1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/ADT/APFloat.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/None.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/Analysis/ScalarEvolutionExpander.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/ConstantRange.h" 50 #include "llvm/IR/Constants.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/IR/ValueHandle.h" 70 #include "llvm/Pass.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/MathExtras.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/LoopPassManager.h" 80 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 81 #include "llvm/Transforms/Utils/LoopUtils.h" 82 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 83 #include <cassert> 84 #include <cstdint> 85 #include <utility> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "indvars" 90 91 STATISTIC(NumWidened , "Number of indvars widened"); 92 STATISTIC(NumReplaced , "Number of exit values replaced"); 93 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 94 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 95 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 96 97 // Trip count verification can be enabled by default under NDEBUG if we 98 // implement a strong expression equivalence checker in SCEV. Until then, we 99 // use the verify-indvars flag, which may assert in some cases. 100 static cl::opt<bool> VerifyIndvars( 101 "verify-indvars", cl::Hidden, 102 cl::desc("Verify the ScalarEvolution result after running indvars")); 103 104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 105 106 static cl::opt<ReplaceExitVal> ReplaceExitValue( 107 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 108 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 109 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 110 clEnumValN(OnlyCheapRepl, "cheap", 111 "only replace exit value when the cost is cheap"), 112 clEnumValN(AlwaysRepl, "always", 113 "always replace exit value whenever possible"))); 114 115 static cl::opt<bool> UsePostIncrementRanges( 116 "indvars-post-increment-ranges", cl::Hidden, 117 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 118 cl::init(true)); 119 120 static cl::opt<bool> 121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 122 cl::desc("Disable Linear Function Test Replace optimization")); 123 124 namespace { 125 126 struct RewritePhi; 127 128 class IndVarSimplify { 129 LoopInfo *LI; 130 ScalarEvolution *SE; 131 DominatorTree *DT; 132 const DataLayout &DL; 133 TargetLibraryInfo *TLI; 134 const TargetTransformInfo *TTI; 135 136 SmallVector<WeakTrackingVH, 16> DeadInsts; 137 138 bool isValidRewrite(Value *FromVal, Value *ToVal); 139 140 bool handleFloatingPointIV(Loop *L, PHINode *PH); 141 bool rewriteNonIntegerIVs(Loop *L); 142 143 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 144 145 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 146 bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 147 bool rewriteFirstIterationLoopExitValues(Loop *L); 148 149 bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 150 PHINode *IndVar, SCEVExpander &Rewriter); 151 152 bool sinkUnusedInvariants(Loop *L); 153 154 public: 155 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 156 const DataLayout &DL, TargetLibraryInfo *TLI, 157 TargetTransformInfo *TTI) 158 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 159 160 bool run(Loop *L); 161 }; 162 163 } // end anonymous namespace 164 165 /// Return true if the SCEV expansion generated by the rewriter can replace the 166 /// original value. SCEV guarantees that it produces the same value, but the way 167 /// it is produced may be illegal IR. Ideally, this function will only be 168 /// called for verification. 169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 170 // If an SCEV expression subsumed multiple pointers, its expansion could 171 // reassociate the GEP changing the base pointer. This is illegal because the 172 // final address produced by a GEP chain must be inbounds relative to its 173 // underlying object. Otherwise basic alias analysis, among other things, 174 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 175 // producing an expression involving multiple pointers. Until then, we must 176 // bail out here. 177 // 178 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 179 // because it understands lcssa phis while SCEV does not. 180 Value *FromPtr = FromVal; 181 Value *ToPtr = ToVal; 182 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 183 FromPtr = GEP->getPointerOperand(); 184 } 185 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 186 ToPtr = GEP->getPointerOperand(); 187 } 188 if (FromPtr != FromVal || ToPtr != ToVal) { 189 // Quickly check the common case 190 if (FromPtr == ToPtr) 191 return true; 192 193 // SCEV may have rewritten an expression that produces the GEP's pointer 194 // operand. That's ok as long as the pointer operand has the same base 195 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 196 // base of a recurrence. This handles the case in which SCEV expansion 197 // converts a pointer type recurrence into a nonrecurrent pointer base 198 // indexed by an integer recurrence. 199 200 // If the GEP base pointer is a vector of pointers, abort. 201 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 202 return false; 203 204 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 205 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 206 if (FromBase == ToBase) 207 return true; 208 209 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 210 << " != " << *ToBase << "\n"); 211 212 return false; 213 } 214 return true; 215 } 216 217 /// Determine the insertion point for this user. By default, insert immediately 218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 220 /// common dominator for the incoming blocks. 221 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 222 DominatorTree *DT, LoopInfo *LI) { 223 PHINode *PHI = dyn_cast<PHINode>(User); 224 if (!PHI) 225 return User; 226 227 Instruction *InsertPt = nullptr; 228 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 229 if (PHI->getIncomingValue(i) != Def) 230 continue; 231 232 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 233 if (!InsertPt) { 234 InsertPt = InsertBB->getTerminator(); 235 continue; 236 } 237 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 238 InsertPt = InsertBB->getTerminator(); 239 } 240 assert(InsertPt && "Missing phi operand"); 241 242 auto *DefI = dyn_cast<Instruction>(Def); 243 if (!DefI) 244 return InsertPt; 245 246 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 247 248 auto *L = LI->getLoopFor(DefI->getParent()); 249 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 250 251 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 252 if (LI->getLoopFor(DTN->getBlock()) == L) 253 return DTN->getBlock()->getTerminator(); 254 255 llvm_unreachable("DefI dominates InsertPt!"); 256 } 257 258 //===----------------------------------------------------------------------===// 259 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 260 //===----------------------------------------------------------------------===// 261 262 /// Convert APF to an integer, if possible. 263 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 264 bool isExact = false; 265 // See if we can convert this to an int64_t 266 uint64_t UIntVal; 267 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 268 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 269 !isExact) 270 return false; 271 IntVal = UIntVal; 272 return true; 273 } 274 275 /// If the loop has floating induction variable then insert corresponding 276 /// integer induction variable if possible. 277 /// For example, 278 /// for(double i = 0; i < 10000; ++i) 279 /// bar(i) 280 /// is converted into 281 /// for(int i = 0; i < 10000; ++i) 282 /// bar((double)i); 283 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 284 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 285 unsigned BackEdge = IncomingEdge^1; 286 287 // Check incoming value. 288 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 289 290 int64_t InitValue; 291 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 292 return false; 293 294 // Check IV increment. Reject this PN if increment operation is not 295 // an add or increment value can not be represented by an integer. 296 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 297 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 298 299 // If this is not an add of the PHI with a constantfp, or if the constant fp 300 // is not an integer, bail out. 301 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 302 int64_t IncValue; 303 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 304 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 305 return false; 306 307 // Check Incr uses. One user is PN and the other user is an exit condition 308 // used by the conditional terminator. 309 Value::user_iterator IncrUse = Incr->user_begin(); 310 Instruction *U1 = cast<Instruction>(*IncrUse++); 311 if (IncrUse == Incr->user_end()) return false; 312 Instruction *U2 = cast<Instruction>(*IncrUse++); 313 if (IncrUse != Incr->user_end()) return false; 314 315 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 316 // only used by a branch, we can't transform it. 317 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 318 if (!Compare) 319 Compare = dyn_cast<FCmpInst>(U2); 320 if (!Compare || !Compare->hasOneUse() || 321 !isa<BranchInst>(Compare->user_back())) 322 return false; 323 324 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 325 326 // We need to verify that the branch actually controls the iteration count 327 // of the loop. If not, the new IV can overflow and no one will notice. 328 // The branch block must be in the loop and one of the successors must be out 329 // of the loop. 330 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 331 if (!L->contains(TheBr->getParent()) || 332 (L->contains(TheBr->getSuccessor(0)) && 333 L->contains(TheBr->getSuccessor(1)))) 334 return false; 335 336 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 337 // transform it. 338 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 339 int64_t ExitValue; 340 if (ExitValueVal == nullptr || 341 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 342 return false; 343 344 // Find new predicate for integer comparison. 345 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 346 switch (Compare->getPredicate()) { 347 default: return false; // Unknown comparison. 348 case CmpInst::FCMP_OEQ: 349 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 350 case CmpInst::FCMP_ONE: 351 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 352 case CmpInst::FCMP_OGT: 353 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 354 case CmpInst::FCMP_OGE: 355 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 356 case CmpInst::FCMP_OLT: 357 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 358 case CmpInst::FCMP_OLE: 359 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 360 } 361 362 // We convert the floating point induction variable to a signed i32 value if 363 // we can. This is only safe if the comparison will not overflow in a way 364 // that won't be trapped by the integer equivalent operations. Check for this 365 // now. 366 // TODO: We could use i64 if it is native and the range requires it. 367 368 // The start/stride/exit values must all fit in signed i32. 369 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 370 return false; 371 372 // If not actually striding (add x, 0.0), avoid touching the code. 373 if (IncValue == 0) 374 return false; 375 376 // Positive and negative strides have different safety conditions. 377 if (IncValue > 0) { 378 // If we have a positive stride, we require the init to be less than the 379 // exit value. 380 if (InitValue >= ExitValue) 381 return false; 382 383 uint32_t Range = uint32_t(ExitValue-InitValue); 384 // Check for infinite loop, either: 385 // while (i <= Exit) or until (i > Exit) 386 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 387 if (++Range == 0) return false; // Range overflows. 388 } 389 390 unsigned Leftover = Range % uint32_t(IncValue); 391 392 // If this is an equality comparison, we require that the strided value 393 // exactly land on the exit value, otherwise the IV condition will wrap 394 // around and do things the fp IV wouldn't. 395 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 396 Leftover != 0) 397 return false; 398 399 // If the stride would wrap around the i32 before exiting, we can't 400 // transform the IV. 401 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 402 return false; 403 } else { 404 // If we have a negative stride, we require the init to be greater than the 405 // exit value. 406 if (InitValue <= ExitValue) 407 return false; 408 409 uint32_t Range = uint32_t(InitValue-ExitValue); 410 // Check for infinite loop, either: 411 // while (i >= Exit) or until (i < Exit) 412 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 413 if (++Range == 0) return false; // Range overflows. 414 } 415 416 unsigned Leftover = Range % uint32_t(-IncValue); 417 418 // If this is an equality comparison, we require that the strided value 419 // exactly land on the exit value, otherwise the IV condition will wrap 420 // around and do things the fp IV wouldn't. 421 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 422 Leftover != 0) 423 return false; 424 425 // If the stride would wrap around the i32 before exiting, we can't 426 // transform the IV. 427 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 428 return false; 429 } 430 431 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 432 433 // Insert new integer induction variable. 434 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 435 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 436 PN->getIncomingBlock(IncomingEdge)); 437 438 Value *NewAdd = 439 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 440 Incr->getName()+".int", Incr); 441 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 442 443 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 444 ConstantInt::get(Int32Ty, ExitValue), 445 Compare->getName()); 446 447 // In the following deletions, PN may become dead and may be deleted. 448 // Use a WeakTrackingVH to observe whether this happens. 449 WeakTrackingVH WeakPH = PN; 450 451 // Delete the old floating point exit comparison. The branch starts using the 452 // new comparison. 453 NewCompare->takeName(Compare); 454 Compare->replaceAllUsesWith(NewCompare); 455 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 456 457 // Delete the old floating point increment. 458 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 459 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 460 461 // If the FP induction variable still has uses, this is because something else 462 // in the loop uses its value. In order to canonicalize the induction 463 // variable, we chose to eliminate the IV and rewrite it in terms of an 464 // int->fp cast. 465 // 466 // We give preference to sitofp over uitofp because it is faster on most 467 // platforms. 468 if (WeakPH) { 469 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 470 &*PN->getParent()->getFirstInsertionPt()); 471 PN->replaceAllUsesWith(Conv); 472 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 473 } 474 return true; 475 } 476 477 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 478 // First step. Check to see if there are any floating-point recurrences. 479 // If there are, change them into integer recurrences, permitting analysis by 480 // the SCEV routines. 481 BasicBlock *Header = L->getHeader(); 482 483 SmallVector<WeakTrackingVH, 8> PHIs; 484 for (PHINode &PN : Header->phis()) 485 PHIs.push_back(&PN); 486 487 bool Changed = false; 488 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 489 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 490 Changed |= handleFloatingPointIV(L, PN); 491 492 // If the loop previously had floating-point IV, ScalarEvolution 493 // may not have been able to compute a trip count. Now that we've done some 494 // re-writing, the trip count may be computable. 495 if (Changed) 496 SE->forgetLoop(L); 497 return Changed; 498 } 499 500 namespace { 501 502 // Collect information about PHI nodes which can be transformed in 503 // rewriteLoopExitValues. 504 struct RewritePhi { 505 PHINode *PN; 506 507 // Ith incoming value. 508 unsigned Ith; 509 510 // Exit value after expansion. 511 Value *Val; 512 513 // High Cost when expansion. 514 bool HighCost; 515 516 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 517 : PN(P), Ith(I), Val(V), HighCost(H) {} 518 }; 519 520 } // end anonymous namespace 521 522 //===----------------------------------------------------------------------===// 523 // rewriteLoopExitValues - Optimize IV users outside the loop. 524 // As a side effect, reduces the amount of IV processing within the loop. 525 //===----------------------------------------------------------------------===// 526 527 /// Check to see if this loop has a computable loop-invariant execution count. 528 /// If so, this means that we can compute the final value of any expressions 529 /// that are recurrent in the loop, and substitute the exit values from the loop 530 /// into any instructions outside of the loop that use the final values of the 531 /// current expressions. 532 /// 533 /// This is mostly redundant with the regular IndVarSimplify activities that 534 /// happen later, except that it's more powerful in some cases, because it's 535 /// able to brute-force evaluate arbitrary instructions as long as they have 536 /// constant operands at the beginning of the loop. 537 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 538 // Check a pre-condition. 539 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 540 "Indvars did not preserve LCSSA!"); 541 542 SmallVector<BasicBlock*, 8> ExitBlocks; 543 L->getUniqueExitBlocks(ExitBlocks); 544 545 SmallVector<RewritePhi, 8> RewritePhiSet; 546 // Find all values that are computed inside the loop, but used outside of it. 547 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 548 // the exit blocks of the loop to find them. 549 for (BasicBlock *ExitBB : ExitBlocks) { 550 // If there are no PHI nodes in this exit block, then no values defined 551 // inside the loop are used on this path, skip it. 552 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 553 if (!PN) continue; 554 555 unsigned NumPreds = PN->getNumIncomingValues(); 556 557 // Iterate over all of the PHI nodes. 558 BasicBlock::iterator BBI = ExitBB->begin(); 559 while ((PN = dyn_cast<PHINode>(BBI++))) { 560 if (PN->use_empty()) 561 continue; // dead use, don't replace it 562 563 if (!SE->isSCEVable(PN->getType())) 564 continue; 565 566 // It's necessary to tell ScalarEvolution about this explicitly so that 567 // it can walk the def-use list and forget all SCEVs, as it may not be 568 // watching the PHI itself. Once the new exit value is in place, there 569 // may not be a def-use connection between the loop and every instruction 570 // which got a SCEVAddRecExpr for that loop. 571 SE->forgetValue(PN); 572 573 // Iterate over all of the values in all the PHI nodes. 574 for (unsigned i = 0; i != NumPreds; ++i) { 575 // If the value being merged in is not integer or is not defined 576 // in the loop, skip it. 577 Value *InVal = PN->getIncomingValue(i); 578 if (!isa<Instruction>(InVal)) 579 continue; 580 581 // If this pred is for a subloop, not L itself, skip it. 582 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 583 continue; // The Block is in a subloop, skip it. 584 585 // Check that InVal is defined in the loop. 586 Instruction *Inst = cast<Instruction>(InVal); 587 if (!L->contains(Inst)) 588 continue; 589 590 // Okay, this instruction has a user outside of the current loop 591 // and varies predictably *inside* the loop. Evaluate the value it 592 // contains when the loop exits, if possible. 593 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 594 if (!SE->isLoopInvariant(ExitValue, L) || 595 !isSafeToExpand(ExitValue, *SE)) 596 continue; 597 598 // Computing the value outside of the loop brings no benefit if it is 599 // definitely used inside the loop in a way which can not be optimized 600 // away. 601 if (ExitValue->getSCEVType()>=scMulExpr) { 602 bool HasHardInternalUses = false; 603 for (auto *IB : Inst->users()) { 604 Instruction *UseInstr = cast<Instruction>(IB); 605 unsigned Opc = UseInstr->getOpcode(); 606 if (L->contains(UseInstr) && Opc == Instruction::Call) { 607 HasHardInternalUses = true; 608 break; 609 } 610 } 611 if (HasHardInternalUses) 612 continue; 613 } 614 615 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 616 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 617 618 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 619 << '\n' 620 << " LoopVal = " << *Inst << "\n"); 621 622 if (!isValidRewrite(Inst, ExitVal)) { 623 DeadInsts.push_back(ExitVal); 624 continue; 625 } 626 627 #ifndef NDEBUG 628 // If we reuse an instruction from a loop which is neither L nor one of 629 // its containing loops, we end up breaking LCSSA form for this loop by 630 // creating a new use of its instruction. 631 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 632 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 633 if (EVL != L) 634 assert(EVL->contains(L) && "LCSSA breach detected!"); 635 #endif 636 637 // Collect all the candidate PHINodes to be rewritten. 638 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 639 } 640 } 641 } 642 643 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 644 645 bool Changed = false; 646 // Transformation. 647 for (const RewritePhi &Phi : RewritePhiSet) { 648 PHINode *PN = Phi.PN; 649 Value *ExitVal = Phi.Val; 650 651 // Only do the rewrite when the ExitValue can be expanded cheaply. 652 // If LoopCanBeDel is true, rewrite exit value aggressively. 653 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 654 DeadInsts.push_back(ExitVal); 655 continue; 656 } 657 658 Changed = true; 659 ++NumReplaced; 660 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 661 PN->setIncomingValue(Phi.Ith, ExitVal); 662 663 // If this instruction is dead now, delete it. Don't do it now to avoid 664 // invalidating iterators. 665 if (isInstructionTriviallyDead(Inst, TLI)) 666 DeadInsts.push_back(Inst); 667 668 // Replace PN with ExitVal if that is legal and does not break LCSSA. 669 if (PN->getNumIncomingValues() == 1 && 670 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 671 PN->replaceAllUsesWith(ExitVal); 672 PN->eraseFromParent(); 673 } 674 } 675 676 // The insertion point instruction may have been deleted; clear it out 677 // so that the rewriter doesn't trip over it later. 678 Rewriter.clearInsertPoint(); 679 return Changed; 680 } 681 682 //===---------------------------------------------------------------------===// 683 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 684 // they will exit at the first iteration. 685 //===---------------------------------------------------------------------===// 686 687 /// Check to see if this loop has loop invariant conditions which lead to loop 688 /// exits. If so, we know that if the exit path is taken, it is at the first 689 /// loop iteration. This lets us predict exit values of PHI nodes that live in 690 /// loop header. 691 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 692 // Verify the input to the pass is already in LCSSA form. 693 assert(L->isLCSSAForm(*DT)); 694 695 SmallVector<BasicBlock *, 8> ExitBlocks; 696 L->getUniqueExitBlocks(ExitBlocks); 697 auto *LoopHeader = L->getHeader(); 698 assert(LoopHeader && "Invalid loop"); 699 700 bool MadeAnyChanges = false; 701 for (auto *ExitBB : ExitBlocks) { 702 // If there are no more PHI nodes in this exit block, then no more 703 // values defined inside the loop are used on this path. 704 for (PHINode &PN : ExitBB->phis()) { 705 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 706 IncomingValIdx != E; ++IncomingValIdx) { 707 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 708 709 // We currently only support loop exits from loop header. If the 710 // incoming block is not loop header, we need to recursively check 711 // all conditions starting from loop header are loop invariants. 712 // Additional support might be added in the future. 713 if (IncomingBB != LoopHeader) 714 continue; 715 716 // Get condition that leads to the exit path. 717 auto *TermInst = IncomingBB->getTerminator(); 718 719 Value *Cond = nullptr; 720 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 721 // Must be a conditional branch, otherwise the block 722 // should not be in the loop. 723 Cond = BI->getCondition(); 724 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 725 Cond = SI->getCondition(); 726 else 727 continue; 728 729 if (!L->isLoopInvariant(Cond)) 730 continue; 731 732 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 733 734 // Only deal with PHIs. 735 if (!ExitVal) 736 continue; 737 738 // If ExitVal is a PHI on the loop header, then we know its 739 // value along this exit because the exit can only be taken 740 // on the first iteration. 741 auto *LoopPreheader = L->getLoopPreheader(); 742 assert(LoopPreheader && "Invalid loop"); 743 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 744 if (PreheaderIdx != -1) { 745 assert(ExitVal->getParent() == LoopHeader && 746 "ExitVal must be in loop header"); 747 MadeAnyChanges = true; 748 PN.setIncomingValue(IncomingValIdx, 749 ExitVal->getIncomingValue(PreheaderIdx)); 750 } 751 } 752 } 753 } 754 return MadeAnyChanges; 755 } 756 757 /// Check whether it is possible to delete the loop after rewriting exit 758 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 759 /// aggressively. 760 bool IndVarSimplify::canLoopBeDeleted( 761 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 762 BasicBlock *Preheader = L->getLoopPreheader(); 763 // If there is no preheader, the loop will not be deleted. 764 if (!Preheader) 765 return false; 766 767 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 768 // We obviate multiple ExitingBlocks case for simplicity. 769 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 770 // after exit value rewriting, we can enhance the logic here. 771 SmallVector<BasicBlock *, 4> ExitingBlocks; 772 L->getExitingBlocks(ExitingBlocks); 773 SmallVector<BasicBlock *, 8> ExitBlocks; 774 L->getUniqueExitBlocks(ExitBlocks); 775 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 776 return false; 777 778 BasicBlock *ExitBlock = ExitBlocks[0]; 779 BasicBlock::iterator BI = ExitBlock->begin(); 780 while (PHINode *P = dyn_cast<PHINode>(BI)) { 781 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 782 783 // If the Incoming value of P is found in RewritePhiSet, we know it 784 // could be rewritten to use a loop invariant value in transformation 785 // phase later. Skip it in the loop invariant check below. 786 bool found = false; 787 for (const RewritePhi &Phi : RewritePhiSet) { 788 unsigned i = Phi.Ith; 789 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 790 found = true; 791 break; 792 } 793 } 794 795 Instruction *I; 796 if (!found && (I = dyn_cast<Instruction>(Incoming))) 797 if (!L->hasLoopInvariantOperands(I)) 798 return false; 799 800 ++BI; 801 } 802 803 for (auto *BB : L->blocks()) 804 if (llvm::any_of(*BB, [](Instruction &I) { 805 return I.mayHaveSideEffects(); 806 })) 807 return false; 808 809 return true; 810 } 811 812 //===----------------------------------------------------------------------===// 813 // IV Widening - Extend the width of an IV to cover its widest uses. 814 //===----------------------------------------------------------------------===// 815 816 namespace { 817 818 // Collect information about induction variables that are used by sign/zero 819 // extend operations. This information is recorded by CollectExtend and provides 820 // the input to WidenIV. 821 struct WideIVInfo { 822 PHINode *NarrowIV = nullptr; 823 824 // Widest integer type created [sz]ext 825 Type *WidestNativeType = nullptr; 826 827 // Was a sext user seen before a zext? 828 bool IsSigned = false; 829 }; 830 831 } // end anonymous namespace 832 833 /// Update information about the induction variable that is extended by this 834 /// sign or zero extend operation. This is used to determine the final width of 835 /// the IV before actually widening it. 836 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 837 const TargetTransformInfo *TTI) { 838 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 839 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 840 return; 841 842 Type *Ty = Cast->getType(); 843 uint64_t Width = SE->getTypeSizeInBits(Ty); 844 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 845 return; 846 847 // Check that `Cast` actually extends the induction variable (we rely on this 848 // later). This takes care of cases where `Cast` is extending a truncation of 849 // the narrow induction variable, and thus can end up being narrower than the 850 // "narrow" induction variable. 851 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 852 if (NarrowIVWidth >= Width) 853 return; 854 855 // Cast is either an sext or zext up to this point. 856 // We should not widen an indvar if arithmetics on the wider indvar are more 857 // expensive than those on the narrower indvar. We check only the cost of ADD 858 // because at least an ADD is required to increment the induction variable. We 859 // could compute more comprehensively the cost of all instructions on the 860 // induction variable when necessary. 861 if (TTI && 862 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 863 TTI->getArithmeticInstrCost(Instruction::Add, 864 Cast->getOperand(0)->getType())) { 865 return; 866 } 867 868 if (!WI.WidestNativeType) { 869 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 870 WI.IsSigned = IsSigned; 871 return; 872 } 873 874 // We extend the IV to satisfy the sign of its first user, arbitrarily. 875 if (WI.IsSigned != IsSigned) 876 return; 877 878 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 879 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 880 } 881 882 namespace { 883 884 /// Record a link in the Narrow IV def-use chain along with the WideIV that 885 /// computes the same value as the Narrow IV def. This avoids caching Use* 886 /// pointers. 887 struct NarrowIVDefUse { 888 Instruction *NarrowDef = nullptr; 889 Instruction *NarrowUse = nullptr; 890 Instruction *WideDef = nullptr; 891 892 // True if the narrow def is never negative. Tracking this information lets 893 // us use a sign extension instead of a zero extension or vice versa, when 894 // profitable and legal. 895 bool NeverNegative = false; 896 897 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 898 bool NeverNegative) 899 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 900 NeverNegative(NeverNegative) {} 901 }; 902 903 /// The goal of this transform is to remove sign and zero extends without 904 /// creating any new induction variables. To do this, it creates a new phi of 905 /// the wider type and redirects all users, either removing extends or inserting 906 /// truncs whenever we stop propagating the type. 907 class WidenIV { 908 // Parameters 909 PHINode *OrigPhi; 910 Type *WideType; 911 912 // Context 913 LoopInfo *LI; 914 Loop *L; 915 ScalarEvolution *SE; 916 DominatorTree *DT; 917 918 // Does the module have any calls to the llvm.experimental.guard intrinsic 919 // at all? If not we can avoid scanning instructions looking for guards. 920 bool HasGuards; 921 922 // Result 923 PHINode *WidePhi = nullptr; 924 Instruction *WideInc = nullptr; 925 const SCEV *WideIncExpr = nullptr; 926 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 927 928 SmallPtrSet<Instruction *,16> Widened; 929 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 930 931 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 932 933 // A map tracking the kind of extension used to widen each narrow IV 934 // and narrow IV user. 935 // Key: pointer to a narrow IV or IV user. 936 // Value: the kind of extension used to widen this Instruction. 937 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 938 939 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 940 941 // A map with control-dependent ranges for post increment IV uses. The key is 942 // a pair of IV def and a use of this def denoting the context. The value is 943 // a ConstantRange representing possible values of the def at the given 944 // context. 945 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 946 947 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 948 Instruction *UseI) { 949 DefUserPair Key(Def, UseI); 950 auto It = PostIncRangeInfos.find(Key); 951 return It == PostIncRangeInfos.end() 952 ? Optional<ConstantRange>(None) 953 : Optional<ConstantRange>(It->second); 954 } 955 956 void calculatePostIncRanges(PHINode *OrigPhi); 957 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 958 959 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 960 DefUserPair Key(Def, UseI); 961 auto It = PostIncRangeInfos.find(Key); 962 if (It == PostIncRangeInfos.end()) 963 PostIncRangeInfos.insert({Key, R}); 964 else 965 It->second = R.intersectWith(It->second); 966 } 967 968 public: 969 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 970 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 971 bool HasGuards) 972 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 973 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 974 HasGuards(HasGuards), DeadInsts(DI) { 975 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 976 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 977 } 978 979 PHINode *createWideIV(SCEVExpander &Rewriter); 980 981 protected: 982 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 983 Instruction *Use); 984 985 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 986 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 987 const SCEVAddRecExpr *WideAR); 988 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 989 990 ExtendKind getExtendKind(Instruction *I); 991 992 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 993 994 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 995 996 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 997 998 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 999 unsigned OpCode) const; 1000 1001 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1002 1003 bool widenLoopCompare(NarrowIVDefUse DU); 1004 bool widenWithVariantLoadUse(NarrowIVDefUse DU); 1005 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); 1006 1007 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1008 }; 1009 1010 } // end anonymous namespace 1011 1012 /// Perform a quick domtree based check for loop invariance assuming that V is 1013 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 1014 /// purpose. 1015 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 1016 Instruction *Inst = dyn_cast<Instruction>(V); 1017 if (!Inst) 1018 return true; 1019 1020 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1021 } 1022 1023 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1024 bool IsSigned, Instruction *Use) { 1025 // Set the debug location and conservative insertion point. 1026 IRBuilder<> Builder(Use); 1027 // Hoist the insertion point into loop preheaders as far as possible. 1028 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1029 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1030 L = L->getParentLoop()) 1031 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1032 1033 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1034 Builder.CreateZExt(NarrowOper, WideType); 1035 } 1036 1037 /// Instantiate a wide operation to replace a narrow operation. This only needs 1038 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1039 /// 0 for any operation we decide not to clone. 1040 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1041 const SCEVAddRecExpr *WideAR) { 1042 unsigned Opcode = DU.NarrowUse->getOpcode(); 1043 switch (Opcode) { 1044 default: 1045 return nullptr; 1046 case Instruction::Add: 1047 case Instruction::Mul: 1048 case Instruction::UDiv: 1049 case Instruction::Sub: 1050 return cloneArithmeticIVUser(DU, WideAR); 1051 1052 case Instruction::And: 1053 case Instruction::Or: 1054 case Instruction::Xor: 1055 case Instruction::Shl: 1056 case Instruction::LShr: 1057 case Instruction::AShr: 1058 return cloneBitwiseIVUser(DU); 1059 } 1060 } 1061 1062 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1063 Instruction *NarrowUse = DU.NarrowUse; 1064 Instruction *NarrowDef = DU.NarrowDef; 1065 Instruction *WideDef = DU.WideDef; 1066 1067 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1068 1069 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1070 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1071 // invariant and will be folded or hoisted. If it actually comes from a 1072 // widened IV, it should be removed during a future call to widenIVUse. 1073 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1074 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1075 ? WideDef 1076 : createExtendInst(NarrowUse->getOperand(0), WideType, 1077 IsSigned, NarrowUse); 1078 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1079 ? WideDef 1080 : createExtendInst(NarrowUse->getOperand(1), WideType, 1081 IsSigned, NarrowUse); 1082 1083 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1084 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1085 NarrowBO->getName()); 1086 IRBuilder<> Builder(NarrowUse); 1087 Builder.Insert(WideBO); 1088 WideBO->copyIRFlags(NarrowBO); 1089 return WideBO; 1090 } 1091 1092 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1093 const SCEVAddRecExpr *WideAR) { 1094 Instruction *NarrowUse = DU.NarrowUse; 1095 Instruction *NarrowDef = DU.NarrowDef; 1096 Instruction *WideDef = DU.WideDef; 1097 1098 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1099 1100 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1101 1102 // We're trying to find X such that 1103 // 1104 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1105 // 1106 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1107 // and check using SCEV if any of them are correct. 1108 1109 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1110 // correct solution to X. 1111 auto GuessNonIVOperand = [&](bool SignExt) { 1112 const SCEV *WideLHS; 1113 const SCEV *WideRHS; 1114 1115 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1116 if (SignExt) 1117 return SE->getSignExtendExpr(S, Ty); 1118 return SE->getZeroExtendExpr(S, Ty); 1119 }; 1120 1121 if (IVOpIdx == 0) { 1122 WideLHS = SE->getSCEV(WideDef); 1123 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1124 WideRHS = GetExtend(NarrowRHS, WideType); 1125 } else { 1126 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1127 WideLHS = GetExtend(NarrowLHS, WideType); 1128 WideRHS = SE->getSCEV(WideDef); 1129 } 1130 1131 // WideUse is "WideDef `op.wide` X" as described in the comment. 1132 const SCEV *WideUse = nullptr; 1133 1134 switch (NarrowUse->getOpcode()) { 1135 default: 1136 llvm_unreachable("No other possibility!"); 1137 1138 case Instruction::Add: 1139 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1140 break; 1141 1142 case Instruction::Mul: 1143 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1144 break; 1145 1146 case Instruction::UDiv: 1147 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1148 break; 1149 1150 case Instruction::Sub: 1151 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1152 break; 1153 } 1154 1155 return WideUse == WideAR; 1156 }; 1157 1158 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1159 if (!GuessNonIVOperand(SignExtend)) { 1160 SignExtend = !SignExtend; 1161 if (!GuessNonIVOperand(SignExtend)) 1162 return nullptr; 1163 } 1164 1165 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1166 ? WideDef 1167 : createExtendInst(NarrowUse->getOperand(0), WideType, 1168 SignExtend, NarrowUse); 1169 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1170 ? WideDef 1171 : createExtendInst(NarrowUse->getOperand(1), WideType, 1172 SignExtend, NarrowUse); 1173 1174 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1175 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1176 NarrowBO->getName()); 1177 1178 IRBuilder<> Builder(NarrowUse); 1179 Builder.Insert(WideBO); 1180 WideBO->copyIRFlags(NarrowBO); 1181 return WideBO; 1182 } 1183 1184 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1185 auto It = ExtendKindMap.find(I); 1186 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1187 return It->second; 1188 } 1189 1190 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1191 unsigned OpCode) const { 1192 if (OpCode == Instruction::Add) 1193 return SE->getAddExpr(LHS, RHS); 1194 if (OpCode == Instruction::Sub) 1195 return SE->getMinusSCEV(LHS, RHS); 1196 if (OpCode == Instruction::Mul) 1197 return SE->getMulExpr(LHS, RHS); 1198 1199 llvm_unreachable("Unsupported opcode."); 1200 } 1201 1202 /// No-wrap operations can transfer sign extension of their result to their 1203 /// operands. Generate the SCEV value for the widened operation without 1204 /// actually modifying the IR yet. If the expression after extending the 1205 /// operands is an AddRec for this loop, return the AddRec and the kind of 1206 /// extension used. 1207 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1208 // Handle the common case of add<nsw/nuw> 1209 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1210 // Only Add/Sub/Mul instructions supported yet. 1211 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1212 OpCode != Instruction::Mul) 1213 return {nullptr, Unknown}; 1214 1215 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1216 // if extending the other will lead to a recurrence. 1217 const unsigned ExtendOperIdx = 1218 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1219 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1220 1221 const SCEV *ExtendOperExpr = nullptr; 1222 const OverflowingBinaryOperator *OBO = 1223 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1224 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1225 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1226 ExtendOperExpr = SE->getSignExtendExpr( 1227 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1228 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1229 ExtendOperExpr = SE->getZeroExtendExpr( 1230 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1231 else 1232 return {nullptr, Unknown}; 1233 1234 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1235 // flags. This instruction may be guarded by control flow that the no-wrap 1236 // behavior depends on. Non-control-equivalent instructions can be mapped to 1237 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1238 // semantics to those operations. 1239 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1240 const SCEV *rhs = ExtendOperExpr; 1241 1242 // Let's swap operands to the initial order for the case of non-commutative 1243 // operations, like SUB. See PR21014. 1244 if (ExtendOperIdx == 0) 1245 std::swap(lhs, rhs); 1246 const SCEVAddRecExpr *AddRec = 1247 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1248 1249 if (!AddRec || AddRec->getLoop() != L) 1250 return {nullptr, Unknown}; 1251 1252 return {AddRec, ExtKind}; 1253 } 1254 1255 /// Is this instruction potentially interesting for further simplification after 1256 /// widening it's type? In other words, can the extend be safely hoisted out of 1257 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1258 /// so, return the extended recurrence and the kind of extension used. Otherwise 1259 /// return {nullptr, Unknown}. 1260 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1261 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1262 return {nullptr, Unknown}; 1263 1264 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1265 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1266 SE->getTypeSizeInBits(WideType)) { 1267 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1268 // index. So don't follow this use. 1269 return {nullptr, Unknown}; 1270 } 1271 1272 const SCEV *WideExpr; 1273 ExtendKind ExtKind; 1274 if (DU.NeverNegative) { 1275 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1276 if (isa<SCEVAddRecExpr>(WideExpr)) 1277 ExtKind = SignExtended; 1278 else { 1279 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1280 ExtKind = ZeroExtended; 1281 } 1282 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1283 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1284 ExtKind = SignExtended; 1285 } else { 1286 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1287 ExtKind = ZeroExtended; 1288 } 1289 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1290 if (!AddRec || AddRec->getLoop() != L) 1291 return {nullptr, Unknown}; 1292 return {AddRec, ExtKind}; 1293 } 1294 1295 /// This IV user cannot be widen. Replace this use of the original narrow IV 1296 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1297 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1298 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1299 << *DU.NarrowUse << "\n"); 1300 IRBuilder<> Builder( 1301 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1302 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1303 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1304 } 1305 1306 /// If the narrow use is a compare instruction, then widen the compare 1307 // (and possibly the other operand). The extend operation is hoisted into the 1308 // loop preheader as far as possible. 1309 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1310 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1311 if (!Cmp) 1312 return false; 1313 1314 // We can legally widen the comparison in the following two cases: 1315 // 1316 // - The signedness of the IV extension and comparison match 1317 // 1318 // - The narrow IV is always positive (and thus its sign extension is equal 1319 // to its zero extension). For instance, let's say we're zero extending 1320 // %narrow for the following use 1321 // 1322 // icmp slt i32 %narrow, %val ... (A) 1323 // 1324 // and %narrow is always positive. Then 1325 // 1326 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1327 // == icmp slt i32 zext(%narrow), sext(%val) 1328 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1329 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1330 return false; 1331 1332 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1333 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1334 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1335 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1336 1337 // Widen the compare instruction. 1338 IRBuilder<> Builder( 1339 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1340 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1341 1342 // Widen the other operand of the compare, if necessary. 1343 if (CastWidth < IVWidth) { 1344 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1345 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1346 } 1347 return true; 1348 } 1349 1350 /// If the narrow use is an instruction whose two operands are the defining 1351 /// instruction of DU and a load instruction, then we have the following: 1352 /// if the load is hoisted outside the loop, then we do not reach this function 1353 /// as scalar evolution analysis works fine in widenIVUse with variables 1354 /// hoisted outside the loop and efficient code is subsequently generated by 1355 /// not emitting truncate instructions. But when the load is not hoisted 1356 /// (whether due to limitation in alias analysis or due to a true legality), 1357 /// then scalar evolution can not proceed with loop variant values and 1358 /// inefficient code is generated. This function handles the non-hoisted load 1359 /// special case by making the optimization generate the same type of code for 1360 /// hoisted and non-hoisted load (widen use and eliminate sign extend 1361 /// instruction). This special case is important especially when the induction 1362 /// variables are affecting addressing mode in code generation. 1363 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { 1364 Instruction *NarrowUse = DU.NarrowUse; 1365 Instruction *NarrowDef = DU.NarrowDef; 1366 Instruction *WideDef = DU.WideDef; 1367 1368 // Handle the common case of add<nsw/nuw> 1369 const unsigned OpCode = NarrowUse->getOpcode(); 1370 // Only Add/Sub/Mul instructions are supported. 1371 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1372 OpCode != Instruction::Mul) 1373 return false; 1374 1375 // The operand that is not defined by NarrowDef of DU. Let's call it the 1376 // other operand. 1377 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; 1378 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && 1379 "bad DU"); 1380 1381 const SCEV *ExtendOperExpr = nullptr; 1382 const OverflowingBinaryOperator *OBO = 1383 cast<OverflowingBinaryOperator>(NarrowUse); 1384 ExtendKind ExtKind = getExtendKind(NarrowDef); 1385 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1386 ExtendOperExpr = SE->getSignExtendExpr( 1387 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1388 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1389 ExtendOperExpr = SE->getZeroExtendExpr( 1390 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1391 else 1392 return false; 1393 1394 // We are interested in the other operand being a load instruction. 1395 // But, we should look into relaxing this restriction later on. 1396 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); 1397 if (I && I->getOpcode() != Instruction::Load) 1398 return false; 1399 1400 // Verifying that Defining operand is an AddRec 1401 const SCEV *Op1 = SE->getSCEV(WideDef); 1402 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1403 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1404 return false; 1405 // Verifying that other operand is an Extend. 1406 if (ExtKind == SignExtended) { 1407 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) 1408 return false; 1409 } else { 1410 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) 1411 return false; 1412 } 1413 1414 if (ExtKind == SignExtended) { 1415 for (Use &U : NarrowUse->uses()) { 1416 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1417 if (!User || User->getType() != WideType) 1418 return false; 1419 } 1420 } else { // ExtKind == ZeroExtended 1421 for (Use &U : NarrowUse->uses()) { 1422 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1423 if (!User || User->getType() != WideType) 1424 return false; 1425 } 1426 } 1427 1428 return true; 1429 } 1430 1431 /// Special Case for widening with variant Loads (see 1432 /// WidenIV::widenWithVariantLoadUse). This is the code generation part. 1433 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { 1434 Instruction *NarrowUse = DU.NarrowUse; 1435 Instruction *NarrowDef = DU.NarrowDef; 1436 Instruction *WideDef = DU.WideDef; 1437 1438 ExtendKind ExtKind = getExtendKind(NarrowDef); 1439 1440 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1441 1442 // Generating a widening use instruction. 1443 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1444 ? WideDef 1445 : createExtendInst(NarrowUse->getOperand(0), WideType, 1446 ExtKind, NarrowUse); 1447 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1448 ? WideDef 1449 : createExtendInst(NarrowUse->getOperand(1), WideType, 1450 ExtKind, NarrowUse); 1451 1452 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1453 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1454 NarrowBO->getName()); 1455 IRBuilder<> Builder(NarrowUse); 1456 Builder.Insert(WideBO); 1457 WideBO->copyIRFlags(NarrowBO); 1458 1459 if (ExtKind == SignExtended) 1460 ExtendKindMap[NarrowUse] = SignExtended; 1461 else 1462 ExtendKindMap[NarrowUse] = ZeroExtended; 1463 1464 // Update the Use. 1465 if (ExtKind == SignExtended) { 1466 for (Use &U : NarrowUse->uses()) { 1467 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1468 if (User && User->getType() == WideType) { 1469 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1470 << *WideBO << "\n"); 1471 ++NumElimExt; 1472 User->replaceAllUsesWith(WideBO); 1473 DeadInsts.emplace_back(User); 1474 } 1475 } 1476 } else { // ExtKind == ZeroExtended 1477 for (Use &U : NarrowUse->uses()) { 1478 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1479 if (User && User->getType() == WideType) { 1480 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1481 << *WideBO << "\n"); 1482 ++NumElimExt; 1483 User->replaceAllUsesWith(WideBO); 1484 DeadInsts.emplace_back(User); 1485 } 1486 } 1487 } 1488 } 1489 1490 /// Determine whether an individual user of the narrow IV can be widened. If so, 1491 /// return the wide clone of the user. 1492 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1493 assert(ExtendKindMap.count(DU.NarrowDef) && 1494 "Should already know the kind of extension used to widen NarrowDef"); 1495 1496 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1497 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1498 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1499 // For LCSSA phis, sink the truncate outside the loop. 1500 // After SimplifyCFG most loop exit targets have a single predecessor. 1501 // Otherwise fall back to a truncate within the loop. 1502 if (UsePhi->getNumOperands() != 1) 1503 truncateIVUse(DU, DT, LI); 1504 else { 1505 // Widening the PHI requires us to insert a trunc. The logical place 1506 // for this trunc is in the same BB as the PHI. This is not possible if 1507 // the BB is terminated by a catchswitch. 1508 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1509 return nullptr; 1510 1511 PHINode *WidePhi = 1512 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1513 UsePhi); 1514 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1515 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1516 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1517 UsePhi->replaceAllUsesWith(Trunc); 1518 DeadInsts.emplace_back(UsePhi); 1519 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1520 << *WidePhi << "\n"); 1521 } 1522 return nullptr; 1523 } 1524 } 1525 1526 // This narrow use can be widened by a sext if it's non-negative or its narrow 1527 // def was widended by a sext. Same for zext. 1528 auto canWidenBySExt = [&]() { 1529 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1530 }; 1531 auto canWidenByZExt = [&]() { 1532 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1533 }; 1534 1535 // Our raison d'etre! Eliminate sign and zero extension. 1536 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1537 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1538 Value *NewDef = DU.WideDef; 1539 if (DU.NarrowUse->getType() != WideType) { 1540 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1541 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1542 if (CastWidth < IVWidth) { 1543 // The cast isn't as wide as the IV, so insert a Trunc. 1544 IRBuilder<> Builder(DU.NarrowUse); 1545 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1546 } 1547 else { 1548 // A wider extend was hidden behind a narrower one. This may induce 1549 // another round of IV widening in which the intermediate IV becomes 1550 // dead. It should be very rare. 1551 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1552 << " not wide enough to subsume " << *DU.NarrowUse 1553 << "\n"); 1554 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1555 NewDef = DU.NarrowUse; 1556 } 1557 } 1558 if (NewDef != DU.NarrowUse) { 1559 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1560 << " replaced by " << *DU.WideDef << "\n"); 1561 ++NumElimExt; 1562 DU.NarrowUse->replaceAllUsesWith(NewDef); 1563 DeadInsts.emplace_back(DU.NarrowUse); 1564 } 1565 // Now that the extend is gone, we want to expose it's uses for potential 1566 // further simplification. We don't need to directly inform SimplifyIVUsers 1567 // of the new users, because their parent IV will be processed later as a 1568 // new loop phi. If we preserved IVUsers analysis, we would also want to 1569 // push the uses of WideDef here. 1570 1571 // No further widening is needed. The deceased [sz]ext had done it for us. 1572 return nullptr; 1573 } 1574 1575 // Does this user itself evaluate to a recurrence after widening? 1576 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1577 if (!WideAddRec.first) 1578 WideAddRec = getWideRecurrence(DU); 1579 1580 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1581 if (!WideAddRec.first) { 1582 // If use is a loop condition, try to promote the condition instead of 1583 // truncating the IV first. 1584 if (widenLoopCompare(DU)) 1585 return nullptr; 1586 1587 // We are here about to generate a truncate instruction that may hurt 1588 // performance because the scalar evolution expression computed earlier 1589 // in WideAddRec.first does not indicate a polynomial induction expression. 1590 // In that case, look at the operands of the use instruction to determine 1591 // if we can still widen the use instead of truncating its operand. 1592 if (widenWithVariantLoadUse(DU)) { 1593 widenWithVariantLoadUseCodegen(DU); 1594 return nullptr; 1595 } 1596 1597 // This user does not evaluate to a recurrence after widening, so don't 1598 // follow it. Instead insert a Trunc to kill off the original use, 1599 // eventually isolating the original narrow IV so it can be removed. 1600 truncateIVUse(DU, DT, LI); 1601 return nullptr; 1602 } 1603 // Assume block terminators cannot evaluate to a recurrence. We can't to 1604 // insert a Trunc after a terminator if there happens to be a critical edge. 1605 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1606 "SCEV is not expected to evaluate a block terminator"); 1607 1608 // Reuse the IV increment that SCEVExpander created as long as it dominates 1609 // NarrowUse. 1610 Instruction *WideUse = nullptr; 1611 if (WideAddRec.first == WideIncExpr && 1612 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1613 WideUse = WideInc; 1614 else { 1615 WideUse = cloneIVUser(DU, WideAddRec.first); 1616 if (!WideUse) 1617 return nullptr; 1618 } 1619 // Evaluation of WideAddRec ensured that the narrow expression could be 1620 // extended outside the loop without overflow. This suggests that the wide use 1621 // evaluates to the same expression as the extended narrow use, but doesn't 1622 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1623 // where it fails, we simply throw away the newly created wide use. 1624 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1625 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1626 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1627 << "\n"); 1628 DeadInsts.emplace_back(WideUse); 1629 return nullptr; 1630 } 1631 1632 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1633 // Returning WideUse pushes it on the worklist. 1634 return WideUse; 1635 } 1636 1637 /// Add eligible users of NarrowDef to NarrowIVUsers. 1638 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1639 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1640 bool NonNegativeDef = 1641 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1642 SE->getConstant(NarrowSCEV->getType(), 0)); 1643 for (User *U : NarrowDef->users()) { 1644 Instruction *NarrowUser = cast<Instruction>(U); 1645 1646 // Handle data flow merges and bizarre phi cycles. 1647 if (!Widened.insert(NarrowUser).second) 1648 continue; 1649 1650 bool NonNegativeUse = false; 1651 if (!NonNegativeDef) { 1652 // We might have a control-dependent range information for this context. 1653 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1654 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1655 } 1656 1657 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1658 NonNegativeDef || NonNegativeUse); 1659 } 1660 } 1661 1662 /// Process a single induction variable. First use the SCEVExpander to create a 1663 /// wide induction variable that evaluates to the same recurrence as the 1664 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1665 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1666 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1667 /// 1668 /// It would be simpler to delete uses as they are processed, but we must avoid 1669 /// invalidating SCEV expressions. 1670 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1671 // Is this phi an induction variable? 1672 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1673 if (!AddRec) 1674 return nullptr; 1675 1676 // Widen the induction variable expression. 1677 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1678 ? SE->getSignExtendExpr(AddRec, WideType) 1679 : SE->getZeroExtendExpr(AddRec, WideType); 1680 1681 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1682 "Expect the new IV expression to preserve its type"); 1683 1684 // Can the IV be extended outside the loop without overflow? 1685 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1686 if (!AddRec || AddRec->getLoop() != L) 1687 return nullptr; 1688 1689 // An AddRec must have loop-invariant operands. Since this AddRec is 1690 // materialized by a loop header phi, the expression cannot have any post-loop 1691 // operands, so they must dominate the loop header. 1692 assert( 1693 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1694 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1695 "Loop header phi recurrence inputs do not dominate the loop"); 1696 1697 // Iterate over IV uses (including transitive ones) looking for IV increments 1698 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1699 // the increment calculate control-dependent range information basing on 1700 // dominating conditions inside of the loop (e.g. a range check inside of the 1701 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1702 // 1703 // Control-dependent range information is later used to prove that a narrow 1704 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1705 // this on demand because when pushNarrowIVUsers needs this information some 1706 // of the dominating conditions might be already widened. 1707 if (UsePostIncrementRanges) 1708 calculatePostIncRanges(OrigPhi); 1709 1710 // The rewriter provides a value for the desired IV expression. This may 1711 // either find an existing phi or materialize a new one. Either way, we 1712 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1713 // of the phi-SCC dominates the loop entry. 1714 Instruction *InsertPt = &L->getHeader()->front(); 1715 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1716 1717 // Remembering the WideIV increment generated by SCEVExpander allows 1718 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1719 // employ a general reuse mechanism because the call above is the only call to 1720 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1721 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1722 WideInc = 1723 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1724 WideIncExpr = SE->getSCEV(WideInc); 1725 // Propagate the debug location associated with the original loop increment 1726 // to the new (widened) increment. 1727 auto *OrigInc = 1728 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1729 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1730 } 1731 1732 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1733 ++NumWidened; 1734 1735 // Traverse the def-use chain using a worklist starting at the original IV. 1736 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1737 1738 Widened.insert(OrigPhi); 1739 pushNarrowIVUsers(OrigPhi, WidePhi); 1740 1741 while (!NarrowIVUsers.empty()) { 1742 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1743 1744 // Process a def-use edge. This may replace the use, so don't hold a 1745 // use_iterator across it. 1746 Instruction *WideUse = widenIVUse(DU, Rewriter); 1747 1748 // Follow all def-use edges from the previous narrow use. 1749 if (WideUse) 1750 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1751 1752 // widenIVUse may have removed the def-use edge. 1753 if (DU.NarrowDef->use_empty()) 1754 DeadInsts.emplace_back(DU.NarrowDef); 1755 } 1756 1757 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1758 // evaluate the same recurrence, we can just copy the debug info over. 1759 SmallVector<DbgValueInst *, 1> DbgValues; 1760 llvm::findDbgValues(DbgValues, OrigPhi); 1761 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1762 ValueAsMetadata::get(WidePhi)); 1763 for (auto &DbgValue : DbgValues) 1764 DbgValue->setOperand(0, MDPhi); 1765 return WidePhi; 1766 } 1767 1768 /// Calculates control-dependent range for the given def at the given context 1769 /// by looking at dominating conditions inside of the loop 1770 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1771 Instruction *NarrowUser) { 1772 using namespace llvm::PatternMatch; 1773 1774 Value *NarrowDefLHS; 1775 const APInt *NarrowDefRHS; 1776 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1777 m_APInt(NarrowDefRHS))) || 1778 !NarrowDefRHS->isNonNegative()) 1779 return; 1780 1781 auto UpdateRangeFromCondition = [&] (Value *Condition, 1782 bool TrueDest) { 1783 CmpInst::Predicate Pred; 1784 Value *CmpRHS; 1785 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1786 m_Value(CmpRHS)))) 1787 return; 1788 1789 CmpInst::Predicate P = 1790 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1791 1792 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1793 auto CmpConstrainedLHSRange = 1794 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1795 auto NarrowDefRange = 1796 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1797 1798 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1799 }; 1800 1801 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1802 if (!HasGuards) 1803 return; 1804 1805 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1806 Ctx->getParent()->rend())) { 1807 Value *C = nullptr; 1808 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1809 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1810 } 1811 }; 1812 1813 UpdateRangeFromGuards(NarrowUser); 1814 1815 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1816 // If NarrowUserBB is statically unreachable asking dominator queries may 1817 // yield surprising results. (e.g. the block may not have a dom tree node) 1818 if (!DT->isReachableFromEntry(NarrowUserBB)) 1819 return; 1820 1821 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1822 L->contains(DTB->getBlock()); 1823 DTB = DTB->getIDom()) { 1824 auto *BB = DTB->getBlock(); 1825 auto *TI = BB->getTerminator(); 1826 UpdateRangeFromGuards(TI); 1827 1828 auto *BI = dyn_cast<BranchInst>(TI); 1829 if (!BI || !BI->isConditional()) 1830 continue; 1831 1832 auto *TrueSuccessor = BI->getSuccessor(0); 1833 auto *FalseSuccessor = BI->getSuccessor(1); 1834 1835 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1836 return BBE.isSingleEdge() && 1837 DT->dominates(BBE, NarrowUser->getParent()); 1838 }; 1839 1840 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1841 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1842 1843 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1844 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1845 } 1846 } 1847 1848 /// Calculates PostIncRangeInfos map for the given IV 1849 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1850 SmallPtrSet<Instruction *, 16> Visited; 1851 SmallVector<Instruction *, 6> Worklist; 1852 Worklist.push_back(OrigPhi); 1853 Visited.insert(OrigPhi); 1854 1855 while (!Worklist.empty()) { 1856 Instruction *NarrowDef = Worklist.pop_back_val(); 1857 1858 for (Use &U : NarrowDef->uses()) { 1859 auto *NarrowUser = cast<Instruction>(U.getUser()); 1860 1861 // Don't go looking outside the current loop. 1862 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1863 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1864 continue; 1865 1866 if (!Visited.insert(NarrowUser).second) 1867 continue; 1868 1869 Worklist.push_back(NarrowUser); 1870 1871 calculatePostIncRange(NarrowDef, NarrowUser); 1872 } 1873 } 1874 } 1875 1876 //===----------------------------------------------------------------------===// 1877 // Live IV Reduction - Minimize IVs live across the loop. 1878 //===----------------------------------------------------------------------===// 1879 1880 //===----------------------------------------------------------------------===// 1881 // Simplification of IV users based on SCEV evaluation. 1882 //===----------------------------------------------------------------------===// 1883 1884 namespace { 1885 1886 class IndVarSimplifyVisitor : public IVVisitor { 1887 ScalarEvolution *SE; 1888 const TargetTransformInfo *TTI; 1889 PHINode *IVPhi; 1890 1891 public: 1892 WideIVInfo WI; 1893 1894 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1895 const TargetTransformInfo *TTI, 1896 const DominatorTree *DTree) 1897 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1898 DT = DTree; 1899 WI.NarrowIV = IVPhi; 1900 } 1901 1902 // Implement the interface used by simplifyUsersOfIV. 1903 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1904 }; 1905 1906 } // end anonymous namespace 1907 1908 /// Iteratively perform simplification on a worklist of IV users. Each 1909 /// successive simplification may push more users which may themselves be 1910 /// candidates for simplification. 1911 /// 1912 /// Sign/Zero extend elimination is interleaved with IV simplification. 1913 bool IndVarSimplify::simplifyAndExtend(Loop *L, 1914 SCEVExpander &Rewriter, 1915 LoopInfo *LI) { 1916 SmallVector<WideIVInfo, 8> WideIVs; 1917 1918 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1919 Intrinsic::getName(Intrinsic::experimental_guard)); 1920 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1921 1922 SmallVector<PHINode*, 8> LoopPhis; 1923 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1924 LoopPhis.push_back(cast<PHINode>(I)); 1925 } 1926 // Each round of simplification iterates through the SimplifyIVUsers worklist 1927 // for all current phis, then determines whether any IVs can be 1928 // widened. Widening adds new phis to LoopPhis, inducing another round of 1929 // simplification on the wide IVs. 1930 bool Changed = false; 1931 while (!LoopPhis.empty()) { 1932 // Evaluate as many IV expressions as possible before widening any IVs. This 1933 // forces SCEV to set no-wrap flags before evaluating sign/zero 1934 // extension. The first time SCEV attempts to normalize sign/zero extension, 1935 // the result becomes final. So for the most predictable results, we delay 1936 // evaluation of sign/zero extend evaluation until needed, and avoid running 1937 // other SCEV based analysis prior to simplifyAndExtend. 1938 do { 1939 PHINode *CurrIV = LoopPhis.pop_back_val(); 1940 1941 // Information about sign/zero extensions of CurrIV. 1942 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1943 1944 Changed |= 1945 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1946 1947 if (Visitor.WI.WidestNativeType) { 1948 WideIVs.push_back(Visitor.WI); 1949 } 1950 } while(!LoopPhis.empty()); 1951 1952 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1953 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1954 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1955 Changed = true; 1956 LoopPhis.push_back(WidePhi); 1957 } 1958 } 1959 } 1960 return Changed; 1961 } 1962 1963 //===----------------------------------------------------------------------===// 1964 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1965 //===----------------------------------------------------------------------===// 1966 1967 /// Return true if this loop's backedge taken count expression can be safely and 1968 /// cheaply expanded into an instruction sequence that can be used by 1969 /// linearFunctionTestReplace. 1970 /// 1971 /// TODO: This fails for pointer-type loop counters with greater than one byte 1972 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1973 /// we could skip this check in the case that the LFTR loop counter (chosen by 1974 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1975 /// the loop test to an inequality test by checking the target data's alignment 1976 /// of element types (given that the initial pointer value originates from or is 1977 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1978 /// However, we don't yet have a strong motivation for converting loop tests 1979 /// into inequality tests. 1980 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1981 SCEVExpander &Rewriter) { 1982 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1983 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1984 BackedgeTakenCount->isZero()) 1985 return false; 1986 1987 if (!L->getExitingBlock()) 1988 return false; 1989 1990 // Can't rewrite non-branch yet. 1991 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1992 return false; 1993 1994 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1995 return false; 1996 1997 return true; 1998 } 1999 2000 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 2001 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 2002 Instruction *IncI = dyn_cast<Instruction>(IncV); 2003 if (!IncI) 2004 return nullptr; 2005 2006 switch (IncI->getOpcode()) { 2007 case Instruction::Add: 2008 case Instruction::Sub: 2009 break; 2010 case Instruction::GetElementPtr: 2011 // An IV counter must preserve its type. 2012 if (IncI->getNumOperands() == 2) 2013 break; 2014 LLVM_FALLTHROUGH; 2015 default: 2016 return nullptr; 2017 } 2018 2019 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 2020 if (Phi && Phi->getParent() == L->getHeader()) { 2021 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 2022 return Phi; 2023 return nullptr; 2024 } 2025 if (IncI->getOpcode() == Instruction::GetElementPtr) 2026 return nullptr; 2027 2028 // Allow add/sub to be commuted. 2029 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 2030 if (Phi && Phi->getParent() == L->getHeader()) { 2031 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 2032 return Phi; 2033 } 2034 return nullptr; 2035 } 2036 2037 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 2038 static ICmpInst *getLoopTest(Loop *L) { 2039 assert(L->getExitingBlock() && "expected loop exit"); 2040 2041 BasicBlock *LatchBlock = L->getLoopLatch(); 2042 // Don't bother with LFTR if the loop is not properly simplified. 2043 if (!LatchBlock) 2044 return nullptr; 2045 2046 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2047 assert(BI && "expected exit branch"); 2048 2049 return dyn_cast<ICmpInst>(BI->getCondition()); 2050 } 2051 2052 /// linearFunctionTestReplace policy. Return true unless we can show that the 2053 /// current exit test is already sufficiently canonical. 2054 static bool needsLFTR(Loop *L, DominatorTree *DT) { 2055 // Do LFTR to simplify the exit condition to an ICMP. 2056 ICmpInst *Cond = getLoopTest(L); 2057 if (!Cond) 2058 return true; 2059 2060 // Do LFTR to simplify the exit ICMP to EQ/NE 2061 ICmpInst::Predicate Pred = Cond->getPredicate(); 2062 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 2063 return true; 2064 2065 // Look for a loop invariant RHS 2066 Value *LHS = Cond->getOperand(0); 2067 Value *RHS = Cond->getOperand(1); 2068 if (!isLoopInvariant(RHS, L, DT)) { 2069 if (!isLoopInvariant(LHS, L, DT)) 2070 return true; 2071 std::swap(LHS, RHS); 2072 } 2073 // Look for a simple IV counter LHS 2074 PHINode *Phi = dyn_cast<PHINode>(LHS); 2075 if (!Phi) 2076 Phi = getLoopPhiForCounter(LHS, L, DT); 2077 2078 if (!Phi) 2079 return true; 2080 2081 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 2082 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2083 if (Idx < 0) 2084 return true; 2085 2086 // Do LFTR if the exit condition's IV is *not* a simple counter. 2087 Value *IncV = Phi->getIncomingValue(Idx); 2088 return Phi != getLoopPhiForCounter(IncV, L, DT); 2089 } 2090 2091 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 2092 /// down to checking that all operands are constant and listing instructions 2093 /// that may hide undef. 2094 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 2095 unsigned Depth) { 2096 if (isa<Constant>(V)) 2097 return !isa<UndefValue>(V); 2098 2099 if (Depth >= 6) 2100 return false; 2101 2102 // Conservatively handle non-constant non-instructions. For example, Arguments 2103 // may be undef. 2104 Instruction *I = dyn_cast<Instruction>(V); 2105 if (!I) 2106 return false; 2107 2108 // Load and return values may be undef. 2109 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 2110 return false; 2111 2112 // Optimistically handle other instructions. 2113 for (Value *Op : I->operands()) { 2114 if (!Visited.insert(Op).second) 2115 continue; 2116 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 2117 return false; 2118 } 2119 return true; 2120 } 2121 2122 /// Return true if the given value is concrete. We must prove that undef can 2123 /// never reach it. 2124 /// 2125 /// TODO: If we decide that this is a good approach to checking for undef, we 2126 /// may factor it into a common location. 2127 static bool hasConcreteDef(Value *V) { 2128 SmallPtrSet<Value*, 8> Visited; 2129 Visited.insert(V); 2130 return hasConcreteDefImpl(V, Visited, 0); 2131 } 2132 2133 /// Return true if this IV has any uses other than the (soon to be rewritten) 2134 /// loop exit test. 2135 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 2136 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2137 Value *IncV = Phi->getIncomingValue(LatchIdx); 2138 2139 for (User *U : Phi->users()) 2140 if (U != Cond && U != IncV) return false; 2141 2142 for (User *U : IncV->users()) 2143 if (U != Cond && U != Phi) return false; 2144 return true; 2145 } 2146 2147 /// Find an affine IV in canonical form. 2148 /// 2149 /// BECount may be an i8* pointer type. The pointer difference is already 2150 /// valid count without scaling the address stride, so it remains a pointer 2151 /// expression as far as SCEV is concerned. 2152 /// 2153 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 2154 /// 2155 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 2156 /// 2157 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 2158 /// This is difficult in general for SCEV because of potential overflow. But we 2159 /// could at least handle constant BECounts. 2160 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2161 ScalarEvolution *SE, DominatorTree *DT) { 2162 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2163 2164 Value *Cond = 2165 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2166 2167 // Loop over all of the PHI nodes, looking for a simple counter. 2168 PHINode *BestPhi = nullptr; 2169 const SCEV *BestInit = nullptr; 2170 BasicBlock *LatchBlock = L->getLoopLatch(); 2171 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2172 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2173 2174 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2175 PHINode *Phi = cast<PHINode>(I); 2176 if (!SE->isSCEVable(Phi->getType())) 2177 continue; 2178 2179 // Avoid comparing an integer IV against a pointer Limit. 2180 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2181 continue; 2182 2183 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2184 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2185 continue; 2186 2187 // AR may be a pointer type, while BECount is an integer type. 2188 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2189 // AR may not be a narrower type, or we may never exit. 2190 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2191 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2192 continue; 2193 2194 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2195 if (!Step || !Step->isOne()) 2196 continue; 2197 2198 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2199 Value *IncV = Phi->getIncomingValue(LatchIdx); 2200 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2201 continue; 2202 2203 // Avoid reusing a potentially undef value to compute other values that may 2204 // have originally had a concrete definition. 2205 if (!hasConcreteDef(Phi)) { 2206 // We explicitly allow unknown phis as long as they are already used by 2207 // the loop test. In this case we assume that performing LFTR could not 2208 // increase the number of undef users. 2209 if (ICmpInst *Cond = getLoopTest(L)) { 2210 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2211 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2212 continue; 2213 } 2214 } 2215 } 2216 const SCEV *Init = AR->getStart(); 2217 2218 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2219 // Don't force a live loop counter if another IV can be used. 2220 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2221 continue; 2222 2223 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2224 // also prefers integer to pointer IVs. 2225 if (BestInit->isZero() != Init->isZero()) { 2226 if (BestInit->isZero()) 2227 continue; 2228 } 2229 // If two IVs both count from zero or both count from nonzero then the 2230 // narrower is likely a dead phi that has been widened. Use the wider phi 2231 // to allow the other to be eliminated. 2232 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2233 continue; 2234 } 2235 BestPhi = Phi; 2236 BestInit = Init; 2237 } 2238 return BestPhi; 2239 } 2240 2241 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2242 /// the new loop test. 2243 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2244 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2245 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2246 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2247 const SCEV *IVInit = AR->getStart(); 2248 2249 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2250 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2251 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2252 // the existing GEPs whenever possible. 2253 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2254 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2255 // signed value. IVCount on the other hand represents the loop trip count, 2256 // which is an unsigned value. FindLoopCounter only allows induction 2257 // variables that have a positive unit stride of one. This means we don't 2258 // have to handle the case of negative offsets (yet) and just need to zero 2259 // extend IVCount. 2260 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2261 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2262 2263 // Expand the code for the iteration count. 2264 assert(SE->isLoopInvariant(IVOffset, L) && 2265 "Computed iteration count is not loop invariant!"); 2266 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2267 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2268 2269 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2270 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2271 // We could handle pointer IVs other than i8*, but we need to compensate for 2272 // gep index scaling. See canExpandBackedgeTakenCount comments. 2273 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2274 cast<PointerType>(GEPBase->getType()) 2275 ->getElementType())->isOne() && 2276 "unit stride pointer IV must be i8*"); 2277 2278 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2279 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 2280 } else { 2281 // In any other case, convert both IVInit and IVCount to integers before 2282 // comparing. This may result in SCEV expansion of pointers, but in practice 2283 // SCEV will fold the pointer arithmetic away as such: 2284 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2285 // 2286 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2287 // for simple memset-style loops. 2288 // 2289 // IVInit integer and IVCount pointer would only occur if a canonical IV 2290 // were generated on top of case #2, which is not expected. 2291 2292 const SCEV *IVLimit = nullptr; 2293 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2294 // For non-zero Start, compute IVCount here. 2295 if (AR->getStart()->isZero()) 2296 IVLimit = IVCount; 2297 else { 2298 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2299 const SCEV *IVInit = AR->getStart(); 2300 2301 // For integer IVs, truncate the IV before computing IVInit + BECount. 2302 if (SE->getTypeSizeInBits(IVInit->getType()) 2303 > SE->getTypeSizeInBits(IVCount->getType())) 2304 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2305 2306 IVLimit = SE->getAddExpr(IVInit, IVCount); 2307 } 2308 // Expand the code for the iteration count. 2309 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2310 IRBuilder<> Builder(BI); 2311 assert(SE->isLoopInvariant(IVLimit, L) && 2312 "Computed iteration count is not loop invariant!"); 2313 // Ensure that we generate the same type as IndVar, or a smaller integer 2314 // type. In the presence of null pointer values, we have an integer type 2315 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2316 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2317 IndVar->getType() : IVCount->getType(); 2318 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2319 } 2320 } 2321 2322 /// This method rewrites the exit condition of the loop to be a canonical != 2323 /// comparison against the incremented loop induction variable. This pass is 2324 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2325 /// determine a loop-invariant trip count of the loop, which is actually a much 2326 /// broader range than just linear tests. 2327 bool IndVarSimplify:: 2328 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 2329 PHINode *IndVar, SCEVExpander &Rewriter) { 2330 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2331 2332 // Initialize CmpIndVar and IVCount to their preincremented values. 2333 Value *CmpIndVar = IndVar; 2334 const SCEV *IVCount = BackedgeTakenCount; 2335 2336 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2337 2338 // If the exiting block is the same as the backedge block, we prefer to 2339 // compare against the post-incremented value, otherwise we must compare 2340 // against the preincremented value. 2341 if (L->getExitingBlock() == L->getLoopLatch()) { 2342 // Add one to the "backedge-taken" count to get the trip count. 2343 // This addition may overflow, which is valid as long as the comparison is 2344 // truncated to BackedgeTakenCount->getType(). 2345 IVCount = SE->getAddExpr(BackedgeTakenCount, 2346 SE->getOne(BackedgeTakenCount->getType())); 2347 // The BackedgeTaken expression contains the number of times that the 2348 // backedge branches to the loop header. This is one less than the 2349 // number of times the loop executes, so use the incremented indvar. 2350 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2351 } 2352 2353 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2354 assert(ExitCnt->getType()->isPointerTy() == 2355 IndVar->getType()->isPointerTy() && 2356 "genLoopLimit missed a cast"); 2357 2358 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2359 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2360 ICmpInst::Predicate P; 2361 if (L->contains(BI->getSuccessor(0))) 2362 P = ICmpInst::ICMP_NE; 2363 else 2364 P = ICmpInst::ICMP_EQ; 2365 2366 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2367 << " LHS:" << *CmpIndVar << '\n' 2368 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2369 << "\n" 2370 << " RHS:\t" << *ExitCnt << "\n" 2371 << " IVCount:\t" << *IVCount << "\n"); 2372 2373 IRBuilder<> Builder(BI); 2374 2375 // The new loop exit condition should reuse the debug location of the 2376 // original loop exit condition. 2377 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2378 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2379 2380 // LFTR can ignore IV overflow and truncate to the width of 2381 // BECount. This avoids materializing the add(zext(add)) expression. 2382 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2383 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2384 if (CmpIndVarSize > ExitCntSize) { 2385 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2386 const SCEV *ARStart = AR->getStart(); 2387 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2388 // For constant IVCount, avoid truncation. 2389 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2390 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2391 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2392 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2393 // above such that IVCount is now zero. 2394 if (IVCount != BackedgeTakenCount && Count == 0) { 2395 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2396 ++Count; 2397 } 2398 else 2399 Count = Count.zext(CmpIndVarSize); 2400 APInt NewLimit; 2401 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2402 NewLimit = Start - Count; 2403 else 2404 NewLimit = Start + Count; 2405 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2406 2407 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2408 } else { 2409 // We try to extend trip count first. If that doesn't work we truncate IV. 2410 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2411 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2412 // one of the two holds, extend the trip count, otherwise we truncate IV. 2413 bool Extended = false; 2414 const SCEV *IV = SE->getSCEV(CmpIndVar); 2415 const SCEV *ZExtTrunc = 2416 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2417 ExitCnt->getType()), 2418 CmpIndVar->getType()); 2419 2420 if (ZExtTrunc == IV) { 2421 Extended = true; 2422 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2423 "wide.trip.count"); 2424 } else { 2425 const SCEV *SExtTrunc = 2426 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2427 ExitCnt->getType()), 2428 CmpIndVar->getType()); 2429 if (SExtTrunc == IV) { 2430 Extended = true; 2431 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2432 "wide.trip.count"); 2433 } 2434 } 2435 2436 if (!Extended) 2437 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2438 "lftr.wideiv"); 2439 } 2440 } 2441 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2442 Value *OrigCond = BI->getCondition(); 2443 // It's tempting to use replaceAllUsesWith here to fully replace the old 2444 // comparison, but that's not immediately safe, since users of the old 2445 // comparison may not be dominated by the new comparison. Instead, just 2446 // update the branch to use the new comparison; in the common case this 2447 // will make old comparison dead. 2448 BI->setCondition(Cond); 2449 DeadInsts.push_back(OrigCond); 2450 2451 ++NumLFTR; 2452 return true; 2453 } 2454 2455 //===----------------------------------------------------------------------===// 2456 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2457 //===----------------------------------------------------------------------===// 2458 2459 /// If there's a single exit block, sink any loop-invariant values that 2460 /// were defined in the preheader but not used inside the loop into the 2461 /// exit block to reduce register pressure in the loop. 2462 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2463 BasicBlock *ExitBlock = L->getExitBlock(); 2464 if (!ExitBlock) return false; 2465 2466 BasicBlock *Preheader = L->getLoopPreheader(); 2467 if (!Preheader) return false; 2468 2469 bool MadeAnyChanges = false; 2470 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2471 BasicBlock::iterator I(Preheader->getTerminator()); 2472 while (I != Preheader->begin()) { 2473 --I; 2474 // New instructions were inserted at the end of the preheader. 2475 if (isa<PHINode>(I)) 2476 break; 2477 2478 // Don't move instructions which might have side effects, since the side 2479 // effects need to complete before instructions inside the loop. Also don't 2480 // move instructions which might read memory, since the loop may modify 2481 // memory. Note that it's okay if the instruction might have undefined 2482 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2483 // block. 2484 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2485 continue; 2486 2487 // Skip debug info intrinsics. 2488 if (isa<DbgInfoIntrinsic>(I)) 2489 continue; 2490 2491 // Skip eh pad instructions. 2492 if (I->isEHPad()) 2493 continue; 2494 2495 // Don't sink alloca: we never want to sink static alloca's out of the 2496 // entry block, and correctly sinking dynamic alloca's requires 2497 // checks for stacksave/stackrestore intrinsics. 2498 // FIXME: Refactor this check somehow? 2499 if (isa<AllocaInst>(I)) 2500 continue; 2501 2502 // Determine if there is a use in or before the loop (direct or 2503 // otherwise). 2504 bool UsedInLoop = false; 2505 for (Use &U : I->uses()) { 2506 Instruction *User = cast<Instruction>(U.getUser()); 2507 BasicBlock *UseBB = User->getParent(); 2508 if (PHINode *P = dyn_cast<PHINode>(User)) { 2509 unsigned i = 2510 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2511 UseBB = P->getIncomingBlock(i); 2512 } 2513 if (UseBB == Preheader || L->contains(UseBB)) { 2514 UsedInLoop = true; 2515 break; 2516 } 2517 } 2518 2519 // If there is, the def must remain in the preheader. 2520 if (UsedInLoop) 2521 continue; 2522 2523 // Otherwise, sink it to the exit block. 2524 Instruction *ToMove = &*I; 2525 bool Done = false; 2526 2527 if (I != Preheader->begin()) { 2528 // Skip debug info intrinsics. 2529 do { 2530 --I; 2531 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2532 2533 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2534 Done = true; 2535 } else { 2536 Done = true; 2537 } 2538 2539 MadeAnyChanges = true; 2540 ToMove->moveBefore(*ExitBlock, InsertPt); 2541 if (Done) break; 2542 InsertPt = ToMove->getIterator(); 2543 } 2544 2545 return MadeAnyChanges; 2546 } 2547 2548 //===----------------------------------------------------------------------===// 2549 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2550 //===----------------------------------------------------------------------===// 2551 2552 bool IndVarSimplify::run(Loop *L) { 2553 // We need (and expect!) the incoming loop to be in LCSSA. 2554 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2555 "LCSSA required to run indvars!"); 2556 bool Changed = false; 2557 2558 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2559 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2560 // canonicalization can be a pessimization without LSR to "clean up" 2561 // afterwards. 2562 // - We depend on having a preheader; in particular, 2563 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2564 // and we're in trouble if we can't find the induction variable even when 2565 // we've manually inserted one. 2566 // - LFTR relies on having a single backedge. 2567 if (!L->isLoopSimplifyForm()) 2568 return false; 2569 2570 // If there are any floating-point recurrences, attempt to 2571 // transform them to use integer recurrences. 2572 Changed |= rewriteNonIntegerIVs(L); 2573 2574 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2575 2576 // Create a rewriter object which we'll use to transform the code with. 2577 SCEVExpander Rewriter(*SE, DL, "indvars"); 2578 #ifndef NDEBUG 2579 Rewriter.setDebugType(DEBUG_TYPE); 2580 #endif 2581 2582 // Eliminate redundant IV users. 2583 // 2584 // Simplification works best when run before other consumers of SCEV. We 2585 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2586 // other expressions involving loop IVs have been evaluated. This helps SCEV 2587 // set no-wrap flags before normalizing sign/zero extension. 2588 Rewriter.disableCanonicalMode(); 2589 Changed |= simplifyAndExtend(L, Rewriter, LI); 2590 2591 // Check to see if this loop has a computable loop-invariant execution count. 2592 // If so, this means that we can compute the final value of any expressions 2593 // that are recurrent in the loop, and substitute the exit values from the 2594 // loop into any instructions outside of the loop that use the final values of 2595 // the current expressions. 2596 // 2597 if (ReplaceExitValue != NeverRepl && 2598 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2599 Changed |= rewriteLoopExitValues(L, Rewriter); 2600 2601 // Eliminate redundant IV cycles. 2602 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2603 2604 // If we have a trip count expression, rewrite the loop's exit condition 2605 // using it. We can currently only handle loops with a single exit. 2606 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2607 needsLFTR(L, DT)) { 2608 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2609 if (IndVar) { 2610 // Check preconditions for proper SCEVExpander operation. SCEV does not 2611 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2612 // pass that uses the SCEVExpander must do it. This does not work well for 2613 // loop passes because SCEVExpander makes assumptions about all loops, 2614 // while LoopPassManager only forces the current loop to be simplified. 2615 // 2616 // FIXME: SCEV expansion has no way to bail out, so the caller must 2617 // explicitly check any assumptions made by SCEV. Brittle. 2618 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2619 if (!AR || AR->getLoop()->getLoopPreheader()) 2620 Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2621 Rewriter); 2622 } 2623 } 2624 // Clear the rewriter cache, because values that are in the rewriter's cache 2625 // can be deleted in the loop below, causing the AssertingVH in the cache to 2626 // trigger. 2627 Rewriter.clear(); 2628 2629 // Now that we're done iterating through lists, clean up any instructions 2630 // which are now dead. 2631 while (!DeadInsts.empty()) 2632 if (Instruction *Inst = 2633 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2634 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2635 2636 // The Rewriter may not be used from this point on. 2637 2638 // Loop-invariant instructions in the preheader that aren't used in the 2639 // loop may be sunk below the loop to reduce register pressure. 2640 Changed |= sinkUnusedInvariants(L); 2641 2642 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2643 // trip count and therefore can further simplify exit values in addition to 2644 // rewriteLoopExitValues. 2645 Changed |= rewriteFirstIterationLoopExitValues(L); 2646 2647 // Clean up dead instructions. 2648 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2649 2650 // Check a post-condition. 2651 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2652 "Indvars did not preserve LCSSA!"); 2653 2654 // Verify that LFTR, and any other change have not interfered with SCEV's 2655 // ability to compute trip count. 2656 #ifndef NDEBUG 2657 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2658 SE->forgetLoop(L); 2659 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2660 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2661 SE->getTypeSizeInBits(NewBECount->getType())) 2662 NewBECount = SE->getTruncateOrNoop(NewBECount, 2663 BackedgeTakenCount->getType()); 2664 else 2665 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2666 NewBECount->getType()); 2667 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2668 } 2669 #endif 2670 2671 return Changed; 2672 } 2673 2674 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2675 LoopStandardAnalysisResults &AR, 2676 LPMUpdater &) { 2677 Function *F = L.getHeader()->getParent(); 2678 const DataLayout &DL = F->getParent()->getDataLayout(); 2679 2680 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2681 if (!IVS.run(&L)) 2682 return PreservedAnalyses::all(); 2683 2684 auto PA = getLoopPassPreservedAnalyses(); 2685 PA.preserveSet<CFGAnalyses>(); 2686 return PA; 2687 } 2688 2689 namespace { 2690 2691 struct IndVarSimplifyLegacyPass : public LoopPass { 2692 static char ID; // Pass identification, replacement for typeid 2693 2694 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2695 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2696 } 2697 2698 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2699 if (skipLoop(L)) 2700 return false; 2701 2702 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2703 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2704 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2705 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2706 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2707 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2708 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2709 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2710 2711 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2712 return IVS.run(L); 2713 } 2714 2715 void getAnalysisUsage(AnalysisUsage &AU) const override { 2716 AU.setPreservesCFG(); 2717 getLoopAnalysisUsage(AU); 2718 } 2719 }; 2720 2721 } // end anonymous namespace 2722 2723 char IndVarSimplifyLegacyPass::ID = 0; 2724 2725 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2726 "Induction Variable Simplification", false, false) 2727 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2728 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2729 "Induction Variable Simplification", false, false) 2730 2731 Pass *llvm::createIndVarSimplifyPass() { 2732 return new IndVarSimplifyLegacyPass(); 2733 } 2734