xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 4c80281c96291abcd7bb734dab114f8eeecd38bb)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallSet.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/ScalarEvolutionExpander.h"
43 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/Analysis/ValueTracking.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/ConstantRange.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/PassManager.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Scalar.h"
80 #include "llvm/Transforms/Scalar/LoopPassManager.h"
81 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
82 #include "llvm/Transforms/Utils/LoopUtils.h"
83 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
84 #include <cassert>
85 #include <cstdint>
86 #include <utility>
87 
88 using namespace llvm;
89 
90 #define DEBUG_TYPE "indvars"
91 
92 STATISTIC(NumWidened     , "Number of indvars widened");
93 STATISTIC(NumReplaced    , "Number of exit values replaced");
94 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
95 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
96 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
97 
98 // Trip count verification can be enabled by default under NDEBUG if we
99 // implement a strong expression equivalence checker in SCEV. Until then, we
100 // use the verify-indvars flag, which may assert in some cases.
101 static cl::opt<bool> VerifyIndvars(
102   "verify-indvars", cl::Hidden,
103   cl::desc("Verify the ScalarEvolution result after running indvars"));
104 
105 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, NoHardUse, AlwaysRepl };
106 
107 static cl::opt<ReplaceExitVal> ReplaceExitValue(
108     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
109     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
110     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
111                clEnumValN(OnlyCheapRepl, "cheap",
112                           "only replace exit value when the cost is cheap"),
113                clEnumValN(NoHardUse, "noharduse",
114                           "only replace exit values when loop def likely dead"),
115                clEnumValN(AlwaysRepl, "always",
116                           "always replace exit value whenever possible")));
117 
118 static cl::opt<bool> UsePostIncrementRanges(
119   "indvars-post-increment-ranges", cl::Hidden,
120   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
121   cl::init(true));
122 
123 static cl::opt<bool>
124 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
125             cl::desc("Disable Linear Function Test Replace optimization"));
126 
127 namespace {
128 
129 struct RewritePhi;
130 
131 class IndVarSimplify {
132   LoopInfo *LI;
133   ScalarEvolution *SE;
134   DominatorTree *DT;
135   const DataLayout &DL;
136   TargetLibraryInfo *TLI;
137   const TargetTransformInfo *TTI;
138 
139   SmallVector<WeakTrackingVH, 16> DeadInsts;
140 
141   bool isValidRewrite(Value *FromVal, Value *ToVal);
142 
143   bool handleFloatingPointIV(Loop *L, PHINode *PH);
144   bool rewriteNonIntegerIVs(Loop *L);
145 
146   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
147 
148   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
149   bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
150   bool rewriteFirstIterationLoopExitValues(Loop *L);
151   bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const;
152 
153   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
154                                  const SCEV *ExitCount,
155                                  PHINode *IndVar, SCEVExpander &Rewriter);
156 
157   bool sinkUnusedInvariants(Loop *L);
158 
159 public:
160   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
161                  const DataLayout &DL, TargetLibraryInfo *TLI,
162                  TargetTransformInfo *TTI)
163       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
164 
165   bool run(Loop *L);
166 };
167 
168 } // end anonymous namespace
169 
170 /// Return true if the SCEV expansion generated by the rewriter can replace the
171 /// original value. SCEV guarantees that it produces the same value, but the way
172 /// it is produced may be illegal IR.  Ideally, this function will only be
173 /// called for verification.
174 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
175   // If an SCEV expression subsumed multiple pointers, its expansion could
176   // reassociate the GEP changing the base pointer. This is illegal because the
177   // final address produced by a GEP chain must be inbounds relative to its
178   // underlying object. Otherwise basic alias analysis, among other things,
179   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
180   // producing an expression involving multiple pointers. Until then, we must
181   // bail out here.
182   //
183   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
184   // because it understands lcssa phis while SCEV does not.
185   Value *FromPtr = FromVal;
186   Value *ToPtr = ToVal;
187   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
188     FromPtr = GEP->getPointerOperand();
189   }
190   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
191     ToPtr = GEP->getPointerOperand();
192   }
193   if (FromPtr != FromVal || ToPtr != ToVal) {
194     // Quickly check the common case
195     if (FromPtr == ToPtr)
196       return true;
197 
198     // SCEV may have rewritten an expression that produces the GEP's pointer
199     // operand. That's ok as long as the pointer operand has the same base
200     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
201     // base of a recurrence. This handles the case in which SCEV expansion
202     // converts a pointer type recurrence into a nonrecurrent pointer base
203     // indexed by an integer recurrence.
204 
205     // If the GEP base pointer is a vector of pointers, abort.
206     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
207       return false;
208 
209     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
210     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
211     if (FromBase == ToBase)
212       return true;
213 
214     LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
215                       << " != " << *ToBase << "\n");
216 
217     return false;
218   }
219   return true;
220 }
221 
222 /// Determine the insertion point for this user. By default, insert immediately
223 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
224 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
225 /// common dominator for the incoming blocks. A nullptr can be returned if no
226 /// viable location is found: it may happen if User is a PHI and Def only comes
227 /// to this PHI from unreachable blocks.
228 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
229                                           DominatorTree *DT, LoopInfo *LI) {
230   PHINode *PHI = dyn_cast<PHINode>(User);
231   if (!PHI)
232     return User;
233 
234   Instruction *InsertPt = nullptr;
235   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
236     if (PHI->getIncomingValue(i) != Def)
237       continue;
238 
239     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
240 
241     if (!DT->isReachableFromEntry(InsertBB))
242       continue;
243 
244     if (!InsertPt) {
245       InsertPt = InsertBB->getTerminator();
246       continue;
247     }
248     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
249     InsertPt = InsertBB->getTerminator();
250   }
251 
252   // If we have skipped all inputs, it means that Def only comes to Phi from
253   // unreachable blocks.
254   if (!InsertPt)
255     return nullptr;
256 
257   auto *DefI = dyn_cast<Instruction>(Def);
258   if (!DefI)
259     return InsertPt;
260 
261   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
262 
263   auto *L = LI->getLoopFor(DefI->getParent());
264   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
265 
266   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
267     if (LI->getLoopFor(DTN->getBlock()) == L)
268       return DTN->getBlock()->getTerminator();
269 
270   llvm_unreachable("DefI dominates InsertPt!");
271 }
272 
273 //===----------------------------------------------------------------------===//
274 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
275 //===----------------------------------------------------------------------===//
276 
277 /// Convert APF to an integer, if possible.
278 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
279   bool isExact = false;
280   // See if we can convert this to an int64_t
281   uint64_t UIntVal;
282   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
283                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
284       !isExact)
285     return false;
286   IntVal = UIntVal;
287   return true;
288 }
289 
290 /// If the loop has floating induction variable then insert corresponding
291 /// integer induction variable if possible.
292 /// For example,
293 /// for(double i = 0; i < 10000; ++i)
294 ///   bar(i)
295 /// is converted into
296 /// for(int i = 0; i < 10000; ++i)
297 ///   bar((double)i);
298 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
299   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
300   unsigned BackEdge     = IncomingEdge^1;
301 
302   // Check incoming value.
303   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
304 
305   int64_t InitValue;
306   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
307     return false;
308 
309   // Check IV increment. Reject this PN if increment operation is not
310   // an add or increment value can not be represented by an integer.
311   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
312   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
313 
314   // If this is not an add of the PHI with a constantfp, or if the constant fp
315   // is not an integer, bail out.
316   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
317   int64_t IncValue;
318   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
319       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
320     return false;
321 
322   // Check Incr uses. One user is PN and the other user is an exit condition
323   // used by the conditional terminator.
324   Value::user_iterator IncrUse = Incr->user_begin();
325   Instruction *U1 = cast<Instruction>(*IncrUse++);
326   if (IncrUse == Incr->user_end()) return false;
327   Instruction *U2 = cast<Instruction>(*IncrUse++);
328   if (IncrUse != Incr->user_end()) return false;
329 
330   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
331   // only used by a branch, we can't transform it.
332   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
333   if (!Compare)
334     Compare = dyn_cast<FCmpInst>(U2);
335   if (!Compare || !Compare->hasOneUse() ||
336       !isa<BranchInst>(Compare->user_back()))
337     return false;
338 
339   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
340 
341   // We need to verify that the branch actually controls the iteration count
342   // of the loop.  If not, the new IV can overflow and no one will notice.
343   // The branch block must be in the loop and one of the successors must be out
344   // of the loop.
345   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
346   if (!L->contains(TheBr->getParent()) ||
347       (L->contains(TheBr->getSuccessor(0)) &&
348        L->contains(TheBr->getSuccessor(1))))
349     return false;
350 
351   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
352   // transform it.
353   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
354   int64_t ExitValue;
355   if (ExitValueVal == nullptr ||
356       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
357     return false;
358 
359   // Find new predicate for integer comparison.
360   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
361   switch (Compare->getPredicate()) {
362   default: return false;  // Unknown comparison.
363   case CmpInst::FCMP_OEQ:
364   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
365   case CmpInst::FCMP_ONE:
366   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
367   case CmpInst::FCMP_OGT:
368   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
369   case CmpInst::FCMP_OGE:
370   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
371   case CmpInst::FCMP_OLT:
372   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
373   case CmpInst::FCMP_OLE:
374   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
375   }
376 
377   // We convert the floating point induction variable to a signed i32 value if
378   // we can.  This is only safe if the comparison will not overflow in a way
379   // that won't be trapped by the integer equivalent operations.  Check for this
380   // now.
381   // TODO: We could use i64 if it is native and the range requires it.
382 
383   // The start/stride/exit values must all fit in signed i32.
384   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
385     return false;
386 
387   // If not actually striding (add x, 0.0), avoid touching the code.
388   if (IncValue == 0)
389     return false;
390 
391   // Positive and negative strides have different safety conditions.
392   if (IncValue > 0) {
393     // If we have a positive stride, we require the init to be less than the
394     // exit value.
395     if (InitValue >= ExitValue)
396       return false;
397 
398     uint32_t Range = uint32_t(ExitValue-InitValue);
399     // Check for infinite loop, either:
400     // while (i <= Exit) or until (i > Exit)
401     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
402       if (++Range == 0) return false;  // Range overflows.
403     }
404 
405     unsigned Leftover = Range % uint32_t(IncValue);
406 
407     // If this is an equality comparison, we require that the strided value
408     // exactly land on the exit value, otherwise the IV condition will wrap
409     // around and do things the fp IV wouldn't.
410     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
411         Leftover != 0)
412       return false;
413 
414     // If the stride would wrap around the i32 before exiting, we can't
415     // transform the IV.
416     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
417       return false;
418   } else {
419     // If we have a negative stride, we require the init to be greater than the
420     // exit value.
421     if (InitValue <= ExitValue)
422       return false;
423 
424     uint32_t Range = uint32_t(InitValue-ExitValue);
425     // Check for infinite loop, either:
426     // while (i >= Exit) or until (i < Exit)
427     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
428       if (++Range == 0) return false;  // Range overflows.
429     }
430 
431     unsigned Leftover = Range % uint32_t(-IncValue);
432 
433     // If this is an equality comparison, we require that the strided value
434     // exactly land on the exit value, otherwise the IV condition will wrap
435     // around and do things the fp IV wouldn't.
436     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
437         Leftover != 0)
438       return false;
439 
440     // If the stride would wrap around the i32 before exiting, we can't
441     // transform the IV.
442     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
443       return false;
444   }
445 
446   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
447 
448   // Insert new integer induction variable.
449   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
450   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
451                       PN->getIncomingBlock(IncomingEdge));
452 
453   Value *NewAdd =
454     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
455                               Incr->getName()+".int", Incr);
456   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
457 
458   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
459                                       ConstantInt::get(Int32Ty, ExitValue),
460                                       Compare->getName());
461 
462   // In the following deletions, PN may become dead and may be deleted.
463   // Use a WeakTrackingVH to observe whether this happens.
464   WeakTrackingVH WeakPH = PN;
465 
466   // Delete the old floating point exit comparison.  The branch starts using the
467   // new comparison.
468   NewCompare->takeName(Compare);
469   Compare->replaceAllUsesWith(NewCompare);
470   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
471 
472   // Delete the old floating point increment.
473   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
474   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
475 
476   // If the FP induction variable still has uses, this is because something else
477   // in the loop uses its value.  In order to canonicalize the induction
478   // variable, we chose to eliminate the IV and rewrite it in terms of an
479   // int->fp cast.
480   //
481   // We give preference to sitofp over uitofp because it is faster on most
482   // platforms.
483   if (WeakPH) {
484     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
485                                  &*PN->getParent()->getFirstInsertionPt());
486     PN->replaceAllUsesWith(Conv);
487     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
488   }
489   return true;
490 }
491 
492 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
493   // First step.  Check to see if there are any floating-point recurrences.
494   // If there are, change them into integer recurrences, permitting analysis by
495   // the SCEV routines.
496   BasicBlock *Header = L->getHeader();
497 
498   SmallVector<WeakTrackingVH, 8> PHIs;
499   for (PHINode &PN : Header->phis())
500     PHIs.push_back(&PN);
501 
502   bool Changed = false;
503   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
504     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
505       Changed |= handleFloatingPointIV(L, PN);
506 
507   // If the loop previously had floating-point IV, ScalarEvolution
508   // may not have been able to compute a trip count. Now that we've done some
509   // re-writing, the trip count may be computable.
510   if (Changed)
511     SE->forgetLoop(L);
512   return Changed;
513 }
514 
515 namespace {
516 
517 // Collect information about PHI nodes which can be transformed in
518 // rewriteLoopExitValues.
519 struct RewritePhi {
520   PHINode *PN;
521 
522   // Ith incoming value.
523   unsigned Ith;
524 
525   // Exit value after expansion.
526   Value *Val;
527 
528   // High Cost when expansion.
529   bool HighCost;
530 
531   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
532       : PN(P), Ith(I), Val(V), HighCost(H) {}
533 };
534 
535 } // end anonymous namespace
536 
537 //===----------------------------------------------------------------------===//
538 // rewriteLoopExitValues - Optimize IV users outside the loop.
539 // As a side effect, reduces the amount of IV processing within the loop.
540 //===----------------------------------------------------------------------===//
541 
542 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const {
543   SmallPtrSet<const Instruction *, 8> Visited;
544   SmallVector<const Instruction *, 8> WorkList;
545   Visited.insert(I);
546   WorkList.push_back(I);
547   while (!WorkList.empty()) {
548     const Instruction *Curr = WorkList.pop_back_val();
549     // This use is outside the loop, nothing to do.
550     if (!L->contains(Curr))
551       continue;
552     // Do we assume it is a "hard" use which will not be eliminated easily?
553     if (Curr->mayHaveSideEffects())
554       return true;
555     // Otherwise, add all its users to worklist.
556     for (auto U : Curr->users()) {
557       auto *UI = cast<Instruction>(U);
558       if (Visited.insert(UI).second)
559         WorkList.push_back(UI);
560     }
561   }
562   return false;
563 }
564 
565 /// Check to see if this loop has a computable loop-invariant execution count.
566 /// If so, this means that we can compute the final value of any expressions
567 /// that are recurrent in the loop, and substitute the exit values from the loop
568 /// into any instructions outside of the loop that use the final values of the
569 /// current expressions.
570 ///
571 /// This is mostly redundant with the regular IndVarSimplify activities that
572 /// happen later, except that it's more powerful in some cases, because it's
573 /// able to brute-force evaluate arbitrary instructions as long as they have
574 /// constant operands at the beginning of the loop.
575 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
576   // Check a pre-condition.
577   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
578          "Indvars did not preserve LCSSA!");
579 
580   SmallVector<BasicBlock*, 8> ExitBlocks;
581   L->getUniqueExitBlocks(ExitBlocks);
582 
583   SmallVector<RewritePhi, 8> RewritePhiSet;
584   // Find all values that are computed inside the loop, but used outside of it.
585   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
586   // the exit blocks of the loop to find them.
587   for (BasicBlock *ExitBB : ExitBlocks) {
588     // If there are no PHI nodes in this exit block, then no values defined
589     // inside the loop are used on this path, skip it.
590     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
591     if (!PN) continue;
592 
593     unsigned NumPreds = PN->getNumIncomingValues();
594 
595     // Iterate over all of the PHI nodes.
596     BasicBlock::iterator BBI = ExitBB->begin();
597     while ((PN = dyn_cast<PHINode>(BBI++))) {
598       if (PN->use_empty())
599         continue; // dead use, don't replace it
600 
601       if (!SE->isSCEVable(PN->getType()))
602         continue;
603 
604       // It's necessary to tell ScalarEvolution about this explicitly so that
605       // it can walk the def-use list and forget all SCEVs, as it may not be
606       // watching the PHI itself. Once the new exit value is in place, there
607       // may not be a def-use connection between the loop and every instruction
608       // which got a SCEVAddRecExpr for that loop.
609       SE->forgetValue(PN);
610 
611       // Iterate over all of the values in all the PHI nodes.
612       for (unsigned i = 0; i != NumPreds; ++i) {
613         // If the value being merged in is not integer or is not defined
614         // in the loop, skip it.
615         Value *InVal = PN->getIncomingValue(i);
616         if (!isa<Instruction>(InVal))
617           continue;
618 
619         // If this pred is for a subloop, not L itself, skip it.
620         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
621           continue; // The Block is in a subloop, skip it.
622 
623         // Check that InVal is defined in the loop.
624         Instruction *Inst = cast<Instruction>(InVal);
625         if (!L->contains(Inst))
626           continue;
627 
628         // Okay, this instruction has a user outside of the current loop
629         // and varies predictably *inside* the loop.  Evaluate the value it
630         // contains when the loop exits, if possible.
631         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
632         if (!SE->isLoopInvariant(ExitValue, L) ||
633             !isSafeToExpand(ExitValue, *SE))
634           continue;
635 
636         // Computing the value outside of the loop brings no benefit if it is
637         // definitely used inside the loop in a way which can not be optimized
638         // away.  Avoid doing so unless we know we have a value which computes
639         // the ExitValue already.  TODO: This should be merged into SCEV
640         // expander to leverage its knowledge of existing expressions.
641         if (ReplaceExitValue != AlwaysRepl &&
642             !isa<SCEVConstant>(ExitValue) && !isa<SCEVUnknown>(ExitValue) &&
643             hasHardUserWithinLoop(L, Inst))
644           continue;
645 
646         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
647         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
648 
649         LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
650                           << '\n'
651                           << "  LoopVal = " << *Inst << "\n");
652 
653         if (!isValidRewrite(Inst, ExitVal)) {
654           DeadInsts.push_back(ExitVal);
655           continue;
656         }
657 
658 #ifndef NDEBUG
659         // If we reuse an instruction from a loop which is neither L nor one of
660         // its containing loops, we end up breaking LCSSA form for this loop by
661         // creating a new use of its instruction.
662         if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
663           if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
664             if (EVL != L)
665               assert(EVL->contains(L) && "LCSSA breach detected!");
666 #endif
667 
668         // Collect all the candidate PHINodes to be rewritten.
669         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
670       }
671     }
672   }
673 
674   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
675 
676   bool Changed = false;
677   // Transformation.
678   for (const RewritePhi &Phi : RewritePhiSet) {
679     PHINode *PN = Phi.PN;
680     Value *ExitVal = Phi.Val;
681 
682     // Only do the rewrite when the ExitValue can be expanded cheaply.
683     // If LoopCanBeDel is true, rewrite exit value aggressively.
684     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
685       DeadInsts.push_back(ExitVal);
686       continue;
687     }
688 
689     Changed = true;
690     ++NumReplaced;
691     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
692     PN->setIncomingValue(Phi.Ith, ExitVal);
693 
694     // If this instruction is dead now, delete it. Don't do it now to avoid
695     // invalidating iterators.
696     if (isInstructionTriviallyDead(Inst, TLI))
697       DeadInsts.push_back(Inst);
698 
699     // Replace PN with ExitVal if that is legal and does not break LCSSA.
700     if (PN->getNumIncomingValues() == 1 &&
701         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
702       PN->replaceAllUsesWith(ExitVal);
703       PN->eraseFromParent();
704     }
705   }
706 
707   // The insertion point instruction may have been deleted; clear it out
708   // so that the rewriter doesn't trip over it later.
709   Rewriter.clearInsertPoint();
710   return Changed;
711 }
712 
713 //===---------------------------------------------------------------------===//
714 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
715 // they will exit at the first iteration.
716 //===---------------------------------------------------------------------===//
717 
718 /// Check to see if this loop has loop invariant conditions which lead to loop
719 /// exits. If so, we know that if the exit path is taken, it is at the first
720 /// loop iteration. This lets us predict exit values of PHI nodes that live in
721 /// loop header.
722 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
723   // Verify the input to the pass is already in LCSSA form.
724   assert(L->isLCSSAForm(*DT));
725 
726   SmallVector<BasicBlock *, 8> ExitBlocks;
727   L->getUniqueExitBlocks(ExitBlocks);
728 
729   bool MadeAnyChanges = false;
730   for (auto *ExitBB : ExitBlocks) {
731     // If there are no more PHI nodes in this exit block, then no more
732     // values defined inside the loop are used on this path.
733     for (PHINode &PN : ExitBB->phis()) {
734       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
735            IncomingValIdx != E; ++IncomingValIdx) {
736         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
737 
738         // Can we prove that the exit must run on the first iteration if it
739         // runs at all?  (i.e. early exits are fine for our purposes, but
740         // traces which lead to this exit being taken on the 2nd iteration
741         // aren't.)  Note that this is about whether the exit branch is
742         // executed, not about whether it is taken.
743         if (!L->getLoopLatch() ||
744             !DT->dominates(IncomingBB, L->getLoopLatch()))
745           continue;
746 
747         // Get condition that leads to the exit path.
748         auto *TermInst = IncomingBB->getTerminator();
749 
750         Value *Cond = nullptr;
751         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
752           // Must be a conditional branch, otherwise the block
753           // should not be in the loop.
754           Cond = BI->getCondition();
755         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
756           Cond = SI->getCondition();
757         else
758           continue;
759 
760         if (!L->isLoopInvariant(Cond))
761           continue;
762 
763         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
764 
765         // Only deal with PHIs in the loop header.
766         if (!ExitVal || ExitVal->getParent() != L->getHeader())
767           continue;
768 
769         // If ExitVal is a PHI on the loop header, then we know its
770         // value along this exit because the exit can only be taken
771         // on the first iteration.
772         auto *LoopPreheader = L->getLoopPreheader();
773         assert(LoopPreheader && "Invalid loop");
774         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
775         if (PreheaderIdx != -1) {
776           assert(ExitVal->getParent() == L->getHeader() &&
777                  "ExitVal must be in loop header");
778           MadeAnyChanges = true;
779           PN.setIncomingValue(IncomingValIdx,
780                               ExitVal->getIncomingValue(PreheaderIdx));
781         }
782       }
783     }
784   }
785   return MadeAnyChanges;
786 }
787 
788 /// Check whether it is possible to delete the loop after rewriting exit
789 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
790 /// aggressively.
791 bool IndVarSimplify::canLoopBeDeleted(
792     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
793   BasicBlock *Preheader = L->getLoopPreheader();
794   // If there is no preheader, the loop will not be deleted.
795   if (!Preheader)
796     return false;
797 
798   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
799   // We obviate multiple ExitingBlocks case for simplicity.
800   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
801   // after exit value rewriting, we can enhance the logic here.
802   SmallVector<BasicBlock *, 4> ExitingBlocks;
803   L->getExitingBlocks(ExitingBlocks);
804   SmallVector<BasicBlock *, 8> ExitBlocks;
805   L->getUniqueExitBlocks(ExitBlocks);
806   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
807     return false;
808 
809   BasicBlock *ExitBlock = ExitBlocks[0];
810   BasicBlock::iterator BI = ExitBlock->begin();
811   while (PHINode *P = dyn_cast<PHINode>(BI)) {
812     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
813 
814     // If the Incoming value of P is found in RewritePhiSet, we know it
815     // could be rewritten to use a loop invariant value in transformation
816     // phase later. Skip it in the loop invariant check below.
817     bool found = false;
818     for (const RewritePhi &Phi : RewritePhiSet) {
819       unsigned i = Phi.Ith;
820       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
821         found = true;
822         break;
823       }
824     }
825 
826     Instruction *I;
827     if (!found && (I = dyn_cast<Instruction>(Incoming)))
828       if (!L->hasLoopInvariantOperands(I))
829         return false;
830 
831     ++BI;
832   }
833 
834   for (auto *BB : L->blocks())
835     if (llvm::any_of(*BB, [](Instruction &I) {
836           return I.mayHaveSideEffects();
837         }))
838       return false;
839 
840   return true;
841 }
842 
843 //===----------------------------------------------------------------------===//
844 //  IV Widening - Extend the width of an IV to cover its widest uses.
845 //===----------------------------------------------------------------------===//
846 
847 namespace {
848 
849 // Collect information about induction variables that are used by sign/zero
850 // extend operations. This information is recorded by CollectExtend and provides
851 // the input to WidenIV.
852 struct WideIVInfo {
853   PHINode *NarrowIV = nullptr;
854 
855   // Widest integer type created [sz]ext
856   Type *WidestNativeType = nullptr;
857 
858   // Was a sext user seen before a zext?
859   bool IsSigned = false;
860 };
861 
862 } // end anonymous namespace
863 
864 /// Update information about the induction variable that is extended by this
865 /// sign or zero extend operation. This is used to determine the final width of
866 /// the IV before actually widening it.
867 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
868                         const TargetTransformInfo *TTI) {
869   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
870   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
871     return;
872 
873   Type *Ty = Cast->getType();
874   uint64_t Width = SE->getTypeSizeInBits(Ty);
875   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
876     return;
877 
878   // Check that `Cast` actually extends the induction variable (we rely on this
879   // later).  This takes care of cases where `Cast` is extending a truncation of
880   // the narrow induction variable, and thus can end up being narrower than the
881   // "narrow" induction variable.
882   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
883   if (NarrowIVWidth >= Width)
884     return;
885 
886   // Cast is either an sext or zext up to this point.
887   // We should not widen an indvar if arithmetics on the wider indvar are more
888   // expensive than those on the narrower indvar. We check only the cost of ADD
889   // because at least an ADD is required to increment the induction variable. We
890   // could compute more comprehensively the cost of all instructions on the
891   // induction variable when necessary.
892   if (TTI &&
893       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
894           TTI->getArithmeticInstrCost(Instruction::Add,
895                                       Cast->getOperand(0)->getType())) {
896     return;
897   }
898 
899   if (!WI.WidestNativeType) {
900     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
901     WI.IsSigned = IsSigned;
902     return;
903   }
904 
905   // We extend the IV to satisfy the sign of its first user, arbitrarily.
906   if (WI.IsSigned != IsSigned)
907     return;
908 
909   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
910     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
911 }
912 
913 namespace {
914 
915 /// Record a link in the Narrow IV def-use chain along with the WideIV that
916 /// computes the same value as the Narrow IV def.  This avoids caching Use*
917 /// pointers.
918 struct NarrowIVDefUse {
919   Instruction *NarrowDef = nullptr;
920   Instruction *NarrowUse = nullptr;
921   Instruction *WideDef = nullptr;
922 
923   // True if the narrow def is never negative.  Tracking this information lets
924   // us use a sign extension instead of a zero extension or vice versa, when
925   // profitable and legal.
926   bool NeverNegative = false;
927 
928   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
929                  bool NeverNegative)
930       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
931         NeverNegative(NeverNegative) {}
932 };
933 
934 /// The goal of this transform is to remove sign and zero extends without
935 /// creating any new induction variables. To do this, it creates a new phi of
936 /// the wider type and redirects all users, either removing extends or inserting
937 /// truncs whenever we stop propagating the type.
938 class WidenIV {
939   // Parameters
940   PHINode *OrigPhi;
941   Type *WideType;
942 
943   // Context
944   LoopInfo        *LI;
945   Loop            *L;
946   ScalarEvolution *SE;
947   DominatorTree   *DT;
948 
949   // Does the module have any calls to the llvm.experimental.guard intrinsic
950   // at all? If not we can avoid scanning instructions looking for guards.
951   bool HasGuards;
952 
953   // Result
954   PHINode *WidePhi = nullptr;
955   Instruction *WideInc = nullptr;
956   const SCEV *WideIncExpr = nullptr;
957   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
958 
959   SmallPtrSet<Instruction *,16> Widened;
960   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
961 
962   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
963 
964   // A map tracking the kind of extension used to widen each narrow IV
965   // and narrow IV user.
966   // Key: pointer to a narrow IV or IV user.
967   // Value: the kind of extension used to widen this Instruction.
968   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
969 
970   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
971 
972   // A map with control-dependent ranges for post increment IV uses. The key is
973   // a pair of IV def and a use of this def denoting the context. The value is
974   // a ConstantRange representing possible values of the def at the given
975   // context.
976   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
977 
978   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
979                                               Instruction *UseI) {
980     DefUserPair Key(Def, UseI);
981     auto It = PostIncRangeInfos.find(Key);
982     return It == PostIncRangeInfos.end()
983                ? Optional<ConstantRange>(None)
984                : Optional<ConstantRange>(It->second);
985   }
986 
987   void calculatePostIncRanges(PHINode *OrigPhi);
988   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
989 
990   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
991     DefUserPair Key(Def, UseI);
992     auto It = PostIncRangeInfos.find(Key);
993     if (It == PostIncRangeInfos.end())
994       PostIncRangeInfos.insert({Key, R});
995     else
996       It->second = R.intersectWith(It->second);
997   }
998 
999 public:
1000   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1001           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1002           bool HasGuards)
1003       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1004         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1005         HasGuards(HasGuards), DeadInsts(DI) {
1006     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1007     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1008   }
1009 
1010   PHINode *createWideIV(SCEVExpander &Rewriter);
1011 
1012 protected:
1013   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1014                           Instruction *Use);
1015 
1016   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1017   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1018                                      const SCEVAddRecExpr *WideAR);
1019   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1020 
1021   ExtendKind getExtendKind(Instruction *I);
1022 
1023   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1024 
1025   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1026 
1027   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1028 
1029   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1030                               unsigned OpCode) const;
1031 
1032   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1033 
1034   bool widenLoopCompare(NarrowIVDefUse DU);
1035   bool widenWithVariantLoadUse(NarrowIVDefUse DU);
1036   void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
1037 
1038   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1039 };
1040 
1041 } // end anonymous namespace
1042 
1043 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1044                                  bool IsSigned, Instruction *Use) {
1045   // Set the debug location and conservative insertion point.
1046   IRBuilder<> Builder(Use);
1047   // Hoist the insertion point into loop preheaders as far as possible.
1048   for (const Loop *L = LI->getLoopFor(Use->getParent());
1049        L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1050        L = L->getParentLoop())
1051     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1052 
1053   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1054                     Builder.CreateZExt(NarrowOper, WideType);
1055 }
1056 
1057 /// Instantiate a wide operation to replace a narrow operation. This only needs
1058 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1059 /// 0 for any operation we decide not to clone.
1060 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1061                                   const SCEVAddRecExpr *WideAR) {
1062   unsigned Opcode = DU.NarrowUse->getOpcode();
1063   switch (Opcode) {
1064   default:
1065     return nullptr;
1066   case Instruction::Add:
1067   case Instruction::Mul:
1068   case Instruction::UDiv:
1069   case Instruction::Sub:
1070     return cloneArithmeticIVUser(DU, WideAR);
1071 
1072   case Instruction::And:
1073   case Instruction::Or:
1074   case Instruction::Xor:
1075   case Instruction::Shl:
1076   case Instruction::LShr:
1077   case Instruction::AShr:
1078     return cloneBitwiseIVUser(DU);
1079   }
1080 }
1081 
1082 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1083   Instruction *NarrowUse = DU.NarrowUse;
1084   Instruction *NarrowDef = DU.NarrowDef;
1085   Instruction *WideDef = DU.WideDef;
1086 
1087   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1088 
1089   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1090   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1091   // invariant and will be folded or hoisted. If it actually comes from a
1092   // widened IV, it should be removed during a future call to widenIVUse.
1093   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1094   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1095                    ? WideDef
1096                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1097                                       IsSigned, NarrowUse);
1098   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1099                    ? WideDef
1100                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1101                                       IsSigned, NarrowUse);
1102 
1103   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1104   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1105                                         NarrowBO->getName());
1106   IRBuilder<> Builder(NarrowUse);
1107   Builder.Insert(WideBO);
1108   WideBO->copyIRFlags(NarrowBO);
1109   return WideBO;
1110 }
1111 
1112 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1113                                             const SCEVAddRecExpr *WideAR) {
1114   Instruction *NarrowUse = DU.NarrowUse;
1115   Instruction *NarrowDef = DU.NarrowDef;
1116   Instruction *WideDef = DU.WideDef;
1117 
1118   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1119 
1120   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1121 
1122   // We're trying to find X such that
1123   //
1124   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1125   //
1126   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1127   // and check using SCEV if any of them are correct.
1128 
1129   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1130   // correct solution to X.
1131   auto GuessNonIVOperand = [&](bool SignExt) {
1132     const SCEV *WideLHS;
1133     const SCEV *WideRHS;
1134 
1135     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1136       if (SignExt)
1137         return SE->getSignExtendExpr(S, Ty);
1138       return SE->getZeroExtendExpr(S, Ty);
1139     };
1140 
1141     if (IVOpIdx == 0) {
1142       WideLHS = SE->getSCEV(WideDef);
1143       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1144       WideRHS = GetExtend(NarrowRHS, WideType);
1145     } else {
1146       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1147       WideLHS = GetExtend(NarrowLHS, WideType);
1148       WideRHS = SE->getSCEV(WideDef);
1149     }
1150 
1151     // WideUse is "WideDef `op.wide` X" as described in the comment.
1152     const SCEV *WideUse = nullptr;
1153 
1154     switch (NarrowUse->getOpcode()) {
1155     default:
1156       llvm_unreachable("No other possibility!");
1157 
1158     case Instruction::Add:
1159       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1160       break;
1161 
1162     case Instruction::Mul:
1163       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1164       break;
1165 
1166     case Instruction::UDiv:
1167       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1168       break;
1169 
1170     case Instruction::Sub:
1171       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1172       break;
1173     }
1174 
1175     return WideUse == WideAR;
1176   };
1177 
1178   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1179   if (!GuessNonIVOperand(SignExtend)) {
1180     SignExtend = !SignExtend;
1181     if (!GuessNonIVOperand(SignExtend))
1182       return nullptr;
1183   }
1184 
1185   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1186                    ? WideDef
1187                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1188                                       SignExtend, NarrowUse);
1189   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1190                    ? WideDef
1191                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1192                                       SignExtend, NarrowUse);
1193 
1194   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1195   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1196                                         NarrowBO->getName());
1197 
1198   IRBuilder<> Builder(NarrowUse);
1199   Builder.Insert(WideBO);
1200   WideBO->copyIRFlags(NarrowBO);
1201   return WideBO;
1202 }
1203 
1204 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1205   auto It = ExtendKindMap.find(I);
1206   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1207   return It->second;
1208 }
1209 
1210 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1211                                      unsigned OpCode) const {
1212   if (OpCode == Instruction::Add)
1213     return SE->getAddExpr(LHS, RHS);
1214   if (OpCode == Instruction::Sub)
1215     return SE->getMinusSCEV(LHS, RHS);
1216   if (OpCode == Instruction::Mul)
1217     return SE->getMulExpr(LHS, RHS);
1218 
1219   llvm_unreachable("Unsupported opcode.");
1220 }
1221 
1222 /// No-wrap operations can transfer sign extension of their result to their
1223 /// operands. Generate the SCEV value for the widened operation without
1224 /// actually modifying the IR yet. If the expression after extending the
1225 /// operands is an AddRec for this loop, return the AddRec and the kind of
1226 /// extension used.
1227 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1228   // Handle the common case of add<nsw/nuw>
1229   const unsigned OpCode = DU.NarrowUse->getOpcode();
1230   // Only Add/Sub/Mul instructions supported yet.
1231   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1232       OpCode != Instruction::Mul)
1233     return {nullptr, Unknown};
1234 
1235   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1236   // if extending the other will lead to a recurrence.
1237   const unsigned ExtendOperIdx =
1238       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1239   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1240 
1241   const SCEV *ExtendOperExpr = nullptr;
1242   const OverflowingBinaryOperator *OBO =
1243     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1244   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1245   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1246     ExtendOperExpr = SE->getSignExtendExpr(
1247       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1248   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1249     ExtendOperExpr = SE->getZeroExtendExpr(
1250       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1251   else
1252     return {nullptr, Unknown};
1253 
1254   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1255   // flags. This instruction may be guarded by control flow that the no-wrap
1256   // behavior depends on. Non-control-equivalent instructions can be mapped to
1257   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1258   // semantics to those operations.
1259   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1260   const SCEV *rhs = ExtendOperExpr;
1261 
1262   // Let's swap operands to the initial order for the case of non-commutative
1263   // operations, like SUB. See PR21014.
1264   if (ExtendOperIdx == 0)
1265     std::swap(lhs, rhs);
1266   const SCEVAddRecExpr *AddRec =
1267       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1268 
1269   if (!AddRec || AddRec->getLoop() != L)
1270     return {nullptr, Unknown};
1271 
1272   return {AddRec, ExtKind};
1273 }
1274 
1275 /// Is this instruction potentially interesting for further simplification after
1276 /// widening it's type? In other words, can the extend be safely hoisted out of
1277 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1278 /// so, return the extended recurrence and the kind of extension used. Otherwise
1279 /// return {nullptr, Unknown}.
1280 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1281   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1282     return {nullptr, Unknown};
1283 
1284   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1285   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1286       SE->getTypeSizeInBits(WideType)) {
1287     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1288     // index. So don't follow this use.
1289     return {nullptr, Unknown};
1290   }
1291 
1292   const SCEV *WideExpr;
1293   ExtendKind ExtKind;
1294   if (DU.NeverNegative) {
1295     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1296     if (isa<SCEVAddRecExpr>(WideExpr))
1297       ExtKind = SignExtended;
1298     else {
1299       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1300       ExtKind = ZeroExtended;
1301     }
1302   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1303     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1304     ExtKind = SignExtended;
1305   } else {
1306     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1307     ExtKind = ZeroExtended;
1308   }
1309   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1310   if (!AddRec || AddRec->getLoop() != L)
1311     return {nullptr, Unknown};
1312   return {AddRec, ExtKind};
1313 }
1314 
1315 /// This IV user cannot be widened. Replace this use of the original narrow IV
1316 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1317 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1318   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1319   if (!InsertPt)
1320     return;
1321   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1322                     << *DU.NarrowUse << "\n");
1323   IRBuilder<> Builder(InsertPt);
1324   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1325   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1326 }
1327 
1328 /// If the narrow use is a compare instruction, then widen the compare
1329 //  (and possibly the other operand).  The extend operation is hoisted into the
1330 // loop preheader as far as possible.
1331 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1332   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1333   if (!Cmp)
1334     return false;
1335 
1336   // We can legally widen the comparison in the following two cases:
1337   //
1338   //  - The signedness of the IV extension and comparison match
1339   //
1340   //  - The narrow IV is always positive (and thus its sign extension is equal
1341   //    to its zero extension).  For instance, let's say we're zero extending
1342   //    %narrow for the following use
1343   //
1344   //      icmp slt i32 %narrow, %val   ... (A)
1345   //
1346   //    and %narrow is always positive.  Then
1347   //
1348   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1349   //          == icmp slt i32 zext(%narrow), sext(%val)
1350   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1351   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1352     return false;
1353 
1354   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1355   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1356   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1357   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1358 
1359   // Widen the compare instruction.
1360   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1361   if (!InsertPt)
1362     return false;
1363   IRBuilder<> Builder(InsertPt);
1364   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1365 
1366   // Widen the other operand of the compare, if necessary.
1367   if (CastWidth < IVWidth) {
1368     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1369     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1370   }
1371   return true;
1372 }
1373 
1374 /// If the narrow use is an instruction whose two operands are the defining
1375 /// instruction of DU and a load instruction, then we have the following:
1376 /// if the load is hoisted outside the loop, then we do not reach this function
1377 /// as scalar evolution analysis works fine in widenIVUse with variables
1378 /// hoisted outside the loop and efficient code is subsequently generated by
1379 /// not emitting truncate instructions. But when the load is not hoisted
1380 /// (whether due to limitation in alias analysis or due to a true legality),
1381 /// then scalar evolution can not proceed with loop variant values and
1382 /// inefficient code is generated. This function handles the non-hoisted load
1383 /// special case by making the optimization generate the same type of code for
1384 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1385 /// instruction). This special case is important especially when the induction
1386 /// variables are affecting addressing mode in code generation.
1387 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
1388   Instruction *NarrowUse = DU.NarrowUse;
1389   Instruction *NarrowDef = DU.NarrowDef;
1390   Instruction *WideDef = DU.WideDef;
1391 
1392   // Handle the common case of add<nsw/nuw>
1393   const unsigned OpCode = NarrowUse->getOpcode();
1394   // Only Add/Sub/Mul instructions are supported.
1395   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1396       OpCode != Instruction::Mul)
1397     return false;
1398 
1399   // The operand that is not defined by NarrowDef of DU. Let's call it the
1400   // other operand.
1401   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
1402   assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
1403          "bad DU");
1404 
1405   const SCEV *ExtendOperExpr = nullptr;
1406   const OverflowingBinaryOperator *OBO =
1407     cast<OverflowingBinaryOperator>(NarrowUse);
1408   ExtendKind ExtKind = getExtendKind(NarrowDef);
1409   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1410     ExtendOperExpr = SE->getSignExtendExpr(
1411       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1412   else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1413     ExtendOperExpr = SE->getZeroExtendExpr(
1414       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1415   else
1416     return false;
1417 
1418   // We are interested in the other operand being a load instruction.
1419   // But, we should look into relaxing this restriction later on.
1420   auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
1421   if (I && I->getOpcode() != Instruction::Load)
1422     return false;
1423 
1424   // Verifying that Defining operand is an AddRec
1425   const SCEV *Op1 = SE->getSCEV(WideDef);
1426   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1427   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1428     return false;
1429   // Verifying that other operand is an Extend.
1430   if (ExtKind == SignExtended) {
1431     if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
1432       return false;
1433   } else {
1434     if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
1435       return false;
1436   }
1437 
1438   if (ExtKind == SignExtended) {
1439     for (Use &U : NarrowUse->uses()) {
1440       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1441       if (!User || User->getType() != WideType)
1442         return false;
1443     }
1444   } else { // ExtKind == ZeroExtended
1445     for (Use &U : NarrowUse->uses()) {
1446       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1447       if (!User || User->getType() != WideType)
1448         return false;
1449     }
1450   }
1451 
1452   return true;
1453 }
1454 
1455 /// Special Case for widening with variant Loads (see
1456 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1457 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
1458   Instruction *NarrowUse = DU.NarrowUse;
1459   Instruction *NarrowDef = DU.NarrowDef;
1460   Instruction *WideDef = DU.WideDef;
1461 
1462   ExtendKind ExtKind = getExtendKind(NarrowDef);
1463 
1464   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1465 
1466   // Generating a widening use instruction.
1467   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1468                    ? WideDef
1469                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1470                                       ExtKind, NarrowUse);
1471   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1472                    ? WideDef
1473                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1474                                       ExtKind, NarrowUse);
1475 
1476   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1477   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1478                                         NarrowBO->getName());
1479   IRBuilder<> Builder(NarrowUse);
1480   Builder.Insert(WideBO);
1481   WideBO->copyIRFlags(NarrowBO);
1482 
1483   if (ExtKind == SignExtended)
1484     ExtendKindMap[NarrowUse] = SignExtended;
1485   else
1486     ExtendKindMap[NarrowUse] = ZeroExtended;
1487 
1488   // Update the Use.
1489   if (ExtKind == SignExtended) {
1490     for (Use &U : NarrowUse->uses()) {
1491       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1492       if (User && User->getType() == WideType) {
1493         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1494                           << *WideBO << "\n");
1495         ++NumElimExt;
1496         User->replaceAllUsesWith(WideBO);
1497         DeadInsts.emplace_back(User);
1498       }
1499     }
1500   } else { // ExtKind == ZeroExtended
1501     for (Use &U : NarrowUse->uses()) {
1502       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1503       if (User && User->getType() == WideType) {
1504         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1505                           << *WideBO << "\n");
1506         ++NumElimExt;
1507         User->replaceAllUsesWith(WideBO);
1508         DeadInsts.emplace_back(User);
1509       }
1510     }
1511   }
1512 }
1513 
1514 /// Determine whether an individual user of the narrow IV can be widened. If so,
1515 /// return the wide clone of the user.
1516 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1517   assert(ExtendKindMap.count(DU.NarrowDef) &&
1518          "Should already know the kind of extension used to widen NarrowDef");
1519 
1520   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1521   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1522     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1523       // For LCSSA phis, sink the truncate outside the loop.
1524       // After SimplifyCFG most loop exit targets have a single predecessor.
1525       // Otherwise fall back to a truncate within the loop.
1526       if (UsePhi->getNumOperands() != 1)
1527         truncateIVUse(DU, DT, LI);
1528       else {
1529         // Widening the PHI requires us to insert a trunc.  The logical place
1530         // for this trunc is in the same BB as the PHI.  This is not possible if
1531         // the BB is terminated by a catchswitch.
1532         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1533           return nullptr;
1534 
1535         PHINode *WidePhi =
1536           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1537                           UsePhi);
1538         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1539         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1540         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1541         UsePhi->replaceAllUsesWith(Trunc);
1542         DeadInsts.emplace_back(UsePhi);
1543         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1544                           << *WidePhi << "\n");
1545       }
1546       return nullptr;
1547     }
1548   }
1549 
1550   // This narrow use can be widened by a sext if it's non-negative or its narrow
1551   // def was widended by a sext. Same for zext.
1552   auto canWidenBySExt = [&]() {
1553     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1554   };
1555   auto canWidenByZExt = [&]() {
1556     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1557   };
1558 
1559   // Our raison d'etre! Eliminate sign and zero extension.
1560   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1561       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1562     Value *NewDef = DU.WideDef;
1563     if (DU.NarrowUse->getType() != WideType) {
1564       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1565       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1566       if (CastWidth < IVWidth) {
1567         // The cast isn't as wide as the IV, so insert a Trunc.
1568         IRBuilder<> Builder(DU.NarrowUse);
1569         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1570       }
1571       else {
1572         // A wider extend was hidden behind a narrower one. This may induce
1573         // another round of IV widening in which the intermediate IV becomes
1574         // dead. It should be very rare.
1575         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1576                           << " not wide enough to subsume " << *DU.NarrowUse
1577                           << "\n");
1578         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1579         NewDef = DU.NarrowUse;
1580       }
1581     }
1582     if (NewDef != DU.NarrowUse) {
1583       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1584                         << " replaced by " << *DU.WideDef << "\n");
1585       ++NumElimExt;
1586       DU.NarrowUse->replaceAllUsesWith(NewDef);
1587       DeadInsts.emplace_back(DU.NarrowUse);
1588     }
1589     // Now that the extend is gone, we want to expose it's uses for potential
1590     // further simplification. We don't need to directly inform SimplifyIVUsers
1591     // of the new users, because their parent IV will be processed later as a
1592     // new loop phi. If we preserved IVUsers analysis, we would also want to
1593     // push the uses of WideDef here.
1594 
1595     // No further widening is needed. The deceased [sz]ext had done it for us.
1596     return nullptr;
1597   }
1598 
1599   // Does this user itself evaluate to a recurrence after widening?
1600   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1601   if (!WideAddRec.first)
1602     WideAddRec = getWideRecurrence(DU);
1603 
1604   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1605   if (!WideAddRec.first) {
1606     // If use is a loop condition, try to promote the condition instead of
1607     // truncating the IV first.
1608     if (widenLoopCompare(DU))
1609       return nullptr;
1610 
1611     // We are here about to generate a truncate instruction that may hurt
1612     // performance because the scalar evolution expression computed earlier
1613     // in WideAddRec.first does not indicate a polynomial induction expression.
1614     // In that case, look at the operands of the use instruction to determine
1615     // if we can still widen the use instead of truncating its operand.
1616     if (widenWithVariantLoadUse(DU)) {
1617       widenWithVariantLoadUseCodegen(DU);
1618       return nullptr;
1619     }
1620 
1621     // This user does not evaluate to a recurrence after widening, so don't
1622     // follow it. Instead insert a Trunc to kill off the original use,
1623     // eventually isolating the original narrow IV so it can be removed.
1624     truncateIVUse(DU, DT, LI);
1625     return nullptr;
1626   }
1627   // Assume block terminators cannot evaluate to a recurrence. We can't to
1628   // insert a Trunc after a terminator if there happens to be a critical edge.
1629   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1630          "SCEV is not expected to evaluate a block terminator");
1631 
1632   // Reuse the IV increment that SCEVExpander created as long as it dominates
1633   // NarrowUse.
1634   Instruction *WideUse = nullptr;
1635   if (WideAddRec.first == WideIncExpr &&
1636       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1637     WideUse = WideInc;
1638   else {
1639     WideUse = cloneIVUser(DU, WideAddRec.first);
1640     if (!WideUse)
1641       return nullptr;
1642   }
1643   // Evaluation of WideAddRec ensured that the narrow expression could be
1644   // extended outside the loop without overflow. This suggests that the wide use
1645   // evaluates to the same expression as the extended narrow use, but doesn't
1646   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1647   // where it fails, we simply throw away the newly created wide use.
1648   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1649     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1650                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1651                       << "\n");
1652     DeadInsts.emplace_back(WideUse);
1653     return nullptr;
1654   }
1655 
1656   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1657   // Returning WideUse pushes it on the worklist.
1658   return WideUse;
1659 }
1660 
1661 /// Add eligible users of NarrowDef to NarrowIVUsers.
1662 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1663   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1664   bool NonNegativeDef =
1665       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1666                            SE->getConstant(NarrowSCEV->getType(), 0));
1667   for (User *U : NarrowDef->users()) {
1668     Instruction *NarrowUser = cast<Instruction>(U);
1669 
1670     // Handle data flow merges and bizarre phi cycles.
1671     if (!Widened.insert(NarrowUser).second)
1672       continue;
1673 
1674     bool NonNegativeUse = false;
1675     if (!NonNegativeDef) {
1676       // We might have a control-dependent range information for this context.
1677       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1678         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1679     }
1680 
1681     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1682                                NonNegativeDef || NonNegativeUse);
1683   }
1684 }
1685 
1686 /// Process a single induction variable. First use the SCEVExpander to create a
1687 /// wide induction variable that evaluates to the same recurrence as the
1688 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1689 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1690 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1691 ///
1692 /// It would be simpler to delete uses as they are processed, but we must avoid
1693 /// invalidating SCEV expressions.
1694 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1695   // Is this phi an induction variable?
1696   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1697   if (!AddRec)
1698     return nullptr;
1699 
1700   // Widen the induction variable expression.
1701   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1702                                ? SE->getSignExtendExpr(AddRec, WideType)
1703                                : SE->getZeroExtendExpr(AddRec, WideType);
1704 
1705   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1706          "Expect the new IV expression to preserve its type");
1707 
1708   // Can the IV be extended outside the loop without overflow?
1709   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1710   if (!AddRec || AddRec->getLoop() != L)
1711     return nullptr;
1712 
1713   // An AddRec must have loop-invariant operands. Since this AddRec is
1714   // materialized by a loop header phi, the expression cannot have any post-loop
1715   // operands, so they must dominate the loop header.
1716   assert(
1717       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1718       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1719       "Loop header phi recurrence inputs do not dominate the loop");
1720 
1721   // Iterate over IV uses (including transitive ones) looking for IV increments
1722   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1723   // the increment calculate control-dependent range information basing on
1724   // dominating conditions inside of the loop (e.g. a range check inside of the
1725   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1726   //
1727   // Control-dependent range information is later used to prove that a narrow
1728   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1729   // this on demand because when pushNarrowIVUsers needs this information some
1730   // of the dominating conditions might be already widened.
1731   if (UsePostIncrementRanges)
1732     calculatePostIncRanges(OrigPhi);
1733 
1734   // The rewriter provides a value for the desired IV expression. This may
1735   // either find an existing phi or materialize a new one. Either way, we
1736   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1737   // of the phi-SCC dominates the loop entry.
1738   Instruction *InsertPt = &L->getHeader()->front();
1739   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1740 
1741   // Remembering the WideIV increment generated by SCEVExpander allows
1742   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1743   // employ a general reuse mechanism because the call above is the only call to
1744   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1745   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1746     WideInc =
1747       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1748     WideIncExpr = SE->getSCEV(WideInc);
1749     // Propagate the debug location associated with the original loop increment
1750     // to the new (widened) increment.
1751     auto *OrigInc =
1752       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1753     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1754   }
1755 
1756   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1757   ++NumWidened;
1758 
1759   // Traverse the def-use chain using a worklist starting at the original IV.
1760   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1761 
1762   Widened.insert(OrigPhi);
1763   pushNarrowIVUsers(OrigPhi, WidePhi);
1764 
1765   while (!NarrowIVUsers.empty()) {
1766     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1767 
1768     // Process a def-use edge. This may replace the use, so don't hold a
1769     // use_iterator across it.
1770     Instruction *WideUse = widenIVUse(DU, Rewriter);
1771 
1772     // Follow all def-use edges from the previous narrow use.
1773     if (WideUse)
1774       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1775 
1776     // widenIVUse may have removed the def-use edge.
1777     if (DU.NarrowDef->use_empty())
1778       DeadInsts.emplace_back(DU.NarrowDef);
1779   }
1780 
1781   // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1782   // evaluate the same recurrence, we can just copy the debug info over.
1783   SmallVector<DbgValueInst *, 1> DbgValues;
1784   llvm::findDbgValues(DbgValues, OrigPhi);
1785   auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1786                                      ValueAsMetadata::get(WidePhi));
1787   for (auto &DbgValue : DbgValues)
1788     DbgValue->setOperand(0, MDPhi);
1789   return WidePhi;
1790 }
1791 
1792 /// Calculates control-dependent range for the given def at the given context
1793 /// by looking at dominating conditions inside of the loop
1794 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1795                                     Instruction *NarrowUser) {
1796   using namespace llvm::PatternMatch;
1797 
1798   Value *NarrowDefLHS;
1799   const APInt *NarrowDefRHS;
1800   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1801                                  m_APInt(NarrowDefRHS))) ||
1802       !NarrowDefRHS->isNonNegative())
1803     return;
1804 
1805   auto UpdateRangeFromCondition = [&] (Value *Condition,
1806                                        bool TrueDest) {
1807     CmpInst::Predicate Pred;
1808     Value *CmpRHS;
1809     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1810                                  m_Value(CmpRHS))))
1811       return;
1812 
1813     CmpInst::Predicate P =
1814             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1815 
1816     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1817     auto CmpConstrainedLHSRange =
1818             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1819     auto NarrowDefRange =
1820             CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1821 
1822     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1823   };
1824 
1825   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1826     if (!HasGuards)
1827       return;
1828 
1829     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1830                                      Ctx->getParent()->rend())) {
1831       Value *C = nullptr;
1832       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1833         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1834     }
1835   };
1836 
1837   UpdateRangeFromGuards(NarrowUser);
1838 
1839   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1840   // If NarrowUserBB is statically unreachable asking dominator queries may
1841   // yield surprising results. (e.g. the block may not have a dom tree node)
1842   if (!DT->isReachableFromEntry(NarrowUserBB))
1843     return;
1844 
1845   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1846        L->contains(DTB->getBlock());
1847        DTB = DTB->getIDom()) {
1848     auto *BB = DTB->getBlock();
1849     auto *TI = BB->getTerminator();
1850     UpdateRangeFromGuards(TI);
1851 
1852     auto *BI = dyn_cast<BranchInst>(TI);
1853     if (!BI || !BI->isConditional())
1854       continue;
1855 
1856     auto *TrueSuccessor = BI->getSuccessor(0);
1857     auto *FalseSuccessor = BI->getSuccessor(1);
1858 
1859     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1860       return BBE.isSingleEdge() &&
1861              DT->dominates(BBE, NarrowUser->getParent());
1862     };
1863 
1864     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1865       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1866 
1867     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1868       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1869   }
1870 }
1871 
1872 /// Calculates PostIncRangeInfos map for the given IV
1873 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1874   SmallPtrSet<Instruction *, 16> Visited;
1875   SmallVector<Instruction *, 6> Worklist;
1876   Worklist.push_back(OrigPhi);
1877   Visited.insert(OrigPhi);
1878 
1879   while (!Worklist.empty()) {
1880     Instruction *NarrowDef = Worklist.pop_back_val();
1881 
1882     for (Use &U : NarrowDef->uses()) {
1883       auto *NarrowUser = cast<Instruction>(U.getUser());
1884 
1885       // Don't go looking outside the current loop.
1886       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1887       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1888         continue;
1889 
1890       if (!Visited.insert(NarrowUser).second)
1891         continue;
1892 
1893       Worklist.push_back(NarrowUser);
1894 
1895       calculatePostIncRange(NarrowDef, NarrowUser);
1896     }
1897   }
1898 }
1899 
1900 //===----------------------------------------------------------------------===//
1901 //  Live IV Reduction - Minimize IVs live across the loop.
1902 //===----------------------------------------------------------------------===//
1903 
1904 //===----------------------------------------------------------------------===//
1905 //  Simplification of IV users based on SCEV evaluation.
1906 //===----------------------------------------------------------------------===//
1907 
1908 namespace {
1909 
1910 class IndVarSimplifyVisitor : public IVVisitor {
1911   ScalarEvolution *SE;
1912   const TargetTransformInfo *TTI;
1913   PHINode *IVPhi;
1914 
1915 public:
1916   WideIVInfo WI;
1917 
1918   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1919                         const TargetTransformInfo *TTI,
1920                         const DominatorTree *DTree)
1921     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1922     DT = DTree;
1923     WI.NarrowIV = IVPhi;
1924   }
1925 
1926   // Implement the interface used by simplifyUsersOfIV.
1927   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1928 };
1929 
1930 } // end anonymous namespace
1931 
1932 /// Iteratively perform simplification on a worklist of IV users. Each
1933 /// successive simplification may push more users which may themselves be
1934 /// candidates for simplification.
1935 ///
1936 /// Sign/Zero extend elimination is interleaved with IV simplification.
1937 bool IndVarSimplify::simplifyAndExtend(Loop *L,
1938                                        SCEVExpander &Rewriter,
1939                                        LoopInfo *LI) {
1940   SmallVector<WideIVInfo, 8> WideIVs;
1941 
1942   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1943           Intrinsic::getName(Intrinsic::experimental_guard));
1944   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1945 
1946   SmallVector<PHINode*, 8> LoopPhis;
1947   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1948     LoopPhis.push_back(cast<PHINode>(I));
1949   }
1950   // Each round of simplification iterates through the SimplifyIVUsers worklist
1951   // for all current phis, then determines whether any IVs can be
1952   // widened. Widening adds new phis to LoopPhis, inducing another round of
1953   // simplification on the wide IVs.
1954   bool Changed = false;
1955   while (!LoopPhis.empty()) {
1956     // Evaluate as many IV expressions as possible before widening any IVs. This
1957     // forces SCEV to set no-wrap flags before evaluating sign/zero
1958     // extension. The first time SCEV attempts to normalize sign/zero extension,
1959     // the result becomes final. So for the most predictable results, we delay
1960     // evaluation of sign/zero extend evaluation until needed, and avoid running
1961     // other SCEV based analysis prior to simplifyAndExtend.
1962     do {
1963       PHINode *CurrIV = LoopPhis.pop_back_val();
1964 
1965       // Information about sign/zero extensions of CurrIV.
1966       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1967 
1968       Changed |=
1969           simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1970 
1971       if (Visitor.WI.WidestNativeType) {
1972         WideIVs.push_back(Visitor.WI);
1973       }
1974     } while(!LoopPhis.empty());
1975 
1976     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1977       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1978       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1979         Changed = true;
1980         LoopPhis.push_back(WidePhi);
1981       }
1982     }
1983   }
1984   return Changed;
1985 }
1986 
1987 //===----------------------------------------------------------------------===//
1988 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1989 //===----------------------------------------------------------------------===//
1990 
1991 /// Given an Value which is hoped to be part of an add recurance in the given
1992 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
1993 /// that this is less general than SCEVs AddRec checking.
1994 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
1995   Instruction *IncI = dyn_cast<Instruction>(IncV);
1996   if (!IncI)
1997     return nullptr;
1998 
1999   switch (IncI->getOpcode()) {
2000   case Instruction::Add:
2001   case Instruction::Sub:
2002     break;
2003   case Instruction::GetElementPtr:
2004     // An IV counter must preserve its type.
2005     if (IncI->getNumOperands() == 2)
2006       break;
2007     LLVM_FALLTHROUGH;
2008   default:
2009     return nullptr;
2010   }
2011 
2012   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
2013   if (Phi && Phi->getParent() == L->getHeader()) {
2014     if (L->isLoopInvariant(IncI->getOperand(1)))
2015       return Phi;
2016     return nullptr;
2017   }
2018   if (IncI->getOpcode() == Instruction::GetElementPtr)
2019     return nullptr;
2020 
2021   // Allow add/sub to be commuted.
2022   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
2023   if (Phi && Phi->getParent() == L->getHeader()) {
2024     if (L->isLoopInvariant(IncI->getOperand(0)))
2025       return Phi;
2026   }
2027   return nullptr;
2028 }
2029 
2030 /// Whether the current loop exit test is based on this value.  Currently this
2031 /// is limited to a direct use in the loop condition.
2032 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
2033   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2034   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
2035   // TODO: Allow non-icmp loop test.
2036   if (!ICmp)
2037     return false;
2038 
2039   // TODO: Allow indirect use.
2040   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
2041 }
2042 
2043 /// linearFunctionTestReplace policy. Return true unless we can show that the
2044 /// current exit test is already sufficiently canonical.
2045 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
2046   assert(L->getLoopLatch() && "Must be in simplified form");
2047 
2048   // Avoid converting a constant or loop invariant test back to a runtime
2049   // test.  This is critical for when SCEV's cached ExitCount is less precise
2050   // than the current IR (such as after we've proven a particular exit is
2051   // actually dead and thus the BE count never reaches our ExitCount.)
2052   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2053   if (L->isLoopInvariant(BI->getCondition()))
2054     return false;
2055 
2056   // Do LFTR to simplify the exit condition to an ICMP.
2057   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
2058   if (!Cond)
2059     return true;
2060 
2061   // Do LFTR to simplify the exit ICMP to EQ/NE
2062   ICmpInst::Predicate Pred = Cond->getPredicate();
2063   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
2064     return true;
2065 
2066   // Look for a loop invariant RHS
2067   Value *LHS = Cond->getOperand(0);
2068   Value *RHS = Cond->getOperand(1);
2069   if (!L->isLoopInvariant(RHS)) {
2070     if (!L->isLoopInvariant(LHS))
2071       return true;
2072     std::swap(LHS, RHS);
2073   }
2074   // Look for a simple IV counter LHS
2075   PHINode *Phi = dyn_cast<PHINode>(LHS);
2076   if (!Phi)
2077     Phi = getLoopPhiForCounter(LHS, L);
2078 
2079   if (!Phi)
2080     return true;
2081 
2082   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2083   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
2084   if (Idx < 0)
2085     return true;
2086 
2087   // Do LFTR if the exit condition's IV is *not* a simple counter.
2088   Value *IncV = Phi->getIncomingValue(Idx);
2089   return Phi != getLoopPhiForCounter(IncV, L);
2090 }
2091 
2092 /// Return true if undefined behavior would provable be executed on the path to
2093 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
2094 /// anything about whether OnPathTo is actually executed or whether Root is
2095 /// actually poison.  This can be used to assess whether a new use of Root can
2096 /// be added at a location which is control equivalent with OnPathTo (such as
2097 /// immediately before it) without introducing UB which didn't previously
2098 /// exist.  Note that a false result conveys no information.
2099 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
2100                                           Instruction *OnPathTo,
2101                                           DominatorTree *DT) {
2102   // Basic approach is to assume Root is poison, propagate poison forward
2103   // through all users we can easily track, and then check whether any of those
2104   // users are provable UB and must execute before out exiting block might
2105   // exit.
2106 
2107   // The set of all recursive users we've visited (which are assumed to all be
2108   // poison because of said visit)
2109   SmallSet<const Value *, 16> KnownPoison;
2110   SmallVector<const Instruction*, 16> Worklist;
2111   Worklist.push_back(Root);
2112   while (!Worklist.empty()) {
2113     const Instruction *I = Worklist.pop_back_val();
2114 
2115     // If we know this must trigger UB on a path leading our target.
2116     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
2117       return true;
2118 
2119     // If we can't analyze propagation through this instruction, just skip it
2120     // and transitive users.  Safe as false is a conservative result.
2121     if (!propagatesFullPoison(I) && I != Root)
2122       continue;
2123 
2124     if (KnownPoison.insert(I).second)
2125       for (const User *User : I->users())
2126         Worklist.push_back(cast<Instruction>(User));
2127   }
2128 
2129   // Might be non-UB, or might have a path we couldn't prove must execute on
2130   // way to exiting bb.
2131   return false;
2132 }
2133 
2134 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2135 /// down to checking that all operands are constant and listing instructions
2136 /// that may hide undef.
2137 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
2138                                unsigned Depth) {
2139   if (isa<Constant>(V))
2140     return !isa<UndefValue>(V);
2141 
2142   if (Depth >= 6)
2143     return false;
2144 
2145   // Conservatively handle non-constant non-instructions. For example, Arguments
2146   // may be undef.
2147   Instruction *I = dyn_cast<Instruction>(V);
2148   if (!I)
2149     return false;
2150 
2151   // Load and return values may be undef.
2152   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
2153     return false;
2154 
2155   // Optimistically handle other instructions.
2156   for (Value *Op : I->operands()) {
2157     if (!Visited.insert(Op).second)
2158       continue;
2159     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
2160       return false;
2161   }
2162   return true;
2163 }
2164 
2165 /// Return true if the given value is concrete. We must prove that undef can
2166 /// never reach it.
2167 ///
2168 /// TODO: If we decide that this is a good approach to checking for undef, we
2169 /// may factor it into a common location.
2170 static bool hasConcreteDef(Value *V) {
2171   SmallPtrSet<Value*, 8> Visited;
2172   Visited.insert(V);
2173   return hasConcreteDefImpl(V, Visited, 0);
2174 }
2175 
2176 /// Return true if this IV has any uses other than the (soon to be rewritten)
2177 /// loop exit test.
2178 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2179   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2180   Value *IncV = Phi->getIncomingValue(LatchIdx);
2181 
2182   for (User *U : Phi->users())
2183     if (U != Cond && U != IncV) return false;
2184 
2185   for (User *U : IncV->users())
2186     if (U != Cond && U != Phi) return false;
2187   return true;
2188 }
2189 
2190 /// Return true if the given phi is a "counter" in L.  A counter is an
2191 /// add recurance (of integer or pointer type) with an arbitrary start, and a
2192 /// step of 1.  Note that L must have exactly one latch.
2193 static bool isLoopCounter(PHINode* Phi, Loop *L,
2194                           ScalarEvolution *SE) {
2195   assert(Phi->getParent() == L->getHeader());
2196   assert(L->getLoopLatch());
2197 
2198   if (!SE->isSCEVable(Phi->getType()))
2199     return false;
2200 
2201   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2202   if (!AR || AR->getLoop() != L || !AR->isAffine())
2203     return false;
2204 
2205   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2206   if (!Step || !Step->isOne())
2207     return false;
2208 
2209   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
2210   Value *IncV = Phi->getIncomingValue(LatchIdx);
2211   return (getLoopPhiForCounter(IncV, L) == Phi);
2212 }
2213 
2214 /// Search the loop header for a loop counter (anadd rec w/step of one)
2215 /// suitable for use by LFTR.  If multiple counters are available, select the
2216 /// "best" one based profitable heuristics.
2217 ///
2218 /// BECount may be an i8* pointer type. The pointer difference is already
2219 /// valid count without scaling the address stride, so it remains a pointer
2220 /// expression as far as SCEV is concerned.
2221 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
2222                                 const SCEV *BECount,
2223                                 ScalarEvolution *SE, DominatorTree *DT) {
2224   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2225 
2226   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
2227 
2228   // Loop over all of the PHI nodes, looking for a simple counter.
2229   PHINode *BestPhi = nullptr;
2230   const SCEV *BestInit = nullptr;
2231   BasicBlock *LatchBlock = L->getLoopLatch();
2232   assert(LatchBlock && "Must be in simplified form");
2233   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2234 
2235   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2236     PHINode *Phi = cast<PHINode>(I);
2237     if (!isLoopCounter(Phi, L, SE))
2238       continue;
2239 
2240     // Avoid comparing an integer IV against a pointer Limit.
2241     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2242       continue;
2243 
2244     const auto *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2245 
2246     // AR may be a pointer type, while BECount is an integer type.
2247     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2248     // AR may not be a narrower type, or we may never exit.
2249     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2250     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2251       continue;
2252 
2253     // Avoid reusing a potentially undef value to compute other values that may
2254     // have originally had a concrete definition.
2255     if (!hasConcreteDef(Phi)) {
2256       // We explicitly allow unknown phis as long as they are already used by
2257       // the loop exit test.  This is legal since performing LFTR could not
2258       // increase the number of undef users.
2259       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
2260       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
2261           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
2262         continue;
2263     }
2264 
2265     // Avoid introducing undefined behavior due to poison which didn't exist in
2266     // the original program.  (Annoyingly, the rules for poison and undef
2267     // propagation are distinct, so this does NOT cover the undef case above.)
2268     // We have to ensure that we don't introduce UB by introducing a use on an
2269     // iteration where said IV produces poison.  Our strategy here differs for
2270     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
2271     // see code in linearFunctionTestReplace.  For pointers, we restrict
2272     // transforms as there is no good way to reinfer inbounds once lost.
2273     if (!Phi->getType()->isIntegerTy() &&
2274         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
2275       continue;
2276 
2277     const SCEV *Init = AR->getStart();
2278 
2279     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2280       // Don't force a live loop counter if another IV can be used.
2281       if (AlmostDeadIV(Phi, LatchBlock, Cond))
2282         continue;
2283 
2284       // Prefer to count-from-zero. This is a more "canonical" counter form. It
2285       // also prefers integer to pointer IVs.
2286       if (BestInit->isZero() != Init->isZero()) {
2287         if (BestInit->isZero())
2288           continue;
2289       }
2290       // If two IVs both count from zero or both count from nonzero then the
2291       // narrower is likely a dead phi that has been widened. Use the wider phi
2292       // to allow the other to be eliminated.
2293       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2294         continue;
2295     }
2296     BestPhi = Phi;
2297     BestInit = Init;
2298   }
2299   return BestPhi;
2300 }
2301 
2302 /// Insert an IR expression which computes the value held by the IV IndVar
2303 /// (which must be an loop counter w/unit stride) after the backedge of loop L
2304 /// is taken ExitCount times.
2305 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
2306                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
2307                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
2308   assert(isLoopCounter(IndVar, L, SE));
2309   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2310   const SCEV *IVInit = AR->getStart();
2311 
2312   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
2313   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
2314   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2315   // the existing GEPs whenever possible.
2316   if (IndVar->getType()->isPointerTy() &&
2317       !ExitCount->getType()->isPointerTy()) {
2318     // IVOffset will be the new GEP offset that is interpreted by GEP as a
2319     // signed value. ExitCount on the other hand represents the loop trip count,
2320     // which is an unsigned value. FindLoopCounter only allows induction
2321     // variables that have a positive unit stride of one. This means we don't
2322     // have to handle the case of negative offsets (yet) and just need to zero
2323     // extend ExitCount.
2324     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2325     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
2326     if (UsePostInc)
2327       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
2328 
2329     // Expand the code for the iteration count.
2330     assert(SE->isLoopInvariant(IVOffset, L) &&
2331            "Computed iteration count is not loop invariant!");
2332     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2333     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
2334 
2335     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
2336     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
2337     // We could handle pointer IVs other than i8*, but we need to compensate for
2338     // gep index scaling.
2339     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2340                              cast<PointerType>(GEPBase->getType())
2341                                  ->getElementType())->isOne() &&
2342            "unit stride pointer IV must be i8*");
2343 
2344     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2345     return Builder.CreateGEP(GEPBase->getType()->getPointerElementType(),
2346                              GEPBase, GEPOffset, "lftr.limit");
2347   } else {
2348     // In any other case, convert both IVInit and ExitCount to integers before
2349     // comparing. This may result in SCEV expansion of pointers, but in practice
2350     // SCEV will fold the pointer arithmetic away as such:
2351     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2352     //
2353     // Valid Cases: (1) both integers is most common; (2) both may be pointers
2354     // for simple memset-style loops.
2355     //
2356     // IVInit integer and ExitCount pointer would only occur if a canonical IV
2357     // were generated on top of case #2, which is not expected.
2358 
2359     assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2360     // For unit stride, IVCount = Start + ExitCount with 2's complement
2361     // overflow.
2362     const SCEV *IVInit = AR->getStart();
2363 
2364     // For integer IVs, truncate the IV before computing IVInit + BECount.
2365     if (SE->getTypeSizeInBits(IVInit->getType())
2366         > SE->getTypeSizeInBits(ExitCount->getType()))
2367       IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
2368 
2369     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
2370 
2371     if (UsePostInc)
2372       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
2373 
2374     // Expand the code for the iteration count.
2375     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2376     IRBuilder<> Builder(BI);
2377     assert(SE->isLoopInvariant(IVLimit, L) &&
2378            "Computed iteration count is not loop invariant!");
2379     // Ensure that we generate the same type as IndVar, or a smaller integer
2380     // type. In the presence of null pointer values, we have an integer type
2381     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2382     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
2383       IndVar->getType() : ExitCount->getType();
2384     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2385   }
2386 }
2387 
2388 /// This method rewrites the exit condition of the loop to be a canonical !=
2389 /// comparison against the incremented loop induction variable.  This pass is
2390 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2391 /// determine a loop-invariant trip count of the loop, which is actually a much
2392 /// broader range than just linear tests.
2393 bool IndVarSimplify::
2394 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
2395                           const SCEV *ExitCount,
2396                           PHINode *IndVar, SCEVExpander &Rewriter) {
2397   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2398   assert(isLoopCounter(IndVar, L, SE));
2399   Instruction * const IncVar =
2400     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
2401 
2402   // Initialize CmpIndVar to the preincremented IV.
2403   Value *CmpIndVar = IndVar;
2404   bool UsePostInc = false;
2405 
2406   // If the exiting block is the same as the backedge block, we prefer to
2407   // compare against the post-incremented value, otherwise we must compare
2408   // against the preincremented value.
2409   if (ExitingBB == L->getLoopLatch()) {
2410     // For pointer IVs, we chose to not strip inbounds which requires us not
2411     // to add a potentially UB introducing use.  We need to either a) show
2412     // the loop test we're modifying is already in post-inc form, or b) show
2413     // that adding a use must not introduce UB.
2414     bool SafeToPostInc =
2415         IndVar->getType()->isIntegerTy() ||
2416         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
2417         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
2418     if (SafeToPostInc) {
2419       UsePostInc = true;
2420       CmpIndVar = IncVar;
2421     }
2422   }
2423 
2424   // It may be necessary to drop nowrap flags on the incrementing instruction
2425   // if either LFTR moves from a pre-inc check to a post-inc check (in which
2426   // case the increment might have previously been poison on the last iteration
2427   // only) or if LFTR switches to a different IV that was previously dynamically
2428   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
2429   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
2430   // check), because the pre-inc addrec flags may be adopted from the original
2431   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
2432   // TODO: This handling is inaccurate for one case: If we switch to a
2433   // dynamically dead IV that wraps on the first loop iteration only, which is
2434   // not covered by the post-inc addrec. (If the new IV was not dynamically
2435   // dead, it could not be poison on the first iteration in the first place.)
2436   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
2437     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
2438     if (BO->hasNoUnsignedWrap())
2439       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
2440     if (BO->hasNoSignedWrap())
2441       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
2442   }
2443 
2444   Value *ExitCnt = genLoopLimit(
2445       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
2446   assert(ExitCnt->getType()->isPointerTy() ==
2447              IndVar->getType()->isPointerTy() &&
2448          "genLoopLimit missed a cast");
2449 
2450   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2451   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2452   ICmpInst::Predicate P;
2453   if (L->contains(BI->getSuccessor(0)))
2454     P = ICmpInst::ICMP_NE;
2455   else
2456     P = ICmpInst::ICMP_EQ;
2457 
2458   IRBuilder<> Builder(BI);
2459 
2460   // The new loop exit condition should reuse the debug location of the
2461   // original loop exit condition.
2462   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2463     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2464 
2465   // LFTR can ignore IV overflow and truncate to the width of
2466   // ExitCount. This avoids materializing the add(zext(add)) expression.
2467   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2468   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2469   if (CmpIndVarSize > ExitCntSize) {
2470     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2471     const SCEV *ARStart = AR->getStart();
2472     const SCEV *ARStep = AR->getStepRecurrence(*SE);
2473     // For constant ExitCount, avoid truncation.
2474     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(ExitCount)) {
2475       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2476       APInt Count = cast<SCEVConstant>(ExitCount)->getAPInt();
2477       Count = Count.zext(CmpIndVarSize);
2478       if (UsePostInc)
2479         ++Count;
2480       assert(cast<SCEVConstant>(ARStep)->getValue()->isOne());
2481       APInt NewLimit = Start + Count;
2482       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2483     } else {
2484       // We try to extend trip count first. If that doesn't work we truncate IV.
2485       // Zext(trunc(IV)) == IV implies equivalence of the following two:
2486       // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2487       // one of the two holds, extend the trip count, otherwise we truncate IV.
2488       bool Extended = false;
2489       const SCEV *IV = SE->getSCEV(CmpIndVar);
2490       const SCEV *ZExtTrunc =
2491            SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2492                                                      ExitCnt->getType()),
2493                                  CmpIndVar->getType());
2494 
2495       if (ZExtTrunc == IV) {
2496         Extended = true;
2497         ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2498                                      "wide.trip.count");
2499       } else {
2500         const SCEV *SExtTrunc =
2501           SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2502                                                     ExitCnt->getType()),
2503                                 CmpIndVar->getType());
2504         if (SExtTrunc == IV) {
2505           Extended = true;
2506           ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2507                                        "wide.trip.count");
2508         }
2509       }
2510 
2511       if (Extended) {
2512         bool Discard;
2513         L->makeLoopInvariant(ExitCnt, Discard);
2514       } else
2515         CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2516                                         "lftr.wideiv");
2517     }
2518   }
2519   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2520                     << "      LHS:" << *CmpIndVar << '\n'
2521                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
2522                     << "\n"
2523                     << "      RHS:\t" << *ExitCnt << "\n"
2524                     << "ExitCount:\t" << *ExitCount << "\n"
2525                     << "  was: " << *BI->getCondition() << "\n");
2526 
2527   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2528   Value *OrigCond = BI->getCondition();
2529   // It's tempting to use replaceAllUsesWith here to fully replace the old
2530   // comparison, but that's not immediately safe, since users of the old
2531   // comparison may not be dominated by the new comparison. Instead, just
2532   // update the branch to use the new comparison; in the common case this
2533   // will make old comparison dead.
2534   BI->setCondition(Cond);
2535   DeadInsts.push_back(OrigCond);
2536 
2537   ++NumLFTR;
2538   return true;
2539 }
2540 
2541 //===----------------------------------------------------------------------===//
2542 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2543 //===----------------------------------------------------------------------===//
2544 
2545 /// If there's a single exit block, sink any loop-invariant values that
2546 /// were defined in the preheader but not used inside the loop into the
2547 /// exit block to reduce register pressure in the loop.
2548 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2549   BasicBlock *ExitBlock = L->getExitBlock();
2550   if (!ExitBlock) return false;
2551 
2552   BasicBlock *Preheader = L->getLoopPreheader();
2553   if (!Preheader) return false;
2554 
2555   bool MadeAnyChanges = false;
2556   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2557   BasicBlock::iterator I(Preheader->getTerminator());
2558   while (I != Preheader->begin()) {
2559     --I;
2560     // New instructions were inserted at the end of the preheader.
2561     if (isa<PHINode>(I))
2562       break;
2563 
2564     // Don't move instructions which might have side effects, since the side
2565     // effects need to complete before instructions inside the loop.  Also don't
2566     // move instructions which might read memory, since the loop may modify
2567     // memory. Note that it's okay if the instruction might have undefined
2568     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2569     // block.
2570     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2571       continue;
2572 
2573     // Skip debug info intrinsics.
2574     if (isa<DbgInfoIntrinsic>(I))
2575       continue;
2576 
2577     // Skip eh pad instructions.
2578     if (I->isEHPad())
2579       continue;
2580 
2581     // Don't sink alloca: we never want to sink static alloca's out of the
2582     // entry block, and correctly sinking dynamic alloca's requires
2583     // checks for stacksave/stackrestore intrinsics.
2584     // FIXME: Refactor this check somehow?
2585     if (isa<AllocaInst>(I))
2586       continue;
2587 
2588     // Determine if there is a use in or before the loop (direct or
2589     // otherwise).
2590     bool UsedInLoop = false;
2591     for (Use &U : I->uses()) {
2592       Instruction *User = cast<Instruction>(U.getUser());
2593       BasicBlock *UseBB = User->getParent();
2594       if (PHINode *P = dyn_cast<PHINode>(User)) {
2595         unsigned i =
2596           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2597         UseBB = P->getIncomingBlock(i);
2598       }
2599       if (UseBB == Preheader || L->contains(UseBB)) {
2600         UsedInLoop = true;
2601         break;
2602       }
2603     }
2604 
2605     // If there is, the def must remain in the preheader.
2606     if (UsedInLoop)
2607       continue;
2608 
2609     // Otherwise, sink it to the exit block.
2610     Instruction *ToMove = &*I;
2611     bool Done = false;
2612 
2613     if (I != Preheader->begin()) {
2614       // Skip debug info intrinsics.
2615       do {
2616         --I;
2617       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2618 
2619       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2620         Done = true;
2621     } else {
2622       Done = true;
2623     }
2624 
2625     MadeAnyChanges = true;
2626     ToMove->moveBefore(*ExitBlock, InsertPt);
2627     if (Done) break;
2628     InsertPt = ToMove->getIterator();
2629   }
2630 
2631   return MadeAnyChanges;
2632 }
2633 
2634 //===----------------------------------------------------------------------===//
2635 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2636 //===----------------------------------------------------------------------===//
2637 
2638 bool IndVarSimplify::run(Loop *L) {
2639   // We need (and expect!) the incoming loop to be in LCSSA.
2640   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2641          "LCSSA required to run indvars!");
2642   bool Changed = false;
2643 
2644   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2645   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2646   //    canonicalization can be a pessimization without LSR to "clean up"
2647   //    afterwards.
2648   //  - We depend on having a preheader; in particular,
2649   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2650   //    and we're in trouble if we can't find the induction variable even when
2651   //    we've manually inserted one.
2652   //  - LFTR relies on having a single backedge.
2653   if (!L->isLoopSimplifyForm())
2654     return false;
2655 
2656   // If there are any floating-point recurrences, attempt to
2657   // transform them to use integer recurrences.
2658   Changed |= rewriteNonIntegerIVs(L);
2659 
2660   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2661 
2662   // Create a rewriter object which we'll use to transform the code with.
2663   SCEVExpander Rewriter(*SE, DL, "indvars");
2664 #ifndef NDEBUG
2665   Rewriter.setDebugType(DEBUG_TYPE);
2666 #endif
2667 
2668   // Eliminate redundant IV users.
2669   //
2670   // Simplification works best when run before other consumers of SCEV. We
2671   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2672   // other expressions involving loop IVs have been evaluated. This helps SCEV
2673   // set no-wrap flags before normalizing sign/zero extension.
2674   Rewriter.disableCanonicalMode();
2675   Changed |= simplifyAndExtend(L, Rewriter, LI);
2676 
2677   // Check to see if this loop has a computable loop-invariant execution count.
2678   // If so, this means that we can compute the final value of any expressions
2679   // that are recurrent in the loop, and substitute the exit values from the
2680   // loop into any instructions outside of the loop that use the final values of
2681   // the current expressions.
2682   //
2683   if (ReplaceExitValue != NeverRepl &&
2684       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2685     Changed |= rewriteLoopExitValues(L, Rewriter);
2686 
2687   // Eliminate redundant IV cycles.
2688   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2689 
2690   // If we have a trip count expression, rewrite the loop's exit condition
2691   // using it.
2692   if (!DisableLFTR) {
2693     SmallVector<BasicBlock*, 16> ExitingBlocks;
2694     L->getExitingBlocks(ExitingBlocks);
2695     for (BasicBlock *ExitingBB : ExitingBlocks) {
2696       // Can't rewrite non-branch yet.
2697       if (!isa<BranchInst>(ExitingBB->getTerminator()))
2698         continue;
2699 
2700       // If our exitting block exits multiple loops, we can only rewrite the
2701       // innermost one.  Otherwise, we're changing how many times the innermost
2702       // loop runs before it exits.
2703       if (LI->getLoopFor(ExitingBB) != L)
2704         continue;
2705 
2706       if (!needsLFTR(L, ExitingBB))
2707         continue;
2708 
2709       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
2710       if (isa<SCEVCouldNotCompute>(ExitCount))
2711         continue;
2712 
2713       // If we know we'd exit on the first iteration, rewrite the exit to
2714       // reflect this.  This does not imply the loop must exit through this
2715       // exit; there may be an earlier one taken on the first iteration.
2716       // TODO: Given we know the backedge can't be taken, we should go ahead
2717       // and break it.  Or at least, kill all the header phis and simplify.
2718       if (ExitCount->isZero()) {
2719         auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
2720         bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
2721         auto *OldCond = BI->getCondition();
2722         auto *NewCond = ExitIfTrue ? ConstantInt::getTrue(OldCond->getType()) :
2723           ConstantInt::getFalse(OldCond->getType());
2724         BI->setCondition(NewCond);
2725         if (OldCond->use_empty())
2726           DeadInsts.push_back(OldCond);
2727         Changed = true;
2728         continue;
2729       }
2730 
2731       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
2732       if (!IndVar)
2733         continue;
2734 
2735       // Avoid high cost expansions.  Note: This heuristic is questionable in
2736       // that our definition of "high cost" is not exactly principled.
2737       if (Rewriter.isHighCostExpansion(ExitCount, L))
2738         continue;
2739 
2740       // Check preconditions for proper SCEVExpander operation. SCEV does not
2741       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
2742       // any pass that uses the SCEVExpander must do it. This does not work
2743       // well for loop passes because SCEVExpander makes assumptions about
2744       // all loops, while LoopPassManager only forces the current loop to be
2745       // simplified.
2746       //
2747       // FIXME: SCEV expansion has no way to bail out, so the caller must
2748       // explicitly check any assumptions made by SCEV. Brittle.
2749       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
2750       if (!AR || AR->getLoop()->getLoopPreheader())
2751         Changed |= linearFunctionTestReplace(L, ExitingBB,
2752                                              ExitCount, IndVar,
2753                                              Rewriter);
2754     }
2755   }
2756   // Clear the rewriter cache, because values that are in the rewriter's cache
2757   // can be deleted in the loop below, causing the AssertingVH in the cache to
2758   // trigger.
2759   Rewriter.clear();
2760 
2761   // Now that we're done iterating through lists, clean up any instructions
2762   // which are now dead.
2763   while (!DeadInsts.empty())
2764     if (Instruction *Inst =
2765             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2766       Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2767 
2768   // The Rewriter may not be used from this point on.
2769 
2770   // Loop-invariant instructions in the preheader that aren't used in the
2771   // loop may be sunk below the loop to reduce register pressure.
2772   Changed |= sinkUnusedInvariants(L);
2773 
2774   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2775   // trip count and therefore can further simplify exit values in addition to
2776   // rewriteLoopExitValues.
2777   Changed |= rewriteFirstIterationLoopExitValues(L);
2778 
2779   // Clean up dead instructions.
2780   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2781 
2782   // Check a post-condition.
2783   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2784          "Indvars did not preserve LCSSA!");
2785 
2786   // Verify that LFTR, and any other change have not interfered with SCEV's
2787   // ability to compute trip count.
2788 #ifndef NDEBUG
2789   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2790     SE->forgetLoop(L);
2791     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2792     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2793         SE->getTypeSizeInBits(NewBECount->getType()))
2794       NewBECount = SE->getTruncateOrNoop(NewBECount,
2795                                          BackedgeTakenCount->getType());
2796     else
2797       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2798                                                  NewBECount->getType());
2799     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2800   }
2801 #endif
2802 
2803   return Changed;
2804 }
2805 
2806 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2807                                           LoopStandardAnalysisResults &AR,
2808                                           LPMUpdater &) {
2809   Function *F = L.getHeader()->getParent();
2810   const DataLayout &DL = F->getParent()->getDataLayout();
2811 
2812   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2813   if (!IVS.run(&L))
2814     return PreservedAnalyses::all();
2815 
2816   auto PA = getLoopPassPreservedAnalyses();
2817   PA.preserveSet<CFGAnalyses>();
2818   return PA;
2819 }
2820 
2821 namespace {
2822 
2823 struct IndVarSimplifyLegacyPass : public LoopPass {
2824   static char ID; // Pass identification, replacement for typeid
2825 
2826   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2827     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2828   }
2829 
2830   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2831     if (skipLoop(L))
2832       return false;
2833 
2834     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2835     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2836     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2837     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2838     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2839     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2840     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2841     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2842 
2843     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2844     return IVS.run(L);
2845   }
2846 
2847   void getAnalysisUsage(AnalysisUsage &AU) const override {
2848     AU.setPreservesCFG();
2849     getLoopAnalysisUsage(AU);
2850   }
2851 };
2852 
2853 } // end anonymous namespace
2854 
2855 char IndVarSimplifyLegacyPass::ID = 0;
2856 
2857 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2858                       "Induction Variable Simplification", false, false)
2859 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2860 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2861                     "Induction Variable Simplification", false, false)
2862 
2863 Pass *llvm::createIndVarSimplifyPass() {
2864   return new IndVarSimplifyLegacyPass();
2865 }
2866