xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 5cde8389cf1c83b885377535c3aa510b21e817d0)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopPass.h"
34 #include "llvm/Analysis/ScalarEvolutionExpander.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/Local.h"
53 #include "llvm/Transforms/Utils/LoopUtils.h"
54 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "indvars"
58 
59 STATISTIC(NumWidened     , "Number of indvars widened");
60 STATISTIC(NumReplaced    , "Number of exit values replaced");
61 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
62 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
63 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
64 
65 // Trip count verification can be enabled by default under NDEBUG if we
66 // implement a strong expression equivalence checker in SCEV. Until then, we
67 // use the verify-indvars flag, which may assert in some cases.
68 static cl::opt<bool> VerifyIndvars(
69   "verify-indvars", cl::Hidden,
70   cl::desc("Verify the ScalarEvolution result after running indvars"));
71 
72 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
73   cl::desc("Reduce live induction variables."));
74 
75 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
76 
77 static cl::opt<ReplaceExitVal> ReplaceExitValue(
78     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
79     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
80     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
81                clEnumValN(OnlyCheapRepl, "cheap",
82                           "only replace exit value when the cost is cheap"),
83                clEnumValN(AlwaysRepl, "always",
84                           "always replace exit value whenever possible"),
85                clEnumValEnd));
86 
87 namespace {
88 struct RewritePhi;
89 
90 class IndVarSimplify : public LoopPass {
91   LoopInfo                  *LI;
92   ScalarEvolution           *SE;
93   DominatorTree             *DT;
94   TargetLibraryInfo         *TLI;
95   const TargetTransformInfo *TTI;
96 
97   SmallVector<WeakVH, 16> DeadInsts;
98   bool Changed;
99 public:
100 
101   static char ID; // Pass identification, replacement for typeid
102   IndVarSimplify()
103     : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
104     initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
105   }
106 
107   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
108 
109   void getAnalysisUsage(AnalysisUsage &AU) const override {
110     AU.addRequired<DominatorTreeWrapperPass>();
111     AU.addRequired<LoopInfoWrapperPass>();
112     AU.addRequired<ScalarEvolutionWrapperPass>();
113     AU.addRequiredID(LoopSimplifyID);
114     AU.addRequiredID(LCSSAID);
115     AU.addPreserved<GlobalsAAWrapperPass>();
116     AU.addPreserved<ScalarEvolutionWrapperPass>();
117     AU.addPreservedID(LoopSimplifyID);
118     AU.addPreservedID(LCSSAID);
119     AU.setPreservesCFG();
120   }
121 
122 private:
123   void releaseMemory() override {
124     DeadInsts.clear();
125   }
126 
127   bool isValidRewrite(Value *FromVal, Value *ToVal);
128 
129   void handleFloatingPointIV(Loop *L, PHINode *PH);
130   void rewriteNonIntegerIVs(Loop *L);
131 
132   void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
133 
134   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
135   void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
136   void rewriteFirstIterationLoopExitValues(Loop *L);
137 
138   Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
139                                    PHINode *IndVar, SCEVExpander &Rewriter);
140 
141   void sinkUnusedInvariants(Loop *L);
142 
143   Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
144                             Instruction *InsertPt, Type *Ty);
145 };
146 }
147 
148 char IndVarSimplify::ID = 0;
149 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
150                 "Induction Variable Simplification", false, false)
151 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
152 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
153 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
154 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
155 INITIALIZE_PASS_DEPENDENCY(LCSSA)
156 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
157                 "Induction Variable Simplification", false, false)
158 
159 Pass *llvm::createIndVarSimplifyPass() {
160   return new IndVarSimplify();
161 }
162 
163 /// Return true if the SCEV expansion generated by the rewriter can replace the
164 /// original value. SCEV guarantees that it produces the same value, but the way
165 /// it is produced may be illegal IR.  Ideally, this function will only be
166 /// called for verification.
167 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
168   // If an SCEV expression subsumed multiple pointers, its expansion could
169   // reassociate the GEP changing the base pointer. This is illegal because the
170   // final address produced by a GEP chain must be inbounds relative to its
171   // underlying object. Otherwise basic alias analysis, among other things,
172   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
173   // producing an expression involving multiple pointers. Until then, we must
174   // bail out here.
175   //
176   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
177   // because it understands lcssa phis while SCEV does not.
178   Value *FromPtr = FromVal;
179   Value *ToPtr = ToVal;
180   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
181     FromPtr = GEP->getPointerOperand();
182   }
183   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
184     ToPtr = GEP->getPointerOperand();
185   }
186   if (FromPtr != FromVal || ToPtr != ToVal) {
187     // Quickly check the common case
188     if (FromPtr == ToPtr)
189       return true;
190 
191     // SCEV may have rewritten an expression that produces the GEP's pointer
192     // operand. That's ok as long as the pointer operand has the same base
193     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
194     // base of a recurrence. This handles the case in which SCEV expansion
195     // converts a pointer type recurrence into a nonrecurrent pointer base
196     // indexed by an integer recurrence.
197 
198     // If the GEP base pointer is a vector of pointers, abort.
199     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
200       return false;
201 
202     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
203     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
204     if (FromBase == ToBase)
205       return true;
206 
207     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
208           << *FromBase << " != " << *ToBase << "\n");
209 
210     return false;
211   }
212   return true;
213 }
214 
215 /// Determine the insertion point for this user. By default, insert immediately
216 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
217 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
218 /// common dominator for the incoming blocks.
219 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
220                                           DominatorTree *DT, LoopInfo *LI) {
221   PHINode *PHI = dyn_cast<PHINode>(User);
222   if (!PHI)
223     return User;
224 
225   Instruction *InsertPt = nullptr;
226   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
227     if (PHI->getIncomingValue(i) != Def)
228       continue;
229 
230     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
231     if (!InsertPt) {
232       InsertPt = InsertBB->getTerminator();
233       continue;
234     }
235     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
236     InsertPt = InsertBB->getTerminator();
237   }
238   assert(InsertPt && "Missing phi operand");
239 
240   auto *DefI = dyn_cast<Instruction>(Def);
241   if (!DefI)
242     return InsertPt;
243 
244   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
245 
246   auto *L = LI->getLoopFor(DefI->getParent());
247   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
248 
249   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
250     if (LI->getLoopFor(DTN->getBlock()) == L)
251       return DTN->getBlock()->getTerminator();
252 
253   llvm_unreachable("DefI dominates InsertPt!");
254 }
255 
256 //===----------------------------------------------------------------------===//
257 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
258 //===----------------------------------------------------------------------===//
259 
260 /// Convert APF to an integer, if possible.
261 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
262   bool isExact = false;
263   // See if we can convert this to an int64_t
264   uint64_t UIntVal;
265   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
266                            &isExact) != APFloat::opOK || !isExact)
267     return false;
268   IntVal = UIntVal;
269   return true;
270 }
271 
272 /// If the loop has floating induction variable then insert corresponding
273 /// integer induction variable if possible.
274 /// For example,
275 /// for(double i = 0; i < 10000; ++i)
276 ///   bar(i)
277 /// is converted into
278 /// for(int i = 0; i < 10000; ++i)
279 ///   bar((double)i);
280 ///
281 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
282   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
283   unsigned BackEdge     = IncomingEdge^1;
284 
285   // Check incoming value.
286   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
287 
288   int64_t InitValue;
289   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
290     return;
291 
292   // Check IV increment. Reject this PN if increment operation is not
293   // an add or increment value can not be represented by an integer.
294   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
295   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
296 
297   // If this is not an add of the PHI with a constantfp, or if the constant fp
298   // is not an integer, bail out.
299   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
300   int64_t IncValue;
301   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
302       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
303     return;
304 
305   // Check Incr uses. One user is PN and the other user is an exit condition
306   // used by the conditional terminator.
307   Value::user_iterator IncrUse = Incr->user_begin();
308   Instruction *U1 = cast<Instruction>(*IncrUse++);
309   if (IncrUse == Incr->user_end()) return;
310   Instruction *U2 = cast<Instruction>(*IncrUse++);
311   if (IncrUse != Incr->user_end()) return;
312 
313   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
314   // only used by a branch, we can't transform it.
315   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
316   if (!Compare)
317     Compare = dyn_cast<FCmpInst>(U2);
318   if (!Compare || !Compare->hasOneUse() ||
319       !isa<BranchInst>(Compare->user_back()))
320     return;
321 
322   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
323 
324   // We need to verify that the branch actually controls the iteration count
325   // of the loop.  If not, the new IV can overflow and no one will notice.
326   // The branch block must be in the loop and one of the successors must be out
327   // of the loop.
328   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
329   if (!L->contains(TheBr->getParent()) ||
330       (L->contains(TheBr->getSuccessor(0)) &&
331        L->contains(TheBr->getSuccessor(1))))
332     return;
333 
334 
335   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
336   // transform it.
337   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
338   int64_t ExitValue;
339   if (ExitValueVal == nullptr ||
340       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
341     return;
342 
343   // Find new predicate for integer comparison.
344   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
345   switch (Compare->getPredicate()) {
346   default: return;  // Unknown comparison.
347   case CmpInst::FCMP_OEQ:
348   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
349   case CmpInst::FCMP_ONE:
350   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
351   case CmpInst::FCMP_OGT:
352   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
353   case CmpInst::FCMP_OGE:
354   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
355   case CmpInst::FCMP_OLT:
356   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
357   case CmpInst::FCMP_OLE:
358   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
359   }
360 
361   // We convert the floating point induction variable to a signed i32 value if
362   // we can.  This is only safe if the comparison will not overflow in a way
363   // that won't be trapped by the integer equivalent operations.  Check for this
364   // now.
365   // TODO: We could use i64 if it is native and the range requires it.
366 
367   // The start/stride/exit values must all fit in signed i32.
368   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
369     return;
370 
371   // If not actually striding (add x, 0.0), avoid touching the code.
372   if (IncValue == 0)
373     return;
374 
375   // Positive and negative strides have different safety conditions.
376   if (IncValue > 0) {
377     // If we have a positive stride, we require the init to be less than the
378     // exit value.
379     if (InitValue >= ExitValue)
380       return;
381 
382     uint32_t Range = uint32_t(ExitValue-InitValue);
383     // Check for infinite loop, either:
384     // while (i <= Exit) or until (i > Exit)
385     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
386       if (++Range == 0) return;  // Range overflows.
387     }
388 
389     unsigned Leftover = Range % uint32_t(IncValue);
390 
391     // If this is an equality comparison, we require that the strided value
392     // exactly land on the exit value, otherwise the IV condition will wrap
393     // around and do things the fp IV wouldn't.
394     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
395         Leftover != 0)
396       return;
397 
398     // If the stride would wrap around the i32 before exiting, we can't
399     // transform the IV.
400     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
401       return;
402 
403   } else {
404     // If we have a negative stride, we require the init to be greater than the
405     // exit value.
406     if (InitValue <= ExitValue)
407       return;
408 
409     uint32_t Range = uint32_t(InitValue-ExitValue);
410     // Check for infinite loop, either:
411     // while (i >= Exit) or until (i < Exit)
412     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
413       if (++Range == 0) return;  // Range overflows.
414     }
415 
416     unsigned Leftover = Range % uint32_t(-IncValue);
417 
418     // If this is an equality comparison, we require that the strided value
419     // exactly land on the exit value, otherwise the IV condition will wrap
420     // around and do things the fp IV wouldn't.
421     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
422         Leftover != 0)
423       return;
424 
425     // If the stride would wrap around the i32 before exiting, we can't
426     // transform the IV.
427     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
428       return;
429   }
430 
431   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
432 
433   // Insert new integer induction variable.
434   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
435   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
436                       PN->getIncomingBlock(IncomingEdge));
437 
438   Value *NewAdd =
439     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
440                               Incr->getName()+".int", Incr);
441   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
442 
443   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
444                                       ConstantInt::get(Int32Ty, ExitValue),
445                                       Compare->getName());
446 
447   // In the following deletions, PN may become dead and may be deleted.
448   // Use a WeakVH to observe whether this happens.
449   WeakVH WeakPH = PN;
450 
451   // Delete the old floating point exit comparison.  The branch starts using the
452   // new comparison.
453   NewCompare->takeName(Compare);
454   Compare->replaceAllUsesWith(NewCompare);
455   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
456 
457   // Delete the old floating point increment.
458   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
459   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
460 
461   // If the FP induction variable still has uses, this is because something else
462   // in the loop uses its value.  In order to canonicalize the induction
463   // variable, we chose to eliminate the IV and rewrite it in terms of an
464   // int->fp cast.
465   //
466   // We give preference to sitofp over uitofp because it is faster on most
467   // platforms.
468   if (WeakPH) {
469     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
470                                  &*PN->getParent()->getFirstInsertionPt());
471     PN->replaceAllUsesWith(Conv);
472     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
473   }
474   Changed = true;
475 }
476 
477 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
478   // First step.  Check to see if there are any floating-point recurrences.
479   // If there are, change them into integer recurrences, permitting analysis by
480   // the SCEV routines.
481   //
482   BasicBlock *Header = L->getHeader();
483 
484   SmallVector<WeakVH, 8> PHIs;
485   for (BasicBlock::iterator I = Header->begin();
486        PHINode *PN = dyn_cast<PHINode>(I); ++I)
487     PHIs.push_back(PN);
488 
489   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
490     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
491       handleFloatingPointIV(L, PN);
492 
493   // If the loop previously had floating-point IV, ScalarEvolution
494   // may not have been able to compute a trip count. Now that we've done some
495   // re-writing, the trip count may be computable.
496   if (Changed)
497     SE->forgetLoop(L);
498 }
499 
500 namespace {
501 // Collect information about PHI nodes which can be transformed in
502 // rewriteLoopExitValues.
503 struct RewritePhi {
504   PHINode *PN;
505   unsigned Ith;  // Ith incoming value.
506   Value *Val;    // Exit value after expansion.
507   bool HighCost; // High Cost when expansion.
508 
509   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
510       : PN(P), Ith(I), Val(V), HighCost(H) {}
511 };
512 }
513 
514 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
515                                           Loop *L, Instruction *InsertPt,
516                                           Type *ResultTy) {
517   // Before expanding S into an expensive LLVM expression, see if we can use an
518   // already existing value as the expansion for S.
519   if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L))
520     if (ExistingValue->getType() == ResultTy)
521       return ExistingValue;
522 
523   // We didn't find anything, fall back to using SCEVExpander.
524   return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
525 }
526 
527 //===----------------------------------------------------------------------===//
528 // rewriteLoopExitValues - Optimize IV users outside the loop.
529 // As a side effect, reduces the amount of IV processing within the loop.
530 //===----------------------------------------------------------------------===//
531 
532 /// Check to see if this loop has a computable loop-invariant execution count.
533 /// If so, this means that we can compute the final value of any expressions
534 /// that are recurrent in the loop, and substitute the exit values from the loop
535 /// into any instructions outside of the loop that use the final values of the
536 /// current expressions.
537 ///
538 /// This is mostly redundant with the regular IndVarSimplify activities that
539 /// happen later, except that it's more powerful in some cases, because it's
540 /// able to brute-force evaluate arbitrary instructions as long as they have
541 /// constant operands at the beginning of the loop.
542 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
543   // Check a pre-condition.
544   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
545 
546   SmallVector<BasicBlock*, 8> ExitBlocks;
547   L->getUniqueExitBlocks(ExitBlocks);
548 
549   SmallVector<RewritePhi, 8> RewritePhiSet;
550   // Find all values that are computed inside the loop, but used outside of it.
551   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
552   // the exit blocks of the loop to find them.
553   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
554     BasicBlock *ExitBB = ExitBlocks[i];
555 
556     // If there are no PHI nodes in this exit block, then no values defined
557     // inside the loop are used on this path, skip it.
558     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
559     if (!PN) continue;
560 
561     unsigned NumPreds = PN->getNumIncomingValues();
562 
563     // Iterate over all of the PHI nodes.
564     BasicBlock::iterator BBI = ExitBB->begin();
565     while ((PN = dyn_cast<PHINode>(BBI++))) {
566       if (PN->use_empty())
567         continue; // dead use, don't replace it
568 
569       // SCEV only supports integer expressions for now.
570       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
571         continue;
572 
573       // It's necessary to tell ScalarEvolution about this explicitly so that
574       // it can walk the def-use list and forget all SCEVs, as it may not be
575       // watching the PHI itself. Once the new exit value is in place, there
576       // may not be a def-use connection between the loop and every instruction
577       // which got a SCEVAddRecExpr for that loop.
578       SE->forgetValue(PN);
579 
580       // Iterate over all of the values in all the PHI nodes.
581       for (unsigned i = 0; i != NumPreds; ++i) {
582         // If the value being merged in is not integer or is not defined
583         // in the loop, skip it.
584         Value *InVal = PN->getIncomingValue(i);
585         if (!isa<Instruction>(InVal))
586           continue;
587 
588         // If this pred is for a subloop, not L itself, skip it.
589         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
590           continue; // The Block is in a subloop, skip it.
591 
592         // Check that InVal is defined in the loop.
593         Instruction *Inst = cast<Instruction>(InVal);
594         if (!L->contains(Inst))
595           continue;
596 
597         // Okay, this instruction has a user outside of the current loop
598         // and varies predictably *inside* the loop.  Evaluate the value it
599         // contains when the loop exits, if possible.
600         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
601         if (!SE->isLoopInvariant(ExitValue, L) ||
602             !isSafeToExpand(ExitValue, *SE))
603           continue;
604 
605         // Computing the value outside of the loop brings no benefit if :
606         //  - it is definitely used inside the loop in a way which can not be
607         //    optimized away.
608         //  - no use outside of the loop can take advantage of hoisting the
609         //    computation out of the loop
610         if (ExitValue->getSCEVType()>=scMulExpr) {
611           unsigned NumHardInternalUses = 0;
612           unsigned NumSoftExternalUses = 0;
613           unsigned NumUses = 0;
614           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
615                IB != IE && NumUses <= 6; ++IB) {
616             Instruction *UseInstr = cast<Instruction>(*IB);
617             unsigned Opc = UseInstr->getOpcode();
618             NumUses++;
619             if (L->contains(UseInstr)) {
620               if (Opc == Instruction::Call || Opc == Instruction::Ret)
621                 NumHardInternalUses++;
622             } else {
623               if (Opc == Instruction::PHI) {
624                 // Do not count the Phi as a use. LCSSA may have inserted
625                 // plenty of trivial ones.
626                 NumUses--;
627                 for (auto PB = UseInstr->user_begin(),
628                           PE = UseInstr->user_end();
629                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
630                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
631                   if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
632                     NumSoftExternalUses++;
633                 }
634                 continue;
635               }
636               if (Opc != Instruction::Call && Opc != Instruction::Ret)
637                 NumSoftExternalUses++;
638             }
639           }
640           if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
641             continue;
642         }
643 
644         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
645         Value *ExitVal =
646             expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType());
647 
648         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
649                      << "  LoopVal = " << *Inst << "\n");
650 
651         if (!isValidRewrite(Inst, ExitVal)) {
652           DeadInsts.push_back(ExitVal);
653           continue;
654         }
655 
656         // Collect all the candidate PHINodes to be rewritten.
657         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
658       }
659     }
660   }
661 
662   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
663 
664   // Transformation.
665   for (const RewritePhi &Phi : RewritePhiSet) {
666     PHINode *PN = Phi.PN;
667     Value *ExitVal = Phi.Val;
668 
669     // Only do the rewrite when the ExitValue can be expanded cheaply.
670     // If LoopCanBeDel is true, rewrite exit value aggressively.
671     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
672       DeadInsts.push_back(ExitVal);
673       continue;
674     }
675 
676     Changed = true;
677     ++NumReplaced;
678     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
679     PN->setIncomingValue(Phi.Ith, ExitVal);
680 
681     // If this instruction is dead now, delete it. Don't do it now to avoid
682     // invalidating iterators.
683     if (isInstructionTriviallyDead(Inst, TLI))
684       DeadInsts.push_back(Inst);
685 
686     // Replace PN with ExitVal if that is legal and does not break LCSSA.
687     if (PN->getNumIncomingValues() == 1 &&
688         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
689       PN->replaceAllUsesWith(ExitVal);
690       PN->eraseFromParent();
691     }
692   }
693 
694   // The insertion point instruction may have been deleted; clear it out
695   // so that the rewriter doesn't trip over it later.
696   Rewriter.clearInsertPoint();
697 }
698 
699 //===---------------------------------------------------------------------===//
700 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
701 // they will exit at the first iteration.
702 //===---------------------------------------------------------------------===//
703 
704 /// Check to see if this loop has loop invariant conditions which lead to loop
705 /// exits. If so, we know that if the exit path is taken, it is at the first
706 /// loop iteration. This lets us predict exit values of PHI nodes that live in
707 /// loop header.
708 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
709   // Verify the input to the pass is already in LCSSA form.
710   assert(L->isLCSSAForm(*DT));
711 
712   SmallVector<BasicBlock *, 8> ExitBlocks;
713   L->getUniqueExitBlocks(ExitBlocks);
714   auto *LoopHeader = L->getHeader();
715   assert(LoopHeader && "Invalid loop");
716 
717   for (auto *ExitBB : ExitBlocks) {
718     BasicBlock::iterator BBI = ExitBB->begin();
719     // If there are no more PHI nodes in this exit block, then no more
720     // values defined inside the loop are used on this path.
721     while (auto *PN = dyn_cast<PHINode>(BBI++)) {
722       for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues();
723           IncomingValIdx != E; ++IncomingValIdx) {
724         auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx);
725 
726         // We currently only support loop exits from loop header. If the
727         // incoming block is not loop header, we need to recursively check
728         // all conditions starting from loop header are loop invariants.
729         // Additional support might be added in the future.
730         if (IncomingBB != LoopHeader)
731           continue;
732 
733         // Get condition that leads to the exit path.
734         auto *TermInst = IncomingBB->getTerminator();
735 
736         Value *Cond = nullptr;
737         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
738           // Must be a conditional branch, otherwise the block
739           // should not be in the loop.
740           Cond = BI->getCondition();
741         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
742           Cond = SI->getCondition();
743         else
744           continue;
745 
746         if (!L->isLoopInvariant(Cond))
747           continue;
748 
749         auto *ExitVal =
750             dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx));
751 
752         // Only deal with PHIs.
753         if (!ExitVal)
754           continue;
755 
756         // If ExitVal is a PHI on the loop header, then we know its
757         // value along this exit because the exit can only be taken
758         // on the first iteration.
759         auto *LoopPreheader = L->getLoopPreheader();
760         assert(LoopPreheader && "Invalid loop");
761         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
762         if (PreheaderIdx != -1) {
763           assert(ExitVal->getParent() == LoopHeader &&
764                  "ExitVal must be in loop header");
765           PN->setIncomingValue(IncomingValIdx,
766               ExitVal->getIncomingValue(PreheaderIdx));
767         }
768       }
769     }
770   }
771 }
772 
773 /// Check whether it is possible to delete the loop after rewriting exit
774 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
775 /// aggressively.
776 bool IndVarSimplify::canLoopBeDeleted(
777     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
778 
779   BasicBlock *Preheader = L->getLoopPreheader();
780   // If there is no preheader, the loop will not be deleted.
781   if (!Preheader)
782     return false;
783 
784   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
785   // We obviate multiple ExitingBlocks case for simplicity.
786   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
787   // after exit value rewriting, we can enhance the logic here.
788   SmallVector<BasicBlock *, 4> ExitingBlocks;
789   L->getExitingBlocks(ExitingBlocks);
790   SmallVector<BasicBlock *, 8> ExitBlocks;
791   L->getUniqueExitBlocks(ExitBlocks);
792   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
793     return false;
794 
795   BasicBlock *ExitBlock = ExitBlocks[0];
796   BasicBlock::iterator BI = ExitBlock->begin();
797   while (PHINode *P = dyn_cast<PHINode>(BI)) {
798     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
799 
800     // If the Incoming value of P is found in RewritePhiSet, we know it
801     // could be rewritten to use a loop invariant value in transformation
802     // phase later. Skip it in the loop invariant check below.
803     bool found = false;
804     for (const RewritePhi &Phi : RewritePhiSet) {
805       unsigned i = Phi.Ith;
806       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
807         found = true;
808         break;
809       }
810     }
811 
812     Instruction *I;
813     if (!found && (I = dyn_cast<Instruction>(Incoming)))
814       if (!L->hasLoopInvariantOperands(I))
815         return false;
816 
817     ++BI;
818   }
819 
820   for (auto *BB : L->blocks())
821     if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); }))
822       return false;
823 
824   return true;
825 }
826 
827 //===----------------------------------------------------------------------===//
828 //  IV Widening - Extend the width of an IV to cover its widest uses.
829 //===----------------------------------------------------------------------===//
830 
831 namespace {
832 // Collect information about induction variables that are used by sign/zero
833 // extend operations. This information is recorded by CollectExtend and provides
834 // the input to WidenIV.
835 struct WideIVInfo {
836   PHINode *NarrowIV = nullptr;
837   Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext
838   bool IsSigned = false;            // Was a sext user seen before a zext?
839 };
840 }
841 
842 /// Update information about the induction variable that is extended by this
843 /// sign or zero extend operation. This is used to determine the final width of
844 /// the IV before actually widening it.
845 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
846                         const TargetTransformInfo *TTI) {
847   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
848   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
849     return;
850 
851   Type *Ty = Cast->getType();
852   uint64_t Width = SE->getTypeSizeInBits(Ty);
853   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
854     return;
855 
856   // Cast is either an sext or zext up to this point.
857   // We should not widen an indvar if arithmetics on the wider indvar are more
858   // expensive than those on the narrower indvar. We check only the cost of ADD
859   // because at least an ADD is required to increment the induction variable. We
860   // could compute more comprehensively the cost of all instructions on the
861   // induction variable when necessary.
862   if (TTI &&
863       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
864           TTI->getArithmeticInstrCost(Instruction::Add,
865                                       Cast->getOperand(0)->getType())) {
866     return;
867   }
868 
869   if (!WI.WidestNativeType) {
870     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
871     WI.IsSigned = IsSigned;
872     return;
873   }
874 
875   // We extend the IV to satisfy the sign of its first user, arbitrarily.
876   if (WI.IsSigned != IsSigned)
877     return;
878 
879   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
880     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
881 }
882 
883 namespace {
884 
885 /// Record a link in the Narrow IV def-use chain along with the WideIV that
886 /// computes the same value as the Narrow IV def.  This avoids caching Use*
887 /// pointers.
888 struct NarrowIVDefUse {
889   Instruction *NarrowDef = nullptr;
890   Instruction *NarrowUse = nullptr;
891   Instruction *WideDef = nullptr;
892 
893   // True if the narrow def is never negative.  Tracking this information lets
894   // us use a sign extension instead of a zero extension or vice versa, when
895   // profitable and legal.
896   bool NeverNegative = false;
897 
898   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
899                  bool NeverNegative)
900       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
901         NeverNegative(NeverNegative) {}
902 };
903 
904 /// The goal of this transform is to remove sign and zero extends without
905 /// creating any new induction variables. To do this, it creates a new phi of
906 /// the wider type and redirects all users, either removing extends or inserting
907 /// truncs whenever we stop propagating the type.
908 ///
909 class WidenIV {
910   // Parameters
911   PHINode *OrigPhi;
912   Type *WideType;
913   bool IsSigned;
914 
915   // Context
916   LoopInfo        *LI;
917   Loop            *L;
918   ScalarEvolution *SE;
919   DominatorTree   *DT;
920 
921   // Result
922   PHINode *WidePhi;
923   Instruction *WideInc;
924   const SCEV *WideIncExpr;
925   SmallVectorImpl<WeakVH> &DeadInsts;
926 
927   SmallPtrSet<Instruction*,16> Widened;
928   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
929 
930 public:
931   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
932           ScalarEvolution *SEv, DominatorTree *DTree,
933           SmallVectorImpl<WeakVH> &DI) :
934     OrigPhi(WI.NarrowIV),
935     WideType(WI.WidestNativeType),
936     IsSigned(WI.IsSigned),
937     LI(LInfo),
938     L(LI->getLoopFor(OrigPhi->getParent())),
939     SE(SEv),
940     DT(DTree),
941     WidePhi(nullptr),
942     WideInc(nullptr),
943     WideIncExpr(nullptr),
944     DeadInsts(DI) {
945     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
946   }
947 
948   PHINode *createWideIV(SCEVExpander &Rewriter);
949 
950 protected:
951   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
952                           Instruction *Use);
953 
954   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
955   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
956                                      const SCEVAddRecExpr *WideAR);
957   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
958 
959   const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse);
960 
961   const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU);
962 
963   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
964                               unsigned OpCode) const;
965 
966   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
967 
968   bool widenLoopCompare(NarrowIVDefUse DU);
969 
970   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
971 };
972 } // anonymous namespace
973 
974 /// Perform a quick domtree based check for loop invariance assuming that V is
975 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
976 /// purpose.
977 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
978   Instruction *Inst = dyn_cast<Instruction>(V);
979   if (!Inst)
980     return true;
981 
982   return DT->properlyDominates(Inst->getParent(), L->getHeader());
983 }
984 
985 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
986                                  bool IsSigned, Instruction *Use) {
987   // Set the debug location and conservative insertion point.
988   IRBuilder<> Builder(Use);
989   // Hoist the insertion point into loop preheaders as far as possible.
990   for (const Loop *L = LI->getLoopFor(Use->getParent());
991        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
992        L = L->getParentLoop())
993     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
994 
995   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
996                     Builder.CreateZExt(NarrowOper, WideType);
997 }
998 
999 /// Instantiate a wide operation to replace a narrow operation. This only needs
1000 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1001 /// 0 for any operation we decide not to clone.
1002 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1003                                   const SCEVAddRecExpr *WideAR) {
1004   unsigned Opcode = DU.NarrowUse->getOpcode();
1005   switch (Opcode) {
1006   default:
1007     return nullptr;
1008   case Instruction::Add:
1009   case Instruction::Mul:
1010   case Instruction::UDiv:
1011   case Instruction::Sub:
1012     return cloneArithmeticIVUser(DU, WideAR);
1013 
1014   case Instruction::And:
1015   case Instruction::Or:
1016   case Instruction::Xor:
1017   case Instruction::Shl:
1018   case Instruction::LShr:
1019   case Instruction::AShr:
1020     return cloneBitwiseIVUser(DU);
1021   }
1022 }
1023 
1024 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1025   Instruction *NarrowUse = DU.NarrowUse;
1026   Instruction *NarrowDef = DU.NarrowDef;
1027   Instruction *WideDef = DU.WideDef;
1028 
1029   DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1030 
1031   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1032   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1033   // invariant and will be folded or hoisted. If it actually comes from a
1034   // widened IV, it should be removed during a future call to widenIVUse.
1035   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1036                    ? WideDef
1037                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1038                                       IsSigned, NarrowUse);
1039   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1040                    ? WideDef
1041                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1042                                       IsSigned, NarrowUse);
1043 
1044   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1045   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1046                                         NarrowBO->getName());
1047   IRBuilder<> Builder(NarrowUse);
1048   Builder.Insert(WideBO);
1049   WideBO->copyIRFlags(NarrowBO);
1050   return WideBO;
1051 }
1052 
1053 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1054                                             const SCEVAddRecExpr *WideAR) {
1055   Instruction *NarrowUse = DU.NarrowUse;
1056   Instruction *NarrowDef = DU.NarrowDef;
1057   Instruction *WideDef = DU.WideDef;
1058 
1059   DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1060 
1061   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1062 
1063   // We're trying to find X such that
1064   //
1065   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1066   //
1067   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1068   // and check using SCEV if any of them are correct.
1069 
1070   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1071   // correct solution to X.
1072   auto GuessNonIVOperand = [&](bool SignExt) {
1073     const SCEV *WideLHS;
1074     const SCEV *WideRHS;
1075 
1076     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1077       if (SignExt)
1078         return SE->getSignExtendExpr(S, Ty);
1079       return SE->getZeroExtendExpr(S, Ty);
1080     };
1081 
1082     if (IVOpIdx == 0) {
1083       WideLHS = SE->getSCEV(WideDef);
1084       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1085       WideRHS = GetExtend(NarrowRHS, WideType);
1086     } else {
1087       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1088       WideLHS = GetExtend(NarrowLHS, WideType);
1089       WideRHS = SE->getSCEV(WideDef);
1090     }
1091 
1092     // WideUse is "WideDef `op.wide` X" as described in the comment.
1093     const SCEV *WideUse = nullptr;
1094 
1095     switch (NarrowUse->getOpcode()) {
1096     default:
1097       llvm_unreachable("No other possibility!");
1098 
1099     case Instruction::Add:
1100       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1101       break;
1102 
1103     case Instruction::Mul:
1104       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1105       break;
1106 
1107     case Instruction::UDiv:
1108       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1109       break;
1110 
1111     case Instruction::Sub:
1112       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1113       break;
1114     }
1115 
1116     return WideUse == WideAR;
1117   };
1118 
1119   bool SignExtend = IsSigned;
1120   if (!GuessNonIVOperand(SignExtend)) {
1121     SignExtend = !SignExtend;
1122     if (!GuessNonIVOperand(SignExtend))
1123       return nullptr;
1124   }
1125 
1126   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1127                    ? WideDef
1128                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1129                                       SignExtend, NarrowUse);
1130   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1131                    ? WideDef
1132                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1133                                       SignExtend, NarrowUse);
1134 
1135   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1136   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1137                                         NarrowBO->getName());
1138 
1139   IRBuilder<> Builder(NarrowUse);
1140   Builder.Insert(WideBO);
1141   WideBO->copyIRFlags(NarrowBO);
1142   return WideBO;
1143 }
1144 
1145 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1146                                      unsigned OpCode) const {
1147   if (OpCode == Instruction::Add)
1148     return SE->getAddExpr(LHS, RHS);
1149   if (OpCode == Instruction::Sub)
1150     return SE->getMinusSCEV(LHS, RHS);
1151   if (OpCode == Instruction::Mul)
1152     return SE->getMulExpr(LHS, RHS);
1153 
1154   llvm_unreachable("Unsupported opcode.");
1155 }
1156 
1157 /// No-wrap operations can transfer sign extension of their result to their
1158 /// operands. Generate the SCEV value for the widened operation without
1159 /// actually modifying the IR yet. If the expression after extending the
1160 /// operands is an AddRec for this loop, return it.
1161 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1162 
1163   // Handle the common case of add<nsw/nuw>
1164   const unsigned OpCode = DU.NarrowUse->getOpcode();
1165   // Only Add/Sub/Mul instructions supported yet.
1166   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1167       OpCode != Instruction::Mul)
1168     return nullptr;
1169 
1170   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1171   // if extending the other will lead to a recurrence.
1172   const unsigned ExtendOperIdx =
1173       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1174   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1175 
1176   const SCEV *ExtendOperExpr = nullptr;
1177   const OverflowingBinaryOperator *OBO =
1178     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1179   if (IsSigned && OBO->hasNoSignedWrap())
1180     ExtendOperExpr = SE->getSignExtendExpr(
1181       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1182   else if(!IsSigned && OBO->hasNoUnsignedWrap())
1183     ExtendOperExpr = SE->getZeroExtendExpr(
1184       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1185   else
1186     return nullptr;
1187 
1188   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1189   // flags. This instruction may be guarded by control flow that the no-wrap
1190   // behavior depends on. Non-control-equivalent instructions can be mapped to
1191   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1192   // semantics to those operations.
1193   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1194   const SCEV *rhs = ExtendOperExpr;
1195 
1196   // Let's swap operands to the initial order for the case of non-commutative
1197   // operations, like SUB. See PR21014.
1198   if (ExtendOperIdx == 0)
1199     std::swap(lhs, rhs);
1200   const SCEVAddRecExpr *AddRec =
1201       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1202 
1203   if (!AddRec || AddRec->getLoop() != L)
1204     return nullptr;
1205   return AddRec;
1206 }
1207 
1208 /// Is this instruction potentially interesting for further simplification after
1209 /// widening it's type? In other words, can the extend be safely hoisted out of
1210 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1211 /// so, return the sign or zero extended recurrence. Otherwise return NULL.
1212 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) {
1213   if (!SE->isSCEVable(NarrowUse->getType()))
1214     return nullptr;
1215 
1216   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
1217   if (SE->getTypeSizeInBits(NarrowExpr->getType())
1218       >= SE->getTypeSizeInBits(WideType)) {
1219     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1220     // index. So don't follow this use.
1221     return nullptr;
1222   }
1223 
1224   const SCEV *WideExpr = IsSigned ?
1225     SE->getSignExtendExpr(NarrowExpr, WideType) :
1226     SE->getZeroExtendExpr(NarrowExpr, WideType);
1227   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1228   if (!AddRec || AddRec->getLoop() != L)
1229     return nullptr;
1230   return AddRec;
1231 }
1232 
1233 /// This IV user cannot be widen. Replace this use of the original narrow IV
1234 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1235 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1236   DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
1237         << " for user " << *DU.NarrowUse << "\n");
1238   IRBuilder<> Builder(
1239       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1240   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1241   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1242 }
1243 
1244 /// If the narrow use is a compare instruction, then widen the compare
1245 //  (and possibly the other operand).  The extend operation is hoisted into the
1246 // loop preheader as far as possible.
1247 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1248   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1249   if (!Cmp)
1250     return false;
1251 
1252   // We can legally widen the comparison in the following two cases:
1253   //
1254   //  - The signedness of the IV extension and comparison match
1255   //
1256   //  - The narrow IV is always positive (and thus its sign extension is equal
1257   //    to its zero extension).  For instance, let's say we're zero extending
1258   //    %narrow for the following use
1259   //
1260   //      icmp slt i32 %narrow, %val   ... (A)
1261   //
1262   //    and %narrow is always positive.  Then
1263   //
1264   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1265   //          == icmp slt i32 zext(%narrow), sext(%val)
1266 
1267   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1268     return false;
1269 
1270   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1271   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1272   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1273   assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
1274 
1275   // Widen the compare instruction.
1276   IRBuilder<> Builder(
1277       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1278   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1279 
1280   // Widen the other operand of the compare, if necessary.
1281   if (CastWidth < IVWidth) {
1282     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1283     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1284   }
1285   return true;
1286 }
1287 
1288 /// Determine whether an individual user of the narrow IV can be widened. If so,
1289 /// return the wide clone of the user.
1290 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1291 
1292   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1293   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1294     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1295       // For LCSSA phis, sink the truncate outside the loop.
1296       // After SimplifyCFG most loop exit targets have a single predecessor.
1297       // Otherwise fall back to a truncate within the loop.
1298       if (UsePhi->getNumOperands() != 1)
1299         truncateIVUse(DU, DT, LI);
1300       else {
1301         PHINode *WidePhi =
1302           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1303                           UsePhi);
1304         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1305         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1306         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1307         UsePhi->replaceAllUsesWith(Trunc);
1308         DeadInsts.emplace_back(UsePhi);
1309         DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1310               << " to " << *WidePhi << "\n");
1311       }
1312       return nullptr;
1313     }
1314   }
1315   // Our raison d'etre! Eliminate sign and zero extension.
1316   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1317     Value *NewDef = DU.WideDef;
1318     if (DU.NarrowUse->getType() != WideType) {
1319       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1320       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1321       if (CastWidth < IVWidth) {
1322         // The cast isn't as wide as the IV, so insert a Trunc.
1323         IRBuilder<> Builder(DU.NarrowUse);
1324         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1325       }
1326       else {
1327         // A wider extend was hidden behind a narrower one. This may induce
1328         // another round of IV widening in which the intermediate IV becomes
1329         // dead. It should be very rare.
1330         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1331               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1332         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1333         NewDef = DU.NarrowUse;
1334       }
1335     }
1336     if (NewDef != DU.NarrowUse) {
1337       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1338             << " replaced by " << *DU.WideDef << "\n");
1339       ++NumElimExt;
1340       DU.NarrowUse->replaceAllUsesWith(NewDef);
1341       DeadInsts.emplace_back(DU.NarrowUse);
1342     }
1343     // Now that the extend is gone, we want to expose it's uses for potential
1344     // further simplification. We don't need to directly inform SimplifyIVUsers
1345     // of the new users, because their parent IV will be processed later as a
1346     // new loop phi. If we preserved IVUsers analysis, we would also want to
1347     // push the uses of WideDef here.
1348 
1349     // No further widening is needed. The deceased [sz]ext had done it for us.
1350     return nullptr;
1351   }
1352 
1353   // Does this user itself evaluate to a recurrence after widening?
1354   const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse);
1355   if (!WideAddRec)
1356     WideAddRec = getExtendedOperandRecurrence(DU);
1357 
1358   if (!WideAddRec) {
1359     // If use is a loop condition, try to promote the condition instead of
1360     // truncating the IV first.
1361     if (widenLoopCompare(DU))
1362       return nullptr;
1363 
1364     // This user does not evaluate to a recurence after widening, so don't
1365     // follow it. Instead insert a Trunc to kill off the original use,
1366     // eventually isolating the original narrow IV so it can be removed.
1367     truncateIVUse(DU, DT, LI);
1368     return nullptr;
1369   }
1370   // Assume block terminators cannot evaluate to a recurrence. We can't to
1371   // insert a Trunc after a terminator if there happens to be a critical edge.
1372   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1373          "SCEV is not expected to evaluate a block terminator");
1374 
1375   // Reuse the IV increment that SCEVExpander created as long as it dominates
1376   // NarrowUse.
1377   Instruction *WideUse = nullptr;
1378   if (WideAddRec == WideIncExpr
1379       && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1380     WideUse = WideInc;
1381   else {
1382     WideUse = cloneIVUser(DU, WideAddRec);
1383     if (!WideUse)
1384       return nullptr;
1385   }
1386   // Evaluation of WideAddRec ensured that the narrow expression could be
1387   // extended outside the loop without overflow. This suggests that the wide use
1388   // evaluates to the same expression as the extended narrow use, but doesn't
1389   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1390   // where it fails, we simply throw away the newly created wide use.
1391   if (WideAddRec != SE->getSCEV(WideUse)) {
1392     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1393           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1394     DeadInsts.emplace_back(WideUse);
1395     return nullptr;
1396   }
1397 
1398   // Returning WideUse pushes it on the worklist.
1399   return WideUse;
1400 }
1401 
1402 /// Add eligible users of NarrowDef to NarrowIVUsers.
1403 ///
1404 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1405   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1406   bool NeverNegative =
1407       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1408                            SE->getConstant(NarrowSCEV->getType(), 0));
1409   for (User *U : NarrowDef->users()) {
1410     Instruction *NarrowUser = cast<Instruction>(U);
1411 
1412     // Handle data flow merges and bizarre phi cycles.
1413     if (!Widened.insert(NarrowUser).second)
1414       continue;
1415 
1416     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative);
1417   }
1418 }
1419 
1420 /// Process a single induction variable. First use the SCEVExpander to create a
1421 /// wide induction variable that evaluates to the same recurrence as the
1422 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1423 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1424 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1425 ///
1426 /// It would be simpler to delete uses as they are processed, but we must avoid
1427 /// invalidating SCEV expressions.
1428 ///
1429 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1430   // Is this phi an induction variable?
1431   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1432   if (!AddRec)
1433     return nullptr;
1434 
1435   // Widen the induction variable expression.
1436   const SCEV *WideIVExpr = IsSigned ?
1437     SE->getSignExtendExpr(AddRec, WideType) :
1438     SE->getZeroExtendExpr(AddRec, WideType);
1439 
1440   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1441          "Expect the new IV expression to preserve its type");
1442 
1443   // Can the IV be extended outside the loop without overflow?
1444   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1445   if (!AddRec || AddRec->getLoop() != L)
1446     return nullptr;
1447 
1448   // An AddRec must have loop-invariant operands. Since this AddRec is
1449   // materialized by a loop header phi, the expression cannot have any post-loop
1450   // operands, so they must dominate the loop header.
1451   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1452          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1453          && "Loop header phi recurrence inputs do not dominate the loop");
1454 
1455   // The rewriter provides a value for the desired IV expression. This may
1456   // either find an existing phi or materialize a new one. Either way, we
1457   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1458   // of the phi-SCC dominates the loop entry.
1459   Instruction *InsertPt = &L->getHeader()->front();
1460   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1461 
1462   // Remembering the WideIV increment generated by SCEVExpander allows
1463   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1464   // employ a general reuse mechanism because the call above is the only call to
1465   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1466   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1467     WideInc =
1468       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1469     WideIncExpr = SE->getSCEV(WideInc);
1470   }
1471 
1472   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1473   ++NumWidened;
1474 
1475   // Traverse the def-use chain using a worklist starting at the original IV.
1476   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1477 
1478   Widened.insert(OrigPhi);
1479   pushNarrowIVUsers(OrigPhi, WidePhi);
1480 
1481   while (!NarrowIVUsers.empty()) {
1482     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1483 
1484     // Process a def-use edge. This may replace the use, so don't hold a
1485     // use_iterator across it.
1486     Instruction *WideUse = widenIVUse(DU, Rewriter);
1487 
1488     // Follow all def-use edges from the previous narrow use.
1489     if (WideUse)
1490       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1491 
1492     // widenIVUse may have removed the def-use edge.
1493     if (DU.NarrowDef->use_empty())
1494       DeadInsts.emplace_back(DU.NarrowDef);
1495   }
1496   return WidePhi;
1497 }
1498 
1499 //===----------------------------------------------------------------------===//
1500 //  Live IV Reduction - Minimize IVs live across the loop.
1501 //===----------------------------------------------------------------------===//
1502 
1503 
1504 //===----------------------------------------------------------------------===//
1505 //  Simplification of IV users based on SCEV evaluation.
1506 //===----------------------------------------------------------------------===//
1507 
1508 namespace {
1509 class IndVarSimplifyVisitor : public IVVisitor {
1510   ScalarEvolution *SE;
1511   const TargetTransformInfo *TTI;
1512   PHINode *IVPhi;
1513 
1514 public:
1515   WideIVInfo WI;
1516 
1517   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1518                         const TargetTransformInfo *TTI,
1519                         const DominatorTree *DTree)
1520     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1521     DT = DTree;
1522     WI.NarrowIV = IVPhi;
1523     if (ReduceLiveIVs)
1524       setSplitOverflowIntrinsics();
1525   }
1526 
1527   // Implement the interface used by simplifyUsersOfIV.
1528   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1529 };
1530 }
1531 
1532 /// Iteratively perform simplification on a worklist of IV users. Each
1533 /// successive simplification may push more users which may themselves be
1534 /// candidates for simplification.
1535 ///
1536 /// Sign/Zero extend elimination is interleaved with IV simplification.
1537 ///
1538 void IndVarSimplify::simplifyAndExtend(Loop *L,
1539                                        SCEVExpander &Rewriter,
1540                                        LoopInfo *LI) {
1541   SmallVector<WideIVInfo, 8> WideIVs;
1542 
1543   SmallVector<PHINode*, 8> LoopPhis;
1544   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1545     LoopPhis.push_back(cast<PHINode>(I));
1546   }
1547   // Each round of simplification iterates through the SimplifyIVUsers worklist
1548   // for all current phis, then determines whether any IVs can be
1549   // widened. Widening adds new phis to LoopPhis, inducing another round of
1550   // simplification on the wide IVs.
1551   while (!LoopPhis.empty()) {
1552     // Evaluate as many IV expressions as possible before widening any IVs. This
1553     // forces SCEV to set no-wrap flags before evaluating sign/zero
1554     // extension. The first time SCEV attempts to normalize sign/zero extension,
1555     // the result becomes final. So for the most predictable results, we delay
1556     // evaluation of sign/zero extend evaluation until needed, and avoid running
1557     // other SCEV based analysis prior to simplifyAndExtend.
1558     do {
1559       PHINode *CurrIV = LoopPhis.pop_back_val();
1560 
1561       // Information about sign/zero extensions of CurrIV.
1562       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1563 
1564       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor);
1565 
1566       if (Visitor.WI.WidestNativeType) {
1567         WideIVs.push_back(Visitor.WI);
1568       }
1569     } while(!LoopPhis.empty());
1570 
1571     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1572       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1573       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1574         Changed = true;
1575         LoopPhis.push_back(WidePhi);
1576       }
1577     }
1578   }
1579 }
1580 
1581 //===----------------------------------------------------------------------===//
1582 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1583 //===----------------------------------------------------------------------===//
1584 
1585 /// Return true if this loop's backedge taken count expression can be safely and
1586 /// cheaply expanded into an instruction sequence that can be used by
1587 /// linearFunctionTestReplace.
1588 ///
1589 /// TODO: This fails for pointer-type loop counters with greater than one byte
1590 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1591 /// we could skip this check in the case that the LFTR loop counter (chosen by
1592 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1593 /// the loop test to an inequality test by checking the target data's alignment
1594 /// of element types (given that the initial pointer value originates from or is
1595 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1596 /// However, we don't yet have a strong motivation for converting loop tests
1597 /// into inequality tests.
1598 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1599                                         SCEVExpander &Rewriter) {
1600   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1601   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1602       BackedgeTakenCount->isZero())
1603     return false;
1604 
1605   if (!L->getExitingBlock())
1606     return false;
1607 
1608   // Can't rewrite non-branch yet.
1609   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
1610     return false;
1611 
1612   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
1613     return false;
1614 
1615   return true;
1616 }
1617 
1618 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
1619 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1620   Instruction *IncI = dyn_cast<Instruction>(IncV);
1621   if (!IncI)
1622     return nullptr;
1623 
1624   switch (IncI->getOpcode()) {
1625   case Instruction::Add:
1626   case Instruction::Sub:
1627     break;
1628   case Instruction::GetElementPtr:
1629     // An IV counter must preserve its type.
1630     if (IncI->getNumOperands() == 2)
1631       break;
1632   default:
1633     return nullptr;
1634   }
1635 
1636   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1637   if (Phi && Phi->getParent() == L->getHeader()) {
1638     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1639       return Phi;
1640     return nullptr;
1641   }
1642   if (IncI->getOpcode() == Instruction::GetElementPtr)
1643     return nullptr;
1644 
1645   // Allow add/sub to be commuted.
1646   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1647   if (Phi && Phi->getParent() == L->getHeader()) {
1648     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1649       return Phi;
1650   }
1651   return nullptr;
1652 }
1653 
1654 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1655 static ICmpInst *getLoopTest(Loop *L) {
1656   assert(L->getExitingBlock() && "expected loop exit");
1657 
1658   BasicBlock *LatchBlock = L->getLoopLatch();
1659   // Don't bother with LFTR if the loop is not properly simplified.
1660   if (!LatchBlock)
1661     return nullptr;
1662 
1663   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1664   assert(BI && "expected exit branch");
1665 
1666   return dyn_cast<ICmpInst>(BI->getCondition());
1667 }
1668 
1669 /// linearFunctionTestReplace policy. Return true unless we can show that the
1670 /// current exit test is already sufficiently canonical.
1671 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1672   // Do LFTR to simplify the exit condition to an ICMP.
1673   ICmpInst *Cond = getLoopTest(L);
1674   if (!Cond)
1675     return true;
1676 
1677   // Do LFTR to simplify the exit ICMP to EQ/NE
1678   ICmpInst::Predicate Pred = Cond->getPredicate();
1679   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1680     return true;
1681 
1682   // Look for a loop invariant RHS
1683   Value *LHS = Cond->getOperand(0);
1684   Value *RHS = Cond->getOperand(1);
1685   if (!isLoopInvariant(RHS, L, DT)) {
1686     if (!isLoopInvariant(LHS, L, DT))
1687       return true;
1688     std::swap(LHS, RHS);
1689   }
1690   // Look for a simple IV counter LHS
1691   PHINode *Phi = dyn_cast<PHINode>(LHS);
1692   if (!Phi)
1693     Phi = getLoopPhiForCounter(LHS, L, DT);
1694 
1695   if (!Phi)
1696     return true;
1697 
1698   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1699   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1700   if (Idx < 0)
1701     return true;
1702 
1703   // Do LFTR if the exit condition's IV is *not* a simple counter.
1704   Value *IncV = Phi->getIncomingValue(Idx);
1705   return Phi != getLoopPhiForCounter(IncV, L, DT);
1706 }
1707 
1708 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1709 /// down to checking that all operands are constant and listing instructions
1710 /// that may hide undef.
1711 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1712                                unsigned Depth) {
1713   if (isa<Constant>(V))
1714     return !isa<UndefValue>(V);
1715 
1716   if (Depth >= 6)
1717     return false;
1718 
1719   // Conservatively handle non-constant non-instructions. For example, Arguments
1720   // may be undef.
1721   Instruction *I = dyn_cast<Instruction>(V);
1722   if (!I)
1723     return false;
1724 
1725   // Load and return values may be undef.
1726   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1727     return false;
1728 
1729   // Optimistically handle other instructions.
1730   for (Value *Op : I->operands()) {
1731     if (!Visited.insert(Op).second)
1732       continue;
1733     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
1734       return false;
1735   }
1736   return true;
1737 }
1738 
1739 /// Return true if the given value is concrete. We must prove that undef can
1740 /// never reach it.
1741 ///
1742 /// TODO: If we decide that this is a good approach to checking for undef, we
1743 /// may factor it into a common location.
1744 static bool hasConcreteDef(Value *V) {
1745   SmallPtrSet<Value*, 8> Visited;
1746   Visited.insert(V);
1747   return hasConcreteDefImpl(V, Visited, 0);
1748 }
1749 
1750 /// Return true if this IV has any uses other than the (soon to be rewritten)
1751 /// loop exit test.
1752 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1753   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1754   Value *IncV = Phi->getIncomingValue(LatchIdx);
1755 
1756   for (User *U : Phi->users())
1757     if (U != Cond && U != IncV) return false;
1758 
1759   for (User *U : IncV->users())
1760     if (U != Cond && U != Phi) return false;
1761   return true;
1762 }
1763 
1764 /// Find an affine IV in canonical form.
1765 ///
1766 /// BECount may be an i8* pointer type. The pointer difference is already
1767 /// valid count without scaling the address stride, so it remains a pointer
1768 /// expression as far as SCEV is concerned.
1769 ///
1770 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1771 ///
1772 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1773 ///
1774 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1775 /// This is difficult in general for SCEV because of potential overflow. But we
1776 /// could at least handle constant BECounts.
1777 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
1778                                 ScalarEvolution *SE, DominatorTree *DT) {
1779   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1780 
1781   Value *Cond =
1782     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1783 
1784   // Loop over all of the PHI nodes, looking for a simple counter.
1785   PHINode *BestPhi = nullptr;
1786   const SCEV *BestInit = nullptr;
1787   BasicBlock *LatchBlock = L->getLoopLatch();
1788   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1789 
1790   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1791     PHINode *Phi = cast<PHINode>(I);
1792     if (!SE->isSCEVable(Phi->getType()))
1793       continue;
1794 
1795     // Avoid comparing an integer IV against a pointer Limit.
1796     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1797       continue;
1798 
1799     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1800     if (!AR || AR->getLoop() != L || !AR->isAffine())
1801       continue;
1802 
1803     // AR may be a pointer type, while BECount is an integer type.
1804     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1805     // AR may not be a narrower type, or we may never exit.
1806     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1807     if (PhiWidth < BCWidth ||
1808         !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth))
1809       continue;
1810 
1811     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1812     if (!Step || !Step->isOne())
1813       continue;
1814 
1815     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1816     Value *IncV = Phi->getIncomingValue(LatchIdx);
1817     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1818       continue;
1819 
1820     // Avoid reusing a potentially undef value to compute other values that may
1821     // have originally had a concrete definition.
1822     if (!hasConcreteDef(Phi)) {
1823       // We explicitly allow unknown phis as long as they are already used by
1824       // the loop test. In this case we assume that performing LFTR could not
1825       // increase the number of undef users.
1826       if (ICmpInst *Cond = getLoopTest(L)) {
1827         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1828             && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1829           continue;
1830         }
1831       }
1832     }
1833     const SCEV *Init = AR->getStart();
1834 
1835     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1836       // Don't force a live loop counter if another IV can be used.
1837       if (AlmostDeadIV(Phi, LatchBlock, Cond))
1838         continue;
1839 
1840       // Prefer to count-from-zero. This is a more "canonical" counter form. It
1841       // also prefers integer to pointer IVs.
1842       if (BestInit->isZero() != Init->isZero()) {
1843         if (BestInit->isZero())
1844           continue;
1845       }
1846       // If two IVs both count from zero or both count from nonzero then the
1847       // narrower is likely a dead phi that has been widened. Use the wider phi
1848       // to allow the other to be eliminated.
1849       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1850         continue;
1851     }
1852     BestPhi = Phi;
1853     BestInit = Init;
1854   }
1855   return BestPhi;
1856 }
1857 
1858 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
1859 /// the new loop test.
1860 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1861                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
1862   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1863   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1864   const SCEV *IVInit = AR->getStart();
1865 
1866   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1867   // finds a valid pointer IV. Sign extend BECount in order to materialize a
1868   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1869   // the existing GEPs whenever possible.
1870   if (IndVar->getType()->isPointerTy()
1871       && !IVCount->getType()->isPointerTy()) {
1872 
1873     // IVOffset will be the new GEP offset that is interpreted by GEP as a
1874     // signed value. IVCount on the other hand represents the loop trip count,
1875     // which is an unsigned value. FindLoopCounter only allows induction
1876     // variables that have a positive unit stride of one. This means we don't
1877     // have to handle the case of negative offsets (yet) and just need to zero
1878     // extend IVCount.
1879     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1880     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1881 
1882     // Expand the code for the iteration count.
1883     assert(SE->isLoopInvariant(IVOffset, L) &&
1884            "Computed iteration count is not loop invariant!");
1885     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1886     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1887 
1888     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1889     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1890     // We could handle pointer IVs other than i8*, but we need to compensate for
1891     // gep index scaling. See canExpandBackedgeTakenCount comments.
1892     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1893              cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1894            && "unit stride pointer IV must be i8*");
1895 
1896     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1897     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
1898   }
1899   else {
1900     // In any other case, convert both IVInit and IVCount to integers before
1901     // comparing. This may result in SCEV expension of pointers, but in practice
1902     // SCEV will fold the pointer arithmetic away as such:
1903     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1904     //
1905     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1906     // for simple memset-style loops.
1907     //
1908     // IVInit integer and IVCount pointer would only occur if a canonical IV
1909     // were generated on top of case #2, which is not expected.
1910 
1911     const SCEV *IVLimit = nullptr;
1912     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1913     // For non-zero Start, compute IVCount here.
1914     if (AR->getStart()->isZero())
1915       IVLimit = IVCount;
1916     else {
1917       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1918       const SCEV *IVInit = AR->getStart();
1919 
1920       // For integer IVs, truncate the IV before computing IVInit + BECount.
1921       if (SE->getTypeSizeInBits(IVInit->getType())
1922           > SE->getTypeSizeInBits(IVCount->getType()))
1923         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1924 
1925       IVLimit = SE->getAddExpr(IVInit, IVCount);
1926     }
1927     // Expand the code for the iteration count.
1928     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1929     IRBuilder<> Builder(BI);
1930     assert(SE->isLoopInvariant(IVLimit, L) &&
1931            "Computed iteration count is not loop invariant!");
1932     // Ensure that we generate the same type as IndVar, or a smaller integer
1933     // type. In the presence of null pointer values, we have an integer type
1934     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1935     Type *LimitTy = IVCount->getType()->isPointerTy() ?
1936       IndVar->getType() : IVCount->getType();
1937     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1938   }
1939 }
1940 
1941 /// This method rewrites the exit condition of the loop to be a canonical !=
1942 /// comparison against the incremented loop induction variable.  This pass is
1943 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1944 /// determine a loop-invariant trip count of the loop, which is actually a much
1945 /// broader range than just linear tests.
1946 Value *IndVarSimplify::
1947 linearFunctionTestReplace(Loop *L,
1948                           const SCEV *BackedgeTakenCount,
1949                           PHINode *IndVar,
1950                           SCEVExpander &Rewriter) {
1951   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
1952 
1953   // Initialize CmpIndVar and IVCount to their preincremented values.
1954   Value *CmpIndVar = IndVar;
1955   const SCEV *IVCount = BackedgeTakenCount;
1956 
1957   // If the exiting block is the same as the backedge block, we prefer to
1958   // compare against the post-incremented value, otherwise we must compare
1959   // against the preincremented value.
1960   if (L->getExitingBlock() == L->getLoopLatch()) {
1961     // Add one to the "backedge-taken" count to get the trip count.
1962     // This addition may overflow, which is valid as long as the comparison is
1963     // truncated to BackedgeTakenCount->getType().
1964     IVCount = SE->getAddExpr(BackedgeTakenCount,
1965                              SE->getOne(BackedgeTakenCount->getType()));
1966     // The BackedgeTaken expression contains the number of times that the
1967     // backedge branches to the loop header.  This is one less than the
1968     // number of times the loop executes, so use the incremented indvar.
1969     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1970   }
1971 
1972   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1973   assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1974          && "genLoopLimit missed a cast");
1975 
1976   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1977   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1978   ICmpInst::Predicate P;
1979   if (L->contains(BI->getSuccessor(0)))
1980     P = ICmpInst::ICMP_NE;
1981   else
1982     P = ICmpInst::ICMP_EQ;
1983 
1984   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1985                << "      LHS:" << *CmpIndVar << '\n'
1986                << "       op:\t"
1987                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1988                << "      RHS:\t" << *ExitCnt << "\n"
1989                << "  IVCount:\t" << *IVCount << "\n");
1990 
1991   IRBuilder<> Builder(BI);
1992 
1993   // LFTR can ignore IV overflow and truncate to the width of
1994   // BECount. This avoids materializing the add(zext(add)) expression.
1995   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1996   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1997   if (CmpIndVarSize > ExitCntSize) {
1998     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1999     const SCEV *ARStart = AR->getStart();
2000     const SCEV *ARStep = AR->getStepRecurrence(*SE);
2001     // For constant IVCount, avoid truncation.
2002     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2003       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2004       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2005       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2006       // above such that IVCount is now zero.
2007       if (IVCount != BackedgeTakenCount && Count == 0) {
2008         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2009         ++Count;
2010       }
2011       else
2012         Count = Count.zext(CmpIndVarSize);
2013       APInt NewLimit;
2014       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2015         NewLimit = Start - Count;
2016       else
2017         NewLimit = Start + Count;
2018       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2019 
2020       DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2021     } else {
2022       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2023                                       "lftr.wideiv");
2024     }
2025   }
2026   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2027   Value *OrigCond = BI->getCondition();
2028   // It's tempting to use replaceAllUsesWith here to fully replace the old
2029   // comparison, but that's not immediately safe, since users of the old
2030   // comparison may not be dominated by the new comparison. Instead, just
2031   // update the branch to use the new comparison; in the common case this
2032   // will make old comparison dead.
2033   BI->setCondition(Cond);
2034   DeadInsts.push_back(OrigCond);
2035 
2036   ++NumLFTR;
2037   Changed = true;
2038   return Cond;
2039 }
2040 
2041 //===----------------------------------------------------------------------===//
2042 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2043 //===----------------------------------------------------------------------===//
2044 
2045 /// If there's a single exit block, sink any loop-invariant values that
2046 /// were defined in the preheader but not used inside the loop into the
2047 /// exit block to reduce register pressure in the loop.
2048 void IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2049   BasicBlock *ExitBlock = L->getExitBlock();
2050   if (!ExitBlock) return;
2051 
2052   BasicBlock *Preheader = L->getLoopPreheader();
2053   if (!Preheader) return;
2054 
2055   Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt();
2056   BasicBlock::iterator I(Preheader->getTerminator());
2057   while (I != Preheader->begin()) {
2058     --I;
2059     // New instructions were inserted at the end of the preheader.
2060     if (isa<PHINode>(I))
2061       break;
2062 
2063     // Don't move instructions which might have side effects, since the side
2064     // effects need to complete before instructions inside the loop.  Also don't
2065     // move instructions which might read memory, since the loop may modify
2066     // memory. Note that it's okay if the instruction might have undefined
2067     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2068     // block.
2069     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2070       continue;
2071 
2072     // Skip debug info intrinsics.
2073     if (isa<DbgInfoIntrinsic>(I))
2074       continue;
2075 
2076     // Skip eh pad instructions.
2077     if (I->isEHPad())
2078       continue;
2079 
2080     // Don't sink alloca: we never want to sink static alloca's out of the
2081     // entry block, and correctly sinking dynamic alloca's requires
2082     // checks for stacksave/stackrestore intrinsics.
2083     // FIXME: Refactor this check somehow?
2084     if (isa<AllocaInst>(I))
2085       continue;
2086 
2087     // Determine if there is a use in or before the loop (direct or
2088     // otherwise).
2089     bool UsedInLoop = false;
2090     for (Use &U : I->uses()) {
2091       Instruction *User = cast<Instruction>(U.getUser());
2092       BasicBlock *UseBB = User->getParent();
2093       if (PHINode *P = dyn_cast<PHINode>(User)) {
2094         unsigned i =
2095           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2096         UseBB = P->getIncomingBlock(i);
2097       }
2098       if (UseBB == Preheader || L->contains(UseBB)) {
2099         UsedInLoop = true;
2100         break;
2101       }
2102     }
2103 
2104     // If there is, the def must remain in the preheader.
2105     if (UsedInLoop)
2106       continue;
2107 
2108     // Otherwise, sink it to the exit block.
2109     Instruction *ToMove = &*I;
2110     bool Done = false;
2111 
2112     if (I != Preheader->begin()) {
2113       // Skip debug info intrinsics.
2114       do {
2115         --I;
2116       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2117 
2118       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2119         Done = true;
2120     } else {
2121       Done = true;
2122     }
2123 
2124     ToMove->moveBefore(InsertPt);
2125     if (Done) break;
2126     InsertPt = ToMove;
2127   }
2128 }
2129 
2130 //===----------------------------------------------------------------------===//
2131 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2132 //===----------------------------------------------------------------------===//
2133 
2134 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
2135   if (skipOptnoneFunction(L))
2136     return false;
2137 
2138   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2139   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2140   //    canonicalization can be a pessimization without LSR to "clean up"
2141   //    afterwards.
2142   //  - We depend on having a preheader; in particular,
2143   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2144   //    and we're in trouble if we can't find the induction variable even when
2145   //    we've manually inserted one.
2146   if (!L->isLoopSimplifyForm())
2147     return false;
2148 
2149   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2150   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2151   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2152   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2153   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2154   auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2155   TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2156   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2157 
2158   DeadInsts.clear();
2159   Changed = false;
2160 
2161   // If there are any floating-point recurrences, attempt to
2162   // transform them to use integer recurrences.
2163   rewriteNonIntegerIVs(L);
2164 
2165   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2166 
2167   // Create a rewriter object which we'll use to transform the code with.
2168   SCEVExpander Rewriter(*SE, DL, "indvars");
2169 #ifndef NDEBUG
2170   Rewriter.setDebugType(DEBUG_TYPE);
2171 #endif
2172 
2173   // Eliminate redundant IV users.
2174   //
2175   // Simplification works best when run before other consumers of SCEV. We
2176   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2177   // other expressions involving loop IVs have been evaluated. This helps SCEV
2178   // set no-wrap flags before normalizing sign/zero extension.
2179   Rewriter.disableCanonicalMode();
2180   simplifyAndExtend(L, Rewriter, LI);
2181 
2182   // Check to see if this loop has a computable loop-invariant execution count.
2183   // If so, this means that we can compute the final value of any expressions
2184   // that are recurrent in the loop, and substitute the exit values from the
2185   // loop into any instructions outside of the loop that use the final values of
2186   // the current expressions.
2187   //
2188   if (ReplaceExitValue != NeverRepl &&
2189       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2190     rewriteLoopExitValues(L, Rewriter);
2191 
2192   // Eliminate redundant IV cycles.
2193   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2194 
2195   // If we have a trip count expression, rewrite the loop's exit condition
2196   // using it.  We can currently only handle loops with a single exit.
2197   if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) {
2198     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2199     if (IndVar) {
2200       // Check preconditions for proper SCEVExpander operation. SCEV does not
2201       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2202       // pass that uses the SCEVExpander must do it. This does not work well for
2203       // loop passes because SCEVExpander makes assumptions about all loops,
2204       // while LoopPassManager only forces the current loop to be simplified.
2205       //
2206       // FIXME: SCEV expansion has no way to bail out, so the caller must
2207       // explicitly check any assumptions made by SCEV. Brittle.
2208       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2209       if (!AR || AR->getLoop()->getLoopPreheader())
2210         (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2211                                         Rewriter);
2212     }
2213   }
2214   // Clear the rewriter cache, because values that are in the rewriter's cache
2215   // can be deleted in the loop below, causing the AssertingVH in the cache to
2216   // trigger.
2217   Rewriter.clear();
2218 
2219   // Now that we're done iterating through lists, clean up any instructions
2220   // which are now dead.
2221   while (!DeadInsts.empty())
2222     if (Instruction *Inst =
2223             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2224       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2225 
2226   // The Rewriter may not be used from this point on.
2227 
2228   // Loop-invariant instructions in the preheader that aren't used in the
2229   // loop may be sunk below the loop to reduce register pressure.
2230   sinkUnusedInvariants(L);
2231 
2232   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2233   // trip count and therefore can further simplify exit values in addition to
2234   // rewriteLoopExitValues.
2235   rewriteFirstIterationLoopExitValues(L);
2236 
2237   // Clean up dead instructions.
2238   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2239 
2240   // Check a post-condition.
2241   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
2242 
2243   // Verify that LFTR, and any other change have not interfered with SCEV's
2244   // ability to compute trip count.
2245 #ifndef NDEBUG
2246   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2247     SE->forgetLoop(L);
2248     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2249     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2250         SE->getTypeSizeInBits(NewBECount->getType()))
2251       NewBECount = SE->getTruncateOrNoop(NewBECount,
2252                                          BackedgeTakenCount->getType());
2253     else
2254       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2255                                                  NewBECount->getType());
2256     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2257   }
2258 #endif
2259 
2260   return Changed;
2261 }
2262