a sign extension instead of a zero extension or vice versa, when
917   // profitable and legal.
918   bool NeverNegative = false;
919 
920   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
921                  bool NeverNegative)
922       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
923         NeverNegative(NeverNegative) {}
924 };
925 
926 /// The goal of this transform is to remove sign and zero extends without
927 /// creating any new induction variables. To do this, it creates a new phi of
928 /// the wider type and redirects all users, either removing extends or inserting
929 /// truncs whenever we stop propagating the type.
930 class WidenIV {
931   // Parameters
932   PHINode *OrigPhi;
933   Type *WideType;
934 
935   // Context
936   LoopInfo        *LI;
937   Loop            *L;
938   ScalarEvolution *SE;
939   DominatorTree   *DT;
940 
941   // Does the module have any calls to the llvm.experimental.guard intrinsic
942   // at all? If not we can avoid scanning instructions looking for guards.
943   bool HasGuards;
944 
945   // Result
946   PHINode *WidePhi = nullptr;
947   Instruction *WideInc = nullptr;
948   const SCEV *WideIncExpr = nullptr;
949   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
950 
951   SmallPtrSet<Instruction *,16> Widened;
952   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
953 
954   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
955 
956   // A map tracking the kind of extension used to widen each narrow IV
957   // and narrow IV user.
958   // Key: pointer to a narrow IV or IV user.
959   // Value: the kind of extension used to widen this Instruction.
960   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
961 
962   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
963 
964   // A map with control-dependent ranges for post increment IV uses. The key is
965   // a pair of IV def and a use of this def denoting the context. The value is
966   // a ConstantRange representing possible values of the def at the given
967   // context.
968   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
969 
970   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
971                                               Instruction *UseI) {
972     DefUserPair Key(Def, UseI);
973     auto It = PostIncRangeInfos.find(Key);
974     return It == PostIncRangeInfos.end()
975                ? Optional<ConstantRange>(None)
976                : Optional<ConstantRange>(It->second);
977   }
978 
979   void calculatePostIncRanges(PHINode *OrigPhi);
980   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
981 
982   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
983     DefUserPair Key(Def, UseI);
984     auto It = PostIncRangeInfos.find(Key);
985     if (It == PostIncRangeInfos.end())
986       PostIncRangeInfos.insert({Key, R});
987     else
988       It->second = R.intersectWith(It->second);
989   }
990 
991 public:
992   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
993           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
994           bool HasGuards)
995       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
996         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
997         HasGuards(HasGuards), DeadInsts(DI) {
998     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
999     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1000   }
1001 
1002   PHINode *createWideIV(SCEVExpander &Rewriter);
1003 
1004 protected:
1005   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1006                           Instruction *Use);
1007 
1008   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1009   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1010                                      const SCEVAddRecExpr *WideAR);
1011   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1012 
1013   ExtendKind getExtendKind(Instruction *I);
1014 
1015   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1016 
1017   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1018 
1019   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1020 
1021   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1022                               unsigned OpCode) const;
1023 
1024   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1025 
1026   bool widenLoopCompare(NarrowIVDefUse DU);
1027   bool widenWithVariantLoadUse(NarrowIVDefUse DU);
1028   void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
1029 
1030   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1031 };
1032 
1033 } // end anonymous namespace
1034 
1035 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1036                                  bool IsSigned, Instruction *Use) {
1037   // Set the debug location and conservative insertion point.
1038   IRBuilder<> Builder(Use);
1039   // Hoist the insertion point into loop preheaders as far as possible.
1040   for (const Loop *L = LI->getLoopFor(Use->getParent());
1041        L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1042        L = L->getParentLoop())
1043     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1044 
1045   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1046                     Builder.CreateZExt(NarrowOper, WideType);
1047 }
1048 
1049 /// Instantiate a wide operation to replace a narrow operation. This only needs
1050 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1051 /// 0 for any operation we decide not to clone.
1052 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1053                                   const SCEVAddRecExpr *WideAR) {
1054   unsigned Opcode = DU.NarrowUse->getOpcode();
1055   switch (Opcode) {
1056   default:
1057     return nullptr;
1058   case Instruction::Add:
1059   case Instruction::Mul:
1060   case Instruction::UDiv:
1061   case Instruction::Sub:
1062     return cloneArithmeticIVUser(DU, WideAR);
1063 
1064   case Instruction::And:
1065   case Instruction::Or:
1066   case Instruction::Xor:
1067   case Instruction::Shl:
1068   case Instruction::LShr:
1069   case Instruction::AShr:
1070     return cloneBitwiseIVUser(DU);
1071   }
1072 }
1073 
1074 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1075   Instruction *NarrowUse = DU.NarrowUse;
1076   Instruction *NarrowDef = DU.NarrowDef;
1077   Instruction *WideDef = DU.WideDef;
1078 
1079   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1080 
1081   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1082   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1083   // invariant and will be folded or hoisted. If it actually comes from a
1084   // widened IV, it should be removed during a future call to widenIVUse.
1085   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1086   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1087                    ? WideDef
1088                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1089                                       IsSigned, NarrowUse);
1090   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1091                    ? WideDef
1092                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1093                                       IsSigned, NarrowUse);
1094 
1095   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1096   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1097                                         NarrowBO->getName());
1098   IRBuilder<> Builder(NarrowUse);
1099   Builder.Insert(WideBO);
1100   WideBO->copyIRFlags(NarrowBO);
1101   return WideBO;
1102 }
1103 
1104 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1105                                             const SCEVAddRecExpr *WideAR) {
1106   Instruction *NarrowUse = DU.NarrowUse;
1107   Instruction *NarrowDef = DU.NarrowDef;
1108   Instruction *WideDef = DU.WideDef;
1109 
1110   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1111 
1112   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1113 
1114   // We're trying to find X such that
1115   //
1116   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1117   //
1118   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1119   // and check using SCEV if any of them are correct.
1120 
1121   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1122   // correct solution to X.
1123   auto GuessNonIVOperand = [&](bool SignExt) {
1124     const SCEV *WideLHS;
1125     const SCEV *WideRHS;
1126 
1127     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1128       if (SignExt)
1129         return SE->getSignExtendExpr(S, Ty);
1130       return SE->getZeroExtendExpr(S, Ty);
1131     };
1132 
1133     if (IVOpIdx == 0) {
1134       WideLHS = SE->getSCEV(WideDef);
1135       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1136       WideRHS = GetExtend(NarrowRHS, WideType);
1137     } else {
1138       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1139       WideLHS = GetExtend(NarrowLHS, WideType);
1140       WideRHS = SE->getSCEV(WideDef);
1141     }
1142 
1143     // WideUse is "WideDef `op.wide` X" as described in the comment.
1144     const SCEV *WideUse = nullptr;
1145 
1146     switch (NarrowUse->getOpcode()) {
1147     default:
1148       llvm_unreachable("No other possibility!");
1149 
1150     case Instruction::Add:
1151       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1152       break;
1153 
1154     case Instruction::Mul:
1155       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1156       break;
1157 
1158     case Instruction::UDiv:
1159       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1160       break;
1161 
1162     case Instruction::Sub:
1163       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1164       break;
1165     }
1166 
1167     return WideUse == WideAR;
1168   };
1169 
1170   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1171   if (!GuessNonIVOperand(SignExtend)) {
1172     SignExtend = !SignExtend;
1173     if (!GuessNonIVOperand(SignExtend))
1174       return nullptr;
1175   }
1176 
1177   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1178                    ? WideDef
1179                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1180                                       SignExtend, NarrowUse);
1181   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1182                    ? WideDef
1183                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1184                                       SignExtend, NarrowUse);
1185 
1186   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1187   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1188                                         NarrowBO->getName());
1189 
1190   IRBuilder<> Builder(NarrowUse);
1191   Builder.Insert(WideBO);
1192   WideBO->copyIRFlags(NarrowBO);
1193   return WideBO;
1194 }
1195 
1196 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1197   auto It = ExtendKindMap.find(I);
1198   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1199   return It->second;
1200 }
1201 
1202 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1203                                      unsigned OpCode) const {
1204   if (OpCode == Instruction::Add)
1205     return SE->getAddExpr(LHS, RHS);
1206   if (OpCode == Instruction::Sub)
1207     return SE->getMinusSCEV(LHS, RHS);
1208   if (OpCode == Instruction::Mul)
1209     return SE->getMulExpr(LHS, RHS);
1210 
1211   llvm_unreachable("Unsupported opcode.");
1212 }
1213 
1214 /// No-wrap operations can transfer sign extension of their result to their
1215 /// operands. Generate the SCEV value for the widened operation without
1216 /// actually modifying the IR yet. If the expression after extending the
1217 /// operands is an AddRec for this loop, return the AddRec and the kind of
1218 /// extension used.
1219 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1220   // Handle the common case of add<nsw/nuw>
1221   const unsigned OpCode = DU.NarrowUse->getOpcode();
1222   // Only Add/Sub/Mul instructions supported yet.
1223   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1224       OpCode != Instruction::Mul)
1225     return {nullptr, Unknown};
1226 
1227   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1228   // if extending the other will lead to a recurrence.
1229   const unsigned ExtendOperIdx =
1230       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1231   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1232 
1233   const SCEV *ExtendOperExpr = nullptr;
1234   const OverflowingBinaryOperator *OBO =
1235     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1236   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1237   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1238     ExtendOperExpr = SE->getSignExtendExpr(
1239       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1240   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1241     ExtendOperExpr = SE->getZeroExtendExpr(
1242       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1243   else
1244     return {nullptr, Unknown};
1245 
1246   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1247   // flags. This instruction may be guarded by control flow that the no-wrap
1248   // behavior depends on. Non-control-equivalent instructions can be mapped to
1249   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1250   // semantics to those operations.
1251   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1252   const SCEV *rhs = ExtendOperExpr;
1253 
1254   // Let's swap operands to the initial order for the case of non-commutative
1255   // operations, like SUB. See PR21014.
1256   if (ExtendOperIdx == 0)
1257     std::swap(lhs, rhs);
1258   const SCEVAddRecExpr *AddRec =
1259       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1260 
1261   if (!AddRec || AddRec->getLoop() != L)
1262     return {nullptr, Unknown};
1263 
1264   return {AddRec, ExtKind};
1265 }
1266 
1267 /// Is this instruction potentially interesting for further simplification after
1268 /// widening it's type? In other words, can the extend be safely hoisted out of
1269 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1270 /// so, return the extended recurrence and the kind of extension used. Otherwise
1271 /// return {nullptr, Unknown}.
1272 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1273   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1274     return {nullptr, Unknown};
1275 
1276   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1277   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1278       SE->getTypeSizeInBits(WideType)) {
1279     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1280     // index. So don't follow this use.
1281     return {nullptr, Unknown};
1282   }
1283 
1284   const SCEV *WideExpr;
1285   ExtendKind ExtKind;
1286   if (DU.NeverNegative) {
1287     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1288     if (isa<SCEVAddRecExpr>(WideExpr))
1289       ExtKind = SignExtended;
1290     else {
1291       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1292       ExtKind = ZeroExtended;
1293     }
1294   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1295     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1296     ExtKind = SignExtended;
1297   } else {
1298     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1299     ExtKind = ZeroExtended;
1300   }
1301   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1302   if (!AddRec || AddRec->getLoop() != L)
1303     return {nullptr, Unknown};
1304   return {AddRec, ExtKind};
1305 }
1306 
1307 /// This IV user cannot be widen. Replace this use of the original narrow IV
1308 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1309 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1310   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1311   if (!InsertPt)
1312     return;
1313   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1314                     << *DU.NarrowUse << "\n");
1315   IRBuilder<> Builder(InsertPt);
1316   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1317   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1318 }
1319 
1320 /// If the narrow use is a compare instruction, then widen the compare
1321 //  (and possibly the other operand).  The extend operation is hoisted into the
1322 // loop preheader as far as possible.
1323 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1324   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1325   if (!Cmp)
1326     return false;
1327 
1328   // We can legally widen the comparison in the following two cases:
1329   //
1330   //  - The signedness of the IV extension and comparison match
1331   //
1332   //  - The narrow IV is always positive (and thus its sign extension is equal
1333   //    to its zero extension).  For instance, let's say we're zero extending
1334   //    %narrow for the following use
1335   //
1336   //      icmp slt i32 %narrow, %val   ... (A)
1337   //
1338   //    and %narrow is always positive.  Then
1339   //
1340   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1341   //          == icmp slt i32 zext(%narrow), sext(%val)
1342   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1343   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1344     return false;
1345 
1346   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1347   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1348   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1349   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1350 
1351   // Widen the compare instruction.
1352   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1353   if (!InsertPt)
1354     return false;
1355   IRBuilder<> Builder(InsertPt);
1356   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1357 
1358   // Widen the other operand of the compare, if necessary.
1359   if (CastWidth < IVWidth) {
1360     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1361     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1362   }
1363   return true;
1364 }
1365 
1366 /// If the narrow use is an instruction whose two operands are the defining
1367 /// instruction of DU and a load instruction, then we have the following:
1368 /// if the load is hoisted outside the loop, then we do not reach this function
1369 /// as scalar evolution analysis works fine in widenIVUse with variables
1370 /// hoisted outside the loop and efficient code is subsequently generated by
1371 /// not emitting truncate instructions. But when the load is not hoisted
1372 /// (whether due to limitation in alias analysis or due to a true legality),
1373 /// then scalar evolution can not proceed with loop variant values and
1374 /// inefficient code is generated. This function handles the non-hoisted load
1375 /// special case by making the optimization generate the same type of code for
1376 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1377 /// instruction). This special case is important especially when the induction
1378 /// variables are affecting addressing mode in code generation.
1379 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
1380   Instruction *NarrowUse = DU.NarrowUse;
1381   Instruction *NarrowDef = DU.NarrowDef;
1382   Instruction *WideDef = DU.WideDef;
1383 
1384   // Handle the common case of add<nsw/nuw>
1385   const unsigned OpCode = NarrowUse->getOpcode();
1386   // Only Add/Sub/Mul instructions are supported.
1387   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1388       OpCode != Instruction::Mul)
1389     return false;
1390 
1391   // The operand that is not defined by NarrowDef of DU. Let's call it the
1392   // other operand.
1393   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
1394   assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
1395          "bad DU");
1396 
1397   const SCEV *ExtendOperExpr = nullptr;
1398   const OverflowingBinaryOperator *OBO =
1399     cast<OverflowingBinaryOperator>(NarrowUse);
1400   ExtendKind ExtKind = getExtendKind(NarrowDef);
1401   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1402     ExtendOperExpr = SE->getSignExtendExpr(
1403       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1404   else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1405     ExtendOperExpr = SE->getZeroExtendExpr(
1406       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1407   else
1408     return false;
1409 
1410   // We are interested in the other operand being a load instruction.
1411   // But, we should look into relaxing this restriction later on.
1412   auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
1413   if (I && I->getOpcode() != Instruction::Load)
1414     return false;
1415 
1416   // Verifying that Defining operand is an AddRec
1417   const SCEV *Op1 = SE->getSCEV(WideDef);
1418   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1419   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1420     return false;
1421   // Verifying that other operand is an Extend.
1422   if (ExtKind == SignExtended) {
1423     if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
1424       return false;
1425   } else {
1426     if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
1427       return false;
1428   }
1429 
1430   if (ExtKind == SignExtended) {
1431     for (Use &U : NarrowUse->uses()) {
1432       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1433       if (!User || User->getType() != WideType)
1434         return false;
1435     }
1436   } else { // ExtKind == ZeroExtended
1437     for (Use &U : NarrowUse->uses()) {
1438       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1439       if (!User || User->getType() != WideType)
1440         return false;
1441     }
1442   }
1443 
1444   return true;
1445 }
1446 
1447 /// Special Case for widening with variant Loads (see
1448 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1449 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
1450   Instruction *NarrowUse = DU.NarrowUse;
1451   Instruction *NarrowDef = DU.NarrowDef;
1452   Instruction *WideDef = DU.WideDef;
1453 
1454   ExtendKind ExtKind = getExtendKind(NarrowDef);
1455 
1456   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1457 
1458   // Generating a widening use instruction.
1459   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1460                    ? WideDef
1461                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1462                                       ExtKind, NarrowUse);
1463   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1464                    ? WideDef
1465                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1466                                       ExtKind, NarrowUse);
1467 
1468   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1469   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1470                                         NarrowBO->getName());
1471   IRBuilder<> Builder(NarrowUse);
1472   Builder.Insert(WideBO);
1473   WideBO->copyIRFlags(NarrowBO);
1474 
1475   if (ExtKind == SignExtended)
1476     ExtendKindMap[NarrowUse] = SignExtended;
1477   else
1478     ExtendKindMap[NarrowUse] = ZeroExtended;
1479 
1480   // Update the Use.
1481   if (ExtKind == SignExtended) {
1482     for (Use &U : NarrowUse->uses()) {
1483       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1484       if (User && User->getType() == WideType) {
1485         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1486                           << *WideBO << "\n");
1487         ++NumElimExt;
1488         User->replaceAllUsesWith(WideBO);
1489         DeadInsts.emplace_back(User);
1490       }
1491     }
1492   } else { // ExtKind == ZeroExtended
1493     for (Use &U : NarrowUse->uses()) {
1494       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1495       if (User && User->getType() == WideType) {
1496         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1497                           << *WideBO << "\n");
1498         ++NumElimExt;
1499         User->replaceAllUsesWith(WideBO);
1500         DeadInsts.emplace_back(User);
1501       }
1502     }
1503   }
1504 }
1505 
1506 /// Determine whether an individual user of the narrow IV can be widened. If so,
1507 /// return the wide clone of the user.
1508 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1509   assert(ExtendKindMap.count(DU.NarrowDef) &&
1510          "Should already know the kind of extension used to widen NarrowDef");
1511 
1512   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1513   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1514     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1515       // For LCSSA phis, sink the truncate outside the loop.
1516       // After SimplifyCFG most loop exit targets have a single predecessor.
1517       // Otherwise fall back to a truncate within the loop.
1518       if (UsePhi->getNumOperands() != 1)
1519         truncateIVUse(DU, DT, LI);
1520       else {
1521         // Widening the PHI requires us to insert a trunc.  The logical place
1522         // for this trunc is in the same BB as the PHI.  This is not possible if
1523         // the BB is terminated by a catchswitch.
1524         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1525           return nullptr;
1526 
1527         PHINode *WidePhi =
1528           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1529                           UsePhi);
1530         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1531         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1532         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1533         UsePhi->replaceAllUsesWith(Trunc);
1534         DeadInsts.emplace_back(UsePhi);
1535         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1536                           << *WidePhi << "\n");
1537       }
1538       return nullptr;
1539     }
1540   }
1541 
1542   // This narrow use can be widened by a sext if it's non-negative or its narrow
1543   // def was widended by a sext. Same for zext.
1544   auto canWidenBySExt = [&]() {
1545     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1546   };
1547   auto canWidenByZExt = [&]() {
1548     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1549   };
1550 
1551   // Our raison d'etre! Eliminate sign and zero extension.
1552   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1553       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1554     Value *NewDef = DU.WideDef;
1555     if (DU.NarrowUse->getType() != WideType) {
1556       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1557       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1558       if (CastWidth < IVWidth) {
1559         // The cast isn't as wide as the IV, so insert a Trunc.
1560         IRBuilder<> Builder(DU.NarrowUse);
1561         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1562       }
1563       else {
1564         // A wider extend was hidden behind a narrower one. This may induce
1565         // another round of IV widening in which the intermediate IV becomes
1566         // dead. It should be very rare.
1567         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1568                           << " not wide enough to subsume " << *DU.NarrowUse
1569                           << "\n");
1570         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1571         NewDef = DU.NarrowUse;
1572       }
1573     }
1574     if (NewDef != DU.NarrowUse) {
1575       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1576                         << " replaced by " << *DU.WideDef << "\n");
1577       ++NumElimExt;
1578       DU.NarrowUse->replaceAllUsesWith(NewDef);
1579       DeadInsts.emplace_back(DU.NarrowUse);
1580     }
1581     // Now that the extend is gone, we want to expose it's uses for potential
1582     // further simplification. We don't need to directly inform SimplifyIVUsers
1583     // of the new users, because their parent IV will be processed later as a
1584     // new loop phi. If we preserved IVUsers analysis, we would also want to
1585     // push the uses of WideDef here.
1586 
1587     // No further widening is needed. The deceased [sz]ext had done it for us.
1588     return nullptr;
1589   }
1590 
1591   // Does this user itself evaluate to a recurrence after widening?
1592   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1593   if (!WideAddRec.first)
1594     WideAddRec = getWideRecurrence(DU);
1595 
1596   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1597   if (!WideAddRec.first) {
1598     // If use is a loop condition, try to promote the condition instead of
1599     // truncating the IV first.
1600     if (widenLoopCompare(DU))
1601       return nullptr;
1602 
1603     // We are here about to generate a truncate instruction that may hurt
1604     // performance because the scalar evolution expression computed earlier
1605     // in WideAddRec.first does not indicate a polynomial induction expression.
1606     // In that case, look at the operands of the use instruction to determine
1607     // if we can still widen the use instead of truncating its operand.
1608     if (widenWithVariantLoadUse(DU)) {
1609       widenWithVariantLoadUseCodegen(DU);
1610       return nullptr;
1611     }
1612 
1613     // This user does not evaluate to a recurrence after widening, so don't
1614     // follow it. Instead insert a Trunc to kill off the original use,
1615     // eventually isolating the original narrow IV so it can be removed.
1616     truncateIVUse(DU, DT, LI);
1617     return nullptr;
1618   }
1619   // Assume block terminators cannot evaluate to a recurrence. We can't to
1620   // insert a Trunc after a terminator if there happens to be a critical edge.
1621   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1622          "SCEV is not expected to evaluate a block terminator");
1623 
1624   // Reuse the IV increment that SCEVExpander created as long as it dominates
1625   // NarrowUse.
1626   Instruction *WideUse = nullptr;
1627   if (WideAddRec.first == WideIncExpr &&
1628       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1629     WideUse = WideInc;
1630   else {
1631     WideUse = cloneIVUser(DU, WideAddRec.first);
1632     if (!WideUse)
1633       return nullptr;
1634   }
1635   // Evaluation of WideAddRec ensured that the narrow expression could be
1636   // extended outside the loop without overflow. This suggests that the wide use
1637   // evaluates to the same expression as the extended narrow use, but doesn't
1638   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1639   // where it fails, we simply throw away the newly created wide use.
1640   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1641     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1642                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1643                       << "\n");
1644     DeadInsts.emplace_back(WideUse);
1645     return nullptr;
1646   }
1647 
1648   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1649   // Returning WideUse pushes it on the worklist.
1650   return WideUse;
1651 }
1652 
1653 /// Add eligible users of NarrowDef to NarrowIVUsers.
1654 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1655   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1656   bool NonNegativeDef =
1657       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1658                            SE->getConstant(NarrowSCEV->getType(), 0));
1659   for (User *U : NarrowDef->users()) {
1660     Instruction *NarrowUser = cast<Instruction>(U);
1661 
1662     // Handle data flow merges and bizarre phi cycles.
1663     if (!Widened.insert(NarrowUser).second)
1664       continue;
1665 
1666     bool NonNegativeUse = false;
1667     if (!NonNegativeDef) {
1668       // We might have a control-dependent range information for this context.
1669       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1670         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1671     }
1672 
1673     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1674                                NonNegativeDef || NonNegativeUse);
1675   }
1676 }
1677 
1678 /// Process a single induction variable. First use the SCEVExpander to create a
1679 /// wide induction variable that evaluates to the same recurrence as the
1680 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1681 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1682 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1683 ///
1684 /// It would be simpler to delete uses as they are processed, but we must avoid
1685 /// invalidating SCEV expressions.
1686 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1687   // Is this phi an induction variable?
1688   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1689   if (!AddRec)
1690     return nullptr;
1691 
1692   // Widen the induction variable expression.
1693   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1694                                ? SE->getSignExtendExpr(AddRec, WideType)
1695                                : SE->getZeroExtendExpr(AddRec, WideType);
1696 
1697   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1698          "Expect the new IV expression to preserve its type");
1699 
1700   // Can the IV be extended outside the loop without overflow?
1701   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1702   if (!AddRec || AddRec->getLoop() != L)
1703     return nullptr;
1704 
1705   // An AddRec must have loop-invariant operands. Since this AddRec is
1706   // materialized by a loop header phi, the expression cannot have any post-loop
1707   // operands, so they must dominate the loop header.
1708   assert(
1709       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1710       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1711       "Loop header phi recurrence inputs do not dominate the loop");
1712 
1713   // Iterate over IV uses (including transitive ones) looking for IV increments
1714   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1715   // the increment calculate control-dependent range information basing on
1716   // dominating conditions inside of the loop (e.g. a range check inside of the
1717   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1718   //
1719   // Control-dependent range information is later used to prove that a narrow
1720   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1721   // this on demand because when pushNarrowIVUsers needs this information some
1722   // of the dominating conditions might be already widened.
1723   if (UsePostIncrementRanges)
1724     calculatePostIncRanges(OrigPhi);
1725 
1726   // The rewriter provides a value for the desired IV expression. This may
1727   // either find an existing phi or materialize a new one. Either way, we
1728   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1729   // of the phi-SCC dominates the loop entry.
1730   Instruction *InsertPt = &L->getHeader()->front();
1731   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1732 
1733   // Remembering the WideIV increment generated by SCEVExpander allows
1734   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1735   // employ a general reuse mechanism because the call above is the only call to
1736   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1737   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1738     WideInc =
1739       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1740     WideIncExpr = SE->getSCEV(WideInc);
1741     // Propagate the debug location associated with the original loop increment
1742     // to the new (widened) increment.
1743     auto *OrigInc =
1744       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1745     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1746   }
1747 
1748   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1749   ++NumWidened;
1750 
1751   // Traverse the def-use chain using a worklist starting at the original IV.
1752   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1753 
1754   Widened.insert(OrigPhi);
1755   pushNarrowIVUsers(OrigPhi, WidePhi);
1756 
1757   while (!NarrowIVUsers.empty()) {
1758     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1759 
1760     // Process a def-use edge. This may replace the use, so don't hold a
1761     // use_iterator across it.
1762     Instruction *WideUse = widenIVUse(DU, Rewriter);
1763 
1764     // Follow all def-use edges from the previous narrow use.
1765     if (WideUse)
1766       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1767 
1768     // widenIVUse may have removed the def-use edge.
1769     if (DU.NarrowDef->use_empty())
1770       DeadInsts.emplace_back(DU.NarrowDef);
1771   }
1772 
1773   // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1774   // evaluate the same recurrence, we can just copy the debug info over.
1775   SmallVector<DbgValueInst *, 1> DbgValues;
1776   llvm::findDbgValues(DbgValues, OrigPhi);
1777   auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1778                                      ValueAsMetadata::get(WidePhi));
1779   for (auto &DbgValue : DbgValues)
1780     DbgValue->setOperand(0, MDPhi);
1781   return WidePhi;
1782 }
1783 
1784 /// Calculates control-dependent range for the given def at the given context
1785 /// by looking at dominating conditions inside of the loop
1786 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1787                                     Instruction *NarrowUser) {
1788   using namespace llvm::PatternMatch;
1789 
1790   Value *NarrowDefLHS;
1791   const APInt *NarrowDefRHS;
1792   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1793                                  m_APInt(NarrowDefRHS))) ||
1794       !NarrowDefRHS->isNonNegative())
1795     return;
1796 
1797   auto UpdateRangeFromCondition = [&] (Value *Condition,
1798                                        bool TrueDest) {
1799     CmpInst::Predicate Pred;
1800     Value *CmpRHS;
1801     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1802                                  m_Value(CmpRHS))))
1803       return;
1804 
1805     CmpInst::Predicate P =
1806             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1807 
1808     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1809     auto CmpConstrainedLHSRange =
1810             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1811     auto NarrowDefRange =
1812             CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1813 
1814     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1815   };
1816 
1817   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1818     if (!HasGuards)
1819       return;
1820 
1821     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1822                                      Ctx->getParent()->rend())) {
1823       Value *C = nullptr;
1824       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1825         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1826     }
1827   };
1828 
1829   UpdateRangeFromGuards(NarrowUser);
1830 
1831   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1832   // If NarrowUserBB is statically unreachable asking dominator queries may
1833   // yield surprising results. (e.g. the block may not have a dom tree node)
1834   if (!DT->isReachableFromEntry(NarrowUserBB))
1835     return;
1836 
1837   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1838        L->contains(DTB->getBlock());
1839        DTB = DTB->getIDom()) {
1840     auto *BB = DTB->getBlock();
1841     auto *TI = BB->getTerminator();
1842     UpdateRangeFromGuards(TI);
1843 
1844     auto *BI = dyn_cast<BranchInst>(TI);
1845     if (!BI || !BI->isConditional())
1846       continue;
1847 
1848     auto *TrueSuccessor = BI->getSuccessor(0);
1849     auto *FalseSuccessor = BI->getSuccessor(1);
1850 
1851     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1852       return BBE.isSingleEdge() &&
1853              DT->dominates(BBE, NarrowUser->getParent());
1854     };
1855 
1856     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1857       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1858 
1859     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1860       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1861   }
1862 }
1863 
1864 /// Calculates PostIncRangeInfos map for the given IV
1865 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1866   SmallPtrSet<Instruction *, 16> Visited;
1867   SmallVector<Instruction *, 6> Worklist;
1868   Worklist.push_back(OrigPhi);
1869   Visited.insert(OrigPhi);
1870 
1871   while (!Worklist.empty()) {
1872     Instruction *NarrowDef = Worklist.pop_back_val();
1873 
1874     for (Use &U : NarrowDef->uses()) {
1875       auto *NarrowUser = cast<Instruction>(U.getUser());
1876 
1877       // Don't go looking outside the current loop.
1878       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1879       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1880         continue;
1881 
1882       if (!Visited.insert(NarrowUser).second)
1883         continue;
1884 
1885       Worklist.push_back(NarrowUser);
1886 
1887       calculatePostIncRange(NarrowDef, NarrowUser);
1888     }
1889   }
1890 }
1891 
1892 //===----------------------------------------------------------------------===//
1893 //  Live IV Reduction - Minimize IVs live across the loop.
1894 //===----------------------------------------------------------------------===//
1895 
1896 //===----------------------------------------------------------------------===//
1897 //  Simplification of IV users based on SCEV evaluation.
1898 //===----------------------------------------------------------------------===//
1899 
1900 namespace {
1901 
1902 class IndVarSimplifyVisitor : public IVVisitor {
1903   ScalarEvolution *SE;
1904   const TargetTransformInfo *TTI;
1905   PHINode *IVPhi;
1906 
1907 public:
1908   WideIVInfo WI;
1909 
1910   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1911                         const TargetTransformInfo *TTI,
1912                         const DominatorTree *DTree)
1913     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1914     DT = DTree;
1915     WI.NarrowIV = IVPhi;
1916   }
1917 
1918   // Implement the interface used by simplifyUsersOfIV.
1919   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1920 };
1921 
1922 } // end anonymous namespace
1923 
1924 /// Iteratively perform simplification on a worklist of IV users. Each
1925 /// successive simplification may push more users which may themselves be
1926 /// candidates for simplification.
1927 ///
1928 /// Sign/Zero extend elimination is interleaved with IV simplification.
1929 bool IndVarSimplify::simplifyAndExtend(Loop *L,
1930                                        SCEVExpander &Rewriter,
1931                                        LoopInfo *LI) {
1932   SmallVector<WideIVInfo, 8> WideIVs;
1933 
1934   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1935           Intrinsic::getName(Intrinsic::experimental_guard));
1936   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1937 
1938   SmallVector<PHINode*, 8> LoopPhis;
1939   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1940     LoopPhis.push_back(cast<PHINode>(I));
1941   }
1942   // Each round of simplification iterates through the SimplifyIVUsers worklist
1943   // for all current phis, then determines whether any IVs can be
1944   // widened. Widening adds new phis to LoopPhis, inducing another round of
1945   // simplification on the wide IVs.
1946   bool Changed = false;
1947   while (!LoopPhis.empty()) {
1948     // Evaluate as many IV expressions as possible before widening any IVs. This
1949     // forces SCEV to set no-wrap flags before evaluating sign/zero
1950     // extension. The first time SCEV attempts to normalize sign/zero extension,
1951     // the result becomes final. So for the most predictable results, we delay
1952     // evaluation of sign/zero extend evaluation until needed, and avoid running
1953     // other SCEV based analysis prior to simplifyAndExtend.
1954     do {
1955       PHINode *CurrIV = LoopPhis.pop_back_val();
1956 
1957       // Information about sign/zero extensions of CurrIV.
1958       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1959 
1960       Changed |=
1961           simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1962 
1963       if (Visitor.WI.WidestNativeType) {
1964         WideIVs.push_back(Visitor.WI);
1965       }
1966     } while(!LoopPhis.empty());
1967 
1968     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1969       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1970       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1971         Changed = true;
1972         LoopPhis.push_back(WidePhi);
1973       }
1974     }
1975   }
1976   return Changed;
1977 }
1978 
1979 //===----------------------------------------------------------------------===//
1980 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1981 //===----------------------------------------------------------------------===//
1982 
1983 /// Given an Value which is hoped to be part of an add recurance in the given
1984 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
1985 /// that this is less general than SCEVs AddRec checking.
1986 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
1987   Instruction *IncI = dyn_cast<Instruction>(IncV);
1988   if (!IncI)
1989     return nullptr;
1990 
1991   switch (IncI->getOpcode()) {
1992   case Instruction::Add:
1993   case Instruction::Sub:
1994     break;
1995   case Instruction::GetElementPtr:
1996     // An IV counter must preserve its type.
1997     if (IncI->getNumOperands() == 2)
1998       break;
1999     LLVM_FALLTHROUGH;
2000   default:
2001     return nullptr;
2002   }
2003 
2004   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
2005   if (Phi && Phi->getParent() == L->getHeader()) {
2006     if (L->isLoopInvariant(IncI->getOperand(1)))
2007       return Phi;
2008     return nullptr;
2009   }
2010   if (IncI->getOpcode() == Instruction::GetElementPtr)
2011     return nullptr;
2012 
2013   // Allow add/sub to be commuted.
2014   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
2015   if (Phi && Phi->getParent() == L->getHeader()) {
2016     if (L->isLoopInvariant(IncI->getOperand(0)))
2017       return Phi;
2018   }
2019   return nullptr;
2020 }
2021 
2022 /// Given a loop with one backedge and one exit, return the ICmpInst
2023 /// controlling the sole loop exit.  There is no guarantee that the exiting
2024 /// block is also the latch.
2025 static ICmpInst *getLoopTest(Loop *L, BasicBlock *ExitingBB) {
2026 
2027   BasicBlock *LatchBlock = L->getLoopLatch();
2028   // Don't bother with LFTR if the loop is not properly simplified.
2029   if (!LatchBlock)
2030     return nullptr;
2031 
2032   BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
2033   assert(BI && "expected exit branch");
2034 
2035   return dyn_cast<ICmpInst>(BI->getCondition());
2036 }
2037 
2038 /// linearFunctionTestReplace policy. Return true unless we can show that the
2039 /// current exit test is already sufficiently canonical.
2040 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
2041   // Do LFTR to simplify the exit condition to an ICMP.
2042   ICmpInst *Cond = getLoopTest(L, ExitingBB);
2043   if (!Cond)
2044     return true;
2045 
2046   // Do LFTR to simplify the exit ICMP to EQ/NE
2047   ICmpInst::Predicate Pred = Cond->getPredicate();
2048   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
2049     return true;
2050 
2051   // Look for a loop invariant RHS
2052   Value *LHS = Cond->getOperand(0);
2053   Value *RHS = Cond->getOperand(1);
2054   if (!L->isLoopInvariant(RHS)) {
2055     if (!L->isLoopInvariant(LHS))
2056       return true;
2057     std::swap(LHS, RHS);
2058   }
2059   // Look for a simple IV counter LHS
2060   PHINode *Phi = dyn_cast<PHINode>(LHS);
2061   if (!Phi)
2062     Phi = getLoopPhiForCounter(LHS, L);
2063 
2064   if (!Phi)
2065     return true;
2066 
2067   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2068   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
2069   if (Idx < 0)
2070     return true;
2071 
2072   // Do LFTR if the exit condition's IV is *not* a simple counter.
2073   Value *IncV = Phi->getIncomingValue(Idx);
2074   return Phi != getLoopPhiForCounter(IncV, L);
2075 }
2076 
2077 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2078 /// down to checking that all operands are constant and listing instructions
2079 /// that may hide undef.
2080 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
2081                                unsigned Depth) {
2082   if (isa<Constant>(V))
2083     return !isa<UndefValue>(V);
2084 
2085   if (Depth >= 6)
2086     return false;
2087 
2088   // Conservatively handle non-constant non-instructions. For example, Arguments
2089   // may be undef.
2090   Instruction *I = dyn_cast<Instruction>(V);
2091   if (!I)
2092     return false;
2093 
2094   // Load and return values may be undef.
2095   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
2096     return false;
2097 
2098   // Optimistically handle other instructions.
2099   for (Value *Op : I->operands()) {
2100     if (!Visited.insert(Op).second)
2101       continue;
2102     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
2103       return false;
2104   }
2105   return true;
2106 }
2107 
2108 /// Return true if the given value is concrete. We must prove that undef can
2109 /// never reach it.
2110 ///
2111 /// TODO: If we decide that this is a good approach to checking for undef, we
2112 /// may factor it into a common location.
2113 static bool hasConcreteDef(Value *V) {
2114   SmallPtrSet<Value*, 8> Visited;
2115   Visited.insert(V);
2116   return hasConcreteDefImpl(V, Visited, 0);
2117 }
2118 
2119 /// Return true if this IV has any uses other than the (soon to be rewritten)
2120 /// loop exit test.
2121 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2122   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2123   Value *IncV = Phi->getIncomingValue(LatchIdx);
2124 
2125   for (User *U : Phi->users())
2126     if (U != Cond && U != IncV) return false;
2127 
2128   for (User *U : IncV->users())
2129     if (U != Cond && U != Phi) return false;
2130   return true;
2131 }
2132 
2133 /// Return true if the given phi is a "counter" in L.  A counter is an
2134 /// add recurance (of integer or pointer type) with an arbitrary start, and a
2135 /// step of 1.  Note that L must have exactly one latch.
2136 static bool isLoopCounter(PHINode* Phi, Loop *L,
2137                           ScalarEvolution *SE) {
2138   assert(Phi->getParent() == L->getHeader());
2139   assert(L->getLoopLatch());
2140 
2141   if (!SE->isSCEVable(Phi->getType()))
2142     return false;
2143 
2144   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2145   if (!AR || AR->getLoop() != L || !AR->isAffine())
2146     return false;
2147 
2148   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2149   if (!Step || !Step->isOne())
2150     return false;
2151 
2152   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
2153   Value *IncV = Phi->getIncomingValue(LatchIdx);
2154   return (getLoopPhiForCounter(IncV, L) == Phi);
2155 }
2156 
2157 /// Search the loop header for a loop counter (anadd rec w/step of one)
2158 /// suitable for use by LFTR.  If multiple counters are available, select the
2159 /// "best" one based profitable heuristics.
2160 ///
2161 /// BECount may be an i8* pointer type. The pointer difference is already
2162 /// valid count without scaling the address stride, so it remains a pointer
2163 /// expression as far as SCEV is concerned.
2164 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
2165                                 const SCEV *BECount, ScalarEvolution *SE) {
2166   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2167 
2168   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
2169 
2170   // Loop over all of the PHI nodes, looking for a simple counter.
2171   PHINode *BestPhi = nullptr;
2172   const SCEV *BestInit = nullptr;
2173   BasicBlock *LatchBlock = L->getLoopLatch();
2174   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
2175   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2176 
2177   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2178     PHINode *Phi = cast<PHINode>(I);
2179     if (!isLoopCounter(Phi, L, SE))
2180       continue;
2181 
2182     // Avoid comparing an integer IV against a pointer Limit.
2183     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2184       continue;
2185 
2186     const auto *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2187 
2188     // AR may be a pointer type, while BECount is an integer type.
2189     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2190     // AR may not be a narrower type, or we may never exit.
2191     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2192     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2193       continue;
2194 
2195     // Avoid reusing a potentially undef value to compute other values that may
2196     // have originally had a concrete definition.
2197     if (!hasConcreteDef(Phi)) {
2198       // We explicitly allow unknown phis as long as they are already used by
2199       // the loop test. In this case we assume that performing LFTR could not
2200       // increase the number of undef users.
2201       // TODO: Generalize this to allow *any* loop exit which is known to
2202       // execute on each iteration
2203       if (L->getExitingBlock())
2204         if (ICmpInst *Cond = getLoopTest(L, ExitingBB))
2205           if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L) &&
2206               Phi != getLoopPhiForCounter(Cond->getOperand(1), L))
2207             continue;
2208     }
2209 
2210     const SCEV *Init = AR->getStart();
2211 
2212     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2213       // Don't force a live loop counter if another IV can be used.
2214       if (AlmostDeadIV(Phi, LatchBlock, Cond))
2215         continue;
2216 
2217       // Prefer to count-from-zero. This is a more "canonical" counter form. It
2218       // also prefers integer to pointer IVs.
2219       if (BestInit->isZero() != Init->isZero()) {
2220         if (BestInit->isZero())
2221           continue;
2222       }
2223       // If two IVs both count from zero or both count from nonzero then the
2224       // narrower is likely a dead phi that has been widened. Use the wider phi
2225       // to allow the other to be eliminated.
2226       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2227         continue;
2228     }
2229     BestPhi = Phi;
2230     BestInit = Init;
2231   }
2232   return BestPhi;
2233 }
2234 
2235 /// Insert an IR expression which computes the value held by the IV IndVar
2236 /// (which must be an loop counter w/unit stride) after the backedge of loop L
2237 /// is taken IVCount times.
2238 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
2239                            const SCEV *IVCount, Loop *L,
2240                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
2241   assert(isLoopCounter(IndVar, L, SE));
2242   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2243   const SCEV *IVInit = AR->getStart();
2244 
2245   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
2246   // finds a valid pointer IV. Sign extend BECount in order to materialize a
2247   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2248   // the existing GEPs whenever possible.
2249   if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
2250     // IVOffset will be the new GEP offset that is interpreted by GEP as a
2251     // signed value. IVCount on the other hand represents the loop trip count,
2252     // which is an unsigned value. FindLoopCounter only allows induction
2253     // variables that have a positive unit stride of one. This means we don't
2254     // have to handle the case of negative offsets (yet) and just need to zero
2255     // extend IVCount.
2256     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2257     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
2258 
2259     // Expand the code for the iteration count.
2260     assert(SE->isLoopInvariant(IVOffset, L) &&
2261            "Computed iteration count is not loop invariant!");
2262     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2263     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
2264 
2265     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
2266     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
2267     // We could handle pointer IVs other than i8*, but we need to compensate for
2268     // gep index scaling.
2269     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2270                              cast<PointerType>(GEPBase->getType())
2271                                  ->getElementType())->isOne() &&
2272            "unit stride pointer IV must be i8*");
2273 
2274     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2275     return Builder.CreateGEP(GEPBase->getType()->getPointerElementType(),
2276                              GEPBase, GEPOffset, "lftr.limit");
2277   } else {
2278     // In any other case, convert both IVInit and IVCount to integers before
2279     // comparing. This may result in SCEV expansion of pointers, but in practice
2280     // SCEV will fold the pointer arithmetic away as such:
2281     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2282     //
2283     // Valid Cases: (1) both integers is most common; (2) both may be pointers
2284     // for simple memset-style loops.
2285     //
2286     // IVInit integer and IVCount pointer would only occur if a canonical IV
2287     // were generated on top of case #2, which is not expected.
2288 
2289     assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2290     const SCEV *IVLimit = nullptr;
2291     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
2292     // For non-zero Start, compute IVCount here.
2293     if (AR->getStart()->isZero())
2294       IVLimit = IVCount;
2295     else {
2296       const SCEV *IVInit = AR->getStart();
2297 
2298       // For integer IVs, truncate the IV before computing IVInit + BECount.
2299       if (SE->getTypeSizeInBits(IVInit->getType())
2300           > SE->getTypeSizeInBits(IVCount->getType()))
2301         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
2302 
2303       IVLimit = SE->getAddExpr(IVInit, IVCount);
2304     }
2305     // Expand the code for the iteration count.
2306     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2307     IRBuilder<> Builder(BI);
2308     assert(SE->isLoopInvariant(IVLimit, L) &&
2309            "Computed iteration count is not loop invariant!");
2310     // Ensure that we generate the same type as IndVar, or a smaller integer
2311     // type. In the presence of null pointer values, we have an integer type
2312     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2313     Type *LimitTy = IVCount->getType()->isPointerTy() ?
2314       IndVar->getType() : IVCount->getType();
2315     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2316   }
2317 }
2318 
2319 /// This method rewrites the exit condition of the loop to be a canonical !=
2320 /// comparison against the incremented loop induction variable.  This pass is
2321 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2322 /// determine a loop-invariant trip count of the loop, which is actually a much
2323 /// broader range than just linear tests.
2324 bool IndVarSimplify::
2325 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
2326                           const SCEV *BackedgeTakenCount,
2327                           PHINode *IndVar, SCEVExpander &Rewriter) {
2328   // Initialize CmpIndVar and IVCount to their preincremented values.
2329   Value *CmpIndVar = IndVar;
2330   const SCEV *IVCount = BackedgeTakenCount;
2331 
2332   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2333 
2334   // If the exiting block is the same as the backedge block, we prefer to
2335   // compare against the post-incremented value, otherwise we must compare
2336   // against the preincremented value.
2337   if (ExitingBB == L->getLoopLatch()) {
2338     // Add one to the "backedge-taken" count to get the trip count.
2339     // This addition may overflow, which is valid as long as the comparison is
2340     // truncated to BackedgeTakenCount->getType().
2341     IVCount = SE->getAddExpr(BackedgeTakenCount,
2342                              SE->getOne(BackedgeTakenCount->getType()));
2343     // The BackedgeTaken expression contains the number of times that the
2344     // backedge branches to the loop header.  This is one less than the
2345     // number of times the loop executes, so use the incremented indvar.
2346     CmpIndVar = IndVar->getIncomingValueForBlock(ExitingBB);
2347   }
2348 
2349   // It may be necessary to drop nowrap flags on the incrementing instruction
2350   // if either LFTR moves from a pre-inc check to a post-inc check (in which
2351   // case the increment might have previously been poison on the last iteration
2352   // only) or if LFTR switches to a different IV that was previously dynamically
2353   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
2354   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
2355   // check), because the pre-inc addrec flags may be adopted from the original
2356   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
2357   // TODO: This handling is inaccurate for one case: If we switch to a
2358   // dynamically dead IV that wraps on the first loop iteration only, which is
2359   // not covered by the post-inc addrec. (If the new IV was not dynamically
2360   // dead, it could not be poison on the first iteration in the first place.)
2361   Value *IncVar = IndVar->getIncomingValueForBlock(L->getLoopLatch());
2362   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
2363     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
2364     if (BO->hasNoUnsignedWrap())
2365       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
2366     if (BO->hasNoSignedWrap())
2367       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
2368   }
2369 
2370   Value *ExitCnt = genLoopLimit(IndVar, ExitingBB, IVCount, L, Rewriter, SE);
2371   assert(ExitCnt->getType()->isPointerTy() ==
2372              IndVar->getType()->isPointerTy() &&
2373          "genLoopLimit missed a cast");
2374 
2375   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2376   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2377   ICmpInst::Predicate P;
2378   if (L->contains(BI->getSuccessor(0)))
2379     P = ICmpInst::ICMP_NE;
2380   else
2381     P = ICmpInst::ICMP_EQ;
2382 
2383   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2384                     << "      LHS:" << *CmpIndVar << '\n'
2385                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
2386                     << "\n"
2387                     << "      RHS:\t" << *ExitCnt << "\n"
2388                     << "  IVCount:\t" << *IVCount << "\n");
2389 
2390   IRBuilder<> Builder(BI);
2391 
2392   // The new loop exit condition should reuse the debug location of the
2393   // original loop exit condition.
2394   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2395     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2396 
2397   // LFTR can ignore IV overflow and truncate to the width of
2398   // BECount. This avoids materializing the add(zext(add)) expression.
2399   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2400   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2401   if (CmpIndVarSize > ExitCntSize) {
2402     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2403     const SCEV *ARStart = AR->getStart();
2404     const SCEV *ARStep = AR->getStepRecurrence(*SE);
2405     // For constant IVCount, avoid truncation.
2406     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2407       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2408       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2409       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2410       // above such that IVCount is now zero.
2411       if (IVCount != BackedgeTakenCount && Count == 0) {
2412         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2413         ++Count;
2414       }
2415       else
2416         Count = Count.zext(CmpIndVarSize);
2417       APInt NewLimit;
2418       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2419         NewLimit = Start - Count;
2420       else
2421         NewLimit = Start + Count;
2422       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2423 
2424       LLVM_DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2425     } else {
2426       // We try to extend trip count first. If that doesn't work we truncate IV.
2427       // Zext(trunc(IV)) == IV implies equivalence of the following two:
2428       // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2429       // one of the two holds, extend the trip count, otherwise we truncate IV.
2430       bool Extended = false;
2431       const SCEV *IV = SE->getSCEV(CmpIndVar);
2432       const SCEV *ZExtTrunc =
2433            SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2434                                                      ExitCnt->getType()),
2435                                  CmpIndVar->getType());
2436 
2437       if (ZExtTrunc == IV) {
2438         Extended = true;
2439         ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2440                                      "wide.trip.count");
2441       } else {
2442         const SCEV *SExtTrunc =
2443           SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2444                                                     ExitCnt->getType()),
2445                                 CmpIndVar->getType());
2446         if (SExtTrunc == IV) {
2447           Extended = true;
2448           ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2449                                        "wide.trip.count");
2450         }
2451       }
2452 
2453       if (!Extended)
2454         CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2455                                         "lftr.wideiv");
2456     }
2457   }
2458   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2459   Value *OrigCond = BI->getCondition();
2460   // It's tempting to use replaceAllUsesWith here to fully replace the old
2461   // comparison, but that's not immediately safe, since users of the old
2462   // comparison may not be dominated by the new comparison. Instead, just
2463   // update the branch to use the new comparison; in the common case this
2464   // will make old comparison dead.
2465   BI->setCondition(Cond);
2466   DeadInsts.push_back(OrigCond);
2467 
2468   ++NumLFTR;
2469   return true;
2470 }
2471 
2472 //===----------------------------------------------------------------------===//
2473 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2474 //===----------------------------------------------------------------------===//
2475 
2476 /// If there's a single exit block, sink any loop-invariant values that
2477 /// were defined in the preheader but not used inside the loop into the
2478 /// exit block to reduce register pressure in the loop.
2479 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2480   BasicBlock *ExitBlock = L->getExitBlock();
2481   if (!ExitBlock) return false;
2482 
2483   BasicBlock *Preheader = L->getLoopPreheader();
2484   if (!Preheader) return false;
2485 
2486   bool MadeAnyChanges = false;
2487   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2488   BasicBlock::iterator I(Preheader->getTerminator());
2489   while (I != Preheader->begin()) {
2490     --I;
2491     // New instructions were inserted at the end of the preheader.
2492     if (isa<PHINode>(I))
2493       break;
2494 
2495     // Don't move instructions which might have side effects, since the side
2496     // effects need to complete before instructions inside the loop.  Also don't
2497     // move instructions which might read memory, since the loop may modify
2498     // memory. Note that it's okay if the instruction might have undefined
2499     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2500     // block.
2501     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2502       continue;
2503 
2504     // Skip debug info intrinsics.
2505     if (isa<DbgInfoIntrinsic>(I))
2506       continue;
2507 
2508     // Skip eh pad instructions.
2509     if (I->isEHPad())
2510       continue;
2511 
2512     // Don't sink alloca: we never want to sink static alloca's out of the
2513     // entry block, and correctly sinking dynamic alloca's requires
2514     // checks for stacksave/stackrestore intrinsics.
2515     // FIXME: Refactor this check somehow?
2516     if (isa<AllocaInst>(I))
2517       continue;
2518 
2519     // Determine if there is a use in or before the loop (direct or
2520     // otherwise).
2521     bool UsedInLoop = false;
2522     for (Use &U : I->uses()) {
2523       Instruction *User = cast<Instruction>(U.getUser());
2524       BasicBlock *UseBB = User->getParent();
2525       if (PHINode *P = dyn_cast<PHINode>(User)) {
2526         unsigned i =
2527           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2528         UseBB = P->getIncomingBlock(i);
2529       }
2530       if (UseBB == Preheader || L->contains(UseBB)) {
2531         UsedInLoop = true;
2532         break;
2533       }
2534     }
2535 
2536     // If there is, the def must remain in the preheader.
2537     if (UsedInLoop)
2538       continue;
2539 
2540     // Otherwise, sink it to the exit block.
2541     Instruction *ToMove = &*I;
2542     bool Done = false;
2543 
2544     if (I != Preheader->begin()) {
2545       // Skip debug info intrinsics.
2546       do {
2547         --I;
2548       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2549 
2550       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2551         Done = true;
2552     } else {
2553       Done = true;
2554     }
2555 
2556     MadeAnyChanges = true;
2557     ToMove->moveBefore(*ExitBlock, InsertPt);
2558     if (Done) break;
2559     InsertPt = ToMove->getIterator();
2560   }
2561 
2562   return MadeAnyChanges;
2563 }
2564 
2565 //===----------------------------------------------------------------------===//
2566 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2567 //===----------------------------------------------------------------------===//
2568 
2569 bool IndVarSimplify::run(Loop *L) {
2570   // We need (and expect!) the incoming loop to be in LCSSA.
2571   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2572          "LCSSA required to run indvars!");
2573   bool Changed = false;
2574 
2575   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2576   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2577   //    canonicalization can be a pessimization without LSR to "clean up"
2578   //    afterwards.
2579   //  - We depend on having a preheader; in particular,
2580   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2581   //    and we're in trouble if we can't find the induction variable even when
2582   //    we've manually inserted one.
2583   //  - LFTR relies on having a single backedge.
2584   if (!L->isLoopSimplifyForm())
2585     return false;
2586 
2587   // If there are any floating-point recurrences, attempt to
2588   // transform them to use integer recurrences.
2589   Changed |= rewriteNonIntegerIVs(L);
2590 
2591   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2592 
2593   // Create a rewriter object which we'll use to transform the code with.
2594   SCEVExpander Rewriter(*SE, DL, "indvars");
2595 #ifndef NDEBUG
2596   Rewriter.setDebugType(DEBUG_TYPE);
2597 #endif
2598 
2599   // Eliminate redundant IV users.
2600   //
2601   // Simplification works best when run before other consumers of SCEV. We
2602   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2603   // other expressions involving loop IVs have been evaluated. This helps SCEV
2604   // set no-wrap flags before normalizing sign/zero extension.
2605   Rewriter.disableCanonicalMode();
2606   Changed |= simplifyAndExtend(L, Rewriter, LI);
2607 
2608   // Check to see if this loop has a computable loop-invariant execution count.
2609   // If so, this means that we can compute the final value of any expressions
2610   // that are recurrent in the loop, and substitute the exit values from the
2611   // loop into any instructions outside of the loop that use the final values of
2612   // the current expressions.
2613   //
2614   if (ReplaceExitValue != NeverRepl &&
2615       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2616     Changed |= rewriteLoopExitValues(L, Rewriter);
2617 
2618   // Eliminate redundant IV cycles.
2619   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2620 
2621   // If we have a trip count expression, rewrite the loop's exit condition
2622   // using it.
2623   if (!DisableLFTR) {
2624     // For the moment, we only do LFTR for single exit loops.  The code is
2625     // structured as it is in the expectation of generalization to multi-exit
2626     // loops in the near future.  See D62625 for context.
2627     SmallVector<BasicBlock*, 16> ExitingBlocks;
2628     if (auto *ExitingBB = L->getExitingBlock())
2629       ExitingBlocks.push_back(ExitingBB);
2630     for (BasicBlock *ExitingBB : ExitingBlocks) {
2631       // Can't rewrite non-branch yet.
2632       if (!isa<BranchInst>(ExitingBB->getTerminator()))
2633         continue;
2634 
2635       if (!needsLFTR(L, ExitingBB))
2636         continue;
2637 
2638       // Note: This block of code is here strictly to seperate an change into
2639       // two parts: one NFC, one not.  What's happening here is that SCEV is
2640       // returning a more expensive expression for the BackedgeTakenCount for
2641       // the loop after widening in rare circumstances.  In review, we decided
2642       // to accept that small difference - since it has minimal test suite
2643       // impact - but for ease of attribution, the functional diff will be it's
2644       // own change.
2645       const SCEV *BETakenCount = L->getExitingBlock() ?
2646         BackedgeTakenCount : SE->getExitCount(L, ExitingBB);
2647       if (isa<SCEVCouldNotCompute>(BETakenCount))
2648         continue;
2649 
2650       // Better to fold to true (TODO: do so!)
2651       if (BETakenCount->isZero())
2652         continue;
2653 
2654       PHINode *IndVar = FindLoopCounter(L, ExitingBB, BETakenCount, SE);
2655       if (!IndVar)
2656         continue;
2657 
2658       // Avoid high cost expansions.  Note: This heuristic is questionable in
2659       // that our definition of "high cost" is not exactly principled.
2660       if (Rewriter.isHighCostExpansion(BETakenCount, L))
2661         continue;
2662 
2663       // Check preconditions for proper SCEVExpander operation. SCEV does not
2664       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
2665       // any pass that uses the SCEVExpander must do it. This does not work
2666       // well for loop passes because SCEVExpander makes assumptions about
2667       // all loops, while LoopPassManager only forces the current loop to be
2668       // simplified.
2669       //
2670       // FIXME: SCEV expansion has no way to bail out, so the caller must
2671       // explicitly check any assumptions made by SCEV. Brittle.
2672       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BETakenCount);
2673       if (!AR || AR->getLoop()->getLoopPreheader())
2674         Changed |= linearFunctionTestReplace(L, ExitingBB,
2675                                              BETakenCount, IndVar,
2676                                              Rewriter);
2677     }
2678   }
2679   // Clear the rewriter cache, because values that are in the rewriter's cache
2680   // can be deleted in the loop below, causing the AssertingVH in the cache to
2681   // trigger.
2682   Rewriter.clear();
2683 
2684   // Now that we're done iterating through lists, clean up any instructions
2685   // which are now dead.
2686   while (!DeadInsts.empty())
2687     if (Instruction *Inst =
2688             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2689       Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2690 
2691   // The Rewriter may not be used from this point on.
2692 
2693   // Loop-invariant instructions in the preheader that aren't used in the
2694   // loop may be sunk below the loop to reduce register pressure.
2695   Changed |= sinkUnusedInvariants(L);
2696 
2697   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2698   // trip count and therefore can further simplify exit values in addition to
2699   // rewriteLoopExitValues.
2700   Changed |= rewriteFirstIterationLoopExitValues(L);
2701 
2702   // Clean up dead instructions.
2703   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2704 
2705   // Check a post-condition.
2706   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2707          "Indvars did not preserve LCSSA!");
2708 
2709   // Verify that LFTR, and any other change have not interfered with SCEV's
2710   // ability to compute trip count.
2711 #ifndef NDEBUG
2712   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2713     SE->forgetLoop(L);
2714     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2715     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2716         SE->getTypeSizeInBits(NewBECount->getType()))
2717       NewBECount = SE->getTruncateOrNoop(NewBECount,
2718                                          BackedgeTakenCount->getType());
2719     else
2720       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2721                                                  NewBECount->getType());
2722     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2723   }
2724 #endif
2725 
2726   return Changed;
2727 }
2728 
2729 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2730                                           LoopStandardAnalysisResults &AR,
2731                                           LPMUpdater &) {
2732   Function *F = L.getHeader()->getParent();
2733   const DataLayout &DL = F->getParent()->getDataLayout();
2734 
2735   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2736   if (!IVS.run(&L))
2737     return PreservedAnalyses::all();
2738 
2739   auto PA = getLoopPassPreservedAnalyses();
2740   PA.preserveSet<CFGAnalyses>();
2741   return PA;
2742 }
2743 
2744 namespace {
2745 
2746 struct IndVarSimplifyLegacyPass : public LoopPass {
2747   static char ID; // Pass identification, replacement for typeid
2748 
2749   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2750     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2751   }
2752 
2753   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2754     if (skipLoop(L))
2755       return false;
2756 
2757     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2758     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2759     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2760     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2761     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2762     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2763     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2764     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2765 
2766     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2767     return IVS.run(L);
2768   }
2769 
2770   void getAnalysisUsage(AnalysisUsage &AU) const override {
2771     AU.setPreservesCFG();
2772     getLoopAnalysisUsage(AU);
2773   }
2774 };
2775 
2776 } // end anonymous namespace
2777 
2778 char IndVarSimplifyLegacyPass::ID = 0;
2779 
2780 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2781                       "Induction Variable Simplification", false, false)
2782 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2783 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2784                     "Induction Variable Simplification", false, false)
2785 
2786 Pass *llvm::createIndVarSimplifyPass() {
2787   return new IndVarSimplifyLegacyPass();
2788 }
2789