1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #define DEBUG_TYPE "indvars" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/BasicBlock.h" 30 #include "llvm/Constants.h" 31 #include "llvm/Instructions.h" 32 #include "llvm/IntrinsicInst.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Type.h" 35 #include "llvm/Analysis/Dominators.h" 36 #include "llvm/Analysis/IVUsers.h" 37 #include "llvm/Analysis/ScalarEvolutionExpander.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Support/CFG.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 using namespace llvm; 52 53 STATISTIC(NumRemoved , "Number of aux indvars removed"); 54 STATISTIC(NumWidened , "Number of indvars widened"); 55 STATISTIC(NumInserted , "Number of canonical indvars added"); 56 STATISTIC(NumReplaced , "Number of exit values replaced"); 57 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 58 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 59 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 60 61 namespace llvm { 62 cl::opt<bool> EnableIVRewrite( 63 "enable-iv-rewrite", cl::Hidden, cl::init(true), 64 cl::desc("Enable canonical induction variable rewriting")); 65 66 // Trip count verification can be enabled by default under NDEBUG if we 67 // implement a strong expression equivalence checker in SCEV. Until then, we 68 // use the verify-indvars flag, which may assert in some cases. 69 cl::opt<bool> VerifyIndvars( 70 "verify-indvars", cl::Hidden, 71 cl::desc("Verify the ScalarEvolution result after running indvars")); 72 } 73 74 namespace { 75 class IndVarSimplify : public LoopPass { 76 IVUsers *IU; 77 LoopInfo *LI; 78 ScalarEvolution *SE; 79 DominatorTree *DT; 80 TargetData *TD; 81 82 SmallVector<WeakVH, 16> DeadInsts; 83 bool Changed; 84 public: 85 86 static char ID; // Pass identification, replacement for typeid 87 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0), 88 Changed(false) { 89 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 90 } 91 92 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 93 94 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 95 AU.addRequired<DominatorTree>(); 96 AU.addRequired<LoopInfo>(); 97 AU.addRequired<ScalarEvolution>(); 98 AU.addRequiredID(LoopSimplifyID); 99 AU.addRequiredID(LCSSAID); 100 if (EnableIVRewrite) 101 AU.addRequired<IVUsers>(); 102 AU.addPreserved<ScalarEvolution>(); 103 AU.addPreservedID(LoopSimplifyID); 104 AU.addPreservedID(LCSSAID); 105 if (EnableIVRewrite) 106 AU.addPreserved<IVUsers>(); 107 AU.setPreservesCFG(); 108 } 109 110 private: 111 virtual void releaseMemory() { 112 DeadInsts.clear(); 113 } 114 115 bool isValidRewrite(Value *FromVal, Value *ToVal); 116 117 void HandleFloatingPointIV(Loop *L, PHINode *PH); 118 void RewriteNonIntegerIVs(Loop *L); 119 120 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 121 122 void SimplifyCongruentIVs(Loop *L); 123 124 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 125 126 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter); 127 128 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 129 PHINode *IndVar, SCEVExpander &Rewriter); 130 131 void SinkUnusedInvariants(Loop *L); 132 }; 133 } 134 135 char IndVarSimplify::ID = 0; 136 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 137 "Induction Variable Simplification", false, false) 138 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 139 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 140 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 141 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 142 INITIALIZE_PASS_DEPENDENCY(LCSSA) 143 INITIALIZE_PASS_DEPENDENCY(IVUsers) 144 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 145 "Induction Variable Simplification", false, false) 146 147 Pass *llvm::createIndVarSimplifyPass() { 148 return new IndVarSimplify(); 149 } 150 151 /// isValidRewrite - Return true if the SCEV expansion generated by the 152 /// rewriter can replace the original value. SCEV guarantees that it 153 /// produces the same value, but the way it is produced may be illegal IR. 154 /// Ideally, this function will only be called for verification. 155 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 156 // If an SCEV expression subsumed multiple pointers, its expansion could 157 // reassociate the GEP changing the base pointer. This is illegal because the 158 // final address produced by a GEP chain must be inbounds relative to its 159 // underlying object. Otherwise basic alias analysis, among other things, 160 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 161 // producing an expression involving multiple pointers. Until then, we must 162 // bail out here. 163 // 164 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 165 // because it understands lcssa phis while SCEV does not. 166 Value *FromPtr = FromVal; 167 Value *ToPtr = ToVal; 168 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 169 FromPtr = GEP->getPointerOperand(); 170 } 171 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 172 ToPtr = GEP->getPointerOperand(); 173 } 174 if (FromPtr != FromVal || ToPtr != ToVal) { 175 // Quickly check the common case 176 if (FromPtr == ToPtr) 177 return true; 178 179 // SCEV may have rewritten an expression that produces the GEP's pointer 180 // operand. That's ok as long as the pointer operand has the same base 181 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 182 // base of a recurrence. This handles the case in which SCEV expansion 183 // converts a pointer type recurrence into a nonrecurrent pointer base 184 // indexed by an integer recurrence. 185 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 186 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 187 if (FromBase == ToBase) 188 return true; 189 190 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 191 << *FromBase << " != " << *ToBase << "\n"); 192 193 return false; 194 } 195 return true; 196 } 197 198 /// Determine the insertion point for this user. By default, insert immediately 199 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 200 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 201 /// common dominator for the incoming blocks. 202 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 203 DominatorTree *DT) { 204 PHINode *PHI = dyn_cast<PHINode>(User); 205 if (!PHI) 206 return User; 207 208 Instruction *InsertPt = 0; 209 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 210 if (PHI->getIncomingValue(i) != Def) 211 continue; 212 213 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 214 if (!InsertPt) { 215 InsertPt = InsertBB->getTerminator(); 216 continue; 217 } 218 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 219 InsertPt = InsertBB->getTerminator(); 220 } 221 assert(InsertPt && "Missing phi operand"); 222 assert((!isa<Instruction>(Def) || 223 DT->dominates(cast<Instruction>(Def), InsertPt)) && 224 "def does not dominate all uses"); 225 return InsertPt; 226 } 227 228 //===----------------------------------------------------------------------===// 229 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 230 //===----------------------------------------------------------------------===// 231 232 /// ConvertToSInt - Convert APF to an integer, if possible. 233 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 234 bool isExact = false; 235 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) 236 return false; 237 // See if we can convert this to an int64_t 238 uint64_t UIntVal; 239 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 240 &isExact) != APFloat::opOK || !isExact) 241 return false; 242 IntVal = UIntVal; 243 return true; 244 } 245 246 /// HandleFloatingPointIV - If the loop has floating induction variable 247 /// then insert corresponding integer induction variable if possible. 248 /// For example, 249 /// for(double i = 0; i < 10000; ++i) 250 /// bar(i) 251 /// is converted into 252 /// for(int i = 0; i < 10000; ++i) 253 /// bar((double)i); 254 /// 255 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 256 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 257 unsigned BackEdge = IncomingEdge^1; 258 259 // Check incoming value. 260 ConstantFP *InitValueVal = 261 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 262 263 int64_t InitValue; 264 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 265 return; 266 267 // Check IV increment. Reject this PN if increment operation is not 268 // an add or increment value can not be represented by an integer. 269 BinaryOperator *Incr = 270 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 271 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; 272 273 // If this is not an add of the PHI with a constantfp, or if the constant fp 274 // is not an integer, bail out. 275 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 276 int64_t IncValue; 277 if (IncValueVal == 0 || Incr->getOperand(0) != PN || 278 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 279 return; 280 281 // Check Incr uses. One user is PN and the other user is an exit condition 282 // used by the conditional terminator. 283 Value::use_iterator IncrUse = Incr->use_begin(); 284 Instruction *U1 = cast<Instruction>(*IncrUse++); 285 if (IncrUse == Incr->use_end()) return; 286 Instruction *U2 = cast<Instruction>(*IncrUse++); 287 if (IncrUse != Incr->use_end()) return; 288 289 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 290 // only used by a branch, we can't transform it. 291 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 292 if (!Compare) 293 Compare = dyn_cast<FCmpInst>(U2); 294 if (Compare == 0 || !Compare->hasOneUse() || 295 !isa<BranchInst>(Compare->use_back())) 296 return; 297 298 BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); 299 300 // We need to verify that the branch actually controls the iteration count 301 // of the loop. If not, the new IV can overflow and no one will notice. 302 // The branch block must be in the loop and one of the successors must be out 303 // of the loop. 304 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 305 if (!L->contains(TheBr->getParent()) || 306 (L->contains(TheBr->getSuccessor(0)) && 307 L->contains(TheBr->getSuccessor(1)))) 308 return; 309 310 311 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 312 // transform it. 313 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 314 int64_t ExitValue; 315 if (ExitValueVal == 0 || 316 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 317 return; 318 319 // Find new predicate for integer comparison. 320 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 321 switch (Compare->getPredicate()) { 322 default: return; // Unknown comparison. 323 case CmpInst::FCMP_OEQ: 324 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 325 case CmpInst::FCMP_ONE: 326 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 327 case CmpInst::FCMP_OGT: 328 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 329 case CmpInst::FCMP_OGE: 330 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 331 case CmpInst::FCMP_OLT: 332 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 333 case CmpInst::FCMP_OLE: 334 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 335 } 336 337 // We convert the floating point induction variable to a signed i32 value if 338 // we can. This is only safe if the comparison will not overflow in a way 339 // that won't be trapped by the integer equivalent operations. Check for this 340 // now. 341 // TODO: We could use i64 if it is native and the range requires it. 342 343 // The start/stride/exit values must all fit in signed i32. 344 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 345 return; 346 347 // If not actually striding (add x, 0.0), avoid touching the code. 348 if (IncValue == 0) 349 return; 350 351 // Positive and negative strides have different safety conditions. 352 if (IncValue > 0) { 353 // If we have a positive stride, we require the init to be less than the 354 // exit value. 355 if (InitValue >= ExitValue) 356 return; 357 358 uint32_t Range = uint32_t(ExitValue-InitValue); 359 // Check for infinite loop, either: 360 // while (i <= Exit) or until (i > Exit) 361 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 362 if (++Range == 0) return; // Range overflows. 363 } 364 365 unsigned Leftover = Range % uint32_t(IncValue); 366 367 // If this is an equality comparison, we require that the strided value 368 // exactly land on the exit value, otherwise the IV condition will wrap 369 // around and do things the fp IV wouldn't. 370 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 371 Leftover != 0) 372 return; 373 374 // If the stride would wrap around the i32 before exiting, we can't 375 // transform the IV. 376 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 377 return; 378 379 } else { 380 // If we have a negative stride, we require the init to be greater than the 381 // exit value. 382 if (InitValue <= ExitValue) 383 return; 384 385 uint32_t Range = uint32_t(InitValue-ExitValue); 386 // Check for infinite loop, either: 387 // while (i >= Exit) or until (i < Exit) 388 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 389 if (++Range == 0) return; // Range overflows. 390 } 391 392 unsigned Leftover = Range % uint32_t(-IncValue); 393 394 // If this is an equality comparison, we require that the strided value 395 // exactly land on the exit value, otherwise the IV condition will wrap 396 // around and do things the fp IV wouldn't. 397 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 398 Leftover != 0) 399 return; 400 401 // If the stride would wrap around the i32 before exiting, we can't 402 // transform the IV. 403 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 404 return; 405 } 406 407 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 408 409 // Insert new integer induction variable. 410 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 411 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 412 PN->getIncomingBlock(IncomingEdge)); 413 414 Value *NewAdd = 415 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 416 Incr->getName()+".int", Incr); 417 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 418 419 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 420 ConstantInt::get(Int32Ty, ExitValue), 421 Compare->getName()); 422 423 // In the following deletions, PN may become dead and may be deleted. 424 // Use a WeakVH to observe whether this happens. 425 WeakVH WeakPH = PN; 426 427 // Delete the old floating point exit comparison. The branch starts using the 428 // new comparison. 429 NewCompare->takeName(Compare); 430 Compare->replaceAllUsesWith(NewCompare); 431 RecursivelyDeleteTriviallyDeadInstructions(Compare); 432 433 // Delete the old floating point increment. 434 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 435 RecursivelyDeleteTriviallyDeadInstructions(Incr); 436 437 // If the FP induction variable still has uses, this is because something else 438 // in the loop uses its value. In order to canonicalize the induction 439 // variable, we chose to eliminate the IV and rewrite it in terms of an 440 // int->fp cast. 441 // 442 // We give preference to sitofp over uitofp because it is faster on most 443 // platforms. 444 if (WeakPH) { 445 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 446 PN->getParent()->getFirstInsertionPt()); 447 PN->replaceAllUsesWith(Conv); 448 RecursivelyDeleteTriviallyDeadInstructions(PN); 449 } 450 451 // Add a new IVUsers entry for the newly-created integer PHI. 452 if (IU) 453 IU->AddUsersIfInteresting(NewPHI); 454 455 Changed = true; 456 } 457 458 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 459 // First step. Check to see if there are any floating-point recurrences. 460 // If there are, change them into integer recurrences, permitting analysis by 461 // the SCEV routines. 462 // 463 BasicBlock *Header = L->getHeader(); 464 465 SmallVector<WeakVH, 8> PHIs; 466 for (BasicBlock::iterator I = Header->begin(); 467 PHINode *PN = dyn_cast<PHINode>(I); ++I) 468 PHIs.push_back(PN); 469 470 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 471 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 472 HandleFloatingPointIV(L, PN); 473 474 // If the loop previously had floating-point IV, ScalarEvolution 475 // may not have been able to compute a trip count. Now that we've done some 476 // re-writing, the trip count may be computable. 477 if (Changed) 478 SE->forgetLoop(L); 479 } 480 481 //===----------------------------------------------------------------------===// 482 // RewriteLoopExitValues - Optimize IV users outside the loop. 483 // As a side effect, reduces the amount of IV processing within the loop. 484 //===----------------------------------------------------------------------===// 485 486 /// RewriteLoopExitValues - Check to see if this loop has a computable 487 /// loop-invariant execution count. If so, this means that we can compute the 488 /// final value of any expressions that are recurrent in the loop, and 489 /// substitute the exit values from the loop into any instructions outside of 490 /// the loop that use the final values of the current expressions. 491 /// 492 /// This is mostly redundant with the regular IndVarSimplify activities that 493 /// happen later, except that it's more powerful in some cases, because it's 494 /// able to brute-force evaluate arbitrary instructions as long as they have 495 /// constant operands at the beginning of the loop. 496 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 497 // Verify the input to the pass in already in LCSSA form. 498 assert(L->isLCSSAForm(*DT)); 499 500 SmallVector<BasicBlock*, 8> ExitBlocks; 501 L->getUniqueExitBlocks(ExitBlocks); 502 503 // Find all values that are computed inside the loop, but used outside of it. 504 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 505 // the exit blocks of the loop to find them. 506 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 507 BasicBlock *ExitBB = ExitBlocks[i]; 508 509 // If there are no PHI nodes in this exit block, then no values defined 510 // inside the loop are used on this path, skip it. 511 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 512 if (!PN) continue; 513 514 unsigned NumPreds = PN->getNumIncomingValues(); 515 516 // Iterate over all of the PHI nodes. 517 BasicBlock::iterator BBI = ExitBB->begin(); 518 while ((PN = dyn_cast<PHINode>(BBI++))) { 519 if (PN->use_empty()) 520 continue; // dead use, don't replace it 521 522 // SCEV only supports integer expressions for now. 523 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 524 continue; 525 526 // It's necessary to tell ScalarEvolution about this explicitly so that 527 // it can walk the def-use list and forget all SCEVs, as it may not be 528 // watching the PHI itself. Once the new exit value is in place, there 529 // may not be a def-use connection between the loop and every instruction 530 // which got a SCEVAddRecExpr for that loop. 531 SE->forgetValue(PN); 532 533 // Iterate over all of the values in all the PHI nodes. 534 for (unsigned i = 0; i != NumPreds; ++i) { 535 // If the value being merged in is not integer or is not defined 536 // in the loop, skip it. 537 Value *InVal = PN->getIncomingValue(i); 538 if (!isa<Instruction>(InVal)) 539 continue; 540 541 // If this pred is for a subloop, not L itself, skip it. 542 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 543 continue; // The Block is in a subloop, skip it. 544 545 // Check that InVal is defined in the loop. 546 Instruction *Inst = cast<Instruction>(InVal); 547 if (!L->contains(Inst)) 548 continue; 549 550 // Okay, this instruction has a user outside of the current loop 551 // and varies predictably *inside* the loop. Evaluate the value it 552 // contains when the loop exits, if possible. 553 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 554 if (!SE->isLoopInvariant(ExitValue, L)) 555 continue; 556 557 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 558 559 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 560 << " LoopVal = " << *Inst << "\n"); 561 562 if (!isValidRewrite(Inst, ExitVal)) { 563 DeadInsts.push_back(ExitVal); 564 continue; 565 } 566 Changed = true; 567 ++NumReplaced; 568 569 PN->setIncomingValue(i, ExitVal); 570 571 // If this instruction is dead now, delete it. 572 RecursivelyDeleteTriviallyDeadInstructions(Inst); 573 574 if (NumPreds == 1) { 575 // Completely replace a single-pred PHI. This is safe, because the 576 // NewVal won't be variant in the loop, so we don't need an LCSSA phi 577 // node anymore. 578 PN->replaceAllUsesWith(ExitVal); 579 RecursivelyDeleteTriviallyDeadInstructions(PN); 580 } 581 } 582 if (NumPreds != 1) { 583 // Clone the PHI and delete the original one. This lets IVUsers and 584 // any other maps purge the original user from their records. 585 PHINode *NewPN = cast<PHINode>(PN->clone()); 586 NewPN->takeName(PN); 587 NewPN->insertBefore(PN); 588 PN->replaceAllUsesWith(NewPN); 589 PN->eraseFromParent(); 590 } 591 } 592 } 593 594 // The insertion point instruction may have been deleted; clear it out 595 // so that the rewriter doesn't trip over it later. 596 Rewriter.clearInsertPoint(); 597 } 598 599 //===----------------------------------------------------------------------===// 600 // Rewrite IV users based on a canonical IV. 601 // Only for use with -enable-iv-rewrite. 602 //===----------------------------------------------------------------------===// 603 604 /// FIXME: It is an extremely bad idea to indvar substitute anything more 605 /// complex than affine induction variables. Doing so will put expensive 606 /// polynomial evaluations inside of the loop, and the str reduction pass 607 /// currently can only reduce affine polynomials. For now just disable 608 /// indvar subst on anything more complex than an affine addrec, unless 609 /// it can be expanded to a trivial value. 610 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) { 611 // Loop-invariant values are safe. 612 if (SE->isLoopInvariant(S, L)) return true; 613 614 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how 615 // to transform them into efficient code. 616 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 617 return AR->isAffine(); 618 619 // An add is safe it all its operands are safe. 620 if (const SCEVCommutativeExpr *Commutative 621 = dyn_cast<SCEVCommutativeExpr>(S)) { 622 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(), 623 E = Commutative->op_end(); I != E; ++I) 624 if (!isSafe(*I, L, SE)) return false; 625 return true; 626 } 627 628 // A cast is safe if its operand is. 629 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 630 return isSafe(C->getOperand(), L, SE); 631 632 // A udiv is safe if its operands are. 633 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S)) 634 return isSafe(UD->getLHS(), L, SE) && 635 isSafe(UD->getRHS(), L, SE); 636 637 // SCEVUnknown is always safe. 638 if (isa<SCEVUnknown>(S)) 639 return true; 640 641 // Nothing else is safe. 642 return false; 643 } 644 645 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) { 646 // Rewrite all induction variable expressions in terms of the canonical 647 // induction variable. 648 // 649 // If there were induction variables of other sizes or offsets, manually 650 // add the offsets to the primary induction variable and cast, avoiding 651 // the need for the code evaluation methods to insert induction variables 652 // of different sizes. 653 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) { 654 Value *Op = UI->getOperandValToReplace(); 655 Type *UseTy = Op->getType(); 656 Instruction *User = UI->getUser(); 657 658 // Compute the final addrec to expand into code. 659 const SCEV *AR = IU->getReplacementExpr(*UI); 660 661 // Evaluate the expression out of the loop, if possible. 662 if (!L->contains(UI->getUser())) { 663 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop()); 664 if (SE->isLoopInvariant(ExitVal, L)) 665 AR = ExitVal; 666 } 667 668 // FIXME: It is an extremely bad idea to indvar substitute anything more 669 // complex than affine induction variables. Doing so will put expensive 670 // polynomial evaluations inside of the loop, and the str reduction pass 671 // currently can only reduce affine polynomials. For now just disable 672 // indvar subst on anything more complex than an affine addrec, unless 673 // it can be expanded to a trivial value. 674 if (!isSafe(AR, L, SE)) 675 continue; 676 677 // Determine the insertion point for this user. By default, insert 678 // immediately before the user. The SCEVExpander class will automatically 679 // hoist loop invariants out of the loop. For PHI nodes, there may be 680 // multiple uses, so compute the nearest common dominator for the 681 // incoming blocks. 682 Instruction *InsertPt = getInsertPointForUses(User, Op, DT); 683 684 // Now expand it into actual Instructions and patch it into place. 685 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt); 686 687 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n' 688 << " into = " << *NewVal << "\n"); 689 690 if (!isValidRewrite(Op, NewVal)) { 691 DeadInsts.push_back(NewVal); 692 continue; 693 } 694 // Inform ScalarEvolution that this value is changing. The change doesn't 695 // affect its value, but it does potentially affect which use lists the 696 // value will be on after the replacement, which affects ScalarEvolution's 697 // ability to walk use lists and drop dangling pointers when a value is 698 // deleted. 699 SE->forgetValue(User); 700 701 // Patch the new value into place. 702 if (Op->hasName()) 703 NewVal->takeName(Op); 704 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal)) 705 NewValI->setDebugLoc(User->getDebugLoc()); 706 User->replaceUsesOfWith(Op, NewVal); 707 UI->setOperandValToReplace(NewVal); 708 709 ++NumRemoved; 710 Changed = true; 711 712 // The old value may be dead now. 713 DeadInsts.push_back(Op); 714 } 715 } 716 717 //===----------------------------------------------------------------------===// 718 // IV Widening - Extend the width of an IV to cover its widest uses. 719 //===----------------------------------------------------------------------===// 720 721 namespace { 722 // Collect information about induction variables that are used by sign/zero 723 // extend operations. This information is recorded by CollectExtend and 724 // provides the input to WidenIV. 725 struct WideIVInfo { 726 Type *WidestNativeType; // Widest integer type created [sz]ext 727 bool IsSigned; // Was an sext user seen before a zext? 728 729 WideIVInfo() : WidestNativeType(0), IsSigned(false) {} 730 }; 731 732 class WideIVVisitor : public IVVisitor { 733 ScalarEvolution *SE; 734 const TargetData *TD; 735 736 public: 737 WideIVInfo WI; 738 739 WideIVVisitor(ScalarEvolution *SCEV, const TargetData *TData) : 740 SE(SCEV), TD(TData) {} 741 742 // Implement the interface used by simplifyUsersOfIV. 743 virtual void visitCast(CastInst *Cast); 744 }; 745 } 746 747 /// visitCast - Update information about the induction variable that is 748 /// extended by this sign or zero extend operation. This is used to determine 749 /// the final width of the IV before actually widening it. 750 void WideIVVisitor::visitCast(CastInst *Cast) { 751 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 752 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 753 return; 754 755 Type *Ty = Cast->getType(); 756 uint64_t Width = SE->getTypeSizeInBits(Ty); 757 if (TD && !TD->isLegalInteger(Width)) 758 return; 759 760 if (!WI.WidestNativeType) { 761 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 762 WI.IsSigned = IsSigned; 763 return; 764 } 765 766 // We extend the IV to satisfy the sign of its first user, arbitrarily. 767 if (WI.IsSigned != IsSigned) 768 return; 769 770 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 771 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 772 } 773 774 namespace { 775 776 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 777 /// WideIV that computes the same value as the Narrow IV def. This avoids 778 /// caching Use* pointers. 779 struct NarrowIVDefUse { 780 Instruction *NarrowDef; 781 Instruction *NarrowUse; 782 Instruction *WideDef; 783 784 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {} 785 786 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 787 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 788 }; 789 790 /// WidenIV - The goal of this transform is to remove sign and zero extends 791 /// without creating any new induction variables. To do this, it creates a new 792 /// phi of the wider type and redirects all users, either removing extends or 793 /// inserting truncs whenever we stop propagating the type. 794 /// 795 class WidenIV { 796 // Parameters 797 PHINode *OrigPhi; 798 Type *WideType; 799 bool IsSigned; 800 801 // Context 802 LoopInfo *LI; 803 Loop *L; 804 ScalarEvolution *SE; 805 DominatorTree *DT; 806 807 // Result 808 PHINode *WidePhi; 809 Instruction *WideInc; 810 const SCEV *WideIncExpr; 811 SmallVectorImpl<WeakVH> &DeadInsts; 812 813 SmallPtrSet<Instruction*,16> Widened; 814 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 815 816 public: 817 WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo, 818 ScalarEvolution *SEv, DominatorTree *DTree, 819 SmallVectorImpl<WeakVH> &DI) : 820 OrigPhi(PN), 821 WideType(WI.WidestNativeType), 822 IsSigned(WI.IsSigned), 823 LI(LInfo), 824 L(LI->getLoopFor(OrigPhi->getParent())), 825 SE(SEv), 826 DT(DTree), 827 WidePhi(0), 828 WideInc(0), 829 WideIncExpr(0), 830 DeadInsts(DI) { 831 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 832 } 833 834 PHINode *CreateWideIV(SCEVExpander &Rewriter); 835 836 protected: 837 Instruction *CloneIVUser(NarrowIVDefUse DU); 838 839 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 840 841 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 842 843 Instruction *WidenIVUse(NarrowIVDefUse DU); 844 845 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 846 }; 847 } // anonymous namespace 848 849 static Value *getExtend( Value *NarrowOper, Type *WideType, 850 bool IsSigned, IRBuilder<> &Builder) { 851 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 852 Builder.CreateZExt(NarrowOper, WideType); 853 } 854 855 /// CloneIVUser - Instantiate a wide operation to replace a narrow 856 /// operation. This only needs to handle operations that can evaluation to 857 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 858 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 859 unsigned Opcode = DU.NarrowUse->getOpcode(); 860 switch (Opcode) { 861 default: 862 return 0; 863 case Instruction::Add: 864 case Instruction::Mul: 865 case Instruction::UDiv: 866 case Instruction::Sub: 867 case Instruction::And: 868 case Instruction::Or: 869 case Instruction::Xor: 870 case Instruction::Shl: 871 case Instruction::LShr: 872 case Instruction::AShr: 873 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 874 875 IRBuilder<> Builder(DU.NarrowUse); 876 877 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 878 // anything about the narrow operand yet so must insert a [sz]ext. It is 879 // probably loop invariant and will be folded or hoisted. If it actually 880 // comes from a widened IV, it should be removed during a future call to 881 // WidenIVUse. 882 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 883 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, Builder); 884 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 885 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, Builder); 886 887 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 888 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 889 LHS, RHS, 890 NarrowBO->getName()); 891 Builder.Insert(WideBO); 892 if (const OverflowingBinaryOperator *OBO = 893 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 894 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 895 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 896 } 897 return WideBO; 898 } 899 llvm_unreachable(0); 900 } 901 902 /// HoistStep - Attempt to hoist an IV increment above a potential use. 903 /// 904 /// To successfully hoist, two criteria must be met: 905 /// - IncV operands dominate InsertPos and 906 /// - InsertPos dominates IncV 907 /// 908 /// Meeting the second condition means that we don't need to check all of IncV's 909 /// existing uses (it's moving up in the domtree). 910 /// 911 /// This does not yet recursively hoist the operands, although that would 912 /// not be difficult. 913 static bool HoistStep(Instruction *IncV, Instruction *InsertPos, 914 const DominatorTree *DT) 915 { 916 if (DT->dominates(IncV, InsertPos)) 917 return true; 918 919 if (!DT->dominates(InsertPos->getParent(), IncV->getParent())) 920 return false; 921 922 if (IncV->mayHaveSideEffects()) 923 return false; 924 925 // Attempt to hoist IncV 926 for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end(); 927 OI != OE; ++OI) { 928 Instruction *OInst = dyn_cast<Instruction>(OI); 929 if (OInst && !DT->dominates(OInst, InsertPos)) 930 return false; 931 } 932 IncV->moveBefore(InsertPos); 933 return true; 934 } 935 936 /// No-wrap operations can transfer sign extension of their result to their 937 /// operands. Generate the SCEV value for the widened operation without 938 /// actually modifying the IR yet. If the expression after extending the 939 /// operands is an AddRec for this loop, return it. 940 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 941 // Handle the common case of add<nsw/nuw> 942 if (DU.NarrowUse->getOpcode() != Instruction::Add) 943 return 0; 944 945 // One operand (NarrowDef) has already been extended to WideDef. Now determine 946 // if extending the other will lead to a recurrence. 947 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 948 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 949 950 const SCEV *ExtendOperExpr = 0; 951 const OverflowingBinaryOperator *OBO = 952 cast<OverflowingBinaryOperator>(DU.NarrowUse); 953 if (IsSigned && OBO->hasNoSignedWrap()) 954 ExtendOperExpr = SE->getSignExtendExpr( 955 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 956 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 957 ExtendOperExpr = SE->getZeroExtendExpr( 958 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 959 else 960 return 0; 961 962 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>( 963 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr, 964 IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW)); 965 966 if (!AddRec || AddRec->getLoop() != L) 967 return 0; 968 return AddRec; 969 } 970 971 /// GetWideRecurrence - Is this instruction potentially interesting from 972 /// IVUsers' perspective after widening it's type? In other words, can the 973 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 974 /// recurrence on the same loop. If so, return the sign or zero extended 975 /// recurrence. Otherwise return NULL. 976 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 977 if (!SE->isSCEVable(NarrowUse->getType())) 978 return 0; 979 980 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 981 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 982 >= SE->getTypeSizeInBits(WideType)) { 983 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 984 // index. So don't follow this use. 985 return 0; 986 } 987 988 const SCEV *WideExpr = IsSigned ? 989 SE->getSignExtendExpr(NarrowExpr, WideType) : 990 SE->getZeroExtendExpr(NarrowExpr, WideType); 991 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 992 if (!AddRec || AddRec->getLoop() != L) 993 return 0; 994 return AddRec; 995 } 996 997 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 998 /// widened. If so, return the wide clone of the user. 999 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) { 1000 1001 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1002 if (isa<PHINode>(DU.NarrowUse) && 1003 LI->getLoopFor(DU.NarrowUse->getParent()) != L) 1004 return 0; 1005 1006 // Our raison d'etre! Eliminate sign and zero extension. 1007 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1008 Value *NewDef = DU.WideDef; 1009 if (DU.NarrowUse->getType() != WideType) { 1010 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1011 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1012 if (CastWidth < IVWidth) { 1013 // The cast isn't as wide as the IV, so insert a Trunc. 1014 IRBuilder<> Builder(DU.NarrowUse); 1015 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1016 } 1017 else { 1018 // A wider extend was hidden behind a narrower one. This may induce 1019 // another round of IV widening in which the intermediate IV becomes 1020 // dead. It should be very rare. 1021 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1022 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1023 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1024 NewDef = DU.NarrowUse; 1025 } 1026 } 1027 if (NewDef != DU.NarrowUse) { 1028 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1029 << " replaced by " << *DU.WideDef << "\n"); 1030 ++NumElimExt; 1031 DU.NarrowUse->replaceAllUsesWith(NewDef); 1032 DeadInsts.push_back(DU.NarrowUse); 1033 } 1034 // Now that the extend is gone, we want to expose it's uses for potential 1035 // further simplification. We don't need to directly inform SimplifyIVUsers 1036 // of the new users, because their parent IV will be processed later as a 1037 // new loop phi. If we preserved IVUsers analysis, we would also want to 1038 // push the uses of WideDef here. 1039 1040 // No further widening is needed. The deceased [sz]ext had done it for us. 1041 return 0; 1042 } 1043 1044 // Does this user itself evaluate to a recurrence after widening? 1045 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 1046 if (!WideAddRec) { 1047 WideAddRec = GetExtendedOperandRecurrence(DU); 1048 } 1049 if (!WideAddRec) { 1050 // This user does not evaluate to a recurence after widening, so don't 1051 // follow it. Instead insert a Trunc to kill off the original use, 1052 // eventually isolating the original narrow IV so it can be removed. 1053 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1054 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1055 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1056 return 0; 1057 } 1058 // Assume block terminators cannot evaluate to a recurrence. We can't to 1059 // insert a Trunc after a terminator if there happens to be a critical edge. 1060 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1061 "SCEV is not expected to evaluate a block terminator"); 1062 1063 // Reuse the IV increment that SCEVExpander created as long as it dominates 1064 // NarrowUse. 1065 Instruction *WideUse = 0; 1066 if (WideAddRec == WideIncExpr && HoistStep(WideInc, DU.NarrowUse, DT)) { 1067 WideUse = WideInc; 1068 } 1069 else { 1070 WideUse = CloneIVUser(DU); 1071 if (!WideUse) 1072 return 0; 1073 } 1074 // Evaluation of WideAddRec ensured that the narrow expression could be 1075 // extended outside the loop without overflow. This suggests that the wide use 1076 // evaluates to the same expression as the extended narrow use, but doesn't 1077 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1078 // where it fails, we simply throw away the newly created wide use. 1079 if (WideAddRec != SE->getSCEV(WideUse)) { 1080 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1081 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1082 DeadInsts.push_back(WideUse); 1083 return 0; 1084 } 1085 1086 // Returning WideUse pushes it on the worklist. 1087 return WideUse; 1088 } 1089 1090 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1091 /// 1092 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1093 for (Value::use_iterator UI = NarrowDef->use_begin(), 1094 UE = NarrowDef->use_end(); UI != UE; ++UI) { 1095 Instruction *NarrowUse = cast<Instruction>(*UI); 1096 1097 // Handle data flow merges and bizarre phi cycles. 1098 if (!Widened.insert(NarrowUse)) 1099 continue; 1100 1101 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef)); 1102 } 1103 } 1104 1105 /// CreateWideIV - Process a single induction variable. First use the 1106 /// SCEVExpander to create a wide induction variable that evaluates to the same 1107 /// recurrence as the original narrow IV. Then use a worklist to forward 1108 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1109 /// interesting IV users, the narrow IV will be isolated for removal by 1110 /// DeleteDeadPHIs. 1111 /// 1112 /// It would be simpler to delete uses as they are processed, but we must avoid 1113 /// invalidating SCEV expressions. 1114 /// 1115 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1116 // Is this phi an induction variable? 1117 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1118 if (!AddRec) 1119 return NULL; 1120 1121 // Widen the induction variable expression. 1122 const SCEV *WideIVExpr = IsSigned ? 1123 SE->getSignExtendExpr(AddRec, WideType) : 1124 SE->getZeroExtendExpr(AddRec, WideType); 1125 1126 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1127 "Expect the new IV expression to preserve its type"); 1128 1129 // Can the IV be extended outside the loop without overflow? 1130 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1131 if (!AddRec || AddRec->getLoop() != L) 1132 return NULL; 1133 1134 // An AddRec must have loop-invariant operands. Since this AddRec is 1135 // materialized by a loop header phi, the expression cannot have any post-loop 1136 // operands, so they must dominate the loop header. 1137 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1138 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1139 && "Loop header phi recurrence inputs do not dominate the loop"); 1140 1141 // The rewriter provides a value for the desired IV expression. This may 1142 // either find an existing phi or materialize a new one. Either way, we 1143 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1144 // of the phi-SCC dominates the loop entry. 1145 Instruction *InsertPt = L->getHeader()->begin(); 1146 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1147 1148 // Remembering the WideIV increment generated by SCEVExpander allows 1149 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1150 // employ a general reuse mechanism because the call above is the only call to 1151 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1152 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1153 WideInc = 1154 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1155 WideIncExpr = SE->getSCEV(WideInc); 1156 } 1157 1158 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1159 ++NumWidened; 1160 1161 // Traverse the def-use chain using a worklist starting at the original IV. 1162 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1163 1164 Widened.insert(OrigPhi); 1165 pushNarrowIVUsers(OrigPhi, WidePhi); 1166 1167 while (!NarrowIVUsers.empty()) { 1168 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1169 1170 // Process a def-use edge. This may replace the use, so don't hold a 1171 // use_iterator across it. 1172 Instruction *WideUse = WidenIVUse(DU); 1173 1174 // Follow all def-use edges from the previous narrow use. 1175 if (WideUse) 1176 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1177 1178 // WidenIVUse may have removed the def-use edge. 1179 if (DU.NarrowDef->use_empty()) 1180 DeadInsts.push_back(DU.NarrowDef); 1181 } 1182 return WidePhi; 1183 } 1184 1185 //===----------------------------------------------------------------------===// 1186 // Simplification of IV users based on SCEV evaluation. 1187 //===----------------------------------------------------------------------===// 1188 1189 1190 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1191 /// users. Each successive simplification may push more users which may 1192 /// themselves be candidates for simplification. 1193 /// 1194 /// Sign/Zero extend elimination is interleaved with IV simplification. 1195 /// 1196 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1197 SCEVExpander &Rewriter, 1198 LPPassManager &LPM) { 1199 std::map<PHINode *, WideIVInfo> WideIVMap; 1200 1201 SmallVector<PHINode*, 8> LoopPhis; 1202 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1203 LoopPhis.push_back(cast<PHINode>(I)); 1204 } 1205 // Each round of simplification iterates through the SimplifyIVUsers worklist 1206 // for all current phis, then determines whether any IVs can be 1207 // widened. Widening adds new phis to LoopPhis, inducing another round of 1208 // simplification on the wide IVs. 1209 while (!LoopPhis.empty()) { 1210 // Evaluate as many IV expressions as possible before widening any IVs. This 1211 // forces SCEV to set no-wrap flags before evaluating sign/zero 1212 // extension. The first time SCEV attempts to normalize sign/zero extension, 1213 // the result becomes final. So for the most predictable results, we delay 1214 // evaluation of sign/zero extend evaluation until needed, and avoid running 1215 // other SCEV based analysis prior to SimplifyAndExtend. 1216 do { 1217 PHINode *CurrIV = LoopPhis.pop_back_val(); 1218 1219 // Information about sign/zero extensions of CurrIV. 1220 WideIVVisitor WIV(SE, TD); 1221 1222 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV); 1223 1224 if (WIV.WI.WidestNativeType) { 1225 WideIVMap[CurrIV] = WIV.WI; 1226 } 1227 } while(!LoopPhis.empty()); 1228 1229 for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(), 1230 E = WideIVMap.end(); I != E; ++I) { 1231 WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts); 1232 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1233 Changed = true; 1234 LoopPhis.push_back(WidePhi); 1235 } 1236 } 1237 WideIVMap.clear(); 1238 } 1239 } 1240 1241 /// SimplifyCongruentIVs - Check for congruent phis in this loop header and 1242 /// replace them with their chosen representative. 1243 /// 1244 void IndVarSimplify::SimplifyCongruentIVs(Loop *L) { 1245 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1246 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1247 PHINode *Phi = cast<PHINode>(I); 1248 if (!SE->isSCEVable(Phi->getType())) 1249 continue; 1250 1251 const SCEV *S = SE->getSCEV(Phi); 1252 std::pair<DenseMap<const SCEV *, PHINode *>::const_iterator, bool> Tmp = 1253 ExprToIVMap.insert(std::make_pair(S, Phi)); 1254 if (Tmp.second) 1255 continue; 1256 PHINode *OrigPhi = Tmp.first->second; 1257 1258 // If one phi derives from the other via GEPs, types may differ. 1259 if (OrigPhi->getType() != Phi->getType()) 1260 continue; 1261 1262 // Replacing the congruent phi is sufficient because acyclic redundancy 1263 // elimination, CSE/GVN, should handle the rest. However, once SCEV proves 1264 // that a phi is congruent, it's almost certain to be the head of an IV 1265 // user cycle that is isomorphic with the original phi. So it's worth 1266 // eagerly cleaning up the common case of a single IV increment. 1267 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1268 Instruction *OrigInc = 1269 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1270 Instruction *IsomorphicInc = 1271 cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1272 if (OrigInc != IsomorphicInc && 1273 OrigInc->getType() == IsomorphicInc->getType() && 1274 SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) && 1275 HoistStep(OrigInc, IsomorphicInc, DT)) { 1276 DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1277 << *IsomorphicInc << '\n'); 1278 IsomorphicInc->replaceAllUsesWith(OrigInc); 1279 DeadInsts.push_back(IsomorphicInc); 1280 } 1281 } 1282 DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n'); 1283 ++NumElimIV; 1284 Phi->replaceAllUsesWith(OrigPhi); 1285 DeadInsts.push_back(Phi); 1286 } 1287 } 1288 1289 //===----------------------------------------------------------------------===// 1290 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1291 //===----------------------------------------------------------------------===// 1292 1293 /// Check for expressions that ScalarEvolution generates to compute 1294 /// BackedgeTakenInfo. If these expressions have not been reduced, then 1295 /// expanding them may incur additional cost (albeit in the loop preheader). 1296 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, 1297 ScalarEvolution *SE) { 1298 // If the backedge-taken count is a UDiv, it's very likely a UDiv that 1299 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a 1300 // precise expression, rather than a UDiv from the user's code. If we can't 1301 // find a UDiv in the code with some simple searching, assume the former and 1302 // forego rewriting the loop. 1303 if (isa<SCEVUDivExpr>(S)) { 1304 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 1305 if (!OrigCond) return true; 1306 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 1307 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 1308 if (R != S) { 1309 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 1310 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 1311 if (L != S) 1312 return true; 1313 } 1314 } 1315 1316 if (EnableIVRewrite) 1317 return false; 1318 1319 // Recurse past add expressions, which commonly occur in the 1320 // BackedgeTakenCount. They may already exist in program code, and if not, 1321 // they are not too expensive rematerialize. 1322 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1323 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1324 I != E; ++I) { 1325 if (isHighCostExpansion(*I, BI, SE)) 1326 return true; 1327 } 1328 return false; 1329 } 1330 1331 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1332 // the exit condition. 1333 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1334 return true; 1335 1336 // If we haven't recognized an expensive SCEV patter, assume its an expression 1337 // produced by program code. 1338 return false; 1339 } 1340 1341 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1342 /// count expression can be safely and cheaply expanded into an instruction 1343 /// sequence that can be used by LinearFunctionTestReplace. 1344 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { 1345 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1346 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1347 BackedgeTakenCount->isZero()) 1348 return false; 1349 1350 if (!L->getExitingBlock()) 1351 return false; 1352 1353 // Can't rewrite non-branch yet. 1354 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1355 if (!BI) 1356 return false; 1357 1358 if (isHighCostExpansion(BackedgeTakenCount, BI, SE)) 1359 return false; 1360 1361 return true; 1362 } 1363 1364 /// getBackedgeIVType - Get the widest type used by the loop test after peeking 1365 /// through Truncs. 1366 /// 1367 /// TODO: Unnecessary when ForceLFTR is removed. 1368 static Type *getBackedgeIVType(Loop *L) { 1369 if (!L->getExitingBlock()) 1370 return 0; 1371 1372 // Can't rewrite non-branch yet. 1373 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1374 if (!BI) 1375 return 0; 1376 1377 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1378 if (!Cond) 1379 return 0; 1380 1381 Type *Ty = 0; 1382 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end(); 1383 OI != OE; ++OI) { 1384 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types"); 1385 TruncInst *Trunc = dyn_cast<TruncInst>(*OI); 1386 if (!Trunc) 1387 continue; 1388 1389 return Trunc->getSrcTy(); 1390 } 1391 return Ty; 1392 } 1393 1394 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 1395 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 1396 /// gratuitous for this purpose. 1397 static bool isLoopInvariant(Value *V, Loop *L, DominatorTree *DT) { 1398 Instruction *Inst = dyn_cast<Instruction>(V); 1399 if (!Inst) 1400 return true; 1401 1402 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1403 } 1404 1405 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1406 /// invariant value to the phi. 1407 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1408 Instruction *IncI = dyn_cast<Instruction>(IncV); 1409 if (!IncI) 1410 return 0; 1411 1412 switch (IncI->getOpcode()) { 1413 case Instruction::Add: 1414 case Instruction::Sub: 1415 break; 1416 case Instruction::GetElementPtr: 1417 // An IV counter must preserve its type. 1418 if (IncI->getNumOperands() == 2) 1419 break; 1420 default: 1421 return 0; 1422 } 1423 1424 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1425 if (Phi && Phi->getParent() == L->getHeader()) { 1426 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1427 return Phi; 1428 return 0; 1429 } 1430 if (IncI->getOpcode() == Instruction::GetElementPtr) 1431 return 0; 1432 1433 // Allow add/sub to be commuted. 1434 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1435 if (Phi && Phi->getParent() == L->getHeader()) { 1436 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1437 return Phi; 1438 } 1439 return 0; 1440 } 1441 1442 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1443 /// that the current exit test is already sufficiently canonical. 1444 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1445 assert(L->getExitingBlock() && "expected loop exit"); 1446 1447 BasicBlock *LatchBlock = L->getLoopLatch(); 1448 // Don't bother with LFTR if the loop is not properly simplified. 1449 if (!LatchBlock) 1450 return false; 1451 1452 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1453 assert(BI && "expected exit branch"); 1454 1455 // Do LFTR to simplify the exit condition to an ICMP. 1456 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1457 if (!Cond) 1458 return true; 1459 1460 // Do LFTR to simplify the exit ICMP to EQ/NE 1461 ICmpInst::Predicate Pred = Cond->getPredicate(); 1462 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1463 return true; 1464 1465 // Look for a loop invariant RHS 1466 Value *LHS = Cond->getOperand(0); 1467 Value *RHS = Cond->getOperand(1); 1468 if (!isLoopInvariant(RHS, L, DT)) { 1469 if (!isLoopInvariant(LHS, L, DT)) 1470 return true; 1471 std::swap(LHS, RHS); 1472 } 1473 // Look for a simple IV counter LHS 1474 PHINode *Phi = dyn_cast<PHINode>(LHS); 1475 if (!Phi) 1476 Phi = getLoopPhiForCounter(LHS, L, DT); 1477 1478 if (!Phi) 1479 return true; 1480 1481 // Do LFTR if the exit condition's IV is *not* a simple counter. 1482 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch()); 1483 return Phi != getLoopPhiForCounter(IncV, L, DT); 1484 } 1485 1486 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1487 /// be rewritten) loop exit test. 1488 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1489 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1490 Value *IncV = Phi->getIncomingValue(LatchIdx); 1491 1492 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end(); 1493 UI != UE; ++UI) { 1494 if (*UI != Cond && *UI != IncV) return false; 1495 } 1496 1497 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end(); 1498 UI != UE; ++UI) { 1499 if (*UI != Cond && *UI != Phi) return false; 1500 } 1501 return true; 1502 } 1503 1504 /// FindLoopCounter - Find an affine IV in canonical form. 1505 /// 1506 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1507 /// 1508 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1509 /// This is difficult in general for SCEV because of potential overflow. But we 1510 /// could at least handle constant BECounts. 1511 static PHINode * 1512 FindLoopCounter(Loop *L, const SCEV *BECount, 1513 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) { 1514 // I'm not sure how BECount could be a pointer type, but we definitely don't 1515 // want to LFTR that. 1516 if (BECount->getType()->isPointerTy()) 1517 return 0; 1518 1519 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1520 1521 Value *Cond = 1522 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1523 1524 // Loop over all of the PHI nodes, looking for a simple counter. 1525 PHINode *BestPhi = 0; 1526 const SCEV *BestInit = 0; 1527 BasicBlock *LatchBlock = L->getLoopLatch(); 1528 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1529 1530 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1531 PHINode *Phi = cast<PHINode>(I); 1532 if (!SE->isSCEVable(Phi->getType())) 1533 continue; 1534 1535 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1536 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1537 continue; 1538 1539 // AR may be a pointer type, while BECount is an integer type. 1540 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1541 // AR may not be a narrower type, or we may never exit. 1542 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1543 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth))) 1544 continue; 1545 1546 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1547 if (!Step || !Step->isOne()) 1548 continue; 1549 1550 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1551 Value *IncV = Phi->getIncomingValue(LatchIdx); 1552 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1553 continue; 1554 1555 const SCEV *Init = AR->getStart(); 1556 1557 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1558 // Don't force a live loop counter if another IV can be used. 1559 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1560 continue; 1561 1562 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1563 // also prefers integer to pointer IVs. 1564 if (BestInit->isZero() != Init->isZero()) { 1565 if (BestInit->isZero()) 1566 continue; 1567 } 1568 // If two IVs both count from zero or both count from nonzero then the 1569 // narrower is likely a dead phi that has been widened. Use the wider phi 1570 // to allow the other to be eliminated. 1571 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1572 continue; 1573 } 1574 BestPhi = Phi; 1575 BestInit = Init; 1576 } 1577 return BestPhi; 1578 } 1579 1580 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1581 /// loop to be a canonical != comparison against the incremented loop induction 1582 /// variable. This pass is able to rewrite the exit tests of any loop where the 1583 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1584 /// is actually a much broader range than just linear tests. 1585 Value *IndVarSimplify:: 1586 LinearFunctionTestReplace(Loop *L, 1587 const SCEV *BackedgeTakenCount, 1588 PHINode *IndVar, 1589 SCEVExpander &Rewriter) { 1590 assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); 1591 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1592 1593 // LFTR can ignore IV overflow and truncate to the width of 1594 // BECount. This avoids materializing the add(zext(add)) expression. 1595 Type *CntTy = !EnableIVRewrite ? 1596 BackedgeTakenCount->getType() : IndVar->getType(); 1597 1598 const SCEV *IVLimit = BackedgeTakenCount; 1599 1600 // If the exiting block is not the same as the backedge block, we must compare 1601 // against the preincremented value, otherwise we prefer to compare against 1602 // the post-incremented value. 1603 Value *CmpIndVar; 1604 if (L->getExitingBlock() == L->getLoopLatch()) { 1605 // Add one to the "backedge-taken" count to get the trip count. 1606 // If this addition may overflow, we have to be more pessimistic and 1607 // cast the induction variable before doing the add. 1608 const SCEV *N = 1609 SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1)); 1610 if (CntTy == IVLimit->getType()) 1611 IVLimit = N; 1612 else { 1613 const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0); 1614 if ((isa<SCEVConstant>(N) && !N->isZero()) || 1615 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { 1616 // No overflow. Cast the sum. 1617 IVLimit = SE->getTruncateOrZeroExtend(N, CntTy); 1618 } else { 1619 // Potential overflow. Cast before doing the add. 1620 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy); 1621 IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1)); 1622 } 1623 } 1624 // The BackedgeTaken expression contains the number of times that the 1625 // backedge branches to the loop header. This is one less than the 1626 // number of times the loop executes, so use the incremented indvar. 1627 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1628 } else { 1629 // We have to use the preincremented value... 1630 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy); 1631 CmpIndVar = IndVar; 1632 } 1633 1634 // For unit stride, IVLimit = Start + BECount with 2's complement overflow. 1635 // So for, non-zero start compute the IVLimit here. 1636 bool isPtrIV = false; 1637 Type *CmpTy = CntTy; 1638 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1639 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1640 if (!AR->getStart()->isZero()) { 1641 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1642 const SCEV *IVInit = AR->getStart(); 1643 1644 // For pointer types, sign extend BECount in order to materialize a GEP. 1645 // Note that for without EnableIVRewrite, we never run SCEVExpander on a 1646 // pointer type, because we must preserve the existing GEPs. Instead we 1647 // directly generate a GEP later. 1648 if (IVInit->getType()->isPointerTy()) { 1649 isPtrIV = true; 1650 CmpTy = SE->getEffectiveSCEVType(IVInit->getType()); 1651 IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy); 1652 } 1653 // For integer types, truncate the IV before computing IVInit + BECount. 1654 else { 1655 if (SE->getTypeSizeInBits(IVInit->getType()) 1656 > SE->getTypeSizeInBits(CmpTy)) 1657 IVInit = SE->getTruncateExpr(IVInit, CmpTy); 1658 1659 IVLimit = SE->getAddExpr(IVInit, IVLimit); 1660 } 1661 } 1662 // Expand the code for the iteration count. 1663 IRBuilder<> Builder(BI); 1664 1665 assert(SE->isLoopInvariant(IVLimit, L) && 1666 "Computed iteration count is not loop invariant!"); 1667 Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI); 1668 1669 // Create a gep for IVInit + IVLimit from on an existing pointer base. 1670 assert(isPtrIV == IndVar->getType()->isPointerTy() && 1671 "IndVar type must match IVInit type"); 1672 if (isPtrIV) { 1673 Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1674 assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter"); 1675 assert(SE->getSizeOfExpr( 1676 cast<PointerType>(IVStart->getType())->getElementType())->isOne() 1677 && "unit stride pointer IV must be i8*"); 1678 1679 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1680 ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit"); 1681 Builder.SetInsertPoint(BI); 1682 } 1683 1684 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1685 ICmpInst::Predicate P; 1686 if (L->contains(BI->getSuccessor(0))) 1687 P = ICmpInst::ICMP_NE; 1688 else 1689 P = ICmpInst::ICMP_EQ; 1690 1691 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1692 << " LHS:" << *CmpIndVar << '\n' 1693 << " op:\t" 1694 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1695 << " RHS:\t" << *ExitCnt << "\n" 1696 << " Expr:\t" << *IVLimit << "\n"); 1697 1698 if (SE->getTypeSizeInBits(CmpIndVar->getType()) 1699 > SE->getTypeSizeInBits(CmpTy)) { 1700 CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv"); 1701 } 1702 1703 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1704 Value *OrigCond = BI->getCondition(); 1705 // It's tempting to use replaceAllUsesWith here to fully replace the old 1706 // comparison, but that's not immediately safe, since users of the old 1707 // comparison may not be dominated by the new comparison. Instead, just 1708 // update the branch to use the new comparison; in the common case this 1709 // will make old comparison dead. 1710 BI->setCondition(Cond); 1711 DeadInsts.push_back(OrigCond); 1712 1713 ++NumLFTR; 1714 Changed = true; 1715 return Cond; 1716 } 1717 1718 //===----------------------------------------------------------------------===// 1719 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1720 //===----------------------------------------------------------------------===// 1721 1722 /// If there's a single exit block, sink any loop-invariant values that 1723 /// were defined in the preheader but not used inside the loop into the 1724 /// exit block to reduce register pressure in the loop. 1725 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1726 BasicBlock *ExitBlock = L->getExitBlock(); 1727 if (!ExitBlock) return; 1728 1729 BasicBlock *Preheader = L->getLoopPreheader(); 1730 if (!Preheader) return; 1731 1732 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1733 BasicBlock::iterator I = Preheader->getTerminator(); 1734 while (I != Preheader->begin()) { 1735 --I; 1736 // New instructions were inserted at the end of the preheader. 1737 if (isa<PHINode>(I)) 1738 break; 1739 1740 // Don't move instructions which might have side effects, since the side 1741 // effects need to complete before instructions inside the loop. Also don't 1742 // move instructions which might read memory, since the loop may modify 1743 // memory. Note that it's okay if the instruction might have undefined 1744 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1745 // block. 1746 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1747 continue; 1748 1749 // Skip debug info intrinsics. 1750 if (isa<DbgInfoIntrinsic>(I)) 1751 continue; 1752 1753 // Skip landingpad instructions. 1754 if (isa<LandingPadInst>(I)) 1755 continue; 1756 1757 // Don't sink static AllocaInsts out of the entry block, which would 1758 // turn them into dynamic allocas! 1759 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) 1760 if (AI->isStaticAlloca()) 1761 continue; 1762 1763 // Determine if there is a use in or before the loop (direct or 1764 // otherwise). 1765 bool UsedInLoop = false; 1766 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 1767 UI != UE; ++UI) { 1768 User *U = *UI; 1769 BasicBlock *UseBB = cast<Instruction>(U)->getParent(); 1770 if (PHINode *P = dyn_cast<PHINode>(U)) { 1771 unsigned i = 1772 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); 1773 UseBB = P->getIncomingBlock(i); 1774 } 1775 if (UseBB == Preheader || L->contains(UseBB)) { 1776 UsedInLoop = true; 1777 break; 1778 } 1779 } 1780 1781 // If there is, the def must remain in the preheader. 1782 if (UsedInLoop) 1783 continue; 1784 1785 // Otherwise, sink it to the exit block. 1786 Instruction *ToMove = I; 1787 bool Done = false; 1788 1789 if (I != Preheader->begin()) { 1790 // Skip debug info intrinsics. 1791 do { 1792 --I; 1793 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1794 1795 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1796 Done = true; 1797 } else { 1798 Done = true; 1799 } 1800 1801 ToMove->moveBefore(InsertPt); 1802 if (Done) break; 1803 InsertPt = ToMove; 1804 } 1805 } 1806 1807 //===----------------------------------------------------------------------===// 1808 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1809 //===----------------------------------------------------------------------===// 1810 1811 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1812 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1813 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1814 // canonicalization can be a pessimization without LSR to "clean up" 1815 // afterwards. 1816 // - We depend on having a preheader; in particular, 1817 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1818 // and we're in trouble if we can't find the induction variable even when 1819 // we've manually inserted one. 1820 if (!L->isLoopSimplifyForm()) 1821 return false; 1822 1823 if (EnableIVRewrite) 1824 IU = &getAnalysis<IVUsers>(); 1825 LI = &getAnalysis<LoopInfo>(); 1826 SE = &getAnalysis<ScalarEvolution>(); 1827 DT = &getAnalysis<DominatorTree>(); 1828 TD = getAnalysisIfAvailable<TargetData>(); 1829 1830 DeadInsts.clear(); 1831 Changed = false; 1832 1833 // If there are any floating-point recurrences, attempt to 1834 // transform them to use integer recurrences. 1835 RewriteNonIntegerIVs(L); 1836 1837 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1838 1839 // Create a rewriter object which we'll use to transform the code with. 1840 SCEVExpander Rewriter(*SE, "indvars"); 1841 1842 // Eliminate redundant IV users. 1843 // 1844 // Simplification works best when run before other consumers of SCEV. We 1845 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1846 // other expressions involving loop IVs have been evaluated. This helps SCEV 1847 // set no-wrap flags before normalizing sign/zero extension. 1848 if (!EnableIVRewrite) { 1849 Rewriter.disableCanonicalMode(); 1850 SimplifyAndExtend(L, Rewriter, LPM); 1851 } 1852 1853 // Check to see if this loop has a computable loop-invariant execution count. 1854 // If so, this means that we can compute the final value of any expressions 1855 // that are recurrent in the loop, and substitute the exit values from the 1856 // loop into any instructions outside of the loop that use the final values of 1857 // the current expressions. 1858 // 1859 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1860 RewriteLoopExitValues(L, Rewriter); 1861 1862 // Eliminate redundant IV users. 1863 if (EnableIVRewrite) 1864 Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts); 1865 1866 // Eliminate redundant IV cycles. 1867 if (!EnableIVRewrite) 1868 SimplifyCongruentIVs(L); 1869 1870 // Compute the type of the largest recurrence expression, and decide whether 1871 // a canonical induction variable should be inserted. 1872 Type *LargestType = 0; 1873 bool NeedCannIV = false; 1874 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE); 1875 if (EnableIVRewrite && ExpandBECount) { 1876 // If we have a known trip count and a single exit block, we'll be 1877 // rewriting the loop exit test condition below, which requires a 1878 // canonical induction variable. 1879 NeedCannIV = true; 1880 Type *Ty = BackedgeTakenCount->getType(); 1881 if (!EnableIVRewrite) { 1882 // In this mode, SimplifyIVUsers may have already widened the IV used by 1883 // the backedge test and inserted a Trunc on the compare's operand. Get 1884 // the wider type to avoid creating a redundant narrow IV only used by the 1885 // loop test. 1886 LargestType = getBackedgeIVType(L); 1887 } 1888 if (!LargestType || 1889 SE->getTypeSizeInBits(Ty) > 1890 SE->getTypeSizeInBits(LargestType)) 1891 LargestType = SE->getEffectiveSCEVType(Ty); 1892 } 1893 if (EnableIVRewrite) { 1894 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) { 1895 NeedCannIV = true; 1896 Type *Ty = 1897 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType()); 1898 if (!LargestType || 1899 SE->getTypeSizeInBits(Ty) > 1900 SE->getTypeSizeInBits(LargestType)) 1901 LargestType = Ty; 1902 } 1903 } 1904 1905 // Now that we know the largest of the induction variable expressions 1906 // in this loop, insert a canonical induction variable of the largest size. 1907 PHINode *IndVar = 0; 1908 if (NeedCannIV) { 1909 // Check to see if the loop already has any canonical-looking induction 1910 // variables. If any are present and wider than the planned canonical 1911 // induction variable, temporarily remove them, so that the Rewriter 1912 // doesn't attempt to reuse them. 1913 SmallVector<PHINode *, 2> OldCannIVs; 1914 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) { 1915 if (SE->getTypeSizeInBits(OldCannIV->getType()) > 1916 SE->getTypeSizeInBits(LargestType)) 1917 OldCannIV->removeFromParent(); 1918 else 1919 break; 1920 OldCannIVs.push_back(OldCannIV); 1921 } 1922 1923 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType); 1924 1925 ++NumInserted; 1926 Changed = true; 1927 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n'); 1928 1929 // Now that the official induction variable is established, reinsert 1930 // any old canonical-looking variables after it so that the IR remains 1931 // consistent. They will be deleted as part of the dead-PHI deletion at 1932 // the end of the pass. 1933 while (!OldCannIVs.empty()) { 1934 PHINode *OldCannIV = OldCannIVs.pop_back_val(); 1935 OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt()); 1936 } 1937 } 1938 else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) { 1939 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); 1940 } 1941 // If we have a trip count expression, rewrite the loop's exit condition 1942 // using it. We can currently only handle loops with a single exit. 1943 Value *NewICmp = 0; 1944 if (ExpandBECount && IndVar) { 1945 // Check preconditions for proper SCEVExpander operation. SCEV does not 1946 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 1947 // pass that uses the SCEVExpander must do it. This does not work well for 1948 // loop passes because SCEVExpander makes assumptions about all loops, while 1949 // LoopPassManager only forces the current loop to be simplified. 1950 // 1951 // FIXME: SCEV expansion has no way to bail out, so the caller must 1952 // explicitly check any assumptions made by SCEV. Brittle. 1953 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 1954 if (!AR || AR->getLoop()->getLoopPreheader()) 1955 NewICmp = 1956 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter); 1957 } 1958 // Rewrite IV-derived expressions. 1959 if (EnableIVRewrite) 1960 RewriteIVExpressions(L, Rewriter); 1961 1962 // Clear the rewriter cache, because values that are in the rewriter's cache 1963 // can be deleted in the loop below, causing the AssertingVH in the cache to 1964 // trigger. 1965 Rewriter.clear(); 1966 1967 // Now that we're done iterating through lists, clean up any instructions 1968 // which are now dead. 1969 while (!DeadInsts.empty()) 1970 if (Instruction *Inst = 1971 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 1972 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1973 1974 // The Rewriter may not be used from this point on. 1975 1976 // Loop-invariant instructions in the preheader that aren't used in the 1977 // loop may be sunk below the loop to reduce register pressure. 1978 SinkUnusedInvariants(L); 1979 1980 // For completeness, inform IVUsers of the IV use in the newly-created 1981 // loop exit test instruction. 1982 if (IU && NewICmp) { 1983 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp); 1984 if (NewICmpInst) 1985 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0))); 1986 } 1987 // Clean up dead instructions. 1988 Changed |= DeleteDeadPHIs(L->getHeader()); 1989 // Check a post-condition. 1990 assert(L->isLCSSAForm(*DT) && 1991 "Indvars did not leave the loop in lcssa form!"); 1992 1993 // Verify that LFTR, and any other change have not interfered with SCEV's 1994 // ability to compute trip count. 1995 #ifndef NDEBUG 1996 if (!EnableIVRewrite && VerifyIndvars && 1997 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1998 SE->forgetLoop(L); 1999 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2000 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2001 SE->getTypeSizeInBits(NewBECount->getType())) 2002 NewBECount = SE->getTruncateOrNoop(NewBECount, 2003 BackedgeTakenCount->getType()); 2004 else 2005 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2006 NewBECount->getType()); 2007 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2008 } 2009 #endif 2010 2011 return Changed; 2012 } 2013