1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/ADT/APFloat.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/None.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/Analysis/ScalarEvolutionExpander.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/ConstantRange.h" 50 #include "llvm/IR/Constants.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/IR/ValueHandle.h" 70 #include "llvm/Pass.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/MathExtras.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/LoopPassManager.h" 80 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 81 #include "llvm/Transforms/Utils/LoopUtils.h" 82 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 83 #include <cassert> 84 #include <cstdint> 85 #include <utility> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "indvars" 90 91 STATISTIC(NumWidened , "Number of indvars widened"); 92 STATISTIC(NumReplaced , "Number of exit values replaced"); 93 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 94 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 95 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 96 97 // Trip count verification can be enabled by default under NDEBUG if we 98 // implement a strong expression equivalence checker in SCEV. Until then, we 99 // use the verify-indvars flag, which may assert in some cases. 100 static cl::opt<bool> VerifyIndvars( 101 "verify-indvars", cl::Hidden, 102 cl::desc("Verify the ScalarEvolution result after running indvars")); 103 104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 105 106 static cl::opt<ReplaceExitVal> ReplaceExitValue( 107 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 108 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 109 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 110 clEnumValN(OnlyCheapRepl, "cheap", 111 "only replace exit value when the cost is cheap"), 112 clEnumValN(AlwaysRepl, "always", 113 "always replace exit value whenever possible"))); 114 115 static cl::opt<bool> UsePostIncrementRanges( 116 "indvars-post-increment-ranges", cl::Hidden, 117 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 118 cl::init(true)); 119 120 static cl::opt<bool> 121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 122 cl::desc("Disable Linear Function Test Replace optimization")); 123 124 namespace { 125 126 struct RewritePhi; 127 128 class IndVarSimplify { 129 LoopInfo *LI; 130 ScalarEvolution *SE; 131 DominatorTree *DT; 132 const DataLayout &DL; 133 TargetLibraryInfo *TLI; 134 const TargetTransformInfo *TTI; 135 136 SmallVector<WeakTrackingVH, 16> DeadInsts; 137 bool Changed = false; 138 139 #ifndef NDEBUG 140 bool isValidRewrite(Value *FromVal, Value *ToVal); 141 #endif 142 143 void handleFloatingPointIV(Loop *L, PHINode *PH); 144 void rewriteNonIntegerIVs(Loop *L); 145 146 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 147 148 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 149 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 150 void rewriteFirstIterationLoopExitValues(Loop *L); 151 152 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 153 PHINode *IndVar, SCEVExpander &Rewriter); 154 155 void sinkUnusedInvariants(Loop *L); 156 157 public: 158 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 159 const DataLayout &DL, TargetLibraryInfo *TLI, 160 TargetTransformInfo *TTI) 161 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 162 163 bool run(Loop *L); 164 }; 165 166 } // end anonymous namespace 167 168 #ifndef NDEBUG 169 /// Return true if the SCEV expansion generated by the rewriter can replace the 170 /// original value. SCEV guarantees that it produces the same value, but the way 171 /// it is produced may be illegal IR. 172 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 173 // If an SCEV expression subsumed multiple pointers, its expansion could 174 // reassociate the GEP changing the base pointer. This is illegal because the 175 // final address produced by a GEP chain must be inbounds relative to its 176 // underlying object. Otherwise basic alias analysis, among other things, 177 // could fail in a dangerous way. Specifically, we want to make sure that SCEV 178 // does not convert gep Base, (&p[n] - &p[0]) into gep &p[n], Base - &p[0]. 179 // 180 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 181 // because it understands lcssa phis while SCEV does not. 182 Value *FromPtr = FromVal; 183 Value *ToPtr = ToVal; 184 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 185 FromPtr = GEP->getPointerOperand(); 186 } 187 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 188 ToPtr = GEP->getPointerOperand(); 189 } 190 if (FromPtr != FromVal || ToPtr != ToVal) { 191 // Quickly check the common case 192 if (FromPtr == ToPtr) 193 return true; 194 195 // SCEV may have rewritten an expression that produces the GEP's pointer 196 // operand. That's ok as long as the pointer operand has the same base 197 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 198 // base of a recurrence. This handles the case in which SCEV expansion 199 // converts a pointer type recurrence into a nonrecurrent pointer base 200 // indexed by an integer recurrence. 201 202 // If the GEP base pointer is a vector of pointers, abort. 203 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 204 return false; 205 206 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 207 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 208 if (FromBase == ToBase) 209 return true; 210 211 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 212 << " != " << *ToBase << "\n"); 213 214 return false; 215 } 216 return true; 217 } 218 #endif 219 220 /// Determine the insertion point for this user. By default, insert immediately 221 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 222 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 223 /// common dominator for the incoming blocks. 224 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 225 DominatorTree *DT, LoopInfo *LI) { 226 PHINode *PHI = dyn_cast<PHINode>(User); 227 if (!PHI) 228 return User; 229 230 Instruction *InsertPt = nullptr; 231 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 232 if (PHI->getIncomingValue(i) != Def) 233 continue; 234 235 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 236 if (!InsertPt) { 237 InsertPt = InsertBB->getTerminator(); 238 continue; 239 } 240 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 241 InsertPt = InsertBB->getTerminator(); 242 } 243 assert(InsertPt && "Missing phi operand"); 244 245 auto *DefI = dyn_cast<Instruction>(Def); 246 if (!DefI) 247 return InsertPt; 248 249 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 250 251 auto *L = LI->getLoopFor(DefI->getParent()); 252 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 253 254 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 255 if (LI->getLoopFor(DTN->getBlock()) == L) 256 return DTN->getBlock()->getTerminator(); 257 258 llvm_unreachable("DefI dominates InsertPt!"); 259 } 260 261 //===----------------------------------------------------------------------===// 262 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 263 //===----------------------------------------------------------------------===// 264 265 /// Convert APF to an integer, if possible. 266 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 267 bool isExact = false; 268 // See if we can convert this to an int64_t 269 uint64_t UIntVal; 270 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 271 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 272 !isExact) 273 return false; 274 IntVal = UIntVal; 275 return true; 276 } 277 278 /// If the loop has floating induction variable then insert corresponding 279 /// integer induction variable if possible. 280 /// For example, 281 /// for(double i = 0; i < 10000; ++i) 282 /// bar(i) 283 /// is converted into 284 /// for(int i = 0; i < 10000; ++i) 285 /// bar((double)i); 286 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 287 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 288 unsigned BackEdge = IncomingEdge^1; 289 290 // Check incoming value. 291 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 292 293 int64_t InitValue; 294 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 295 return; 296 297 // Check IV increment. Reject this PN if increment operation is not 298 // an add or increment value can not be represented by an integer. 299 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 300 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 301 302 // If this is not an add of the PHI with a constantfp, or if the constant fp 303 // is not an integer, bail out. 304 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 305 int64_t IncValue; 306 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 307 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 308 return; 309 310 // Check Incr uses. One user is PN and the other user is an exit condition 311 // used by the conditional terminator. 312 Value::user_iterator IncrUse = Incr->user_begin(); 313 Instruction *U1 = cast<Instruction>(*IncrUse++); 314 if (IncrUse == Incr->user_end()) return; 315 Instruction *U2 = cast<Instruction>(*IncrUse++); 316 if (IncrUse != Incr->user_end()) return; 317 318 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 319 // only used by a branch, we can't transform it. 320 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 321 if (!Compare) 322 Compare = dyn_cast<FCmpInst>(U2); 323 if (!Compare || !Compare->hasOneUse() || 324 !isa<BranchInst>(Compare->user_back())) 325 return; 326 327 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 328 329 // We need to verify that the branch actually controls the iteration count 330 // of the loop. If not, the new IV can overflow and no one will notice. 331 // The branch block must be in the loop and one of the successors must be out 332 // of the loop. 333 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 334 if (!L->contains(TheBr->getParent()) || 335 (L->contains(TheBr->getSuccessor(0)) && 336 L->contains(TheBr->getSuccessor(1)))) 337 return; 338 339 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 340 // transform it. 341 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 342 int64_t ExitValue; 343 if (ExitValueVal == nullptr || 344 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 345 return; 346 347 // Find new predicate for integer comparison. 348 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 349 switch (Compare->getPredicate()) { 350 default: return; // Unknown comparison. 351 case CmpInst::FCMP_OEQ: 352 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 353 case CmpInst::FCMP_ONE: 354 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 355 case CmpInst::FCMP_OGT: 356 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 357 case CmpInst::FCMP_OGE: 358 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 359 case CmpInst::FCMP_OLT: 360 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 361 case CmpInst::FCMP_OLE: 362 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 363 } 364 365 // We convert the floating point induction variable to a signed i32 value if 366 // we can. This is only safe if the comparison will not overflow in a way 367 // that won't be trapped by the integer equivalent operations. Check for this 368 // now. 369 // TODO: We could use i64 if it is native and the range requires it. 370 371 // The start/stride/exit values must all fit in signed i32. 372 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 373 return; 374 375 // If not actually striding (add x, 0.0), avoid touching the code. 376 if (IncValue == 0) 377 return; 378 379 // Positive and negative strides have different safety conditions. 380 if (IncValue > 0) { 381 // If we have a positive stride, we require the init to be less than the 382 // exit value. 383 if (InitValue >= ExitValue) 384 return; 385 386 uint32_t Range = uint32_t(ExitValue-InitValue); 387 // Check for infinite loop, either: 388 // while (i <= Exit) or until (i > Exit) 389 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 390 if (++Range == 0) return; // Range overflows. 391 } 392 393 unsigned Leftover = Range % uint32_t(IncValue); 394 395 // If this is an equality comparison, we require that the strided value 396 // exactly land on the exit value, otherwise the IV condition will wrap 397 // around and do things the fp IV wouldn't. 398 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 399 Leftover != 0) 400 return; 401 402 // If the stride would wrap around the i32 before exiting, we can't 403 // transform the IV. 404 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 405 return; 406 } else { 407 // If we have a negative stride, we require the init to be greater than the 408 // exit value. 409 if (InitValue <= ExitValue) 410 return; 411 412 uint32_t Range = uint32_t(InitValue-ExitValue); 413 // Check for infinite loop, either: 414 // while (i >= Exit) or until (i < Exit) 415 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 416 if (++Range == 0) return; // Range overflows. 417 } 418 419 unsigned Leftover = Range % uint32_t(-IncValue); 420 421 // If this is an equality comparison, we require that the strided value 422 // exactly land on the exit value, otherwise the IV condition will wrap 423 // around and do things the fp IV wouldn't. 424 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 425 Leftover != 0) 426 return; 427 428 // If the stride would wrap around the i32 before exiting, we can't 429 // transform the IV. 430 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 431 return; 432 } 433 434 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 435 436 // Insert new integer induction variable. 437 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 438 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 439 PN->getIncomingBlock(IncomingEdge)); 440 441 Value *NewAdd = 442 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 443 Incr->getName()+".int", Incr); 444 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 445 446 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 447 ConstantInt::get(Int32Ty, ExitValue), 448 Compare->getName()); 449 450 // In the following deletions, PN may become dead and may be deleted. 451 // Use a WeakTrackingVH to observe whether this happens. 452 WeakTrackingVH WeakPH = PN; 453 454 // Delete the old floating point exit comparison. The branch starts using the 455 // new comparison. 456 NewCompare->takeName(Compare); 457 Compare->replaceAllUsesWith(NewCompare); 458 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 459 460 // Delete the old floating point increment. 461 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 462 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 463 464 // If the FP induction variable still has uses, this is because something else 465 // in the loop uses its value. In order to canonicalize the induction 466 // variable, we chose to eliminate the IV and rewrite it in terms of an 467 // int->fp cast. 468 // 469 // We give preference to sitofp over uitofp because it is faster on most 470 // platforms. 471 if (WeakPH) { 472 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 473 &*PN->getParent()->getFirstInsertionPt()); 474 PN->replaceAllUsesWith(Conv); 475 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 476 } 477 Changed = true; 478 } 479 480 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 481 // First step. Check to see if there are any floating-point recurrences. 482 // If there are, change them into integer recurrences, permitting analysis by 483 // the SCEV routines. 484 BasicBlock *Header = L->getHeader(); 485 486 SmallVector<WeakTrackingVH, 8> PHIs; 487 for (PHINode &PN : Header->phis()) 488 PHIs.push_back(&PN); 489 490 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 491 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 492 handleFloatingPointIV(L, PN); 493 494 // If the loop previously had floating-point IV, ScalarEvolution 495 // may not have been able to compute a trip count. Now that we've done some 496 // re-writing, the trip count may be computable. 497 if (Changed) 498 SE->forgetLoop(L); 499 } 500 501 namespace { 502 503 // Collect information about PHI nodes which can be transformed in 504 // rewriteLoopExitValues. 505 struct RewritePhi { 506 PHINode *PN; 507 508 // Ith incoming value. 509 unsigned Ith; 510 511 // Exit value after expansion. 512 Value *Val; 513 514 // High Cost when expansion. 515 bool HighCost; 516 517 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 518 : PN(P), Ith(I), Val(V), HighCost(H) {} 519 }; 520 521 } // end anonymous namespace 522 523 //===----------------------------------------------------------------------===// 524 // rewriteLoopExitValues - Optimize IV users outside the loop. 525 // As a side effect, reduces the amount of IV processing within the loop. 526 //===----------------------------------------------------------------------===// 527 528 /// Check to see if this loop has a computable loop-invariant execution count. 529 /// If so, this means that we can compute the final value of any expressions 530 /// that are recurrent in the loop, and substitute the exit values from the loop 531 /// into any instructions outside of the loop that use the final values of the 532 /// current expressions. 533 /// 534 /// This is mostly redundant with the regular IndVarSimplify activities that 535 /// happen later, except that it's more powerful in some cases, because it's 536 /// able to brute-force evaluate arbitrary instructions as long as they have 537 /// constant operands at the beginning of the loop. 538 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 539 // Check a pre-condition. 540 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 541 "Indvars did not preserve LCSSA!"); 542 543 SmallVector<BasicBlock*, 8> ExitBlocks; 544 L->getUniqueExitBlocks(ExitBlocks); 545 546 SmallVector<RewritePhi, 8> RewritePhiSet; 547 // Find all values that are computed inside the loop, but used outside of it. 548 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 549 // the exit blocks of the loop to find them. 550 for (BasicBlock *ExitBB : ExitBlocks) { 551 // If there are no PHI nodes in this exit block, then no values defined 552 // inside the loop are used on this path, skip it. 553 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 554 if (!PN) continue; 555 556 unsigned NumPreds = PN->getNumIncomingValues(); 557 558 // Iterate over all of the PHI nodes. 559 BasicBlock::iterator BBI = ExitBB->begin(); 560 while ((PN = dyn_cast<PHINode>(BBI++))) { 561 if (PN->use_empty()) 562 continue; // dead use, don't replace it 563 564 if (!SE->isSCEVable(PN->getType())) 565 continue; 566 567 // It's necessary to tell ScalarEvolution about this explicitly so that 568 // it can walk the def-use list and forget all SCEVs, as it may not be 569 // watching the PHI itself. Once the new exit value is in place, there 570 // may not be a def-use connection between the loop and every instruction 571 // which got a SCEVAddRecExpr for that loop. 572 SE->forgetValue(PN); 573 574 // Iterate over all of the values in all the PHI nodes. 575 for (unsigned i = 0; i != NumPreds; ++i) { 576 // If the value being merged in is not integer or is not defined 577 // in the loop, skip it. 578 Value *InVal = PN->getIncomingValue(i); 579 if (!isa<Instruction>(InVal)) 580 continue; 581 582 // If this pred is for a subloop, not L itself, skip it. 583 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 584 continue; // The Block is in a subloop, skip it. 585 586 // Check that InVal is defined in the loop. 587 Instruction *Inst = cast<Instruction>(InVal); 588 if (!L->contains(Inst)) 589 continue; 590 591 // Okay, this instruction has a user outside of the current loop 592 // and varies predictably *inside* the loop. Evaluate the value it 593 // contains when the loop exits, if possible. 594 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 595 if (!SE->isLoopInvariant(ExitValue, L) || 596 !isSafeToExpand(ExitValue, *SE)) 597 continue; 598 599 // Computing the value outside of the loop brings no benefit if : 600 // - it is definitely used inside the loop in a way which can not be 601 // optimized away. 602 // - no use outside of the loop can take advantage of hoisting the 603 // computation out of the loop 604 if (ExitValue->getSCEVType()>=scMulExpr) { 605 unsigned NumHardInternalUses = 0; 606 unsigned NumSoftExternalUses = 0; 607 unsigned NumUses = 0; 608 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 609 IB != IE && NumUses <= 6; ++IB) { 610 Instruction *UseInstr = cast<Instruction>(*IB); 611 unsigned Opc = UseInstr->getOpcode(); 612 NumUses++; 613 if (L->contains(UseInstr)) { 614 if (Opc == Instruction::Call) 615 NumHardInternalUses++; 616 } else { 617 if (Opc == Instruction::PHI) { 618 // Do not count the Phi as a use. LCSSA may have inserted 619 // plenty of trivial ones. 620 NumUses--; 621 for (auto PB = UseInstr->user_begin(), 622 PE = UseInstr->user_end(); 623 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 624 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 625 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 626 NumSoftExternalUses++; 627 } 628 continue; 629 } 630 if (Opc != Instruction::Call && Opc != Instruction::Ret) 631 NumSoftExternalUses++; 632 } 633 } 634 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 635 continue; 636 } 637 638 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 639 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 640 641 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 642 << '\n' 643 << " LoopVal = " << *Inst << "\n"); 644 645 assert(isValidRewrite(Inst, ExitVal) && "Must be!"); 646 647 #ifndef NDEBUG 648 // If we reuse an instruction from a loop which is neither L nor one of 649 // its containing loops, we end up breaking LCSSA form for this loop by 650 // creating a new use of its instruction. 651 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 652 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 653 if (EVL != L) 654 assert(EVL->contains(L) && "LCSSA breach detected!"); 655 #endif 656 657 // Collect all the candidate PHINodes to be rewritten. 658 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 659 } 660 } 661 } 662 663 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 664 665 // Transformation. 666 for (const RewritePhi &Phi : RewritePhiSet) { 667 PHINode *PN = Phi.PN; 668 Value *ExitVal = Phi.Val; 669 670 // Only do the rewrite when the ExitValue can be expanded cheaply. 671 // If LoopCanBeDel is true, rewrite exit value aggressively. 672 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 673 DeadInsts.push_back(ExitVal); 674 continue; 675 } 676 677 Changed = true; 678 ++NumReplaced; 679 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 680 PN->setIncomingValue(Phi.Ith, ExitVal); 681 682 // If this instruction is dead now, delete it. Don't do it now to avoid 683 // invalidating iterators. 684 if (isInstructionTriviallyDead(Inst, TLI)) 685 DeadInsts.push_back(Inst); 686 687 // Replace PN with ExitVal if that is legal and does not break LCSSA. 688 if (PN->getNumIncomingValues() == 1 && 689 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 690 PN->replaceAllUsesWith(ExitVal); 691 PN->eraseFromParent(); 692 } 693 } 694 695 // The insertion point instruction may have been deleted; clear it out 696 // so that the rewriter doesn't trip over it later. 697 Rewriter.clearInsertPoint(); 698 } 699 700 //===---------------------------------------------------------------------===// 701 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 702 // they will exit at the first iteration. 703 //===---------------------------------------------------------------------===// 704 705 /// Check to see if this loop has loop invariant conditions which lead to loop 706 /// exits. If so, we know that if the exit path is taken, it is at the first 707 /// loop iteration. This lets us predict exit values of PHI nodes that live in 708 /// loop header. 709 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 710 // Verify the input to the pass is already in LCSSA form. 711 assert(L->isLCSSAForm(*DT)); 712 713 SmallVector<BasicBlock *, 8> ExitBlocks; 714 L->getUniqueExitBlocks(ExitBlocks); 715 auto *LoopHeader = L->getHeader(); 716 assert(LoopHeader && "Invalid loop"); 717 718 for (auto *ExitBB : ExitBlocks) { 719 // If there are no more PHI nodes in this exit block, then no more 720 // values defined inside the loop are used on this path. 721 for (PHINode &PN : ExitBB->phis()) { 722 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 723 IncomingValIdx != E; ++IncomingValIdx) { 724 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 725 726 // We currently only support loop exits from loop header. If the 727 // incoming block is not loop header, we need to recursively check 728 // all conditions starting from loop header are loop invariants. 729 // Additional support might be added in the future. 730 if (IncomingBB != LoopHeader) 731 continue; 732 733 // Get condition that leads to the exit path. 734 auto *TermInst = IncomingBB->getTerminator(); 735 736 Value *Cond = nullptr; 737 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 738 // Must be a conditional branch, otherwise the block 739 // should not be in the loop. 740 Cond = BI->getCondition(); 741 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 742 Cond = SI->getCondition(); 743 else 744 continue; 745 746 if (!L->isLoopInvariant(Cond)) 747 continue; 748 749 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 750 751 // Only deal with PHIs. 752 if (!ExitVal) 753 continue; 754 755 // If ExitVal is a PHI on the loop header, then we know its 756 // value along this exit because the exit can only be taken 757 // on the first iteration. 758 auto *LoopPreheader = L->getLoopPreheader(); 759 assert(LoopPreheader && "Invalid loop"); 760 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 761 if (PreheaderIdx != -1) { 762 assert(ExitVal->getParent() == LoopHeader && 763 "ExitVal must be in loop header"); 764 PN.setIncomingValue(IncomingValIdx, 765 ExitVal->getIncomingValue(PreheaderIdx)); 766 } 767 } 768 } 769 } 770 } 771 772 /// Check whether it is possible to delete the loop after rewriting exit 773 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 774 /// aggressively. 775 bool IndVarSimplify::canLoopBeDeleted( 776 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 777 BasicBlock *Preheader = L->getLoopPreheader(); 778 // If there is no preheader, the loop will not be deleted. 779 if (!Preheader) 780 return false; 781 782 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 783 // We obviate multiple ExitingBlocks case for simplicity. 784 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 785 // after exit value rewriting, we can enhance the logic here. 786 SmallVector<BasicBlock *, 4> ExitingBlocks; 787 L->getExitingBlocks(ExitingBlocks); 788 SmallVector<BasicBlock *, 8> ExitBlocks; 789 L->getUniqueExitBlocks(ExitBlocks); 790 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 791 return false; 792 793 BasicBlock *ExitBlock = ExitBlocks[0]; 794 BasicBlock::iterator BI = ExitBlock->begin(); 795 while (PHINode *P = dyn_cast<PHINode>(BI)) { 796 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 797 798 // If the Incoming value of P is found in RewritePhiSet, we know it 799 // could be rewritten to use a loop invariant value in transformation 800 // phase later. Skip it in the loop invariant check below. 801 bool found = false; 802 for (const RewritePhi &Phi : RewritePhiSet) { 803 unsigned i = Phi.Ith; 804 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 805 found = true; 806 break; 807 } 808 } 809 810 Instruction *I; 811 if (!found && (I = dyn_cast<Instruction>(Incoming))) 812 if (!L->hasLoopInvariantOperands(I)) 813 return false; 814 815 ++BI; 816 } 817 818 for (auto *BB : L->blocks()) 819 if (llvm::any_of(*BB, [](Instruction &I) { 820 return I.mayHaveSideEffects(); 821 })) 822 return false; 823 824 return true; 825 } 826 827 //===----------------------------------------------------------------------===// 828 // IV Widening - Extend the width of an IV to cover its widest uses. 829 //===----------------------------------------------------------------------===// 830 831 namespace { 832 833 // Collect information about induction variables that are used by sign/zero 834 // extend operations. This information is recorded by CollectExtend and provides 835 // the input to WidenIV. 836 struct WideIVInfo { 837 PHINode *NarrowIV = nullptr; 838 839 // Widest integer type created [sz]ext 840 Type *WidestNativeType = nullptr; 841 842 // Was a sext user seen before a zext? 843 bool IsSigned = false; 844 }; 845 846 } // end anonymous namespace 847 848 /// Update information about the induction variable that is extended by this 849 /// sign or zero extend operation. This is used to determine the final width of 850 /// the IV before actually widening it. 851 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 852 const TargetTransformInfo *TTI) { 853 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 854 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 855 return; 856 857 Type *Ty = Cast->getType(); 858 uint64_t Width = SE->getTypeSizeInBits(Ty); 859 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 860 return; 861 862 // Check that `Cast` actually extends the induction variable (we rely on this 863 // later). This takes care of cases where `Cast` is extending a truncation of 864 // the narrow induction variable, and thus can end up being narrower than the 865 // "narrow" induction variable. 866 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 867 if (NarrowIVWidth >= Width) 868 return; 869 870 // Cast is either an sext or zext up to this point. 871 // We should not widen an indvar if arithmetics on the wider indvar are more 872 // expensive than those on the narrower indvar. We check only the cost of ADD 873 // because at least an ADD is required to increment the induction variable. We 874 // could compute more comprehensively the cost of all instructions on the 875 // induction variable when necessary. 876 if (TTI && 877 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 878 TTI->getArithmeticInstrCost(Instruction::Add, 879 Cast->getOperand(0)->getType())) { 880 return; 881 } 882 883 if (!WI.WidestNativeType) { 884 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 885 WI.IsSigned = IsSigned; 886 return; 887 } 888 889 // We extend the IV to satisfy the sign of its first user, arbitrarily. 890 if (WI.IsSigned != IsSigned) 891 return; 892 893 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 894 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 895 } 896 897 namespace { 898 899 /// Record a link in the Narrow IV def-use chain along with the WideIV that 900 /// computes the same value as the Narrow IV def. This avoids caching Use* 901 /// pointers. 902 struct NarrowIVDefUse { 903 Instruction *NarrowDef = nullptr; 904 Instruction *NarrowUse = nullptr; 905 Instruction *WideDef = nullptr; 906 907 // True if the narrow def is never negative. Tracking this information lets 908 // us use a sign extension instead of a zero extension or vice versa, when 909 // profitable and legal. 910 bool NeverNegative = false; 911 912 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 913 bool NeverNegative) 914 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 915 NeverNegative(NeverNegative) {} 916 }; 917 918 /// The goal of this transform is to remove sign and zero extends without 919 /// creating any new induction variables. To do this, it creates a new phi of 920 /// the wider type and redirects all users, either removing extends or inserting 921 /// truncs whenever we stop propagating the type. 922 class WidenIV { 923 // Parameters 924 PHINode *OrigPhi; 925 Type *WideType; 926 927 // Context 928 LoopInfo *LI; 929 Loop *L; 930 ScalarEvolution *SE; 931 DominatorTree *DT; 932 933 // Does the module have any calls to the llvm.experimental.guard intrinsic 934 // at all? If not we can avoid scanning instructions looking for guards. 935 bool HasGuards; 936 937 // Result 938 PHINode *WidePhi = nullptr; 939 Instruction *WideInc = nullptr; 940 const SCEV *WideIncExpr = nullptr; 941 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 942 943 SmallPtrSet<Instruction *,16> Widened; 944 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 945 946 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 947 948 // A map tracking the kind of extension used to widen each narrow IV 949 // and narrow IV user. 950 // Key: pointer to a narrow IV or IV user. 951 // Value: the kind of extension used to widen this Instruction. 952 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 953 954 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 955 956 // A map with control-dependent ranges for post increment IV uses. The key is 957 // a pair of IV def and a use of this def denoting the context. The value is 958 // a ConstantRange representing possible values of the def at the given 959 // context. 960 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 961 962 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 963 Instruction *UseI) { 964 DefUserPair Key(Def, UseI); 965 auto It = PostIncRangeInfos.find(Key); 966 return It == PostIncRangeInfos.end() 967 ? Optional<ConstantRange>(None) 968 : Optional<ConstantRange>(It->second); 969 } 970 971 void calculatePostIncRanges(PHINode *OrigPhi); 972 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 973 974 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 975 DefUserPair Key(Def, UseI); 976 auto It = PostIncRangeInfos.find(Key); 977 if (It == PostIncRangeInfos.end()) 978 PostIncRangeInfos.insert({Key, R}); 979 else 980 It->second = R.intersectWith(It->second); 981 } 982 983 public: 984 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 985 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 986 bool HasGuards) 987 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 988 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 989 HasGuards(HasGuards), DeadInsts(DI) { 990 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 991 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 992 } 993 994 PHINode *createWideIV(SCEVExpander &Rewriter); 995 996 protected: 997 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 998 Instruction *Use); 999 1000 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1001 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1002 const SCEVAddRecExpr *WideAR); 1003 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1004 1005 ExtendKind getExtendKind(Instruction *I); 1006 1007 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1008 1009 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1010 1011 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1012 1013 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1014 unsigned OpCode) const; 1015 1016 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1017 1018 bool widenLoopCompare(NarrowIVDefUse DU); 1019 1020 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1021 }; 1022 1023 } // end anonymous namespace 1024 1025 /// Perform a quick domtree based check for loop invariance assuming that V is 1026 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 1027 /// purpose. 1028 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 1029 Instruction *Inst = dyn_cast<Instruction>(V); 1030 if (!Inst) 1031 return true; 1032 1033 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1034 } 1035 1036 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1037 bool IsSigned, Instruction *Use) { 1038 // Set the debug location and conservative insertion point. 1039 IRBuilder<> Builder(Use); 1040 // Hoist the insertion point into loop preheaders as far as possible. 1041 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1042 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1043 L = L->getParentLoop()) 1044 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1045 1046 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1047 Builder.CreateZExt(NarrowOper, WideType); 1048 } 1049 1050 /// Instantiate a wide operation to replace a narrow operation. This only needs 1051 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1052 /// 0 for any operation we decide not to clone. 1053 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1054 const SCEVAddRecExpr *WideAR) { 1055 unsigned Opcode = DU.NarrowUse->getOpcode(); 1056 switch (Opcode) { 1057 default: 1058 return nullptr; 1059 case Instruction::Add: 1060 case Instruction::Mul: 1061 case Instruction::UDiv: 1062 case Instruction::Sub: 1063 return cloneArithmeticIVUser(DU, WideAR); 1064 1065 case Instruction::And: 1066 case Instruction::Or: 1067 case Instruction::Xor: 1068 case Instruction::Shl: 1069 case Instruction::LShr: 1070 case Instruction::AShr: 1071 return cloneBitwiseIVUser(DU); 1072 } 1073 } 1074 1075 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1076 Instruction *NarrowUse = DU.NarrowUse; 1077 Instruction *NarrowDef = DU.NarrowDef; 1078 Instruction *WideDef = DU.WideDef; 1079 1080 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1081 1082 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1083 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1084 // invariant and will be folded or hoisted. If it actually comes from a 1085 // widened IV, it should be removed during a future call to widenIVUse. 1086 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1087 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1088 ? WideDef 1089 : createExtendInst(NarrowUse->getOperand(0), WideType, 1090 IsSigned, NarrowUse); 1091 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1092 ? WideDef 1093 : createExtendInst(NarrowUse->getOperand(1), WideType, 1094 IsSigned, NarrowUse); 1095 1096 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1097 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1098 NarrowBO->getName()); 1099 IRBuilder<> Builder(NarrowUse); 1100 Builder.Insert(WideBO); 1101 WideBO->copyIRFlags(NarrowBO); 1102 return WideBO; 1103 } 1104 1105 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1106 const SCEVAddRecExpr *WideAR) { 1107 Instruction *NarrowUse = DU.NarrowUse; 1108 Instruction *NarrowDef = DU.NarrowDef; 1109 Instruction *WideDef = DU.WideDef; 1110 1111 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1112 1113 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1114 1115 // We're trying to find X such that 1116 // 1117 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1118 // 1119 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1120 // and check using SCEV if any of them are correct. 1121 1122 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1123 // correct solution to X. 1124 auto GuessNonIVOperand = [&](bool SignExt) { 1125 const SCEV *WideLHS; 1126 const SCEV *WideRHS; 1127 1128 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1129 if (SignExt) 1130 return SE->getSignExtendExpr(S, Ty); 1131 return SE->getZeroExtendExpr(S, Ty); 1132 }; 1133 1134 if (IVOpIdx == 0) { 1135 WideLHS = SE->getSCEV(WideDef); 1136 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1137 WideRHS = GetExtend(NarrowRHS, WideType); 1138 } else { 1139 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1140 WideLHS = GetExtend(NarrowLHS, WideType); 1141 WideRHS = SE->getSCEV(WideDef); 1142 } 1143 1144 // WideUse is "WideDef `op.wide` X" as described in the comment. 1145 const SCEV *WideUse = nullptr; 1146 1147 switch (NarrowUse->getOpcode()) { 1148 default: 1149 llvm_unreachable("No other possibility!"); 1150 1151 case Instruction::Add: 1152 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1153 break; 1154 1155 case Instruction::Mul: 1156 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1157 break; 1158 1159 case Instruction::UDiv: 1160 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1161 break; 1162 1163 case Instruction::Sub: 1164 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1165 break; 1166 } 1167 1168 return WideUse == WideAR; 1169 }; 1170 1171 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1172 if (!GuessNonIVOperand(SignExtend)) { 1173 SignExtend = !SignExtend; 1174 if (!GuessNonIVOperand(SignExtend)) 1175 return nullptr; 1176 } 1177 1178 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1179 ? WideDef 1180 : createExtendInst(NarrowUse->getOperand(0), WideType, 1181 SignExtend, NarrowUse); 1182 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1183 ? WideDef 1184 : createExtendInst(NarrowUse->getOperand(1), WideType, 1185 SignExtend, NarrowUse); 1186 1187 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1188 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1189 NarrowBO->getName()); 1190 1191 IRBuilder<> Builder(NarrowUse); 1192 Builder.Insert(WideBO); 1193 WideBO->copyIRFlags(NarrowBO); 1194 return WideBO; 1195 } 1196 1197 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1198 auto It = ExtendKindMap.find(I); 1199 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1200 return It->second; 1201 } 1202 1203 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1204 unsigned OpCode) const { 1205 if (OpCode == Instruction::Add) 1206 return SE->getAddExpr(LHS, RHS); 1207 if (OpCode == Instruction::Sub) 1208 return SE->getMinusSCEV(LHS, RHS); 1209 if (OpCode == Instruction::Mul) 1210 return SE->getMulExpr(LHS, RHS); 1211 1212 llvm_unreachable("Unsupported opcode."); 1213 } 1214 1215 /// No-wrap operations can transfer sign extension of their result to their 1216 /// operands. Generate the SCEV value for the widened operation without 1217 /// actually modifying the IR yet. If the expression after extending the 1218 /// operands is an AddRec for this loop, return the AddRec and the kind of 1219 /// extension used. 1220 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1221 // Handle the common case of add<nsw/nuw> 1222 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1223 // Only Add/Sub/Mul instructions supported yet. 1224 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1225 OpCode != Instruction::Mul) 1226 return {nullptr, Unknown}; 1227 1228 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1229 // if extending the other will lead to a recurrence. 1230 const unsigned ExtendOperIdx = 1231 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1232 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1233 1234 const SCEV *ExtendOperExpr = nullptr; 1235 const OverflowingBinaryOperator *OBO = 1236 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1237 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1238 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1239 ExtendOperExpr = SE->getSignExtendExpr( 1240 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1241 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1242 ExtendOperExpr = SE->getZeroExtendExpr( 1243 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1244 else 1245 return {nullptr, Unknown}; 1246 1247 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1248 // flags. This instruction may be guarded by control flow that the no-wrap 1249 // behavior depends on. Non-control-equivalent instructions can be mapped to 1250 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1251 // semantics to those operations. 1252 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1253 const SCEV *rhs = ExtendOperExpr; 1254 1255 // Let's swap operands to the initial order for the case of non-commutative 1256 // operations, like SUB. See PR21014. 1257 if (ExtendOperIdx == 0) 1258 std::swap(lhs, rhs); 1259 const SCEVAddRecExpr *AddRec = 1260 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1261 1262 if (!AddRec || AddRec->getLoop() != L) 1263 return {nullptr, Unknown}; 1264 1265 return {AddRec, ExtKind}; 1266 } 1267 1268 /// Is this instruction potentially interesting for further simplification after 1269 /// widening it's type? In other words, can the extend be safely hoisted out of 1270 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1271 /// so, return the extended recurrence and the kind of extension used. Otherwise 1272 /// return {nullptr, Unknown}. 1273 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1274 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1275 return {nullptr, Unknown}; 1276 1277 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1278 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1279 SE->getTypeSizeInBits(WideType)) { 1280 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1281 // index. So don't follow this use. 1282 return {nullptr, Unknown}; 1283 } 1284 1285 const SCEV *WideExpr; 1286 ExtendKind ExtKind; 1287 if (DU.NeverNegative) { 1288 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1289 if (isa<SCEVAddRecExpr>(WideExpr)) 1290 ExtKind = SignExtended; 1291 else { 1292 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1293 ExtKind = ZeroExtended; 1294 } 1295 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1296 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1297 ExtKind = SignExtended; 1298 } else { 1299 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1300 ExtKind = ZeroExtended; 1301 } 1302 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1303 if (!AddRec || AddRec->getLoop() != L) 1304 return {nullptr, Unknown}; 1305 return {AddRec, ExtKind}; 1306 } 1307 1308 /// This IV user cannot be widen. Replace this use of the original narrow IV 1309 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1310 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1311 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1312 << *DU.NarrowUse << "\n"); 1313 IRBuilder<> Builder( 1314 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1315 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1316 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1317 } 1318 1319 /// If the narrow use is a compare instruction, then widen the compare 1320 // (and possibly the other operand). The extend operation is hoisted into the 1321 // loop preheader as far as possible. 1322 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1323 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1324 if (!Cmp) 1325 return false; 1326 1327 // We can legally widen the comparison in the following two cases: 1328 // 1329 // - The signedness of the IV extension and comparison match 1330 // 1331 // - The narrow IV is always positive (and thus its sign extension is equal 1332 // to its zero extension). For instance, let's say we're zero extending 1333 // %narrow for the following use 1334 // 1335 // icmp slt i32 %narrow, %val ... (A) 1336 // 1337 // and %narrow is always positive. Then 1338 // 1339 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1340 // == icmp slt i32 zext(%narrow), sext(%val) 1341 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1342 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1343 return false; 1344 1345 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1346 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1347 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1348 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1349 1350 // Widen the compare instruction. 1351 IRBuilder<> Builder( 1352 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1353 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1354 1355 // Widen the other operand of the compare, if necessary. 1356 if (CastWidth < IVWidth) { 1357 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1358 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1359 } 1360 return true; 1361 } 1362 1363 /// Determine whether an individual user of the narrow IV can be widened. If so, 1364 /// return the wide clone of the user. 1365 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1366 assert(ExtendKindMap.count(DU.NarrowDef) && 1367 "Should already know the kind of extension used to widen NarrowDef"); 1368 1369 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1370 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1371 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1372 // For LCSSA phis, sink the truncate outside the loop. 1373 // After SimplifyCFG most loop exit targets have a single predecessor. 1374 // Otherwise fall back to a truncate within the loop. 1375 if (UsePhi->getNumOperands() != 1) 1376 truncateIVUse(DU, DT, LI); 1377 else { 1378 // Widening the PHI requires us to insert a trunc. The logical place 1379 // for this trunc is in the same BB as the PHI. This is not possible if 1380 // the BB is terminated by a catchswitch. 1381 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1382 return nullptr; 1383 1384 PHINode *WidePhi = 1385 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1386 UsePhi); 1387 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1388 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1389 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1390 UsePhi->replaceAllUsesWith(Trunc); 1391 DeadInsts.emplace_back(UsePhi); 1392 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1393 << *WidePhi << "\n"); 1394 } 1395 return nullptr; 1396 } 1397 } 1398 1399 // This narrow use can be widened by a sext if it's non-negative or its narrow 1400 // def was widended by a sext. Same for zext. 1401 auto canWidenBySExt = [&]() { 1402 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1403 }; 1404 auto canWidenByZExt = [&]() { 1405 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1406 }; 1407 1408 // Our raison d'etre! Eliminate sign and zero extension. 1409 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1410 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1411 Value *NewDef = DU.WideDef; 1412 if (DU.NarrowUse->getType() != WideType) { 1413 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1414 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1415 if (CastWidth < IVWidth) { 1416 // The cast isn't as wide as the IV, so insert a Trunc. 1417 IRBuilder<> Builder(DU.NarrowUse); 1418 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1419 } 1420 else { 1421 // A wider extend was hidden behind a narrower one. This may induce 1422 // another round of IV widening in which the intermediate IV becomes 1423 // dead. It should be very rare. 1424 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1425 << " not wide enough to subsume " << *DU.NarrowUse 1426 << "\n"); 1427 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1428 NewDef = DU.NarrowUse; 1429 } 1430 } 1431 if (NewDef != DU.NarrowUse) { 1432 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1433 << " replaced by " << *DU.WideDef << "\n"); 1434 ++NumElimExt; 1435 DU.NarrowUse->replaceAllUsesWith(NewDef); 1436 DeadInsts.emplace_back(DU.NarrowUse); 1437 } 1438 // Now that the extend is gone, we want to expose it's uses for potential 1439 // further simplification. We don't need to directly inform SimplifyIVUsers 1440 // of the new users, because their parent IV will be processed later as a 1441 // new loop phi. If we preserved IVUsers analysis, we would also want to 1442 // push the uses of WideDef here. 1443 1444 // No further widening is needed. The deceased [sz]ext had done it for us. 1445 return nullptr; 1446 } 1447 1448 // Does this user itself evaluate to a recurrence after widening? 1449 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1450 if (!WideAddRec.first) 1451 WideAddRec = getWideRecurrence(DU); 1452 1453 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1454 if (!WideAddRec.first) { 1455 // If use is a loop condition, try to promote the condition instead of 1456 // truncating the IV first. 1457 if (widenLoopCompare(DU)) 1458 return nullptr; 1459 1460 // This user does not evaluate to a recurrence after widening, so don't 1461 // follow it. Instead insert a Trunc to kill off the original use, 1462 // eventually isolating the original narrow IV so it can be removed. 1463 truncateIVUse(DU, DT, LI); 1464 return nullptr; 1465 } 1466 // Assume block terminators cannot evaluate to a recurrence. We can't to 1467 // insert a Trunc after a terminator if there happens to be a critical edge. 1468 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1469 "SCEV is not expected to evaluate a block terminator"); 1470 1471 // Reuse the IV increment that SCEVExpander created as long as it dominates 1472 // NarrowUse. 1473 Instruction *WideUse = nullptr; 1474 if (WideAddRec.first == WideIncExpr && 1475 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1476 WideUse = WideInc; 1477 else { 1478 WideUse = cloneIVUser(DU, WideAddRec.first); 1479 if (!WideUse) 1480 return nullptr; 1481 } 1482 // Evaluation of WideAddRec ensured that the narrow expression could be 1483 // extended outside the loop without overflow. This suggests that the wide use 1484 // evaluates to the same expression as the extended narrow use, but doesn't 1485 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1486 // where it fails, we simply throw away the newly created wide use. 1487 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1488 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1489 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1490 << "\n"); 1491 DeadInsts.emplace_back(WideUse); 1492 return nullptr; 1493 } 1494 1495 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1496 // Returning WideUse pushes it on the worklist. 1497 return WideUse; 1498 } 1499 1500 /// Add eligible users of NarrowDef to NarrowIVUsers. 1501 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1502 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1503 bool NonNegativeDef = 1504 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1505 SE->getConstant(NarrowSCEV->getType(), 0)); 1506 for (User *U : NarrowDef->users()) { 1507 Instruction *NarrowUser = cast<Instruction>(U); 1508 1509 // Handle data flow merges and bizarre phi cycles. 1510 if (!Widened.insert(NarrowUser).second) 1511 continue; 1512 1513 bool NonNegativeUse = false; 1514 if (!NonNegativeDef) { 1515 // We might have a control-dependent range information for this context. 1516 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1517 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1518 } 1519 1520 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1521 NonNegativeDef || NonNegativeUse); 1522 } 1523 } 1524 1525 /// Process a single induction variable. First use the SCEVExpander to create a 1526 /// wide induction variable that evaluates to the same recurrence as the 1527 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1528 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1529 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1530 /// 1531 /// It would be simpler to delete uses as they are processed, but we must avoid 1532 /// invalidating SCEV expressions. 1533 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1534 // Is this phi an induction variable? 1535 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1536 if (!AddRec) 1537 return nullptr; 1538 1539 // Widen the induction variable expression. 1540 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1541 ? SE->getSignExtendExpr(AddRec, WideType) 1542 : SE->getZeroExtendExpr(AddRec, WideType); 1543 1544 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1545 "Expect the new IV expression to preserve its type"); 1546 1547 // Can the IV be extended outside the loop without overflow? 1548 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1549 if (!AddRec || AddRec->getLoop() != L) 1550 return nullptr; 1551 1552 // An AddRec must have loop-invariant operands. Since this AddRec is 1553 // materialized by a loop header phi, the expression cannot have any post-loop 1554 // operands, so they must dominate the loop header. 1555 assert( 1556 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1557 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1558 "Loop header phi recurrence inputs do not dominate the loop"); 1559 1560 // Iterate over IV uses (including transitive ones) looking for IV increments 1561 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1562 // the increment calculate control-dependent range information basing on 1563 // dominating conditions inside of the loop (e.g. a range check inside of the 1564 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1565 // 1566 // Control-dependent range information is later used to prove that a narrow 1567 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1568 // this on demand because when pushNarrowIVUsers needs this information some 1569 // of the dominating conditions might be already widened. 1570 if (UsePostIncrementRanges) 1571 calculatePostIncRanges(OrigPhi); 1572 1573 // The rewriter provides a value for the desired IV expression. This may 1574 // either find an existing phi or materialize a new one. Either way, we 1575 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1576 // of the phi-SCC dominates the loop entry. 1577 Instruction *InsertPt = &L->getHeader()->front(); 1578 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1579 1580 // Remembering the WideIV increment generated by SCEVExpander allows 1581 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1582 // employ a general reuse mechanism because the call above is the only call to 1583 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1584 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1585 WideInc = 1586 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1587 WideIncExpr = SE->getSCEV(WideInc); 1588 // Propagate the debug location associated with the original loop increment 1589 // to the new (widened) increment. 1590 auto *OrigInc = 1591 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1592 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1593 } 1594 1595 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1596 ++NumWidened; 1597 1598 // Traverse the def-use chain using a worklist starting at the original IV. 1599 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1600 1601 Widened.insert(OrigPhi); 1602 pushNarrowIVUsers(OrigPhi, WidePhi); 1603 1604 while (!NarrowIVUsers.empty()) { 1605 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1606 1607 // Process a def-use edge. This may replace the use, so don't hold a 1608 // use_iterator across it. 1609 Instruction *WideUse = widenIVUse(DU, Rewriter); 1610 1611 // Follow all def-use edges from the previous narrow use. 1612 if (WideUse) 1613 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1614 1615 // widenIVUse may have removed the def-use edge. 1616 if (DU.NarrowDef->use_empty()) 1617 DeadInsts.emplace_back(DU.NarrowDef); 1618 } 1619 1620 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1621 // evaluate the same recurrence, we can just copy the debug info over. 1622 SmallVector<DbgValueInst *, 1> DbgValues; 1623 llvm::findDbgValues(DbgValues, OrigPhi); 1624 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1625 ValueAsMetadata::get(WidePhi)); 1626 for (auto &DbgValue : DbgValues) 1627 DbgValue->setOperand(0, MDPhi); 1628 return WidePhi; 1629 } 1630 1631 /// Calculates control-dependent range for the given def at the given context 1632 /// by looking at dominating conditions inside of the loop 1633 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1634 Instruction *NarrowUser) { 1635 using namespace llvm::PatternMatch; 1636 1637 Value *NarrowDefLHS; 1638 const APInt *NarrowDefRHS; 1639 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1640 m_APInt(NarrowDefRHS))) || 1641 !NarrowDefRHS->isNonNegative()) 1642 return; 1643 1644 auto UpdateRangeFromCondition = [&] (Value *Condition, 1645 bool TrueDest) { 1646 CmpInst::Predicate Pred; 1647 Value *CmpRHS; 1648 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1649 m_Value(CmpRHS)))) 1650 return; 1651 1652 CmpInst::Predicate P = 1653 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1654 1655 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1656 auto CmpConstrainedLHSRange = 1657 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1658 auto NarrowDefRange = 1659 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1660 1661 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1662 }; 1663 1664 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1665 if (!HasGuards) 1666 return; 1667 1668 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1669 Ctx->getParent()->rend())) { 1670 Value *C = nullptr; 1671 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1672 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1673 } 1674 }; 1675 1676 UpdateRangeFromGuards(NarrowUser); 1677 1678 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1679 // If NarrowUserBB is statically unreachable asking dominator queries may 1680 // yield surprising results. (e.g. the block may not have a dom tree node) 1681 if (!DT->isReachableFromEntry(NarrowUserBB)) 1682 return; 1683 1684 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1685 L->contains(DTB->getBlock()); 1686 DTB = DTB->getIDom()) { 1687 auto *BB = DTB->getBlock(); 1688 auto *TI = BB->getTerminator(); 1689 UpdateRangeFromGuards(TI); 1690 1691 auto *BI = dyn_cast<BranchInst>(TI); 1692 if (!BI || !BI->isConditional()) 1693 continue; 1694 1695 auto *TrueSuccessor = BI->getSuccessor(0); 1696 auto *FalseSuccessor = BI->getSuccessor(1); 1697 1698 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1699 return BBE.isSingleEdge() && 1700 DT->dominates(BBE, NarrowUser->getParent()); 1701 }; 1702 1703 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1704 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1705 1706 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1707 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1708 } 1709 } 1710 1711 /// Calculates PostIncRangeInfos map for the given IV 1712 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1713 SmallPtrSet<Instruction *, 16> Visited; 1714 SmallVector<Instruction *, 6> Worklist; 1715 Worklist.push_back(OrigPhi); 1716 Visited.insert(OrigPhi); 1717 1718 while (!Worklist.empty()) { 1719 Instruction *NarrowDef = Worklist.pop_back_val(); 1720 1721 for (Use &U : NarrowDef->uses()) { 1722 auto *NarrowUser = cast<Instruction>(U.getUser()); 1723 1724 // Don't go looking outside the current loop. 1725 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1726 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1727 continue; 1728 1729 if (!Visited.insert(NarrowUser).second) 1730 continue; 1731 1732 Worklist.push_back(NarrowUser); 1733 1734 calculatePostIncRange(NarrowDef, NarrowUser); 1735 } 1736 } 1737 } 1738 1739 //===----------------------------------------------------------------------===// 1740 // Live IV Reduction - Minimize IVs live across the loop. 1741 //===----------------------------------------------------------------------===// 1742 1743 //===----------------------------------------------------------------------===// 1744 // Simplification of IV users based on SCEV evaluation. 1745 //===----------------------------------------------------------------------===// 1746 1747 namespace { 1748 1749 class IndVarSimplifyVisitor : public IVVisitor { 1750 ScalarEvolution *SE; 1751 const TargetTransformInfo *TTI; 1752 PHINode *IVPhi; 1753 1754 public: 1755 WideIVInfo WI; 1756 1757 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1758 const TargetTransformInfo *TTI, 1759 const DominatorTree *DTree) 1760 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1761 DT = DTree; 1762 WI.NarrowIV = IVPhi; 1763 } 1764 1765 // Implement the interface used by simplifyUsersOfIV. 1766 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1767 }; 1768 1769 } // end anonymous namespace 1770 1771 /// Iteratively perform simplification on a worklist of IV users. Each 1772 /// successive simplification may push more users which may themselves be 1773 /// candidates for simplification. 1774 /// 1775 /// Sign/Zero extend elimination is interleaved with IV simplification. 1776 void IndVarSimplify::simplifyAndExtend(Loop *L, 1777 SCEVExpander &Rewriter, 1778 LoopInfo *LI) { 1779 SmallVector<WideIVInfo, 8> WideIVs; 1780 1781 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1782 Intrinsic::getName(Intrinsic::experimental_guard)); 1783 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1784 1785 SmallVector<PHINode*, 8> LoopPhis; 1786 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1787 LoopPhis.push_back(cast<PHINode>(I)); 1788 } 1789 // Each round of simplification iterates through the SimplifyIVUsers worklist 1790 // for all current phis, then determines whether any IVs can be 1791 // widened. Widening adds new phis to LoopPhis, inducing another round of 1792 // simplification on the wide IVs. 1793 while (!LoopPhis.empty()) { 1794 // Evaluate as many IV expressions as possible before widening any IVs. This 1795 // forces SCEV to set no-wrap flags before evaluating sign/zero 1796 // extension. The first time SCEV attempts to normalize sign/zero extension, 1797 // the result becomes final. So for the most predictable results, we delay 1798 // evaluation of sign/zero extend evaluation until needed, and avoid running 1799 // other SCEV based analysis prior to simplifyAndExtend. 1800 do { 1801 PHINode *CurrIV = LoopPhis.pop_back_val(); 1802 1803 // Information about sign/zero extensions of CurrIV. 1804 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1805 1806 Changed |= 1807 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1808 1809 if (Visitor.WI.WidestNativeType) { 1810 WideIVs.push_back(Visitor.WI); 1811 } 1812 } while(!LoopPhis.empty()); 1813 1814 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1815 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1816 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1817 Changed = true; 1818 LoopPhis.push_back(WidePhi); 1819 } 1820 } 1821 } 1822 } 1823 1824 //===----------------------------------------------------------------------===// 1825 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1826 //===----------------------------------------------------------------------===// 1827 1828 /// Return true if this loop's backedge taken count expression can be safely and 1829 /// cheaply expanded into an instruction sequence that can be used by 1830 /// linearFunctionTestReplace. 1831 /// 1832 /// TODO: This fails for pointer-type loop counters with greater than one byte 1833 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1834 /// we could skip this check in the case that the LFTR loop counter (chosen by 1835 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1836 /// the loop test to an inequality test by checking the target data's alignment 1837 /// of element types (given that the initial pointer value originates from or is 1838 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1839 /// However, we don't yet have a strong motivation for converting loop tests 1840 /// into inequality tests. 1841 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1842 SCEVExpander &Rewriter) { 1843 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1844 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1845 BackedgeTakenCount->isZero()) 1846 return false; 1847 1848 if (!L->getExitingBlock()) 1849 return false; 1850 1851 // Can't rewrite non-branch yet. 1852 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1853 return false; 1854 1855 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1856 return false; 1857 1858 return true; 1859 } 1860 1861 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1862 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1863 Instruction *IncI = dyn_cast<Instruction>(IncV); 1864 if (!IncI) 1865 return nullptr; 1866 1867 switch (IncI->getOpcode()) { 1868 case Instruction::Add: 1869 case Instruction::Sub: 1870 break; 1871 case Instruction::GetElementPtr: 1872 // An IV counter must preserve its type. 1873 if (IncI->getNumOperands() == 2) 1874 break; 1875 LLVM_FALLTHROUGH; 1876 default: 1877 return nullptr; 1878 } 1879 1880 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1881 if (Phi && Phi->getParent() == L->getHeader()) { 1882 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1883 return Phi; 1884 return nullptr; 1885 } 1886 if (IncI->getOpcode() == Instruction::GetElementPtr) 1887 return nullptr; 1888 1889 // Allow add/sub to be commuted. 1890 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1891 if (Phi && Phi->getParent() == L->getHeader()) { 1892 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1893 return Phi; 1894 } 1895 return nullptr; 1896 } 1897 1898 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1899 static ICmpInst *getLoopTest(Loop *L) { 1900 assert(L->getExitingBlock() && "expected loop exit"); 1901 1902 BasicBlock *LatchBlock = L->getLoopLatch(); 1903 // Don't bother with LFTR if the loop is not properly simplified. 1904 if (!LatchBlock) 1905 return nullptr; 1906 1907 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1908 assert(BI && "expected exit branch"); 1909 1910 return dyn_cast<ICmpInst>(BI->getCondition()); 1911 } 1912 1913 /// linearFunctionTestReplace policy. Return true unless we can show that the 1914 /// current exit test is already sufficiently canonical. 1915 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1916 // Do LFTR to simplify the exit condition to an ICMP. 1917 ICmpInst *Cond = getLoopTest(L); 1918 if (!Cond) 1919 return true; 1920 1921 // Do LFTR to simplify the exit ICMP to EQ/NE 1922 ICmpInst::Predicate Pred = Cond->getPredicate(); 1923 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1924 return true; 1925 1926 // Look for a loop invariant RHS 1927 Value *LHS = Cond->getOperand(0); 1928 Value *RHS = Cond->getOperand(1); 1929 if (!isLoopInvariant(RHS, L, DT)) { 1930 if (!isLoopInvariant(LHS, L, DT)) 1931 return true; 1932 std::swap(LHS, RHS); 1933 } 1934 // Look for a simple IV counter LHS 1935 PHINode *Phi = dyn_cast<PHINode>(LHS); 1936 if (!Phi) 1937 Phi = getLoopPhiForCounter(LHS, L, DT); 1938 1939 if (!Phi) 1940 return true; 1941 1942 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1943 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1944 if (Idx < 0) 1945 return true; 1946 1947 // Do LFTR if the exit condition's IV is *not* a simple counter. 1948 Value *IncV = Phi->getIncomingValue(Idx); 1949 return Phi != getLoopPhiForCounter(IncV, L, DT); 1950 } 1951 1952 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1953 /// down to checking that all operands are constant and listing instructions 1954 /// that may hide undef. 1955 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1956 unsigned Depth) { 1957 if (isa<Constant>(V)) 1958 return !isa<UndefValue>(V); 1959 1960 if (Depth >= 6) 1961 return false; 1962 1963 // Conservatively handle non-constant non-instructions. For example, Arguments 1964 // may be undef. 1965 Instruction *I = dyn_cast<Instruction>(V); 1966 if (!I) 1967 return false; 1968 1969 // Load and return values may be undef. 1970 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1971 return false; 1972 1973 // Optimistically handle other instructions. 1974 for (Value *Op : I->operands()) { 1975 if (!Visited.insert(Op).second) 1976 continue; 1977 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 1978 return false; 1979 } 1980 return true; 1981 } 1982 1983 /// Return true if the given value is concrete. We must prove that undef can 1984 /// never reach it. 1985 /// 1986 /// TODO: If we decide that this is a good approach to checking for undef, we 1987 /// may factor it into a common location. 1988 static bool hasConcreteDef(Value *V) { 1989 SmallPtrSet<Value*, 8> Visited; 1990 Visited.insert(V); 1991 return hasConcreteDefImpl(V, Visited, 0); 1992 } 1993 1994 /// Return true if this IV has any uses other than the (soon to be rewritten) 1995 /// loop exit test. 1996 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1997 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1998 Value *IncV = Phi->getIncomingValue(LatchIdx); 1999 2000 for (User *U : Phi->users()) 2001 if (U != Cond && U != IncV) return false; 2002 2003 for (User *U : IncV->users()) 2004 if (U != Cond && U != Phi) return false; 2005 return true; 2006 } 2007 2008 /// Find an affine IV in canonical form. 2009 /// 2010 /// BECount may be an i8* pointer type. The pointer difference is already 2011 /// valid count without scaling the address stride, so it remains a pointer 2012 /// expression as far as SCEV is concerned. 2013 /// 2014 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 2015 /// 2016 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 2017 /// 2018 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 2019 /// This is difficult in general for SCEV because of potential overflow. But we 2020 /// could at least handle constant BECounts. 2021 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2022 ScalarEvolution *SE, DominatorTree *DT) { 2023 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2024 2025 Value *Cond = 2026 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2027 2028 // Loop over all of the PHI nodes, looking for a simple counter. 2029 PHINode *BestPhi = nullptr; 2030 const SCEV *BestInit = nullptr; 2031 BasicBlock *LatchBlock = L->getLoopLatch(); 2032 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2033 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2034 2035 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2036 PHINode *Phi = cast<PHINode>(I); 2037 if (!SE->isSCEVable(Phi->getType())) 2038 continue; 2039 2040 // Avoid comparing an integer IV against a pointer Limit. 2041 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2042 continue; 2043 2044 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2045 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2046 continue; 2047 2048 // AR may be a pointer type, while BECount is an integer type. 2049 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2050 // AR may not be a narrower type, or we may never exit. 2051 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2052 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2053 continue; 2054 2055 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2056 if (!Step || !Step->isOne()) 2057 continue; 2058 2059 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2060 Value *IncV = Phi->getIncomingValue(LatchIdx); 2061 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2062 continue; 2063 2064 // Avoid reusing a potentially undef value to compute other values that may 2065 // have originally had a concrete definition. 2066 if (!hasConcreteDef(Phi)) { 2067 // We explicitly allow unknown phis as long as they are already used by 2068 // the loop test. In this case we assume that performing LFTR could not 2069 // increase the number of undef users. 2070 if (ICmpInst *Cond = getLoopTest(L)) { 2071 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2072 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2073 continue; 2074 } 2075 } 2076 } 2077 const SCEV *Init = AR->getStart(); 2078 2079 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2080 // Don't force a live loop counter if another IV can be used. 2081 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2082 continue; 2083 2084 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2085 // also prefers integer to pointer IVs. 2086 if (BestInit->isZero() != Init->isZero()) { 2087 if (BestInit->isZero()) 2088 continue; 2089 } 2090 // If two IVs both count from zero or both count from nonzero then the 2091 // narrower is likely a dead phi that has been widened. Use the wider phi 2092 // to allow the other to be eliminated. 2093 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2094 continue; 2095 } 2096 BestPhi = Phi; 2097 BestInit = Init; 2098 } 2099 return BestPhi; 2100 } 2101 2102 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2103 /// the new loop test. 2104 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2105 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2106 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2107 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2108 const SCEV *IVInit = AR->getStart(); 2109 2110 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2111 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2112 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2113 // the existing GEPs whenever possible. 2114 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2115 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2116 // signed value. IVCount on the other hand represents the loop trip count, 2117 // which is an unsigned value. FindLoopCounter only allows induction 2118 // variables that have a positive unit stride of one. This means we don't 2119 // have to handle the case of negative offsets (yet) and just need to zero 2120 // extend IVCount. 2121 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2122 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2123 2124 // Expand the code for the iteration count. 2125 assert(SE->isLoopInvariant(IVOffset, L) && 2126 "Computed iteration count is not loop invariant!"); 2127 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2128 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2129 2130 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2131 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2132 // We could handle pointer IVs other than i8*, but we need to compensate for 2133 // gep index scaling. See canExpandBackedgeTakenCount comments. 2134 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2135 cast<PointerType>(GEPBase->getType()) 2136 ->getElementType())->isOne() && 2137 "unit stride pointer IV must be i8*"); 2138 2139 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2140 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 2141 } else { 2142 // In any other case, convert both IVInit and IVCount to integers before 2143 // comparing. This may result in SCEV expansion of pointers, but in practice 2144 // SCEV will fold the pointer arithmetic away as such: 2145 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2146 // 2147 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2148 // for simple memset-style loops. 2149 // 2150 // IVInit integer and IVCount pointer would only occur if a canonical IV 2151 // were generated on top of case #2, which is not expected. 2152 2153 const SCEV *IVLimit = nullptr; 2154 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2155 // For non-zero Start, compute IVCount here. 2156 if (AR->getStart()->isZero()) 2157 IVLimit = IVCount; 2158 else { 2159 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2160 const SCEV *IVInit = AR->getStart(); 2161 2162 // For integer IVs, truncate the IV before computing IVInit + BECount. 2163 if (SE->getTypeSizeInBits(IVInit->getType()) 2164 > SE->getTypeSizeInBits(IVCount->getType())) 2165 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2166 2167 IVLimit = SE->getAddExpr(IVInit, IVCount); 2168 } 2169 // Expand the code for the iteration count. 2170 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2171 IRBuilder<> Builder(BI); 2172 assert(SE->isLoopInvariant(IVLimit, L) && 2173 "Computed iteration count is not loop invariant!"); 2174 // Ensure that we generate the same type as IndVar, or a smaller integer 2175 // type. In the presence of null pointer values, we have an integer type 2176 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2177 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2178 IndVar->getType() : IVCount->getType(); 2179 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2180 } 2181 } 2182 2183 /// This method rewrites the exit condition of the loop to be a canonical != 2184 /// comparison against the incremented loop induction variable. This pass is 2185 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2186 /// determine a loop-invariant trip count of the loop, which is actually a much 2187 /// broader range than just linear tests. 2188 Value *IndVarSimplify:: 2189 linearFunctionTestReplace(Loop *L, 2190 const SCEV *BackedgeTakenCount, 2191 PHINode *IndVar, 2192 SCEVExpander &Rewriter) { 2193 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2194 2195 // Initialize CmpIndVar and IVCount to their preincremented values. 2196 Value *CmpIndVar = IndVar; 2197 const SCEV *IVCount = BackedgeTakenCount; 2198 2199 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2200 2201 // If the exiting block is the same as the backedge block, we prefer to 2202 // compare against the post-incremented value, otherwise we must compare 2203 // against the preincremented value. 2204 if (L->getExitingBlock() == L->getLoopLatch()) { 2205 // Add one to the "backedge-taken" count to get the trip count. 2206 // This addition may overflow, which is valid as long as the comparison is 2207 // truncated to BackedgeTakenCount->getType(). 2208 IVCount = SE->getAddExpr(BackedgeTakenCount, 2209 SE->getOne(BackedgeTakenCount->getType())); 2210 // The BackedgeTaken expression contains the number of times that the 2211 // backedge branches to the loop header. This is one less than the 2212 // number of times the loop executes, so use the incremented indvar. 2213 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2214 } 2215 2216 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2217 assert(ExitCnt->getType()->isPointerTy() == 2218 IndVar->getType()->isPointerTy() && 2219 "genLoopLimit missed a cast"); 2220 2221 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2222 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2223 ICmpInst::Predicate P; 2224 if (L->contains(BI->getSuccessor(0))) 2225 P = ICmpInst::ICMP_NE; 2226 else 2227 P = ICmpInst::ICMP_EQ; 2228 2229 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2230 << " LHS:" << *CmpIndVar << '\n' 2231 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2232 << "\n" 2233 << " RHS:\t" << *ExitCnt << "\n" 2234 << " IVCount:\t" << *IVCount << "\n"); 2235 2236 IRBuilder<> Builder(BI); 2237 2238 // The new loop exit condition should reuse the debug location of the 2239 // original loop exit condition. 2240 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2241 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2242 2243 // LFTR can ignore IV overflow and truncate to the width of 2244 // BECount. This avoids materializing the add(zext(add)) expression. 2245 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2246 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2247 if (CmpIndVarSize > ExitCntSize) { 2248 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2249 const SCEV *ARStart = AR->getStart(); 2250 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2251 // For constant IVCount, avoid truncation. 2252 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2253 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2254 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2255 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2256 // above such that IVCount is now zero. 2257 if (IVCount != BackedgeTakenCount && Count == 0) { 2258 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2259 ++Count; 2260 } 2261 else 2262 Count = Count.zext(CmpIndVarSize); 2263 APInt NewLimit; 2264 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2265 NewLimit = Start - Count; 2266 else 2267 NewLimit = Start + Count; 2268 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2269 2270 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2271 } else { 2272 // We try to extend trip count first. If that doesn't work we truncate IV. 2273 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2274 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2275 // one of the two holds, extend the trip count, otherwise we truncate IV. 2276 bool Extended = false; 2277 const SCEV *IV = SE->getSCEV(CmpIndVar); 2278 const SCEV *ZExtTrunc = 2279 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2280 ExitCnt->getType()), 2281 CmpIndVar->getType()); 2282 2283 if (ZExtTrunc == IV) { 2284 Extended = true; 2285 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2286 "wide.trip.count"); 2287 } else { 2288 const SCEV *SExtTrunc = 2289 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2290 ExitCnt->getType()), 2291 CmpIndVar->getType()); 2292 if (SExtTrunc == IV) { 2293 Extended = true; 2294 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2295 "wide.trip.count"); 2296 } 2297 } 2298 2299 if (!Extended) 2300 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2301 "lftr.wideiv"); 2302 } 2303 } 2304 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2305 Value *OrigCond = BI->getCondition(); 2306 // It's tempting to use replaceAllUsesWith here to fully replace the old 2307 // comparison, but that's not immediately safe, since users of the old 2308 // comparison may not be dominated by the new comparison. Instead, just 2309 // update the branch to use the new comparison; in the common case this 2310 // will make old comparison dead. 2311 BI->setCondition(Cond); 2312 DeadInsts.push_back(OrigCond); 2313 2314 ++NumLFTR; 2315 Changed = true; 2316 return Cond; 2317 } 2318 2319 //===----------------------------------------------------------------------===// 2320 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2321 //===----------------------------------------------------------------------===// 2322 2323 /// If there's a single exit block, sink any loop-invariant values that 2324 /// were defined in the preheader but not used inside the loop into the 2325 /// exit block to reduce register pressure in the loop. 2326 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2327 BasicBlock *ExitBlock = L->getExitBlock(); 2328 if (!ExitBlock) return; 2329 2330 BasicBlock *Preheader = L->getLoopPreheader(); 2331 if (!Preheader) return; 2332 2333 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2334 BasicBlock::iterator I(Preheader->getTerminator()); 2335 while (I != Preheader->begin()) { 2336 --I; 2337 // New instructions were inserted at the end of the preheader. 2338 if (isa<PHINode>(I)) 2339 break; 2340 2341 // Don't move instructions which might have side effects, since the side 2342 // effects need to complete before instructions inside the loop. Also don't 2343 // move instructions which might read memory, since the loop may modify 2344 // memory. Note that it's okay if the instruction might have undefined 2345 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2346 // block. 2347 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2348 continue; 2349 2350 // Skip debug info intrinsics. 2351 if (isa<DbgInfoIntrinsic>(I)) 2352 continue; 2353 2354 // Skip eh pad instructions. 2355 if (I->isEHPad()) 2356 continue; 2357 2358 // Don't sink alloca: we never want to sink static alloca's out of the 2359 // entry block, and correctly sinking dynamic alloca's requires 2360 // checks for stacksave/stackrestore intrinsics. 2361 // FIXME: Refactor this check somehow? 2362 if (isa<AllocaInst>(I)) 2363 continue; 2364 2365 // Determine if there is a use in or before the loop (direct or 2366 // otherwise). 2367 bool UsedInLoop = false; 2368 for (Use &U : I->uses()) { 2369 Instruction *User = cast<Instruction>(U.getUser()); 2370 BasicBlock *UseBB = User->getParent(); 2371 if (PHINode *P = dyn_cast<PHINode>(User)) { 2372 unsigned i = 2373 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2374 UseBB = P->getIncomingBlock(i); 2375 } 2376 if (UseBB == Preheader || L->contains(UseBB)) { 2377 UsedInLoop = true; 2378 break; 2379 } 2380 } 2381 2382 // If there is, the def must remain in the preheader. 2383 if (UsedInLoop) 2384 continue; 2385 2386 // Otherwise, sink it to the exit block. 2387 Instruction *ToMove = &*I; 2388 bool Done = false; 2389 2390 if (I != Preheader->begin()) { 2391 // Skip debug info intrinsics. 2392 do { 2393 --I; 2394 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2395 2396 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2397 Done = true; 2398 } else { 2399 Done = true; 2400 } 2401 2402 ToMove->moveBefore(*ExitBlock, InsertPt); 2403 if (Done) break; 2404 InsertPt = ToMove->getIterator(); 2405 } 2406 } 2407 2408 //===----------------------------------------------------------------------===// 2409 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2410 //===----------------------------------------------------------------------===// 2411 2412 bool IndVarSimplify::run(Loop *L) { 2413 // We need (and expect!) the incoming loop to be in LCSSA. 2414 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2415 "LCSSA required to run indvars!"); 2416 2417 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2418 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2419 // canonicalization can be a pessimization without LSR to "clean up" 2420 // afterwards. 2421 // - We depend on having a preheader; in particular, 2422 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2423 // and we're in trouble if we can't find the induction variable even when 2424 // we've manually inserted one. 2425 // - LFTR relies on having a single backedge. 2426 if (!L->isLoopSimplifyForm()) 2427 return false; 2428 2429 // If there are any floating-point recurrences, attempt to 2430 // transform them to use integer recurrences. 2431 rewriteNonIntegerIVs(L); 2432 2433 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2434 2435 // Create a rewriter object which we'll use to transform the code with. 2436 SCEVExpander Rewriter(*SE, DL, "indvars"); 2437 #ifndef NDEBUG 2438 Rewriter.setDebugType(DEBUG_TYPE); 2439 #endif 2440 2441 // Eliminate redundant IV users. 2442 // 2443 // Simplification works best when run before other consumers of SCEV. We 2444 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2445 // other expressions involving loop IVs have been evaluated. This helps SCEV 2446 // set no-wrap flags before normalizing sign/zero extension. 2447 Rewriter.disableCanonicalMode(); 2448 simplifyAndExtend(L, Rewriter, LI); 2449 2450 // Check to see if this loop has a computable loop-invariant execution count. 2451 // If so, this means that we can compute the final value of any expressions 2452 // that are recurrent in the loop, and substitute the exit values from the 2453 // loop into any instructions outside of the loop that use the final values of 2454 // the current expressions. 2455 // 2456 if (ReplaceExitValue != NeverRepl && 2457 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2458 rewriteLoopExitValues(L, Rewriter); 2459 2460 // Eliminate redundant IV cycles. 2461 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2462 2463 // If we have a trip count expression, rewrite the loop's exit condition 2464 // using it. We can currently only handle loops with a single exit. 2465 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2466 needsLFTR(L, DT)) { 2467 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2468 if (IndVar) { 2469 // Check preconditions for proper SCEVExpander operation. SCEV does not 2470 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2471 // pass that uses the SCEVExpander must do it. This does not work well for 2472 // loop passes because SCEVExpander makes assumptions about all loops, 2473 // while LoopPassManager only forces the current loop to be simplified. 2474 // 2475 // FIXME: SCEV expansion has no way to bail out, so the caller must 2476 // explicitly check any assumptions made by SCEV. Brittle. 2477 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2478 if (!AR || AR->getLoop()->getLoopPreheader()) 2479 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2480 Rewriter); 2481 } 2482 } 2483 // Clear the rewriter cache, because values that are in the rewriter's cache 2484 // can be deleted in the loop below, causing the AssertingVH in the cache to 2485 // trigger. 2486 Rewriter.clear(); 2487 2488 // Now that we're done iterating through lists, clean up any instructions 2489 // which are now dead. 2490 while (!DeadInsts.empty()) 2491 if (Instruction *Inst = 2492 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2493 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2494 2495 // The Rewriter may not be used from this point on. 2496 2497 // Loop-invariant instructions in the preheader that aren't used in the 2498 // loop may be sunk below the loop to reduce register pressure. 2499 sinkUnusedInvariants(L); 2500 2501 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2502 // trip count and therefore can further simplify exit values in addition to 2503 // rewriteLoopExitValues. 2504 rewriteFirstIterationLoopExitValues(L); 2505 2506 // Clean up dead instructions. 2507 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2508 2509 // Check a post-condition. 2510 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2511 "Indvars did not preserve LCSSA!"); 2512 2513 // Verify that LFTR, and any other change have not interfered with SCEV's 2514 // ability to compute trip count. 2515 #ifndef NDEBUG 2516 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2517 SE->forgetLoop(L); 2518 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2519 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2520 SE->getTypeSizeInBits(NewBECount->getType())) 2521 NewBECount = SE->getTruncateOrNoop(NewBECount, 2522 BackedgeTakenCount->getType()); 2523 else 2524 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2525 NewBECount->getType()); 2526 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2527 } 2528 #endif 2529 2530 return Changed; 2531 } 2532 2533 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2534 LoopStandardAnalysisResults &AR, 2535 LPMUpdater &) { 2536 Function *F = L.getHeader()->getParent(); 2537 const DataLayout &DL = F->getParent()->getDataLayout(); 2538 2539 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2540 if (!IVS.run(&L)) 2541 return PreservedAnalyses::all(); 2542 2543 auto PA = getLoopPassPreservedAnalyses(); 2544 PA.preserveSet<CFGAnalyses>(); 2545 return PA; 2546 } 2547 2548 namespace { 2549 2550 struct IndVarSimplifyLegacyPass : public LoopPass { 2551 static char ID; // Pass identification, replacement for typeid 2552 2553 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2554 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2555 } 2556 2557 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2558 if (skipLoop(L)) 2559 return false; 2560 2561 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2562 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2563 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2564 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2565 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2566 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2567 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2568 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2569 2570 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2571 return IVS.run(L); 2572 } 2573 2574 void getAnalysisUsage(AnalysisUsage &AU) const override { 2575 AU.setPreservesCFG(); 2576 getLoopAnalysisUsage(AU); 2577 } 2578 }; 2579 2580 } // end anonymous namespace 2581 2582 char IndVarSimplifyLegacyPass::ID = 0; 2583 2584 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2585 "Induction Variable Simplification", false, false) 2586 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2587 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2588 "Induction Variable Simplification", false, false) 2589 2590 Pass *llvm::createIndVarSimplifyPass() { 2591 return new IndVarSimplifyLegacyPass(); 2592 } 2593