1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This transformation analyzes and transforms the induction variables (and 10 // computations derived from them) into simpler forms suitable for subsequent 11 // analysis and transformation. 12 // 13 // If the trip count of a loop is computable, this pass also makes the following 14 // changes: 15 // 1. The exit condition for the loop is canonicalized to compare the 16 // induction value against the exit value. This turns loops like: 17 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 18 // 2. Any use outside of the loop of an expression derived from the indvar 19 // is changed to compute the derived value outside of the loop, eliminating 20 // the dependence on the exit value of the induction variable. If the only 21 // purpose of the loop is to compute the exit value of some derived 22 // expression, this transformation will make the loop dead. 23 // 24 //===----------------------------------------------------------------------===// 25 26 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 27 #include "llvm/ADT/APFloat.h" 28 #include "llvm/ADT/APInt.h" 29 #include "llvm/ADT/ArrayRef.h" 30 #include "llvm/ADT/DenseMap.h" 31 #include "llvm/ADT/None.h" 32 #include "llvm/ADT/Optional.h" 33 #include "llvm/ADT/STLExtras.h" 34 #include "llvm/ADT/SmallPtrSet.h" 35 #include "llvm/ADT/SmallVector.h" 36 #include "llvm/ADT/Statistic.h" 37 #include "llvm/ADT/iterator_range.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Analysis/ScalarEvolution.h" 41 #include "llvm/Analysis/ScalarEvolutionExpander.h" 42 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 43 #include "llvm/Analysis/TargetLibraryInfo.h" 44 #include "llvm/Analysis/TargetTransformInfo.h" 45 #include "llvm/Transforms/Utils/Local.h" 46 #include "llvm/IR/BasicBlock.h" 47 #include "llvm/IR/Constant.h" 48 #include "llvm/IR/ConstantRange.h" 49 #include "llvm/IR/Constants.h" 50 #include "llvm/IR/DataLayout.h" 51 #include "llvm/IR/DerivedTypes.h" 52 #include "llvm/IR/Dominators.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/IRBuilder.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/IntrinsicInst.h" 59 #include "llvm/IR/Intrinsics.h" 60 #include "llvm/IR/Module.h" 61 #include "llvm/IR/Operator.h" 62 #include "llvm/IR/PassManager.h" 63 #include "llvm/IR/PatternMatch.h" 64 #include "llvm/IR/Type.h" 65 #include "llvm/IR/Use.h" 66 #include "llvm/IR/User.h" 67 #include "llvm/IR/Value.h" 68 #include "llvm/IR/ValueHandle.h" 69 #include "llvm/Pass.h" 70 #include "llvm/Support/Casting.h" 71 #include "llvm/Support/CommandLine.h" 72 #include "llvm/Support/Compiler.h" 73 #include "llvm/Support/Debug.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/MathExtras.h" 76 #include "llvm/Support/raw_ostream.h" 77 #include "llvm/Transforms/Scalar.h" 78 #include "llvm/Transforms/Scalar/LoopPassManager.h" 79 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 80 #include "llvm/Transforms/Utils/LoopUtils.h" 81 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 82 #include <cassert> 83 #include <cstdint> 84 #include <utility> 85 86 using namespace llvm; 87 88 #define DEBUG_TYPE "indvars" 89 90 STATISTIC(NumWidened , "Number of indvars widened"); 91 STATISTIC(NumReplaced , "Number of exit values replaced"); 92 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 93 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 94 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 95 96 // Trip count verification can be enabled by default under NDEBUG if we 97 // implement a strong expression equivalence checker in SCEV. Until then, we 98 // use the verify-indvars flag, which may assert in some cases. 99 static cl::opt<bool> VerifyIndvars( 100 "verify-indvars", cl::Hidden, 101 cl::desc("Verify the ScalarEvolution result after running indvars")); 102 103 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 104 105 static cl::opt<ReplaceExitVal> ReplaceExitValue( 106 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 107 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 108 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 109 clEnumValN(OnlyCheapRepl, "cheap", 110 "only replace exit value when the cost is cheap"), 111 clEnumValN(AlwaysRepl, "always", 112 "always replace exit value whenever possible"))); 113 114 static cl::opt<bool> UsePostIncrementRanges( 115 "indvars-post-increment-ranges", cl::Hidden, 116 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 117 cl::init(true)); 118 119 static cl::opt<bool> 120 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 121 cl::desc("Disable Linear Function Test Replace optimization")); 122 123 namespace { 124 125 struct RewritePhi; 126 127 class IndVarSimplify { 128 LoopInfo *LI; 129 ScalarEvolution *SE; 130 DominatorTree *DT; 131 const DataLayout &DL; 132 TargetLibraryInfo *TLI; 133 const TargetTransformInfo *TTI; 134 135 SmallVector<WeakTrackingVH, 16> DeadInsts; 136 137 bool isValidRewrite(Value *FromVal, Value *ToVal); 138 139 bool handleFloatingPointIV(Loop *L, PHINode *PH); 140 bool rewriteNonIntegerIVs(Loop *L); 141 142 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 143 144 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 145 bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 146 bool rewriteFirstIterationLoopExitValues(Loop *L); 147 bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const; 148 149 bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 150 PHINode *IndVar, SCEVExpander &Rewriter); 151 152 bool sinkUnusedInvariants(Loop *L); 153 154 public: 155 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 156 const DataLayout &DL, TargetLibraryInfo *TLI, 157 TargetTransformInfo *TTI) 158 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 159 160 bool run(Loop *L); 161 }; 162 163 } // end anonymous namespace 164 165 /// Return true if the SCEV expansion generated by the rewriter can replace the 166 /// original value. SCEV guarantees that it produces the same value, but the way 167 /// it is produced may be illegal IR. Ideally, this function will only be 168 /// called for verification. 169 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 170 // If an SCEV expression subsumed multiple pointers, its expansion could 171 // reassociate the GEP changing the base pointer. This is illegal because the 172 // final address produced by a GEP chain must be inbounds relative to its 173 // underlying object. Otherwise basic alias analysis, among other things, 174 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 175 // producing an expression involving multiple pointers. Until then, we must 176 // bail out here. 177 // 178 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 179 // because it understands lcssa phis while SCEV does not. 180 Value *FromPtr = FromVal; 181 Value *ToPtr = ToVal; 182 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 183 FromPtr = GEP->getPointerOperand(); 184 } 185 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 186 ToPtr = GEP->getPointerOperand(); 187 } 188 if (FromPtr != FromVal || ToPtr != ToVal) { 189 // Quickly check the common case 190 if (FromPtr == ToPtr) 191 return true; 192 193 // SCEV may have rewritten an expression that produces the GEP's pointer 194 // operand. That's ok as long as the pointer operand has the same base 195 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 196 // base of a recurrence. This handles the case in which SCEV expansion 197 // converts a pointer type recurrence into a nonrecurrent pointer base 198 // indexed by an integer recurrence. 199 200 // If the GEP base pointer is a vector of pointers, abort. 201 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 202 return false; 203 204 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 205 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 206 if (FromBase == ToBase) 207 return true; 208 209 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 210 << " != " << *ToBase << "\n"); 211 212 return false; 213 } 214 return true; 215 } 216 217 /// Determine the insertion point for this user. By default, insert immediately 218 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 219 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 220 /// common dominator for the incoming blocks. A nullptr can be returned if no 221 /// viable location is found: it may happen if User is a PHI and Def only comes 222 /// to this PHI from unreachable blocks. 223 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 224 DominatorTree *DT, LoopInfo *LI) { 225 PHINode *PHI = dyn_cast<PHINode>(User); 226 if (!PHI) 227 return User; 228 229 Instruction *InsertPt = nullptr; 230 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 231 if (PHI->getIncomingValue(i) != Def) 232 continue; 233 234 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 235 236 if (!DT->isReachableFromEntry(InsertBB)) 237 continue; 238 239 if (!InsertPt) { 240 InsertPt = InsertBB->getTerminator(); 241 continue; 242 } 243 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 244 InsertPt = InsertBB->getTerminator(); 245 } 246 247 // If we have skipped all inputs, it means that Def only comes to Phi from 248 // unreachable blocks. 249 if (!InsertPt) 250 return nullptr; 251 252 auto *DefI = dyn_cast<Instruction>(Def); 253 if (!DefI) 254 return InsertPt; 255 256 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 257 258 auto *L = LI->getLoopFor(DefI->getParent()); 259 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 260 261 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 262 if (LI->getLoopFor(DTN->getBlock()) == L) 263 return DTN->getBlock()->getTerminator(); 264 265 llvm_unreachable("DefI dominates InsertPt!"); 266 } 267 268 //===----------------------------------------------------------------------===// 269 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 270 //===----------------------------------------------------------------------===// 271 272 /// Convert APF to an integer, if possible. 273 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 274 bool isExact = false; 275 // See if we can convert this to an int64_t 276 uint64_t UIntVal; 277 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 278 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 279 !isExact) 280 return false; 281 IntVal = UIntVal; 282 return true; 283 } 284 285 /// If the loop has floating induction variable then insert corresponding 286 /// integer induction variable if possible. 287 /// For example, 288 /// for(double i = 0; i < 10000; ++i) 289 /// bar(i) 290 /// is converted into 291 /// for(int i = 0; i < 10000; ++i) 292 /// bar((double)i); 293 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 294 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 295 unsigned BackEdge = IncomingEdge^1; 296 297 // Check incoming value. 298 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 299 300 int64_t InitValue; 301 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 302 return false; 303 304 // Check IV increment. Reject this PN if increment operation is not 305 // an add or increment value can not be represented by an integer. 306 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 307 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 308 309 // If this is not an add of the PHI with a constantfp, or if the constant fp 310 // is not an integer, bail out. 311 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 312 int64_t IncValue; 313 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 314 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 315 return false; 316 317 // Check Incr uses. One user is PN and the other user is an exit condition 318 // used by the conditional terminator. 319 Value::user_iterator IncrUse = Incr->user_begin(); 320 Instruction *U1 = cast<Instruction>(*IncrUse++); 321 if (IncrUse == Incr->user_end()) return false; 322 Instruction *U2 = cast<Instruction>(*IncrUse++); 323 if (IncrUse != Incr->user_end()) return false; 324 325 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 326 // only used by a branch, we can't transform it. 327 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 328 if (!Compare) 329 Compare = dyn_cast<FCmpInst>(U2); 330 if (!Compare || !Compare->hasOneUse() || 331 !isa<BranchInst>(Compare->user_back())) 332 return false; 333 334 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 335 336 // We need to verify that the branch actually controls the iteration count 337 // of the loop. If not, the new IV can overflow and no one will notice. 338 // The branch block must be in the loop and one of the successors must be out 339 // of the loop. 340 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 341 if (!L->contains(TheBr->getParent()) || 342 (L->contains(TheBr->getSuccessor(0)) && 343 L->contains(TheBr->getSuccessor(1)))) 344 return false; 345 346 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 347 // transform it. 348 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 349 int64_t ExitValue; 350 if (ExitValueVal == nullptr || 351 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 352 return false; 353 354 // Find new predicate for integer comparison. 355 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 356 switch (Compare->getPredicate()) { 357 default: return false; // Unknown comparison. 358 case CmpInst::FCMP_OEQ: 359 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 360 case CmpInst::FCMP_ONE: 361 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 362 case CmpInst::FCMP_OGT: 363 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 364 case CmpInst::FCMP_OGE: 365 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 366 case CmpInst::FCMP_OLT: 367 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 368 case CmpInst::FCMP_OLE: 369 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 370 } 371 372 // We convert the floating point induction variable to a signed i32 value if 373 // we can. This is only safe if the comparison will not overflow in a way 374 // that won't be trapped by the integer equivalent operations. Check for this 375 // now. 376 // TODO: We could use i64 if it is native and the range requires it. 377 378 // The start/stride/exit values must all fit in signed i32. 379 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 380 return false; 381 382 // If not actually striding (add x, 0.0), avoid touching the code. 383 if (IncValue == 0) 384 return false; 385 386 // Positive and negative strides have different safety conditions. 387 if (IncValue > 0) { 388 // If we have a positive stride, we require the init to be less than the 389 // exit value. 390 if (InitValue >= ExitValue) 391 return false; 392 393 uint32_t Range = uint32_t(ExitValue-InitValue); 394 // Check for infinite loop, either: 395 // while (i <= Exit) or until (i > Exit) 396 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 397 if (++Range == 0) return false; // Range overflows. 398 } 399 400 unsigned Leftover = Range % uint32_t(IncValue); 401 402 // If this is an equality comparison, we require that the strided value 403 // exactly land on the exit value, otherwise the IV condition will wrap 404 // around and do things the fp IV wouldn't. 405 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 406 Leftover != 0) 407 return false; 408 409 // If the stride would wrap around the i32 before exiting, we can't 410 // transform the IV. 411 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 412 return false; 413 } else { 414 // If we have a negative stride, we require the init to be greater than the 415 // exit value. 416 if (InitValue <= ExitValue) 417 return false; 418 419 uint32_t Range = uint32_t(InitValue-ExitValue); 420 // Check for infinite loop, either: 421 // while (i >= Exit) or until (i < Exit) 422 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 423 if (++Range == 0) return false; // Range overflows. 424 } 425 426 unsigned Leftover = Range % uint32_t(-IncValue); 427 428 // If this is an equality comparison, we require that the strided value 429 // exactly land on the exit value, otherwise the IV condition will wrap 430 // around and do things the fp IV wouldn't. 431 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 432 Leftover != 0) 433 return false; 434 435 // If the stride would wrap around the i32 before exiting, we can't 436 // transform the IV. 437 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 438 return false; 439 } 440 441 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 442 443 // Insert new integer induction variable. 444 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 445 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 446 PN->getIncomingBlock(IncomingEdge)); 447 448 Value *NewAdd = 449 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 450 Incr->getName()+".int", Incr); 451 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 452 453 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 454 ConstantInt::get(Int32Ty, ExitValue), 455 Compare->getName()); 456 457 // In the following deletions, PN may become dead and may be deleted. 458 // Use a WeakTrackingVH to observe whether this happens. 459 WeakTrackingVH WeakPH = PN; 460 461 // Delete the old floating point exit comparison. The branch starts using the 462 // new comparison. 463 NewCompare->takeName(Compare); 464 Compare->replaceAllUsesWith(NewCompare); 465 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 466 467 // Delete the old floating point increment. 468 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 469 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 470 471 // If the FP induction variable still has uses, this is because something else 472 // in the loop uses its value. In order to canonicalize the induction 473 // variable, we chose to eliminate the IV and rewrite it in terms of an 474 // int->fp cast. 475 // 476 // We give preference to sitofp over uitofp because it is faster on most 477 // platforms. 478 if (WeakPH) { 479 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 480 &*PN->getParent()->getFirstInsertionPt()); 481 PN->replaceAllUsesWith(Conv); 482 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 483 } 484 return true; 485 } 486 487 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 488 // First step. Check to see if there are any floating-point recurrences. 489 // If there are, change them into integer recurrences, permitting analysis by 490 // the SCEV routines. 491 BasicBlock *Header = L->getHeader(); 492 493 SmallVector<WeakTrackingVH, 8> PHIs; 494 for (PHINode &PN : Header->phis()) 495 PHIs.push_back(&PN); 496 497 bool Changed = false; 498 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 499 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 500 Changed |= handleFloatingPointIV(L, PN); 501 502 // If the loop previously had floating-point IV, ScalarEvolution 503 // may not have been able to compute a trip count. Now that we've done some 504 // re-writing, the trip count may be computable. 505 if (Changed) 506 SE->forgetLoop(L); 507 return Changed; 508 } 509 510 namespace { 511 512 // Collect information about PHI nodes which can be transformed in 513 // rewriteLoopExitValues. 514 struct RewritePhi { 515 PHINode *PN; 516 517 // Ith incoming value. 518 unsigned Ith; 519 520 // Exit value after expansion. 521 Value *Val; 522 523 // High Cost when expansion. 524 bool HighCost; 525 526 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 527 : PN(P), Ith(I), Val(V), HighCost(H) {} 528 }; 529 530 } // end anonymous namespace 531 532 //===----------------------------------------------------------------------===// 533 // rewriteLoopExitValues - Optimize IV users outside the loop. 534 // As a side effect, reduces the amount of IV processing within the loop. 535 //===----------------------------------------------------------------------===// 536 537 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const { 538 SmallPtrSet<const Instruction *, 8> Visited; 539 SmallVector<const Instruction *, 8> WorkList; 540 Visited.insert(I); 541 WorkList.push_back(I); 542 while (!WorkList.empty()) { 543 const Instruction *Curr = WorkList.pop_back_val(); 544 // This use is outside the loop, nothing to do. 545 if (!L->contains(Curr)) 546 continue; 547 // Do we assume it is a "hard" use which will not be eliminated easily? 548 if (Curr->mayHaveSideEffects()) 549 return true; 550 // Otherwise, add all its users to worklist. 551 for (auto U : Curr->users()) { 552 auto *UI = cast<Instruction>(U); 553 if (Visited.insert(UI).second) 554 WorkList.push_back(UI); 555 } 556 } 557 return false; 558 } 559 560 /// Check to see if this loop has a computable loop-invariant execution count. 561 /// If so, this means that we can compute the final value of any expressions 562 /// that are recurrent in the loop, and substitute the exit values from the loop 563 /// into any instructions outside of the loop that use the final values of the 564 /// current expressions. 565 /// 566 /// This is mostly redundant with the regular IndVarSimplify activities that 567 /// happen later, except that it's more powerful in some cases, because it's 568 /// able to brute-force evaluate arbitrary instructions as long as they have 569 /// constant operands at the beginning of the loop. 570 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 571 // Check a pre-condition. 572 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 573 "Indvars did not preserve LCSSA!"); 574 575 SmallVector<BasicBlock*, 8> ExitBlocks; 576 L->getUniqueExitBlocks(ExitBlocks); 577 578 SmallVector<RewritePhi, 8> RewritePhiSet; 579 // Find all values that are computed inside the loop, but used outside of it. 580 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 581 // the exit blocks of the loop to find them. 582 for (BasicBlock *ExitBB : ExitBlocks) { 583 // If there are no PHI nodes in this exit block, then no values defined 584 // inside the loop are used on this path, skip it. 585 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 586 if (!PN) continue; 587 588 unsigned NumPreds = PN->getNumIncomingValues(); 589 590 // Iterate over all of the PHI nodes. 591 BasicBlock::iterator BBI = ExitBB->begin(); 592 while ((PN = dyn_cast<PHINode>(BBI++))) { 593 if (PN->use_empty()) 594 continue; // dead use, don't replace it 595 596 if (!SE->isSCEVable(PN->getType())) 597 continue; 598 599 // It's necessary to tell ScalarEvolution about this explicitly so that 600 // it can walk the def-use list and forget all SCEVs, as it may not be 601 // watching the PHI itself. Once the new exit value is in place, there 602 // may not be a def-use connection between the loop and every instruction 603 // which got a SCEVAddRecExpr for that loop. 604 SE->forgetValue(PN); 605 606 // Iterate over all of the values in all the PHI nodes. 607 for (unsigned i = 0; i != NumPreds; ++i) { 608 // If the value being merged in is not integer or is not defined 609 // in the loop, skip it. 610 Value *InVal = PN->getIncomingValue(i); 611 if (!isa<Instruction>(InVal)) 612 continue; 613 614 // If this pred is for a subloop, not L itself, skip it. 615 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 616 continue; // The Block is in a subloop, skip it. 617 618 // Check that InVal is defined in the loop. 619 Instruction *Inst = cast<Instruction>(InVal); 620 if (!L->contains(Inst)) 621 continue; 622 623 // Okay, this instruction has a user outside of the current loop 624 // and varies predictably *inside* the loop. Evaluate the value it 625 // contains when the loop exits, if possible. 626 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 627 if (!SE->isLoopInvariant(ExitValue, L) || 628 !isSafeToExpand(ExitValue, *SE)) 629 continue; 630 631 // Computing the value outside of the loop brings no benefit if it is 632 // definitely used inside the loop in a way which can not be optimized 633 // away. 634 if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 635 continue; 636 637 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 638 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 639 640 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 641 << '\n' 642 << " LoopVal = " << *Inst << "\n"); 643 644 if (!isValidRewrite(Inst, ExitVal)) { 645 DeadInsts.push_back(ExitVal); 646 continue; 647 } 648 649 #ifndef NDEBUG 650 // If we reuse an instruction from a loop which is neither L nor one of 651 // its containing loops, we end up breaking LCSSA form for this loop by 652 // creating a new use of its instruction. 653 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 654 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 655 if (EVL != L) 656 assert(EVL->contains(L) && "LCSSA breach detected!"); 657 #endif 658 659 // Collect all the candidate PHINodes to be rewritten. 660 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 661 } 662 } 663 } 664 665 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 666 667 bool Changed = false; 668 // Transformation. 669 for (const RewritePhi &Phi : RewritePhiSet) { 670 PHINode *PN = Phi.PN; 671 Value *ExitVal = Phi.Val; 672 673 // Only do the rewrite when the ExitValue can be expanded cheaply. 674 // If LoopCanBeDel is true, rewrite exit value aggressively. 675 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 676 DeadInsts.push_back(ExitVal); 677 continue; 678 } 679 680 Changed = true; 681 ++NumReplaced; 682 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 683 PN->setIncomingValue(Phi.Ith, ExitVal); 684 685 // If this instruction is dead now, delete it. Don't do it now to avoid 686 // invalidating iterators. 687 if (isInstructionTriviallyDead(Inst, TLI)) 688 DeadInsts.push_back(Inst); 689 690 // Replace PN with ExitVal if that is legal and does not break LCSSA. 691 if (PN->getNumIncomingValues() == 1 && 692 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 693 PN->replaceAllUsesWith(ExitVal); 694 PN->eraseFromParent(); 695 } 696 } 697 698 // The insertion point instruction may have been deleted; clear it out 699 // so that the rewriter doesn't trip over it later. 700 Rewriter.clearInsertPoint(); 701 return Changed; 702 } 703 704 //===---------------------------------------------------------------------===// 705 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 706 // they will exit at the first iteration. 707 //===---------------------------------------------------------------------===// 708 709 /// Check to see if this loop has loop invariant conditions which lead to loop 710 /// exits. If so, we know that if the exit path is taken, it is at the first 711 /// loop iteration. This lets us predict exit values of PHI nodes that live in 712 /// loop header. 713 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 714 // Verify the input to the pass is already in LCSSA form. 715 assert(L->isLCSSAForm(*DT)); 716 717 SmallVector<BasicBlock *, 8> ExitBlocks; 718 L->getUniqueExitBlocks(ExitBlocks); 719 720 bool MadeAnyChanges = false; 721 for (auto *ExitBB : ExitBlocks) { 722 // If there are no more PHI nodes in this exit block, then no more 723 // values defined inside the loop are used on this path. 724 for (PHINode &PN : ExitBB->phis()) { 725 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 726 IncomingValIdx != E; ++IncomingValIdx) { 727 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 728 729 // Can we prove that the exit must run on the first iteration if it 730 // runs at all? (i.e. early exits are fine for our purposes, but 731 // traces which lead to this exit being taken on the 2nd iteration 732 // aren't.) Note that this is about whether the exit branch is 733 // executed, not about whether it is taken. 734 if (!L->getLoopLatch() || 735 !DT->dominates(IncomingBB, L->getLoopLatch())) 736 continue; 737 738 // Get condition that leads to the exit path. 739 auto *TermInst = IncomingBB->getTerminator(); 740 741 Value *Cond = nullptr; 742 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 743 // Must be a conditional branch, otherwise the block 744 // should not be in the loop. 745 Cond = BI->getCondition(); 746 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 747 Cond = SI->getCondition(); 748 else 749 continue; 750 751 if (!L->isLoopInvariant(Cond)) 752 continue; 753 754 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 755 756 // Only deal with PHIs in the loop header. 757 if (!ExitVal || ExitVal->getParent() != L->getHeader()) 758 continue; 759 760 // If ExitVal is a PHI on the loop header, then we know its 761 // value along this exit because the exit can only be taken 762 // on the first iteration. 763 auto *LoopPreheader = L->getLoopPreheader(); 764 assert(LoopPreheader && "Invalid loop"); 765 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 766 if (PreheaderIdx != -1) { 767 assert(ExitVal->getParent() == L->getHeader() && 768 "ExitVal must be in loop header"); 769 MadeAnyChanges = true; 770 PN.setIncomingValue(IncomingValIdx, 771 ExitVal->getIncomingValue(PreheaderIdx)); 772 } 773 } 774 } 775 } 776 return MadeAnyChanges; 777 } 778 779 /// Check whether it is possible to delete the loop after rewriting exit 780 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 781 /// aggressively. 782 bool IndVarSimplify::canLoopBeDeleted( 783 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 784 BasicBlock *Preheader = L->getLoopPreheader(); 785 // If there is no preheader, the loop will not be deleted. 786 if (!Preheader) 787 return false; 788 789 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 790 // We obviate multiple ExitingBlocks case for simplicity. 791 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 792 // after exit value rewriting, we can enhance the logic here. 793 SmallVector<BasicBlock *, 4> ExitingBlocks; 794 L->getExitingBlocks(ExitingBlocks); 795 SmallVector<BasicBlock *, 8> ExitBlocks; 796 L->getUniqueExitBlocks(ExitBlocks); 797 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 798 return false; 799 800 BasicBlock *ExitBlock = ExitBlocks[0]; 801 BasicBlock::iterator BI = ExitBlock->begin(); 802 while (PHINode *P = dyn_cast<PHINode>(BI)) { 803 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 804 805 // If the Incoming value of P is found in RewritePhiSet, we know it 806 // could be rewritten to use a loop invariant value in transformation 807 // phase later. Skip it in the loop invariant check below. 808 bool found = false; 809 for (const RewritePhi &Phi : RewritePhiSet) { 810 unsigned i = Phi.Ith; 811 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 812 found = true; 813 break; 814 } 815 } 816 817 Instruction *I; 818 if (!found && (I = dyn_cast<Instruction>(Incoming))) 819 if (!L->hasLoopInvariantOperands(I)) 820 return false; 821 822 ++BI; 823 } 824 825 for (auto *BB : L->blocks()) 826 if (llvm::any_of(*BB, [](Instruction &I) { 827 return I.mayHaveSideEffects(); 828 })) 829 return false; 830 831 return true; 832 } 833 834 //===----------------------------------------------------------------------===// 835 // IV Widening - Extend the width of an IV to cover its widest uses. 836 //===----------------------------------------------------------------------===// 837 838 namespace { 839 840 // Collect information about induction variables that are used by sign/zero 841 // extend operations. This information is recorded by CollectExtend and provides 842 // the input to WidenIV. 843 struct WideIVInfo { 844 PHINode *NarrowIV = nullptr; 845 846 // Widest integer type created [sz]ext 847 Type *WidestNativeType = nullptr; 848 849 // Was a sext user seen before a zext? 850 bool IsSigned = false; 851 }; 852 853 } // end anonymous namespace 854 855 /// Update information about the induction variable that is extended by this 856 /// sign or zero extend operation. This is used to determine the final width of 857 /// the IV before actually widening it. 858 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 859 const TargetTransformInfo *TTI) { 860 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 861 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 862 return; 863 864 Type *Ty = Cast->getType(); 865 uint64_t Width = SE->getTypeSizeInBits(Ty); 866 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 867 return; 868 869 // Check that `Cast` actually extends the induction variable (we rely on this 870 // later). This takes care of cases where `Cast` is extending a truncation of 871 // the narrow induction variable, and thus can end up being narrower than the 872 // "narrow" induction variable. 873 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 874 if (NarrowIVWidth >= Width) 875 return; 876 877 // Cast is either an sext or zext up to this point. 878 // We should not widen an indvar if arithmetics on the wider indvar are more 879 // expensive than those on the narrower indvar. We check only the cost of ADD 880 // because at least an ADD is required to increment the induction variable. We 881 // could compute more comprehensively the cost of all instructions on the 882 // induction variable when necessary. 883 if (TTI && 884 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 885 TTI->getArithmeticInstrCost(Instruction::Add, 886 Cast->getOperand(0)->getType())) { 887 return; 888 } 889 890 if (!WI.WidestNativeType) { 891 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 892 WI.IsSigned = IsSigned; 893 return; 894 } 895 896 // We extend the IV to satisfy the sign of its first user, arbitrarily. 897 if (WI.IsSigned != IsSigned) 898 return; 899 900 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 901 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 902 } 903 904 namespace { 905 906 /// Record a link in the Narrow IV def-use chain along with the WideIV that 907 /// computes the same value as the Narrow IV def. This avoids caching Use* 908 /// pointers. 909 struct NarrowIVDefUse { 910 Instruction *NarrowDef = nullptr; 911 Instruction *NarrowUse = nullptr; 912 Instruction *WideDef = nullptr; 913 914 // True if the narrow def is never negative. Tracking this information lets 915 // us use a sign extension instead of a zero extension or vice versa, when 916 // profitable and legal. 917 bool NeverNegative = false; 918 919 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 920 bool NeverNegative) 921 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 922 NeverNegative(NeverNegative) {} 923 }; 924 925 /// The goal of this transform is to remove sign and zero extends without 926 /// creating any new induction variables. To do this, it creates a new phi of 927 /// the wider type and redirects all users, either removing extends or inserting 928 /// truncs whenever we stop propagating the type. 929 class WidenIV { 930 // Parameters 931 PHINode *OrigPhi; 932 Type *WideType; 933 934 // Context 935 LoopInfo *LI; 936 Loop *L; 937 ScalarEvolution *SE; 938 DominatorTree *DT; 939 940 // Does the module have any calls to the llvm.experimental.guard intrinsic 941 // at all? If not we can avoid scanning instructions looking for guards. 942 bool HasGuards; 943 944 // Result 945 PHINode *WidePhi = nullptr; 946 Instruction *WideInc = nullptr; 947 const SCEV *WideIncExpr = nullptr; 948 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 949 950 SmallPtrSet<Instruction *,16> Widened; 951 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 952 953 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 954 955 // A map tracking the kind of extension used to widen each narrow IV 956 // and narrow IV user. 957 // Key: pointer to a narrow IV or IV user. 958 // Value: the kind of extension used to widen this Instruction. 959 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 960 961 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 962 963 // A map with control-dependent ranges for post increment IV uses. The key is 964 // a pair of IV def and a use of this def denoting the context. The value is 965 // a ConstantRange representing possible values of the def at the given 966 // context. 967 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 968 969 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 970 Instruction *UseI) { 971 DefUserPair Key(Def, UseI); 972 auto It = PostIncRangeInfos.find(Key); 973 return It == PostIncRangeInfos.end() 974 ? Optional<ConstantRange>(None) 975 : Optional<ConstantRange>(It->second); 976 } 977 978 void calculatePostIncRanges(PHINode *OrigPhi); 979 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 980 981 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 982 DefUserPair Key(Def, UseI); 983 auto It = PostIncRangeInfos.find(Key); 984 if (It == PostIncRangeInfos.end()) 985 PostIncRangeInfos.insert({Key, R}); 986 else 987 It->second = R.intersectWith(It->second); 988 } 989 990 public: 991 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 992 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 993 bool HasGuards) 994 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 995 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 996 HasGuards(HasGuards), DeadInsts(DI) { 997 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 998 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 999 } 1000 1001 PHINode *createWideIV(SCEVExpander &Rewriter); 1002 1003 protected: 1004 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 1005 Instruction *Use); 1006 1007 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 1008 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1009 const SCEVAddRecExpr *WideAR); 1010 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1011 1012 ExtendKind getExtendKind(Instruction *I); 1013 1014 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1015 1016 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1017 1018 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1019 1020 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1021 unsigned OpCode) const; 1022 1023 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1024 1025 bool widenLoopCompare(NarrowIVDefUse DU); 1026 bool widenWithVariantLoadUse(NarrowIVDefUse DU); 1027 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); 1028 1029 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1030 }; 1031 1032 } // end anonymous namespace 1033 1034 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1035 bool IsSigned, Instruction *Use) { 1036 // Set the debug location and conservative insertion point. 1037 IRBuilder<> Builder(Use); 1038 // Hoist the insertion point into loop preheaders as far as possible. 1039 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1040 L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper); 1041 L = L->getParentLoop()) 1042 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1043 1044 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1045 Builder.CreateZExt(NarrowOper, WideType); 1046 } 1047 1048 /// Instantiate a wide operation to replace a narrow operation. This only needs 1049 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1050 /// 0 for any operation we decide not to clone. 1051 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1052 const SCEVAddRecExpr *WideAR) { 1053 unsigned Opcode = DU.NarrowUse->getOpcode(); 1054 switch (Opcode) { 1055 default: 1056 return nullptr; 1057 case Instruction::Add: 1058 case Instruction::Mul: 1059 case Instruction::UDiv: 1060 case Instruction::Sub: 1061 return cloneArithmeticIVUser(DU, WideAR); 1062 1063 case Instruction::And: 1064 case Instruction::Or: 1065 case Instruction::Xor: 1066 case Instruction::Shl: 1067 case Instruction::LShr: 1068 case Instruction::AShr: 1069 return cloneBitwiseIVUser(DU); 1070 } 1071 } 1072 1073 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1074 Instruction *NarrowUse = DU.NarrowUse; 1075 Instruction *NarrowDef = DU.NarrowDef; 1076 Instruction *WideDef = DU.WideDef; 1077 1078 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1079 1080 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1081 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1082 // invariant and will be folded or hoisted. If it actually comes from a 1083 // widened IV, it should be removed during a future call to widenIVUse. 1084 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1085 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1086 ? WideDef 1087 : createExtendInst(NarrowUse->getOperand(0), WideType, 1088 IsSigned, NarrowUse); 1089 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1090 ? WideDef 1091 : createExtendInst(NarrowUse->getOperand(1), WideType, 1092 IsSigned, NarrowUse); 1093 1094 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1095 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1096 NarrowBO->getName()); 1097 IRBuilder<> Builder(NarrowUse); 1098 Builder.Insert(WideBO); 1099 WideBO->copyIRFlags(NarrowBO); 1100 return WideBO; 1101 } 1102 1103 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1104 const SCEVAddRecExpr *WideAR) { 1105 Instruction *NarrowUse = DU.NarrowUse; 1106 Instruction *NarrowDef = DU.NarrowDef; 1107 Instruction *WideDef = DU.WideDef; 1108 1109 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1110 1111 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1112 1113 // We're trying to find X such that 1114 // 1115 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1116 // 1117 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1118 // and check using SCEV if any of them are correct. 1119 1120 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1121 // correct solution to X. 1122 auto GuessNonIVOperand = [&](bool SignExt) { 1123 const SCEV *WideLHS; 1124 const SCEV *WideRHS; 1125 1126 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1127 if (SignExt) 1128 return SE->getSignExtendExpr(S, Ty); 1129 return SE->getZeroExtendExpr(S, Ty); 1130 }; 1131 1132 if (IVOpIdx == 0) { 1133 WideLHS = SE->getSCEV(WideDef); 1134 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1135 WideRHS = GetExtend(NarrowRHS, WideType); 1136 } else { 1137 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1138 WideLHS = GetExtend(NarrowLHS, WideType); 1139 WideRHS = SE->getSCEV(WideDef); 1140 } 1141 1142 // WideUse is "WideDef `op.wide` X" as described in the comment. 1143 const SCEV *WideUse = nullptr; 1144 1145 switch (NarrowUse->getOpcode()) { 1146 default: 1147 llvm_unreachable("No other possibility!"); 1148 1149 case Instruction::Add: 1150 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1151 break; 1152 1153 case Instruction::Mul: 1154 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1155 break; 1156 1157 case Instruction::UDiv: 1158 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1159 break; 1160 1161 case Instruction::Sub: 1162 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1163 break; 1164 } 1165 1166 return WideUse == WideAR; 1167 }; 1168 1169 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1170 if (!GuessNonIVOperand(SignExtend)) { 1171 SignExtend = !SignExtend; 1172 if (!GuessNonIVOperand(SignExtend)) 1173 return nullptr; 1174 } 1175 1176 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1177 ? WideDef 1178 : createExtendInst(NarrowUse->getOperand(0), WideType, 1179 SignExtend, NarrowUse); 1180 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1181 ? WideDef 1182 : createExtendInst(NarrowUse->getOperand(1), WideType, 1183 SignExtend, NarrowUse); 1184 1185 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1186 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1187 NarrowBO->getName()); 1188 1189 IRBuilder<> Builder(NarrowUse); 1190 Builder.Insert(WideBO); 1191 WideBO->copyIRFlags(NarrowBO); 1192 return WideBO; 1193 } 1194 1195 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1196 auto It = ExtendKindMap.find(I); 1197 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1198 return It->second; 1199 } 1200 1201 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1202 unsigned OpCode) const { 1203 if (OpCode == Instruction::Add) 1204 return SE->getAddExpr(LHS, RHS); 1205 if (OpCode == Instruction::Sub) 1206 return SE->getMinusSCEV(LHS, RHS); 1207 if (OpCode == Instruction::Mul) 1208 return SE->getMulExpr(LHS, RHS); 1209 1210 llvm_unreachable("Unsupported opcode."); 1211 } 1212 1213 /// No-wrap operations can transfer sign extension of their result to their 1214 /// operands. Generate the SCEV value for the widened operation without 1215 /// actually modifying the IR yet. If the expression after extending the 1216 /// operands is an AddRec for this loop, return the AddRec and the kind of 1217 /// extension used. 1218 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1219 // Handle the common case of add<nsw/nuw> 1220 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1221 // Only Add/Sub/Mul instructions supported yet. 1222 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1223 OpCode != Instruction::Mul) 1224 return {nullptr, Unknown}; 1225 1226 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1227 // if extending the other will lead to a recurrence. 1228 const unsigned ExtendOperIdx = 1229 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1230 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1231 1232 const SCEV *ExtendOperExpr = nullptr; 1233 const OverflowingBinaryOperator *OBO = 1234 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1235 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1236 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1237 ExtendOperExpr = SE->getSignExtendExpr( 1238 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1239 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1240 ExtendOperExpr = SE->getZeroExtendExpr( 1241 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1242 else 1243 return {nullptr, Unknown}; 1244 1245 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1246 // flags. This instruction may be guarded by control flow that the no-wrap 1247 // behavior depends on. Non-control-equivalent instructions can be mapped to 1248 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1249 // semantics to those operations. 1250 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1251 const SCEV *rhs = ExtendOperExpr; 1252 1253 // Let's swap operands to the initial order for the case of non-commutative 1254 // operations, like SUB. See PR21014. 1255 if (ExtendOperIdx == 0) 1256 std::swap(lhs, rhs); 1257 const SCEVAddRecExpr *AddRec = 1258 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1259 1260 if (!AddRec || AddRec->getLoop() != L) 1261 return {nullptr, Unknown}; 1262 1263 return {AddRec, ExtKind}; 1264 } 1265 1266 /// Is this instruction potentially interesting for further simplification after 1267 /// widening it's type? In other words, can the extend be safely hoisted out of 1268 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1269 /// so, return the extended recurrence and the kind of extension used. Otherwise 1270 /// return {nullptr, Unknown}. 1271 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1272 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1273 return {nullptr, Unknown}; 1274 1275 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1276 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1277 SE->getTypeSizeInBits(WideType)) { 1278 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1279 // index. So don't follow this use. 1280 return {nullptr, Unknown}; 1281 } 1282 1283 const SCEV *WideExpr; 1284 ExtendKind ExtKind; 1285 if (DU.NeverNegative) { 1286 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1287 if (isa<SCEVAddRecExpr>(WideExpr)) 1288 ExtKind = SignExtended; 1289 else { 1290 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1291 ExtKind = ZeroExtended; 1292 } 1293 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1294 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1295 ExtKind = SignExtended; 1296 } else { 1297 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1298 ExtKind = ZeroExtended; 1299 } 1300 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1301 if (!AddRec || AddRec->getLoop() != L) 1302 return {nullptr, Unknown}; 1303 return {AddRec, ExtKind}; 1304 } 1305 1306 /// This IV user cannot be widen. Replace this use of the original narrow IV 1307 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1308 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1309 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1310 if (!InsertPt) 1311 return; 1312 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1313 << *DU.NarrowUse << "\n"); 1314 IRBuilder<> Builder(InsertPt); 1315 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1316 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1317 } 1318 1319 /// If the narrow use is a compare instruction, then widen the compare 1320 // (and possibly the other operand). The extend operation is hoisted into the 1321 // loop preheader as far as possible. 1322 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1323 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1324 if (!Cmp) 1325 return false; 1326 1327 // We can legally widen the comparison in the following two cases: 1328 // 1329 // - The signedness of the IV extension and comparison match 1330 // 1331 // - The narrow IV is always positive (and thus its sign extension is equal 1332 // to its zero extension). For instance, let's say we're zero extending 1333 // %narrow for the following use 1334 // 1335 // icmp slt i32 %narrow, %val ... (A) 1336 // 1337 // and %narrow is always positive. Then 1338 // 1339 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1340 // == icmp slt i32 zext(%narrow), sext(%val) 1341 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1342 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1343 return false; 1344 1345 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1346 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1347 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1348 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1349 1350 // Widen the compare instruction. 1351 auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI); 1352 if (!InsertPt) 1353 return false; 1354 IRBuilder<> Builder(InsertPt); 1355 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1356 1357 // Widen the other operand of the compare, if necessary. 1358 if (CastWidth < IVWidth) { 1359 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1360 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1361 } 1362 return true; 1363 } 1364 1365 /// If the narrow use is an instruction whose two operands are the defining 1366 /// instruction of DU and a load instruction, then we have the following: 1367 /// if the load is hoisted outside the loop, then we do not reach this function 1368 /// as scalar evolution analysis works fine in widenIVUse with variables 1369 /// hoisted outside the loop and efficient code is subsequently generated by 1370 /// not emitting truncate instructions. But when the load is not hoisted 1371 /// (whether due to limitation in alias analysis or due to a true legality), 1372 /// then scalar evolution can not proceed with loop variant values and 1373 /// inefficient code is generated. This function handles the non-hoisted load 1374 /// special case by making the optimization generate the same type of code for 1375 /// hoisted and non-hoisted load (widen use and eliminate sign extend 1376 /// instruction). This special case is important especially when the induction 1377 /// variables are affecting addressing mode in code generation. 1378 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { 1379 Instruction *NarrowUse = DU.NarrowUse; 1380 Instruction *NarrowDef = DU.NarrowDef; 1381 Instruction *WideDef = DU.WideDef; 1382 1383 // Handle the common case of add<nsw/nuw> 1384 const unsigned OpCode = NarrowUse->getOpcode(); 1385 // Only Add/Sub/Mul instructions are supported. 1386 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1387 OpCode != Instruction::Mul) 1388 return false; 1389 1390 // The operand that is not defined by NarrowDef of DU. Let's call it the 1391 // other operand. 1392 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; 1393 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && 1394 "bad DU"); 1395 1396 const SCEV *ExtendOperExpr = nullptr; 1397 const OverflowingBinaryOperator *OBO = 1398 cast<OverflowingBinaryOperator>(NarrowUse); 1399 ExtendKind ExtKind = getExtendKind(NarrowDef); 1400 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1401 ExtendOperExpr = SE->getSignExtendExpr( 1402 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1403 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1404 ExtendOperExpr = SE->getZeroExtendExpr( 1405 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1406 else 1407 return false; 1408 1409 // We are interested in the other operand being a load instruction. 1410 // But, we should look into relaxing this restriction later on. 1411 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); 1412 if (I && I->getOpcode() != Instruction::Load) 1413 return false; 1414 1415 // Verifying that Defining operand is an AddRec 1416 const SCEV *Op1 = SE->getSCEV(WideDef); 1417 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1418 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1419 return false; 1420 // Verifying that other operand is an Extend. 1421 if (ExtKind == SignExtended) { 1422 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) 1423 return false; 1424 } else { 1425 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) 1426 return false; 1427 } 1428 1429 if (ExtKind == SignExtended) { 1430 for (Use &U : NarrowUse->uses()) { 1431 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1432 if (!User || User->getType() != WideType) 1433 return false; 1434 } 1435 } else { // ExtKind == ZeroExtended 1436 for (Use &U : NarrowUse->uses()) { 1437 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1438 if (!User || User->getType() != WideType) 1439 return false; 1440 } 1441 } 1442 1443 return true; 1444 } 1445 1446 /// Special Case for widening with variant Loads (see 1447 /// WidenIV::widenWithVariantLoadUse). This is the code generation part. 1448 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { 1449 Instruction *NarrowUse = DU.NarrowUse; 1450 Instruction *NarrowDef = DU.NarrowDef; 1451 Instruction *WideDef = DU.WideDef; 1452 1453 ExtendKind ExtKind = getExtendKind(NarrowDef); 1454 1455 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1456 1457 // Generating a widening use instruction. 1458 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1459 ? WideDef 1460 : createExtendInst(NarrowUse->getOperand(0), WideType, 1461 ExtKind, NarrowUse); 1462 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1463 ? WideDef 1464 : createExtendInst(NarrowUse->getOperand(1), WideType, 1465 ExtKind, NarrowUse); 1466 1467 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1468 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1469 NarrowBO->getName()); 1470 IRBuilder<> Builder(NarrowUse); 1471 Builder.Insert(WideBO); 1472 WideBO->copyIRFlags(NarrowBO); 1473 1474 if (ExtKind == SignExtended) 1475 ExtendKindMap[NarrowUse] = SignExtended; 1476 else 1477 ExtendKindMap[NarrowUse] = ZeroExtended; 1478 1479 // Update the Use. 1480 if (ExtKind == SignExtended) { 1481 for (Use &U : NarrowUse->uses()) { 1482 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1483 if (User && User->getType() == WideType) { 1484 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1485 << *WideBO << "\n"); 1486 ++NumElimExt; 1487 User->replaceAllUsesWith(WideBO); 1488 DeadInsts.emplace_back(User); 1489 } 1490 } 1491 } else { // ExtKind == ZeroExtended 1492 for (Use &U : NarrowUse->uses()) { 1493 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1494 if (User && User->getType() == WideType) { 1495 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1496 << *WideBO << "\n"); 1497 ++NumElimExt; 1498 User->replaceAllUsesWith(WideBO); 1499 DeadInsts.emplace_back(User); 1500 } 1501 } 1502 } 1503 } 1504 1505 /// Determine whether an individual user of the narrow IV can be widened. If so, 1506 /// return the wide clone of the user. 1507 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1508 assert(ExtendKindMap.count(DU.NarrowDef) && 1509 "Should already know the kind of extension used to widen NarrowDef"); 1510 1511 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1512 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1513 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1514 // For LCSSA phis, sink the truncate outside the loop. 1515 // After SimplifyCFG most loop exit targets have a single predecessor. 1516 // Otherwise fall back to a truncate within the loop. 1517 if (UsePhi->getNumOperands() != 1) 1518 truncateIVUse(DU, DT, LI); 1519 else { 1520 // Widening the PHI requires us to insert a trunc. The logical place 1521 // for this trunc is in the same BB as the PHI. This is not possible if 1522 // the BB is terminated by a catchswitch. 1523 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1524 return nullptr; 1525 1526 PHINode *WidePhi = 1527 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1528 UsePhi); 1529 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1530 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1531 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1532 UsePhi->replaceAllUsesWith(Trunc); 1533 DeadInsts.emplace_back(UsePhi); 1534 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1535 << *WidePhi << "\n"); 1536 } 1537 return nullptr; 1538 } 1539 } 1540 1541 // This narrow use can be widened by a sext if it's non-negative or its narrow 1542 // def was widended by a sext. Same for zext. 1543 auto canWidenBySExt = [&]() { 1544 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1545 }; 1546 auto canWidenByZExt = [&]() { 1547 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1548 }; 1549 1550 // Our raison d'etre! Eliminate sign and zero extension. 1551 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1552 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1553 Value *NewDef = DU.WideDef; 1554 if (DU.NarrowUse->getType() != WideType) { 1555 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1556 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1557 if (CastWidth < IVWidth) { 1558 // The cast isn't as wide as the IV, so insert a Trunc. 1559 IRBuilder<> Builder(DU.NarrowUse); 1560 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1561 } 1562 else { 1563 // A wider extend was hidden behind a narrower one. This may induce 1564 // another round of IV widening in which the intermediate IV becomes 1565 // dead. It should be very rare. 1566 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1567 << " not wide enough to subsume " << *DU.NarrowUse 1568 << "\n"); 1569 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1570 NewDef = DU.NarrowUse; 1571 } 1572 } 1573 if (NewDef != DU.NarrowUse) { 1574 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1575 << " replaced by " << *DU.WideDef << "\n"); 1576 ++NumElimExt; 1577 DU.NarrowUse->replaceAllUsesWith(NewDef); 1578 DeadInsts.emplace_back(DU.NarrowUse); 1579 } 1580 // Now that the extend is gone, we want to expose it's uses for potential 1581 // further simplification. We don't need to directly inform SimplifyIVUsers 1582 // of the new users, because their parent IV will be processed later as a 1583 // new loop phi. If we preserved IVUsers analysis, we would also want to 1584 // push the uses of WideDef here. 1585 1586 // No further widening is needed. The deceased [sz]ext had done it for us. 1587 return nullptr; 1588 } 1589 1590 // Does this user itself evaluate to a recurrence after widening? 1591 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1592 if (!WideAddRec.first) 1593 WideAddRec = getWideRecurrence(DU); 1594 1595 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1596 if (!WideAddRec.first) { 1597 // If use is a loop condition, try to promote the condition instead of 1598 // truncating the IV first. 1599 if (widenLoopCompare(DU)) 1600 return nullptr; 1601 1602 // We are here about to generate a truncate instruction that may hurt 1603 // performance because the scalar evolution expression computed earlier 1604 // in WideAddRec.first does not indicate a polynomial induction expression. 1605 // In that case, look at the operands of the use instruction to determine 1606 // if we can still widen the use instead of truncating its operand. 1607 if (widenWithVariantLoadUse(DU)) { 1608 widenWithVariantLoadUseCodegen(DU); 1609 return nullptr; 1610 } 1611 1612 // This user does not evaluate to a recurrence after widening, so don't 1613 // follow it. Instead insert a Trunc to kill off the original use, 1614 // eventually isolating the original narrow IV so it can be removed. 1615 truncateIVUse(DU, DT, LI); 1616 return nullptr; 1617 } 1618 // Assume block terminators cannot evaluate to a recurrence. We can't to 1619 // insert a Trunc after a terminator if there happens to be a critical edge. 1620 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1621 "SCEV is not expected to evaluate a block terminator"); 1622 1623 // Reuse the IV increment that SCEVExpander created as long as it dominates 1624 // NarrowUse. 1625 Instruction *WideUse = nullptr; 1626 if (WideAddRec.first == WideIncExpr && 1627 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1628 WideUse = WideInc; 1629 else { 1630 WideUse = cloneIVUser(DU, WideAddRec.first); 1631 if (!WideUse) 1632 return nullptr; 1633 } 1634 // Evaluation of WideAddRec ensured that the narrow expression could be 1635 // extended outside the loop without overflow. This suggests that the wide use 1636 // evaluates to the same expression as the extended narrow use, but doesn't 1637 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1638 // where it fails, we simply throw away the newly created wide use. 1639 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1640 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1641 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1642 << "\n"); 1643 DeadInsts.emplace_back(WideUse); 1644 return nullptr; 1645 } 1646 1647 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1648 // Returning WideUse pushes it on the worklist. 1649 return WideUse; 1650 } 1651 1652 /// Add eligible users of NarrowDef to NarrowIVUsers. 1653 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1654 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1655 bool NonNegativeDef = 1656 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1657 SE->getConstant(NarrowSCEV->getType(), 0)); 1658 for (User *U : NarrowDef->users()) { 1659 Instruction *NarrowUser = cast<Instruction>(U); 1660 1661 // Handle data flow merges and bizarre phi cycles. 1662 if (!Widened.insert(NarrowUser).second) 1663 continue; 1664 1665 bool NonNegativeUse = false; 1666 if (!NonNegativeDef) { 1667 // We might have a control-dependent range information for this context. 1668 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1669 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1670 } 1671 1672 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1673 NonNegativeDef || NonNegativeUse); 1674 } 1675 } 1676 1677 /// Process a single induction variable. First use the SCEVExpander to create a 1678 /// wide induction variable that evaluates to the same recurrence as the 1679 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1680 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1681 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1682 /// 1683 /// It would be simpler to delete uses as they are processed, but we must avoid 1684 /// invalidating SCEV expressions. 1685 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1686 // Is this phi an induction variable? 1687 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1688 if (!AddRec) 1689 return nullptr; 1690 1691 // Widen the induction variable expression. 1692 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1693 ? SE->getSignExtendExpr(AddRec, WideType) 1694 : SE->getZeroExtendExpr(AddRec, WideType); 1695 1696 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1697 "Expect the new IV expression to preserve its type"); 1698 1699 // Can the IV be extended outside the loop without overflow? 1700 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1701 if (!AddRec || AddRec->getLoop() != L) 1702 return nullptr; 1703 1704 // An AddRec must have loop-invariant operands. Since this AddRec is 1705 // materialized by a loop header phi, the expression cannot have any post-loop 1706 // operands, so they must dominate the loop header. 1707 assert( 1708 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1709 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1710 "Loop header phi recurrence inputs do not dominate the loop"); 1711 1712 // Iterate over IV uses (including transitive ones) looking for IV increments 1713 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1714 // the increment calculate control-dependent range information basing on 1715 // dominating conditions inside of the loop (e.g. a range check inside of the 1716 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1717 // 1718 // Control-dependent range information is later used to prove that a narrow 1719 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1720 // this on demand because when pushNarrowIVUsers needs this information some 1721 // of the dominating conditions might be already widened. 1722 if (UsePostIncrementRanges) 1723 calculatePostIncRanges(OrigPhi); 1724 1725 // The rewriter provides a value for the desired IV expression. This may 1726 // either find an existing phi or materialize a new one. Either way, we 1727 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1728 // of the phi-SCC dominates the loop entry. 1729 Instruction *InsertPt = &L->getHeader()->front(); 1730 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1731 1732 // Remembering the WideIV increment generated by SCEVExpander allows 1733 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1734 // employ a general reuse mechanism because the call above is the only call to 1735 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1736 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1737 WideInc = 1738 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1739 WideIncExpr = SE->getSCEV(WideInc); 1740 // Propagate the debug location associated with the original loop increment 1741 // to the new (widened) increment. 1742 auto *OrigInc = 1743 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1744 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1745 } 1746 1747 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1748 ++NumWidened; 1749 1750 // Traverse the def-use chain using a worklist starting at the original IV. 1751 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1752 1753 Widened.insert(OrigPhi); 1754 pushNarrowIVUsers(OrigPhi, WidePhi); 1755 1756 while (!NarrowIVUsers.empty()) { 1757 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1758 1759 // Process a def-use edge. This may replace the use, so don't hold a 1760 // use_iterator across it. 1761 Instruction *WideUse = widenIVUse(DU, Rewriter); 1762 1763 // Follow all def-use edges from the previous narrow use. 1764 if (WideUse) 1765 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1766 1767 // widenIVUse may have removed the def-use edge. 1768 if (DU.NarrowDef->use_empty()) 1769 DeadInsts.emplace_back(DU.NarrowDef); 1770 } 1771 1772 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1773 // evaluate the same recurrence, we can just copy the debug info over. 1774 SmallVector<DbgValueInst *, 1> DbgValues; 1775 llvm::findDbgValues(DbgValues, OrigPhi); 1776 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1777 ValueAsMetadata::get(WidePhi)); 1778 for (auto &DbgValue : DbgValues) 1779 DbgValue->setOperand(0, MDPhi); 1780 return WidePhi; 1781 } 1782 1783 /// Calculates control-dependent range for the given def at the given context 1784 /// by looking at dominating conditions inside of the loop 1785 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1786 Instruction *NarrowUser) { 1787 using namespace llvm::PatternMatch; 1788 1789 Value *NarrowDefLHS; 1790 const APInt *NarrowDefRHS; 1791 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1792 m_APInt(NarrowDefRHS))) || 1793 !NarrowDefRHS->isNonNegative()) 1794 return; 1795 1796 auto UpdateRangeFromCondition = [&] (Value *Condition, 1797 bool TrueDest) { 1798 CmpInst::Predicate Pred; 1799 Value *CmpRHS; 1800 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1801 m_Value(CmpRHS)))) 1802 return; 1803 1804 CmpInst::Predicate P = 1805 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1806 1807 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1808 auto CmpConstrainedLHSRange = 1809 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1810 auto NarrowDefRange = 1811 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1812 1813 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1814 }; 1815 1816 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1817 if (!HasGuards) 1818 return; 1819 1820 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1821 Ctx->getParent()->rend())) { 1822 Value *C = nullptr; 1823 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1824 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1825 } 1826 }; 1827 1828 UpdateRangeFromGuards(NarrowUser); 1829 1830 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1831 // If NarrowUserBB is statically unreachable asking dominator queries may 1832 // yield surprising results. (e.g. the block may not have a dom tree node) 1833 if (!DT->isReachableFromEntry(NarrowUserBB)) 1834 return; 1835 1836 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1837 L->contains(DTB->getBlock()); 1838 DTB = DTB->getIDom()) { 1839 auto *BB = DTB->getBlock(); 1840 auto *TI = BB->getTerminator(); 1841 UpdateRangeFromGuards(TI); 1842 1843 auto *BI = dyn_cast<BranchInst>(TI); 1844 if (!BI || !BI->isConditional()) 1845 continue; 1846 1847 auto *TrueSuccessor = BI->getSuccessor(0); 1848 auto *FalseSuccessor = BI->getSuccessor(1); 1849 1850 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1851 return BBE.isSingleEdge() && 1852 DT->dominates(BBE, NarrowUser->getParent()); 1853 }; 1854 1855 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1856 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1857 1858 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1859 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1860 } 1861 } 1862 1863 /// Calculates PostIncRangeInfos map for the given IV 1864 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1865 SmallPtrSet<Instruction *, 16> Visited; 1866 SmallVector<Instruction *, 6> Worklist; 1867 Worklist.push_back(OrigPhi); 1868 Visited.insert(OrigPhi); 1869 1870 while (!Worklist.empty()) { 1871 Instruction *NarrowDef = Worklist.pop_back_val(); 1872 1873 for (Use &U : NarrowDef->uses()) { 1874 auto *NarrowUser = cast<Instruction>(U.getUser()); 1875 1876 // Don't go looking outside the current loop. 1877 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1878 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1879 continue; 1880 1881 if (!Visited.insert(NarrowUser).second) 1882 continue; 1883 1884 Worklist.push_back(NarrowUser); 1885 1886 calculatePostIncRange(NarrowDef, NarrowUser); 1887 } 1888 } 1889 } 1890 1891 //===----------------------------------------------------------------------===// 1892 // Live IV Reduction - Minimize IVs live across the loop. 1893 //===----------------------------------------------------------------------===// 1894 1895 //===----------------------------------------------------------------------===// 1896 // Simplification of IV users based on SCEV evaluation. 1897 //===----------------------------------------------------------------------===// 1898 1899 namespace { 1900 1901 class IndVarSimplifyVisitor : public IVVisitor { 1902 ScalarEvolution *SE; 1903 const TargetTransformInfo *TTI; 1904 PHINode *IVPhi; 1905 1906 public: 1907 WideIVInfo WI; 1908 1909 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1910 const TargetTransformInfo *TTI, 1911 const DominatorTree *DTree) 1912 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1913 DT = DTree; 1914 WI.NarrowIV = IVPhi; 1915 } 1916 1917 // Implement the interface used by simplifyUsersOfIV. 1918 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1919 }; 1920 1921 } // end anonymous namespace 1922 1923 /// Iteratively perform simplification on a worklist of IV users. Each 1924 /// successive simplification may push more users which may themselves be 1925 /// candidates for simplification. 1926 /// 1927 /// Sign/Zero extend elimination is interleaved with IV simplification. 1928 bool IndVarSimplify::simplifyAndExtend(Loop *L, 1929 SCEVExpander &Rewriter, 1930 LoopInfo *LI) { 1931 SmallVector<WideIVInfo, 8> WideIVs; 1932 1933 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1934 Intrinsic::getName(Intrinsic::experimental_guard)); 1935 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1936 1937 SmallVector<PHINode*, 8> LoopPhis; 1938 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1939 LoopPhis.push_back(cast<PHINode>(I)); 1940 } 1941 // Each round of simplification iterates through the SimplifyIVUsers worklist 1942 // for all current phis, then determines whether any IVs can be 1943 // widened. Widening adds new phis to LoopPhis, inducing another round of 1944 // simplification on the wide IVs. 1945 bool Changed = false; 1946 while (!LoopPhis.empty()) { 1947 // Evaluate as many IV expressions as possible before widening any IVs. This 1948 // forces SCEV to set no-wrap flags before evaluating sign/zero 1949 // extension. The first time SCEV attempts to normalize sign/zero extension, 1950 // the result becomes final. So for the most predictable results, we delay 1951 // evaluation of sign/zero extend evaluation until needed, and avoid running 1952 // other SCEV based analysis prior to simplifyAndExtend. 1953 do { 1954 PHINode *CurrIV = LoopPhis.pop_back_val(); 1955 1956 // Information about sign/zero extensions of CurrIV. 1957 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1958 1959 Changed |= 1960 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1961 1962 if (Visitor.WI.WidestNativeType) { 1963 WideIVs.push_back(Visitor.WI); 1964 } 1965 } while(!LoopPhis.empty()); 1966 1967 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1968 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1969 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1970 Changed = true; 1971 LoopPhis.push_back(WidePhi); 1972 } 1973 } 1974 } 1975 return Changed; 1976 } 1977 1978 //===----------------------------------------------------------------------===// 1979 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1980 //===----------------------------------------------------------------------===// 1981 1982 /// Return true if this loop's backedge taken count expression can be safely and 1983 /// cheaply expanded into an instruction sequence that can be used by 1984 /// linearFunctionTestReplace. 1985 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1986 SCEVExpander &Rewriter) { 1987 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1988 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1989 return false; 1990 1991 // Better to break the backedge 1992 if (BackedgeTakenCount->isZero()) 1993 return false; 1994 1995 // Loops with multiple exits are not currently suported by lftr 1996 if (!L->getExitingBlock()) 1997 return false; 1998 1999 // Can't rewrite non-branch yet. 2000 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 2001 return false; 2002 2003 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 2004 return false; 2005 2006 return true; 2007 } 2008 2009 /// Given an Value which is hoped to be part of an add recurance in the given 2010 /// loop, return the associated Phi node if so. Otherwise, return null. Note 2011 /// that this is less general than SCEVs AddRec checking. 2012 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) { 2013 Instruction *IncI = dyn_cast<Instruction>(IncV); 2014 if (!IncI) 2015 return nullptr; 2016 2017 switch (IncI->getOpcode()) { 2018 case Instruction::Add: 2019 case Instruction::Sub: 2020 break; 2021 case Instruction::GetElementPtr: 2022 // An IV counter must preserve its type. 2023 if (IncI->getNumOperands() == 2) 2024 break; 2025 LLVM_FALLTHROUGH; 2026 default: 2027 return nullptr; 2028 } 2029 2030 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 2031 if (Phi && Phi->getParent() == L->getHeader()) { 2032 if (L->isLoopInvariant(IncI->getOperand(1))) 2033 return Phi; 2034 return nullptr; 2035 } 2036 if (IncI->getOpcode() == Instruction::GetElementPtr) 2037 return nullptr; 2038 2039 // Allow add/sub to be commuted. 2040 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 2041 if (Phi && Phi->getParent() == L->getHeader()) { 2042 if (L->isLoopInvariant(IncI->getOperand(0))) 2043 return Phi; 2044 } 2045 return nullptr; 2046 } 2047 2048 /// Given a loop with one backedge and one exit, return the ICmpInst 2049 /// controlling the sole loop exit. There is no guarantee that the exiting 2050 /// block is also the latch. 2051 static ICmpInst *getLoopTest(Loop *L) { 2052 assert(L->getExitingBlock() && "expected loop exit"); 2053 2054 BasicBlock *LatchBlock = L->getLoopLatch(); 2055 // Don't bother with LFTR if the loop is not properly simplified. 2056 if (!LatchBlock) 2057 return nullptr; 2058 2059 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2060 assert(BI && "expected exit branch"); 2061 2062 return dyn_cast<ICmpInst>(BI->getCondition()); 2063 } 2064 2065 /// linearFunctionTestReplace policy. Return true unless we can show that the 2066 /// current exit test is already sufficiently canonical. 2067 static bool needsLFTR(Loop *L) { 2068 // Do LFTR to simplify the exit condition to an ICMP. 2069 ICmpInst *Cond = getLoopTest(L); 2070 if (!Cond) 2071 return true; 2072 2073 // Do LFTR to simplify the exit ICMP to EQ/NE 2074 ICmpInst::Predicate Pred = Cond->getPredicate(); 2075 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 2076 return true; 2077 2078 // Look for a loop invariant RHS 2079 Value *LHS = Cond->getOperand(0); 2080 Value *RHS = Cond->getOperand(1); 2081 if (!L->isLoopInvariant(RHS)) { 2082 if (!L->isLoopInvariant(LHS)) 2083 return true; 2084 std::swap(LHS, RHS); 2085 } 2086 // Look for a simple IV counter LHS 2087 PHINode *Phi = dyn_cast<PHINode>(LHS); 2088 if (!Phi) 2089 Phi = getLoopPhiForCounter(LHS, L); 2090 2091 if (!Phi) 2092 return true; 2093 2094 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 2095 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2096 if (Idx < 0) 2097 return true; 2098 2099 // Do LFTR if the exit condition's IV is *not* a simple counter. 2100 Value *IncV = Phi->getIncomingValue(Idx); 2101 return Phi != getLoopPhiForCounter(IncV, L); 2102 } 2103 2104 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 2105 /// down to checking that all operands are constant and listing instructions 2106 /// that may hide undef. 2107 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 2108 unsigned Depth) { 2109 if (isa<Constant>(V)) 2110 return !isa<UndefValue>(V); 2111 2112 if (Depth >= 6) 2113 return false; 2114 2115 // Conservatively handle non-constant non-instructions. For example, Arguments 2116 // may be undef. 2117 Instruction *I = dyn_cast<Instruction>(V); 2118 if (!I) 2119 return false; 2120 2121 // Load and return values may be undef. 2122 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 2123 return false; 2124 2125 // Optimistically handle other instructions. 2126 for (Value *Op : I->operands()) { 2127 if (!Visited.insert(Op).second) 2128 continue; 2129 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 2130 return false; 2131 } 2132 return true; 2133 } 2134 2135 /// Return true if the given value is concrete. We must prove that undef can 2136 /// never reach it. 2137 /// 2138 /// TODO: If we decide that this is a good approach to checking for undef, we 2139 /// may factor it into a common location. 2140 static bool hasConcreteDef(Value *V) { 2141 SmallPtrSet<Value*, 8> Visited; 2142 Visited.insert(V); 2143 return hasConcreteDefImpl(V, Visited, 0); 2144 } 2145 2146 /// Return true if this IV has any uses other than the (soon to be rewritten) 2147 /// loop exit test. 2148 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 2149 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2150 Value *IncV = Phi->getIncomingValue(LatchIdx); 2151 2152 for (User *U : Phi->users()) 2153 if (U != Cond && U != IncV) return false; 2154 2155 for (User *U : IncV->users()) 2156 if (U != Cond && U != Phi) return false; 2157 return true; 2158 } 2159 2160 /// Return true if the given phi is a "counter" in L. A counter is an 2161 /// add recurance (of integer or pointer type) with an arbitrary start, and a 2162 /// step of 1. Note that L must have exactly one latch. 2163 static bool isLoopCounter(PHINode* Phi, Loop *L, 2164 ScalarEvolution *SE) { 2165 assert(Phi->getParent() == L->getHeader()); 2166 assert(L->getLoopLatch()); 2167 2168 if (!SE->isSCEVable(Phi->getType())) 2169 return false; 2170 2171 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2172 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2173 return false; 2174 2175 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2176 if (!Step || !Step->isOne()) 2177 return false; 2178 2179 int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2180 Value *IncV = Phi->getIncomingValue(LatchIdx); 2181 return (getLoopPhiForCounter(IncV, L) == Phi); 2182 } 2183 2184 /// Search the loop header for a loop counter (anadd rec w/step of one) 2185 /// suitable for use by LFTR. If multiple counters are available, select the 2186 /// "best" one based profitable heuristics. 2187 /// 2188 /// BECount may be an i8* pointer type. The pointer difference is already 2189 /// valid count without scaling the address stride, so it remains a pointer 2190 /// expression as far as SCEV is concerned. 2191 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2192 ScalarEvolution *SE) { 2193 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2194 2195 Value *Cond = 2196 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2197 2198 // Loop over all of the PHI nodes, looking for a simple counter. 2199 PHINode *BestPhi = nullptr; 2200 const SCEV *BestInit = nullptr; 2201 BasicBlock *LatchBlock = L->getLoopLatch(); 2202 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2203 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2204 2205 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2206 PHINode *Phi = cast<PHINode>(I); 2207 if (!isLoopCounter(Phi, L, SE)) 2208 continue; 2209 2210 // Avoid comparing an integer IV against a pointer Limit. 2211 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2212 continue; 2213 2214 const auto *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2215 2216 // AR may be a pointer type, while BECount is an integer type. 2217 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2218 // AR may not be a narrower type, or we may never exit. 2219 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2220 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2221 continue; 2222 2223 // Avoid reusing a potentially undef value to compute other values that may 2224 // have originally had a concrete definition. 2225 if (!hasConcreteDef(Phi)) { 2226 // We explicitly allow unknown phis as long as they are already used by 2227 // the loop test. In this case we assume that performing LFTR could not 2228 // increase the number of undef users. 2229 if (ICmpInst *Cond = getLoopTest(L)) { 2230 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L) && 2231 Phi != getLoopPhiForCounter(Cond->getOperand(1), L)) { 2232 continue; 2233 } 2234 } 2235 } 2236 const SCEV *Init = AR->getStart(); 2237 2238 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2239 // Don't force a live loop counter if another IV can be used. 2240 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2241 continue; 2242 2243 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2244 // also prefers integer to pointer IVs. 2245 if (BestInit->isZero() != Init->isZero()) { 2246 if (BestInit->isZero()) 2247 continue; 2248 } 2249 // If two IVs both count from zero or both count from nonzero then the 2250 // narrower is likely a dead phi that has been widened. Use the wider phi 2251 // to allow the other to be eliminated. 2252 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2253 continue; 2254 } 2255 BestPhi = Phi; 2256 BestInit = Init; 2257 } 2258 return BestPhi; 2259 } 2260 2261 /// Insert an IR expression which computes the value held by the IV IndVar 2262 /// (which must be an loop counter w/unit stride) after the backedge of loop L 2263 /// is taken IVCount times. 2264 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2265 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2266 assert(isLoopCounter(IndVar, L, SE)); 2267 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2268 const SCEV *IVInit = AR->getStart(); 2269 2270 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2271 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2272 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2273 // the existing GEPs whenever possible. 2274 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2275 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2276 // signed value. IVCount on the other hand represents the loop trip count, 2277 // which is an unsigned value. FindLoopCounter only allows induction 2278 // variables that have a positive unit stride of one. This means we don't 2279 // have to handle the case of negative offsets (yet) and just need to zero 2280 // extend IVCount. 2281 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2282 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2283 2284 // Expand the code for the iteration count. 2285 assert(SE->isLoopInvariant(IVOffset, L) && 2286 "Computed iteration count is not loop invariant!"); 2287 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2288 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2289 2290 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2291 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2292 // We could handle pointer IVs other than i8*, but we need to compensate for 2293 // gep index scaling. See canExpandBackedgeTakenCount comments. 2294 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2295 cast<PointerType>(GEPBase->getType()) 2296 ->getElementType())->isOne() && 2297 "unit stride pointer IV must be i8*"); 2298 2299 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2300 return Builder.CreateGEP(GEPBase->getType()->getPointerElementType(), 2301 GEPBase, GEPOffset, "lftr.limit"); 2302 } else { 2303 // In any other case, convert both IVInit and IVCount to integers before 2304 // comparing. This may result in SCEV expansion of pointers, but in practice 2305 // SCEV will fold the pointer arithmetic away as such: 2306 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2307 // 2308 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2309 // for simple memset-style loops. 2310 // 2311 // IVInit integer and IVCount pointer would only occur if a canonical IV 2312 // were generated on top of case #2, which is not expected. 2313 2314 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2315 const SCEV *IVLimit = nullptr; 2316 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2317 // For non-zero Start, compute IVCount here. 2318 if (AR->getStart()->isZero()) 2319 IVLimit = IVCount; 2320 else { 2321 const SCEV *IVInit = AR->getStart(); 2322 2323 // For integer IVs, truncate the IV before computing IVInit + BECount. 2324 if (SE->getTypeSizeInBits(IVInit->getType()) 2325 > SE->getTypeSizeInBits(IVCount->getType())) 2326 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2327 2328 IVLimit = SE->getAddExpr(IVInit, IVCount); 2329 } 2330 // Expand the code for the iteration count. 2331 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2332 IRBuilder<> Builder(BI); 2333 assert(SE->isLoopInvariant(IVLimit, L) && 2334 "Computed iteration count is not loop invariant!"); 2335 // Ensure that we generate the same type as IndVar, or a smaller integer 2336 // type. In the presence of null pointer values, we have an integer type 2337 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2338 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2339 IndVar->getType() : IVCount->getType(); 2340 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2341 } 2342 } 2343 2344 /// This method rewrites the exit condition of the loop to be a canonical != 2345 /// comparison against the incremented loop induction variable. This pass is 2346 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2347 /// determine a loop-invariant trip count of the loop, which is actually a much 2348 /// broader range than just linear tests. 2349 bool IndVarSimplify:: 2350 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 2351 PHINode *IndVar, SCEVExpander &Rewriter) { 2352 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2353 2354 // Initialize CmpIndVar and IVCount to their preincremented values. 2355 Value *CmpIndVar = IndVar; 2356 const SCEV *IVCount = BackedgeTakenCount; 2357 2358 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2359 2360 // If the exiting block is the same as the backedge block, we prefer to 2361 // compare against the post-incremented value, otherwise we must compare 2362 // against the preincremented value. 2363 if (L->getExitingBlock() == L->getLoopLatch()) { 2364 // Add one to the "backedge-taken" count to get the trip count. 2365 // This addition may overflow, which is valid as long as the comparison is 2366 // truncated to BackedgeTakenCount->getType(). 2367 IVCount = SE->getAddExpr(BackedgeTakenCount, 2368 SE->getOne(BackedgeTakenCount->getType())); 2369 // The BackedgeTaken expression contains the number of times that the 2370 // backedge branches to the loop header. This is one less than the 2371 // number of times the loop executes, so use the incremented indvar. 2372 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2373 } 2374 2375 // It may be necessary to drop nowrap flags on the incrementing instruction 2376 // if either LFTR moves from a pre-inc check to a post-inc check (in which 2377 // case the increment might have previously been poison on the last iteration 2378 // only) or if LFTR switches to a different IV that was previously dynamically 2379 // dead (and as such may be arbitrarily poison). We remove any nowrap flags 2380 // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc 2381 // check), because the pre-inc addrec flags may be adopted from the original 2382 // instruction, while SCEV has to explicitly prove the post-inc nowrap flags. 2383 // TODO: This handling is inaccurate for one case: If we switch to a 2384 // dynamically dead IV that wraps on the first loop iteration only, which is 2385 // not covered by the post-inc addrec. (If the new IV was not dynamically 2386 // dead, it could not be poison on the first iteration in the first place.) 2387 Value *IncVar = IndVar->getIncomingValueForBlock(L->getLoopLatch()); 2388 if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) { 2389 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar)); 2390 if (BO->hasNoUnsignedWrap()) 2391 BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap()); 2392 if (BO->hasNoSignedWrap()) 2393 BO->setHasNoSignedWrap(AR->hasNoSignedWrap()); 2394 } 2395 2396 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2397 assert(ExitCnt->getType()->isPointerTy() == 2398 IndVar->getType()->isPointerTy() && 2399 "genLoopLimit missed a cast"); 2400 2401 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2402 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2403 ICmpInst::Predicate P; 2404 if (L->contains(BI->getSuccessor(0))) 2405 P = ICmpInst::ICMP_NE; 2406 else 2407 P = ICmpInst::ICMP_EQ; 2408 2409 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2410 << " LHS:" << *CmpIndVar << '\n' 2411 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2412 << "\n" 2413 << " RHS:\t" << *ExitCnt << "\n" 2414 << " IVCount:\t" << *IVCount << "\n"); 2415 2416 IRBuilder<> Builder(BI); 2417 2418 // The new loop exit condition should reuse the debug location of the 2419 // original loop exit condition. 2420 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2421 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2422 2423 // LFTR can ignore IV overflow and truncate to the width of 2424 // BECount. This avoids materializing the add(zext(add)) expression. 2425 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2426 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2427 if (CmpIndVarSize > ExitCntSize) { 2428 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2429 const SCEV *ARStart = AR->getStart(); 2430 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2431 // For constant IVCount, avoid truncation. 2432 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2433 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2434 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2435 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2436 // above such that IVCount is now zero. 2437 if (IVCount != BackedgeTakenCount && Count == 0) { 2438 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2439 ++Count; 2440 } 2441 else 2442 Count = Count.zext(CmpIndVarSize); 2443 APInt NewLimit; 2444 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2445 NewLimit = Start - Count; 2446 else 2447 NewLimit = Start + Count; 2448 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2449 2450 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2451 } else { 2452 // We try to extend trip count first. If that doesn't work we truncate IV. 2453 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2454 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2455 // one of the two holds, extend the trip count, otherwise we truncate IV. 2456 bool Extended = false; 2457 const SCEV *IV = SE->getSCEV(CmpIndVar); 2458 const SCEV *ZExtTrunc = 2459 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2460 ExitCnt->getType()), 2461 CmpIndVar->getType()); 2462 2463 if (ZExtTrunc == IV) { 2464 Extended = true; 2465 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2466 "wide.trip.count"); 2467 } else { 2468 const SCEV *SExtTrunc = 2469 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2470 ExitCnt->getType()), 2471 CmpIndVar->getType()); 2472 if (SExtTrunc == IV) { 2473 Extended = true; 2474 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2475 "wide.trip.count"); 2476 } 2477 } 2478 2479 if (!Extended) 2480 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2481 "lftr.wideiv"); 2482 } 2483 } 2484 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2485 Value *OrigCond = BI->getCondition(); 2486 // It's tempting to use replaceAllUsesWith here to fully replace the old 2487 // comparison, but that's not immediately safe, since users of the old 2488 // comparison may not be dominated by the new comparison. Instead, just 2489 // update the branch to use the new comparison; in the common case this 2490 // will make old comparison dead. 2491 BI->setCondition(Cond); 2492 DeadInsts.push_back(OrigCond); 2493 2494 ++NumLFTR; 2495 return true; 2496 } 2497 2498 //===----------------------------------------------------------------------===// 2499 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2500 //===----------------------------------------------------------------------===// 2501 2502 /// If there's a single exit block, sink any loop-invariant values that 2503 /// were defined in the preheader but not used inside the loop into the 2504 /// exit block to reduce register pressure in the loop. 2505 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2506 BasicBlock *ExitBlock = L->getExitBlock(); 2507 if (!ExitBlock) return false; 2508 2509 BasicBlock *Preheader = L->getLoopPreheader(); 2510 if (!Preheader) return false; 2511 2512 bool MadeAnyChanges = false; 2513 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2514 BasicBlock::iterator I(Preheader->getTerminator()); 2515 while (I != Preheader->begin()) { 2516 --I; 2517 // New instructions were inserted at the end of the preheader. 2518 if (isa<PHINode>(I)) 2519 break; 2520 2521 // Don't move instructions which might have side effects, since the side 2522 // effects need to complete before instructions inside the loop. Also don't 2523 // move instructions which might read memory, since the loop may modify 2524 // memory. Note that it's okay if the instruction might have undefined 2525 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2526 // block. 2527 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2528 continue; 2529 2530 // Skip debug info intrinsics. 2531 if (isa<DbgInfoIntrinsic>(I)) 2532 continue; 2533 2534 // Skip eh pad instructions. 2535 if (I->isEHPad()) 2536 continue; 2537 2538 // Don't sink alloca: we never want to sink static alloca's out of the 2539 // entry block, and correctly sinking dynamic alloca's requires 2540 // checks for stacksave/stackrestore intrinsics. 2541 // FIXME: Refactor this check somehow? 2542 if (isa<AllocaInst>(I)) 2543 continue; 2544 2545 // Determine if there is a use in or before the loop (direct or 2546 // otherwise). 2547 bool UsedInLoop = false; 2548 for (Use &U : I->uses()) { 2549 Instruction *User = cast<Instruction>(U.getUser()); 2550 BasicBlock *UseBB = User->getParent(); 2551 if (PHINode *P = dyn_cast<PHINode>(User)) { 2552 unsigned i = 2553 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2554 UseBB = P->getIncomingBlock(i); 2555 } 2556 if (UseBB == Preheader || L->contains(UseBB)) { 2557 UsedInLoop = true; 2558 break; 2559 } 2560 } 2561 2562 // If there is, the def must remain in the preheader. 2563 if (UsedInLoop) 2564 continue; 2565 2566 // Otherwise, sink it to the exit block. 2567 Instruction *ToMove = &*I; 2568 bool Done = false; 2569 2570 if (I != Preheader->begin()) { 2571 // Skip debug info intrinsics. 2572 do { 2573 --I; 2574 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2575 2576 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2577 Done = true; 2578 } else { 2579 Done = true; 2580 } 2581 2582 MadeAnyChanges = true; 2583 ToMove->moveBefore(*ExitBlock, InsertPt); 2584 if (Done) break; 2585 InsertPt = ToMove->getIterator(); 2586 } 2587 2588 return MadeAnyChanges; 2589 } 2590 2591 //===----------------------------------------------------------------------===// 2592 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2593 //===----------------------------------------------------------------------===// 2594 2595 bool IndVarSimplify::run(Loop *L) { 2596 // We need (and expect!) the incoming loop to be in LCSSA. 2597 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2598 "LCSSA required to run indvars!"); 2599 bool Changed = false; 2600 2601 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2602 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2603 // canonicalization can be a pessimization without LSR to "clean up" 2604 // afterwards. 2605 // - We depend on having a preheader; in particular, 2606 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2607 // and we're in trouble if we can't find the induction variable even when 2608 // we've manually inserted one. 2609 // - LFTR relies on having a single backedge. 2610 if (!L->isLoopSimplifyForm()) 2611 return false; 2612 2613 // If there are any floating-point recurrences, attempt to 2614 // transform them to use integer recurrences. 2615 Changed |= rewriteNonIntegerIVs(L); 2616 2617 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2618 2619 // Create a rewriter object which we'll use to transform the code with. 2620 SCEVExpander Rewriter(*SE, DL, "indvars"); 2621 #ifndef NDEBUG 2622 Rewriter.setDebugType(DEBUG_TYPE); 2623 #endif 2624 2625 // Eliminate redundant IV users. 2626 // 2627 // Simplification works best when run before other consumers of SCEV. We 2628 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2629 // other expressions involving loop IVs have been evaluated. This helps SCEV 2630 // set no-wrap flags before normalizing sign/zero extension. 2631 Rewriter.disableCanonicalMode(); 2632 Changed |= simplifyAndExtend(L, Rewriter, LI); 2633 2634 // Check to see if this loop has a computable loop-invariant execution count. 2635 // If so, this means that we can compute the final value of any expressions 2636 // that are recurrent in the loop, and substitute the exit values from the 2637 // loop into any instructions outside of the loop that use the final values of 2638 // the current expressions. 2639 // 2640 if (ReplaceExitValue != NeverRepl && 2641 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2642 Changed |= rewriteLoopExitValues(L, Rewriter); 2643 2644 // Eliminate redundant IV cycles. 2645 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2646 2647 // If we have a trip count expression, rewrite the loop's exit condition 2648 // using it. We can currently only handle loops with a single exit. 2649 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2650 needsLFTR(L)) { 2651 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE); 2652 if (IndVar) { 2653 // Check preconditions for proper SCEVExpander operation. SCEV does not 2654 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2655 // pass that uses the SCEVExpander must do it. This does not work well for 2656 // loop passes because SCEVExpander makes assumptions about all loops, 2657 // while LoopPassManager only forces the current loop to be simplified. 2658 // 2659 // FIXME: SCEV expansion has no way to bail out, so the caller must 2660 // explicitly check any assumptions made by SCEV. Brittle. 2661 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2662 if (!AR || AR->getLoop()->getLoopPreheader()) 2663 Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2664 Rewriter); 2665 } 2666 } 2667 // Clear the rewriter cache, because values that are in the rewriter's cache 2668 // can be deleted in the loop below, causing the AssertingVH in the cache to 2669 // trigger. 2670 Rewriter.clear(); 2671 2672 // Now that we're done iterating through lists, clean up any instructions 2673 // which are now dead. 2674 while (!DeadInsts.empty()) 2675 if (Instruction *Inst = 2676 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2677 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2678 2679 // The Rewriter may not be used from this point on. 2680 2681 // Loop-invariant instructions in the preheader that aren't used in the 2682 // loop may be sunk below the loop to reduce register pressure. 2683 Changed |= sinkUnusedInvariants(L); 2684 2685 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2686 // trip count and therefore can further simplify exit values in addition to 2687 // rewriteLoopExitValues. 2688 Changed |= rewriteFirstIterationLoopExitValues(L); 2689 2690 // Clean up dead instructions. 2691 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2692 2693 // Check a post-condition. 2694 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2695 "Indvars did not preserve LCSSA!"); 2696 2697 // Verify that LFTR, and any other change have not interfered with SCEV's 2698 // ability to compute trip count. 2699 #ifndef NDEBUG 2700 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2701 SE->forgetLoop(L); 2702 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2703 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2704 SE->getTypeSizeInBits(NewBECount->getType())) 2705 NewBECount = SE->getTruncateOrNoop(NewBECount, 2706 BackedgeTakenCount->getType()); 2707 else 2708 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2709 NewBECount->getType()); 2710 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2711 } 2712 #endif 2713 2714 return Changed; 2715 } 2716 2717 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2718 LoopStandardAnalysisResults &AR, 2719 LPMUpdater &) { 2720 Function *F = L.getHeader()->getParent(); 2721 const DataLayout &DL = F->getParent()->getDataLayout(); 2722 2723 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2724 if (!IVS.run(&L)) 2725 return PreservedAnalyses::all(); 2726 2727 auto PA = getLoopPassPreservedAnalyses(); 2728 PA.preserveSet<CFGAnalyses>(); 2729 return PA; 2730 } 2731 2732 namespace { 2733 2734 struct IndVarSimplifyLegacyPass : public LoopPass { 2735 static char ID; // Pass identification, replacement for typeid 2736 2737 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2738 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2739 } 2740 2741 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2742 if (skipLoop(L)) 2743 return false; 2744 2745 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2746 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2747 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2748 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2749 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2750 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2751 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2752 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2753 2754 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2755 return IVS.run(L); 2756 } 2757 2758 void getAnalysisUsage(AnalysisUsage &AU) const override { 2759 AU.setPreservesCFG(); 2760 getLoopAnalysisUsage(AU); 2761 } 2762 }; 2763 2764 } // end anonymous namespace 2765 2766 char IndVarSimplifyLegacyPass::ID = 0; 2767 2768 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2769 "Induction Variable Simplification", false, false) 2770 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2771 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2772 "Induction Variable Simplification", false, false) 2773 2774 Pass *llvm::createIndVarSimplifyPass() { 2775 return new IndVarSimplifyLegacyPass(); 2776 } 2777