1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/LoopPassManager.h" 35 #include "llvm/Analysis/ScalarEvolutionExpander.h" 36 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/TargetTransformInfo.h" 39 #include "llvm/Analysis/ValueTracking.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/PatternMatch.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include "llvm/Transforms/Utils/LoopUtils.h" 56 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 57 using namespace llvm; 58 59 #define DEBUG_TYPE "indvars" 60 61 STATISTIC(NumWidened , "Number of indvars widened"); 62 STATISTIC(NumReplaced , "Number of exit values replaced"); 63 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 64 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 65 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 66 67 // Trip count verification can be enabled by default under NDEBUG if we 68 // implement a strong expression equivalence checker in SCEV. Until then, we 69 // use the verify-indvars flag, which may assert in some cases. 70 static cl::opt<bool> VerifyIndvars( 71 "verify-indvars", cl::Hidden, 72 cl::desc("Verify the ScalarEvolution result after running indvars")); 73 74 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 75 76 static cl::opt<ReplaceExitVal> ReplaceExitValue( 77 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 78 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 79 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 80 clEnumValN(OnlyCheapRepl, "cheap", 81 "only replace exit value when the cost is cheap"), 82 clEnumValN(AlwaysRepl, "always", 83 "always replace exit value whenever possible"), 84 clEnumValEnd)); 85 86 namespace { 87 struct RewritePhi; 88 89 class IndVarSimplify { 90 LoopInfo *LI; 91 ScalarEvolution *SE; 92 DominatorTree *DT; 93 const DataLayout &DL; 94 TargetLibraryInfo *TLI; 95 const TargetTransformInfo *TTI; 96 97 SmallVector<WeakVH, 16> DeadInsts; 98 bool Changed = false; 99 100 bool isValidRewrite(Value *FromVal, Value *ToVal); 101 102 void handleFloatingPointIV(Loop *L, PHINode *PH); 103 void rewriteNonIntegerIVs(Loop *L); 104 105 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 106 107 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 108 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 109 void rewriteFirstIterationLoopExitValues(Loop *L); 110 111 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 112 PHINode *IndVar, SCEVExpander &Rewriter); 113 114 void sinkUnusedInvariants(Loop *L); 115 116 Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 117 Instruction *InsertPt, Type *Ty); 118 119 public: 120 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 121 const DataLayout &DL, TargetLibraryInfo *TLI, 122 TargetTransformInfo *TTI) 123 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 124 125 bool run(Loop *L); 126 }; 127 } 128 129 /// Return true if the SCEV expansion generated by the rewriter can replace the 130 /// original value. SCEV guarantees that it produces the same value, but the way 131 /// it is produced may be illegal IR. Ideally, this function will only be 132 /// called for verification. 133 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 134 // If an SCEV expression subsumed multiple pointers, its expansion could 135 // reassociate the GEP changing the base pointer. This is illegal because the 136 // final address produced by a GEP chain must be inbounds relative to its 137 // underlying object. Otherwise basic alias analysis, among other things, 138 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 139 // producing an expression involving multiple pointers. Until then, we must 140 // bail out here. 141 // 142 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 143 // because it understands lcssa phis while SCEV does not. 144 Value *FromPtr = FromVal; 145 Value *ToPtr = ToVal; 146 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 147 FromPtr = GEP->getPointerOperand(); 148 } 149 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 150 ToPtr = GEP->getPointerOperand(); 151 } 152 if (FromPtr != FromVal || ToPtr != ToVal) { 153 // Quickly check the common case 154 if (FromPtr == ToPtr) 155 return true; 156 157 // SCEV may have rewritten an expression that produces the GEP's pointer 158 // operand. That's ok as long as the pointer operand has the same base 159 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 160 // base of a recurrence. This handles the case in which SCEV expansion 161 // converts a pointer type recurrence into a nonrecurrent pointer base 162 // indexed by an integer recurrence. 163 164 // If the GEP base pointer is a vector of pointers, abort. 165 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 166 return false; 167 168 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 169 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 170 if (FromBase == ToBase) 171 return true; 172 173 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 174 << *FromBase << " != " << *ToBase << "\n"); 175 176 return false; 177 } 178 return true; 179 } 180 181 /// Determine the insertion point for this user. By default, insert immediately 182 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 183 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 184 /// common dominator for the incoming blocks. 185 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 186 DominatorTree *DT, LoopInfo *LI) { 187 PHINode *PHI = dyn_cast<PHINode>(User); 188 if (!PHI) 189 return User; 190 191 Instruction *InsertPt = nullptr; 192 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 193 if (PHI->getIncomingValue(i) != Def) 194 continue; 195 196 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 197 if (!InsertPt) { 198 InsertPt = InsertBB->getTerminator(); 199 continue; 200 } 201 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 202 InsertPt = InsertBB->getTerminator(); 203 } 204 assert(InsertPt && "Missing phi operand"); 205 206 auto *DefI = dyn_cast<Instruction>(Def); 207 if (!DefI) 208 return InsertPt; 209 210 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 211 212 auto *L = LI->getLoopFor(DefI->getParent()); 213 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 214 215 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 216 if (LI->getLoopFor(DTN->getBlock()) == L) 217 return DTN->getBlock()->getTerminator(); 218 219 llvm_unreachable("DefI dominates InsertPt!"); 220 } 221 222 //===----------------------------------------------------------------------===// 223 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 224 //===----------------------------------------------------------------------===// 225 226 /// Convert APF to an integer, if possible. 227 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 228 bool isExact = false; 229 // See if we can convert this to an int64_t 230 uint64_t UIntVal; 231 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 232 &isExact) != APFloat::opOK || !isExact) 233 return false; 234 IntVal = UIntVal; 235 return true; 236 } 237 238 /// If the loop has floating induction variable then insert corresponding 239 /// integer induction variable if possible. 240 /// For example, 241 /// for(double i = 0; i < 10000; ++i) 242 /// bar(i) 243 /// is converted into 244 /// for(int i = 0; i < 10000; ++i) 245 /// bar((double)i); 246 /// 247 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 248 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 249 unsigned BackEdge = IncomingEdge^1; 250 251 // Check incoming value. 252 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 253 254 int64_t InitValue; 255 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 256 return; 257 258 // Check IV increment. Reject this PN if increment operation is not 259 // an add or increment value can not be represented by an integer. 260 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 261 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 262 263 // If this is not an add of the PHI with a constantfp, or if the constant fp 264 // is not an integer, bail out. 265 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 266 int64_t IncValue; 267 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 268 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 269 return; 270 271 // Check Incr uses. One user is PN and the other user is an exit condition 272 // used by the conditional terminator. 273 Value::user_iterator IncrUse = Incr->user_begin(); 274 Instruction *U1 = cast<Instruction>(*IncrUse++); 275 if (IncrUse == Incr->user_end()) return; 276 Instruction *U2 = cast<Instruction>(*IncrUse++); 277 if (IncrUse != Incr->user_end()) return; 278 279 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 280 // only used by a branch, we can't transform it. 281 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 282 if (!Compare) 283 Compare = dyn_cast<FCmpInst>(U2); 284 if (!Compare || !Compare->hasOneUse() || 285 !isa<BranchInst>(Compare->user_back())) 286 return; 287 288 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 289 290 // We need to verify that the branch actually controls the iteration count 291 // of the loop. If not, the new IV can overflow and no one will notice. 292 // The branch block must be in the loop and one of the successors must be out 293 // of the loop. 294 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 295 if (!L->contains(TheBr->getParent()) || 296 (L->contains(TheBr->getSuccessor(0)) && 297 L->contains(TheBr->getSuccessor(1)))) 298 return; 299 300 301 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 302 // transform it. 303 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 304 int64_t ExitValue; 305 if (ExitValueVal == nullptr || 306 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 307 return; 308 309 // Find new predicate for integer comparison. 310 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 311 switch (Compare->getPredicate()) { 312 default: return; // Unknown comparison. 313 case CmpInst::FCMP_OEQ: 314 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 315 case CmpInst::FCMP_ONE: 316 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 317 case CmpInst::FCMP_OGT: 318 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 319 case CmpInst::FCMP_OGE: 320 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 321 case CmpInst::FCMP_OLT: 322 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 323 case CmpInst::FCMP_OLE: 324 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 325 } 326 327 // We convert the floating point induction variable to a signed i32 value if 328 // we can. This is only safe if the comparison will not overflow in a way 329 // that won't be trapped by the integer equivalent operations. Check for this 330 // now. 331 // TODO: We could use i64 if it is native and the range requires it. 332 333 // The start/stride/exit values must all fit in signed i32. 334 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 335 return; 336 337 // If not actually striding (add x, 0.0), avoid touching the code. 338 if (IncValue == 0) 339 return; 340 341 // Positive and negative strides have different safety conditions. 342 if (IncValue > 0) { 343 // If we have a positive stride, we require the init to be less than the 344 // exit value. 345 if (InitValue >= ExitValue) 346 return; 347 348 uint32_t Range = uint32_t(ExitValue-InitValue); 349 // Check for infinite loop, either: 350 // while (i <= Exit) or until (i > Exit) 351 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 352 if (++Range == 0) return; // Range overflows. 353 } 354 355 unsigned Leftover = Range % uint32_t(IncValue); 356 357 // If this is an equality comparison, we require that the strided value 358 // exactly land on the exit value, otherwise the IV condition will wrap 359 // around and do things the fp IV wouldn't. 360 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 361 Leftover != 0) 362 return; 363 364 // If the stride would wrap around the i32 before exiting, we can't 365 // transform the IV. 366 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 367 return; 368 369 } else { 370 // If we have a negative stride, we require the init to be greater than the 371 // exit value. 372 if (InitValue <= ExitValue) 373 return; 374 375 uint32_t Range = uint32_t(InitValue-ExitValue); 376 // Check for infinite loop, either: 377 // while (i >= Exit) or until (i < Exit) 378 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 379 if (++Range == 0) return; // Range overflows. 380 } 381 382 unsigned Leftover = Range % uint32_t(-IncValue); 383 384 // If this is an equality comparison, we require that the strided value 385 // exactly land on the exit value, otherwise the IV condition will wrap 386 // around and do things the fp IV wouldn't. 387 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 388 Leftover != 0) 389 return; 390 391 // If the stride would wrap around the i32 before exiting, we can't 392 // transform the IV. 393 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 394 return; 395 } 396 397 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 398 399 // Insert new integer induction variable. 400 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 401 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 402 PN->getIncomingBlock(IncomingEdge)); 403 404 Value *NewAdd = 405 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 406 Incr->getName()+".int", Incr); 407 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 408 409 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 410 ConstantInt::get(Int32Ty, ExitValue), 411 Compare->getName()); 412 413 // In the following deletions, PN may become dead and may be deleted. 414 // Use a WeakVH to observe whether this happens. 415 WeakVH WeakPH = PN; 416 417 // Delete the old floating point exit comparison. The branch starts using the 418 // new comparison. 419 NewCompare->takeName(Compare); 420 Compare->replaceAllUsesWith(NewCompare); 421 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 422 423 // Delete the old floating point increment. 424 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 425 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 426 427 // If the FP induction variable still has uses, this is because something else 428 // in the loop uses its value. In order to canonicalize the induction 429 // variable, we chose to eliminate the IV and rewrite it in terms of an 430 // int->fp cast. 431 // 432 // We give preference to sitofp over uitofp because it is faster on most 433 // platforms. 434 if (WeakPH) { 435 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 436 &*PN->getParent()->getFirstInsertionPt()); 437 PN->replaceAllUsesWith(Conv); 438 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 439 } 440 Changed = true; 441 } 442 443 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 444 // First step. Check to see if there are any floating-point recurrences. 445 // If there are, change them into integer recurrences, permitting analysis by 446 // the SCEV routines. 447 // 448 BasicBlock *Header = L->getHeader(); 449 450 SmallVector<WeakVH, 8> PHIs; 451 for (BasicBlock::iterator I = Header->begin(); 452 PHINode *PN = dyn_cast<PHINode>(I); ++I) 453 PHIs.push_back(PN); 454 455 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 456 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 457 handleFloatingPointIV(L, PN); 458 459 // If the loop previously had floating-point IV, ScalarEvolution 460 // may not have been able to compute a trip count. Now that we've done some 461 // re-writing, the trip count may be computable. 462 if (Changed) 463 SE->forgetLoop(L); 464 } 465 466 namespace { 467 // Collect information about PHI nodes which can be transformed in 468 // rewriteLoopExitValues. 469 struct RewritePhi { 470 PHINode *PN; 471 unsigned Ith; // Ith incoming value. 472 Value *Val; // Exit value after expansion. 473 bool HighCost; // High Cost when expansion. 474 475 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 476 : PN(P), Ith(I), Val(V), HighCost(H) {} 477 }; 478 } 479 480 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 481 Loop *L, Instruction *InsertPt, 482 Type *ResultTy) { 483 // Before expanding S into an expensive LLVM expression, see if we can use an 484 // already existing value as the expansion for S. 485 if (Value *ExistingValue = Rewriter.getExactExistingExpansion(S, InsertPt, L)) 486 if (ExistingValue->getType() == ResultTy) 487 return ExistingValue; 488 489 // We didn't find anything, fall back to using SCEVExpander. 490 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 491 } 492 493 //===----------------------------------------------------------------------===// 494 // rewriteLoopExitValues - Optimize IV users outside the loop. 495 // As a side effect, reduces the amount of IV processing within the loop. 496 //===----------------------------------------------------------------------===// 497 498 /// Check to see if this loop has a computable loop-invariant execution count. 499 /// If so, this means that we can compute the final value of any expressions 500 /// that are recurrent in the loop, and substitute the exit values from the loop 501 /// into any instructions outside of the loop that use the final values of the 502 /// current expressions. 503 /// 504 /// This is mostly redundant with the regular IndVarSimplify activities that 505 /// happen later, except that it's more powerful in some cases, because it's 506 /// able to brute-force evaluate arbitrary instructions as long as they have 507 /// constant operands at the beginning of the loop. 508 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 509 // Check a pre-condition. 510 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 511 512 SmallVector<BasicBlock*, 8> ExitBlocks; 513 L->getUniqueExitBlocks(ExitBlocks); 514 515 SmallVector<RewritePhi, 8> RewritePhiSet; 516 // Find all values that are computed inside the loop, but used outside of it. 517 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 518 // the exit blocks of the loop to find them. 519 for (BasicBlock *ExitBB : ExitBlocks) { 520 // If there are no PHI nodes in this exit block, then no values defined 521 // inside the loop are used on this path, skip it. 522 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 523 if (!PN) continue; 524 525 unsigned NumPreds = PN->getNumIncomingValues(); 526 527 // Iterate over all of the PHI nodes. 528 BasicBlock::iterator BBI = ExitBB->begin(); 529 while ((PN = dyn_cast<PHINode>(BBI++))) { 530 if (PN->use_empty()) 531 continue; // dead use, don't replace it 532 533 if (!SE->isSCEVable(PN->getType())) 534 continue; 535 536 // It's necessary to tell ScalarEvolution about this explicitly so that 537 // it can walk the def-use list and forget all SCEVs, as it may not be 538 // watching the PHI itself. Once the new exit value is in place, there 539 // may not be a def-use connection between the loop and every instruction 540 // which got a SCEVAddRecExpr for that loop. 541 SE->forgetValue(PN); 542 543 // Iterate over all of the values in all the PHI nodes. 544 for (unsigned i = 0; i != NumPreds; ++i) { 545 // If the value being merged in is not integer or is not defined 546 // in the loop, skip it. 547 Value *InVal = PN->getIncomingValue(i); 548 if (!isa<Instruction>(InVal)) 549 continue; 550 551 // If this pred is for a subloop, not L itself, skip it. 552 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 553 continue; // The Block is in a subloop, skip it. 554 555 // Check that InVal is defined in the loop. 556 Instruction *Inst = cast<Instruction>(InVal); 557 if (!L->contains(Inst)) 558 continue; 559 560 // Okay, this instruction has a user outside of the current loop 561 // and varies predictably *inside* the loop. Evaluate the value it 562 // contains when the loop exits, if possible. 563 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 564 if (!SE->isLoopInvariant(ExitValue, L) || 565 !isSafeToExpand(ExitValue, *SE)) 566 continue; 567 568 // Computing the value outside of the loop brings no benefit if : 569 // - it is definitely used inside the loop in a way which can not be 570 // optimized away. 571 // - no use outside of the loop can take advantage of hoisting the 572 // computation out of the loop 573 if (ExitValue->getSCEVType()>=scMulExpr) { 574 unsigned NumHardInternalUses = 0; 575 unsigned NumSoftExternalUses = 0; 576 unsigned NumUses = 0; 577 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 578 IB != IE && NumUses <= 6; ++IB) { 579 Instruction *UseInstr = cast<Instruction>(*IB); 580 unsigned Opc = UseInstr->getOpcode(); 581 NumUses++; 582 if (L->contains(UseInstr)) { 583 if (Opc == Instruction::Call || Opc == Instruction::Ret) 584 NumHardInternalUses++; 585 } else { 586 if (Opc == Instruction::PHI) { 587 // Do not count the Phi as a use. LCSSA may have inserted 588 // plenty of trivial ones. 589 NumUses--; 590 for (auto PB = UseInstr->user_begin(), 591 PE = UseInstr->user_end(); 592 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 593 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 594 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 595 NumSoftExternalUses++; 596 } 597 continue; 598 } 599 if (Opc != Instruction::Call && Opc != Instruction::Ret) 600 NumSoftExternalUses++; 601 } 602 } 603 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 604 continue; 605 } 606 607 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 608 Value *ExitVal = 609 expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 610 611 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 612 << " LoopVal = " << *Inst << "\n"); 613 614 if (!isValidRewrite(Inst, ExitVal)) { 615 DeadInsts.push_back(ExitVal); 616 continue; 617 } 618 619 // Collect all the candidate PHINodes to be rewritten. 620 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 621 } 622 } 623 } 624 625 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 626 627 // Transformation. 628 for (const RewritePhi &Phi : RewritePhiSet) { 629 PHINode *PN = Phi.PN; 630 Value *ExitVal = Phi.Val; 631 632 // Only do the rewrite when the ExitValue can be expanded cheaply. 633 // If LoopCanBeDel is true, rewrite exit value aggressively. 634 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 635 DeadInsts.push_back(ExitVal); 636 continue; 637 } 638 639 Changed = true; 640 ++NumReplaced; 641 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 642 PN->setIncomingValue(Phi.Ith, ExitVal); 643 644 // If this instruction is dead now, delete it. Don't do it now to avoid 645 // invalidating iterators. 646 if (isInstructionTriviallyDead(Inst, TLI)) 647 DeadInsts.push_back(Inst); 648 649 // Replace PN with ExitVal if that is legal and does not break LCSSA. 650 if (PN->getNumIncomingValues() == 1 && 651 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 652 PN->replaceAllUsesWith(ExitVal); 653 PN->eraseFromParent(); 654 } 655 } 656 657 // The insertion point instruction may have been deleted; clear it out 658 // so that the rewriter doesn't trip over it later. 659 Rewriter.clearInsertPoint(); 660 } 661 662 //===---------------------------------------------------------------------===// 663 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 664 // they will exit at the first iteration. 665 //===---------------------------------------------------------------------===// 666 667 /// Check to see if this loop has loop invariant conditions which lead to loop 668 /// exits. If so, we know that if the exit path is taken, it is at the first 669 /// loop iteration. This lets us predict exit values of PHI nodes that live in 670 /// loop header. 671 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 672 // Verify the input to the pass is already in LCSSA form. 673 assert(L->isLCSSAForm(*DT)); 674 675 SmallVector<BasicBlock *, 8> ExitBlocks; 676 L->getUniqueExitBlocks(ExitBlocks); 677 auto *LoopHeader = L->getHeader(); 678 assert(LoopHeader && "Invalid loop"); 679 680 for (auto *ExitBB : ExitBlocks) { 681 BasicBlock::iterator BBI = ExitBB->begin(); 682 // If there are no more PHI nodes in this exit block, then no more 683 // values defined inside the loop are used on this path. 684 while (auto *PN = dyn_cast<PHINode>(BBI++)) { 685 for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues(); 686 IncomingValIdx != E; ++IncomingValIdx) { 687 auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx); 688 689 // We currently only support loop exits from loop header. If the 690 // incoming block is not loop header, we need to recursively check 691 // all conditions starting from loop header are loop invariants. 692 // Additional support might be added in the future. 693 if (IncomingBB != LoopHeader) 694 continue; 695 696 // Get condition that leads to the exit path. 697 auto *TermInst = IncomingBB->getTerminator(); 698 699 Value *Cond = nullptr; 700 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 701 // Must be a conditional branch, otherwise the block 702 // should not be in the loop. 703 Cond = BI->getCondition(); 704 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 705 Cond = SI->getCondition(); 706 else 707 continue; 708 709 if (!L->isLoopInvariant(Cond)) 710 continue; 711 712 auto *ExitVal = 713 dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx)); 714 715 // Only deal with PHIs. 716 if (!ExitVal) 717 continue; 718 719 // If ExitVal is a PHI on the loop header, then we know its 720 // value along this exit because the exit can only be taken 721 // on the first iteration. 722 auto *LoopPreheader = L->getLoopPreheader(); 723 assert(LoopPreheader && "Invalid loop"); 724 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 725 if (PreheaderIdx != -1) { 726 assert(ExitVal->getParent() == LoopHeader && 727 "ExitVal must be in loop header"); 728 PN->setIncomingValue(IncomingValIdx, 729 ExitVal->getIncomingValue(PreheaderIdx)); 730 } 731 } 732 } 733 } 734 } 735 736 /// Check whether it is possible to delete the loop after rewriting exit 737 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 738 /// aggressively. 739 bool IndVarSimplify::canLoopBeDeleted( 740 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 741 742 BasicBlock *Preheader = L->getLoopPreheader(); 743 // If there is no preheader, the loop will not be deleted. 744 if (!Preheader) 745 return false; 746 747 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 748 // We obviate multiple ExitingBlocks case for simplicity. 749 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 750 // after exit value rewriting, we can enhance the logic here. 751 SmallVector<BasicBlock *, 4> ExitingBlocks; 752 L->getExitingBlocks(ExitingBlocks); 753 SmallVector<BasicBlock *, 8> ExitBlocks; 754 L->getUniqueExitBlocks(ExitBlocks); 755 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 756 return false; 757 758 BasicBlock *ExitBlock = ExitBlocks[0]; 759 BasicBlock::iterator BI = ExitBlock->begin(); 760 while (PHINode *P = dyn_cast<PHINode>(BI)) { 761 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 762 763 // If the Incoming value of P is found in RewritePhiSet, we know it 764 // could be rewritten to use a loop invariant value in transformation 765 // phase later. Skip it in the loop invariant check below. 766 bool found = false; 767 for (const RewritePhi &Phi : RewritePhiSet) { 768 unsigned i = Phi.Ith; 769 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 770 found = true; 771 break; 772 } 773 } 774 775 Instruction *I; 776 if (!found && (I = dyn_cast<Instruction>(Incoming))) 777 if (!L->hasLoopInvariantOperands(I)) 778 return false; 779 780 ++BI; 781 } 782 783 for (auto *BB : L->blocks()) 784 if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); })) 785 return false; 786 787 return true; 788 } 789 790 //===----------------------------------------------------------------------===// 791 // IV Widening - Extend the width of an IV to cover its widest uses. 792 //===----------------------------------------------------------------------===// 793 794 namespace { 795 // Collect information about induction variables that are used by sign/zero 796 // extend operations. This information is recorded by CollectExtend and provides 797 // the input to WidenIV. 798 struct WideIVInfo { 799 PHINode *NarrowIV = nullptr; 800 Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext 801 bool IsSigned = false; // Was a sext user seen before a zext? 802 }; 803 } 804 805 /// Update information about the induction variable that is extended by this 806 /// sign or zero extend operation. This is used to determine the final width of 807 /// the IV before actually widening it. 808 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 809 const TargetTransformInfo *TTI) { 810 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 811 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 812 return; 813 814 Type *Ty = Cast->getType(); 815 uint64_t Width = SE->getTypeSizeInBits(Ty); 816 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 817 return; 818 819 // Cast is either an sext or zext up to this point. 820 // We should not widen an indvar if arithmetics on the wider indvar are more 821 // expensive than those on the narrower indvar. We check only the cost of ADD 822 // because at least an ADD is required to increment the induction variable. We 823 // could compute more comprehensively the cost of all instructions on the 824 // induction variable when necessary. 825 if (TTI && 826 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 827 TTI->getArithmeticInstrCost(Instruction::Add, 828 Cast->getOperand(0)->getType())) { 829 return; 830 } 831 832 if (!WI.WidestNativeType) { 833 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 834 WI.IsSigned = IsSigned; 835 return; 836 } 837 838 // We extend the IV to satisfy the sign of its first user, arbitrarily. 839 if (WI.IsSigned != IsSigned) 840 return; 841 842 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 843 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 844 } 845 846 namespace { 847 848 /// Record a link in the Narrow IV def-use chain along with the WideIV that 849 /// computes the same value as the Narrow IV def. This avoids caching Use* 850 /// pointers. 851 struct NarrowIVDefUse { 852 Instruction *NarrowDef = nullptr; 853 Instruction *NarrowUse = nullptr; 854 Instruction *WideDef = nullptr; 855 856 // True if the narrow def is never negative. Tracking this information lets 857 // us use a sign extension instead of a zero extension or vice versa, when 858 // profitable and legal. 859 bool NeverNegative = false; 860 861 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 862 bool NeverNegative) 863 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 864 NeverNegative(NeverNegative) {} 865 }; 866 867 /// The goal of this transform is to remove sign and zero extends without 868 /// creating any new induction variables. To do this, it creates a new phi of 869 /// the wider type and redirects all users, either removing extends or inserting 870 /// truncs whenever we stop propagating the type. 871 /// 872 class WidenIV { 873 // Parameters 874 PHINode *OrigPhi; 875 Type *WideType; 876 bool IsSigned; 877 878 // Context 879 LoopInfo *LI; 880 Loop *L; 881 ScalarEvolution *SE; 882 DominatorTree *DT; 883 884 // Result 885 PHINode *WidePhi; 886 Instruction *WideInc; 887 const SCEV *WideIncExpr; 888 SmallVectorImpl<WeakVH> &DeadInsts; 889 890 SmallPtrSet<Instruction*,16> Widened; 891 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 892 893 public: 894 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 895 ScalarEvolution *SEv, DominatorTree *DTree, 896 SmallVectorImpl<WeakVH> &DI) : 897 OrigPhi(WI.NarrowIV), 898 WideType(WI.WidestNativeType), 899 IsSigned(WI.IsSigned), 900 LI(LInfo), 901 L(LI->getLoopFor(OrigPhi->getParent())), 902 SE(SEv), 903 DT(DTree), 904 WidePhi(nullptr), 905 WideInc(nullptr), 906 WideIncExpr(nullptr), 907 DeadInsts(DI) { 908 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 909 } 910 911 PHINode *createWideIV(SCEVExpander &Rewriter); 912 913 protected: 914 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 915 Instruction *Use); 916 917 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 918 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 919 const SCEVAddRecExpr *WideAR); 920 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 921 922 const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse); 923 924 const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU); 925 926 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 927 unsigned OpCode) const; 928 929 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 930 931 bool widenLoopCompare(NarrowIVDefUse DU); 932 933 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 934 }; 935 } // anonymous namespace 936 937 /// Perform a quick domtree based check for loop invariance assuming that V is 938 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 939 /// purpose. 940 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 941 Instruction *Inst = dyn_cast<Instruction>(V); 942 if (!Inst) 943 return true; 944 945 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 946 } 947 948 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 949 bool IsSigned, Instruction *Use) { 950 // Set the debug location and conservative insertion point. 951 IRBuilder<> Builder(Use); 952 // Hoist the insertion point into loop preheaders as far as possible. 953 for (const Loop *L = LI->getLoopFor(Use->getParent()); 954 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 955 L = L->getParentLoop()) 956 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 957 958 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 959 Builder.CreateZExt(NarrowOper, WideType); 960 } 961 962 /// Instantiate a wide operation to replace a narrow operation. This only needs 963 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 964 /// 0 for any operation we decide not to clone. 965 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 966 const SCEVAddRecExpr *WideAR) { 967 unsigned Opcode = DU.NarrowUse->getOpcode(); 968 switch (Opcode) { 969 default: 970 return nullptr; 971 case Instruction::Add: 972 case Instruction::Mul: 973 case Instruction::UDiv: 974 case Instruction::Sub: 975 return cloneArithmeticIVUser(DU, WideAR); 976 977 case Instruction::And: 978 case Instruction::Or: 979 case Instruction::Xor: 980 case Instruction::Shl: 981 case Instruction::LShr: 982 case Instruction::AShr: 983 return cloneBitwiseIVUser(DU); 984 } 985 } 986 987 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 988 Instruction *NarrowUse = DU.NarrowUse; 989 Instruction *NarrowDef = DU.NarrowDef; 990 Instruction *WideDef = DU.WideDef; 991 992 DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 993 994 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 995 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 996 // invariant and will be folded or hoisted. If it actually comes from a 997 // widened IV, it should be removed during a future call to widenIVUse. 998 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 999 ? WideDef 1000 : createExtendInst(NarrowUse->getOperand(0), WideType, 1001 IsSigned, NarrowUse); 1002 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1003 ? WideDef 1004 : createExtendInst(NarrowUse->getOperand(1), WideType, 1005 IsSigned, NarrowUse); 1006 1007 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1008 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1009 NarrowBO->getName()); 1010 IRBuilder<> Builder(NarrowUse); 1011 Builder.Insert(WideBO); 1012 WideBO->copyIRFlags(NarrowBO); 1013 return WideBO; 1014 } 1015 1016 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1017 const SCEVAddRecExpr *WideAR) { 1018 Instruction *NarrowUse = DU.NarrowUse; 1019 Instruction *NarrowDef = DU.NarrowDef; 1020 Instruction *WideDef = DU.WideDef; 1021 1022 DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1023 1024 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1025 1026 // We're trying to find X such that 1027 // 1028 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1029 // 1030 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1031 // and check using SCEV if any of them are correct. 1032 1033 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1034 // correct solution to X. 1035 auto GuessNonIVOperand = [&](bool SignExt) { 1036 const SCEV *WideLHS; 1037 const SCEV *WideRHS; 1038 1039 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1040 if (SignExt) 1041 return SE->getSignExtendExpr(S, Ty); 1042 return SE->getZeroExtendExpr(S, Ty); 1043 }; 1044 1045 if (IVOpIdx == 0) { 1046 WideLHS = SE->getSCEV(WideDef); 1047 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1048 WideRHS = GetExtend(NarrowRHS, WideType); 1049 } else { 1050 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1051 WideLHS = GetExtend(NarrowLHS, WideType); 1052 WideRHS = SE->getSCEV(WideDef); 1053 } 1054 1055 // WideUse is "WideDef `op.wide` X" as described in the comment. 1056 const SCEV *WideUse = nullptr; 1057 1058 switch (NarrowUse->getOpcode()) { 1059 default: 1060 llvm_unreachable("No other possibility!"); 1061 1062 case Instruction::Add: 1063 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1064 break; 1065 1066 case Instruction::Mul: 1067 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1068 break; 1069 1070 case Instruction::UDiv: 1071 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1072 break; 1073 1074 case Instruction::Sub: 1075 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1076 break; 1077 } 1078 1079 return WideUse == WideAR; 1080 }; 1081 1082 bool SignExtend = IsSigned; 1083 if (!GuessNonIVOperand(SignExtend)) { 1084 SignExtend = !SignExtend; 1085 if (!GuessNonIVOperand(SignExtend)) 1086 return nullptr; 1087 } 1088 1089 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1090 ? WideDef 1091 : createExtendInst(NarrowUse->getOperand(0), WideType, 1092 SignExtend, NarrowUse); 1093 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1094 ? WideDef 1095 : createExtendInst(NarrowUse->getOperand(1), WideType, 1096 SignExtend, NarrowUse); 1097 1098 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1099 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1100 NarrowBO->getName()); 1101 1102 IRBuilder<> Builder(NarrowUse); 1103 Builder.Insert(WideBO); 1104 WideBO->copyIRFlags(NarrowBO); 1105 return WideBO; 1106 } 1107 1108 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1109 unsigned OpCode) const { 1110 if (OpCode == Instruction::Add) 1111 return SE->getAddExpr(LHS, RHS); 1112 if (OpCode == Instruction::Sub) 1113 return SE->getMinusSCEV(LHS, RHS); 1114 if (OpCode == Instruction::Mul) 1115 return SE->getMulExpr(LHS, RHS); 1116 1117 llvm_unreachable("Unsupported opcode."); 1118 } 1119 1120 /// No-wrap operations can transfer sign extension of their result to their 1121 /// operands. Generate the SCEV value for the widened operation without 1122 /// actually modifying the IR yet. If the expression after extending the 1123 /// operands is an AddRec for this loop, return it. 1124 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1125 1126 // Handle the common case of add<nsw/nuw> 1127 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1128 // Only Add/Sub/Mul instructions supported yet. 1129 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1130 OpCode != Instruction::Mul) 1131 return nullptr; 1132 1133 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1134 // if extending the other will lead to a recurrence. 1135 const unsigned ExtendOperIdx = 1136 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1137 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1138 1139 const SCEV *ExtendOperExpr = nullptr; 1140 const OverflowingBinaryOperator *OBO = 1141 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1142 if (IsSigned && OBO->hasNoSignedWrap()) 1143 ExtendOperExpr = SE->getSignExtendExpr( 1144 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1145 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1146 ExtendOperExpr = SE->getZeroExtendExpr( 1147 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1148 else 1149 return nullptr; 1150 1151 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1152 // flags. This instruction may be guarded by control flow that the no-wrap 1153 // behavior depends on. Non-control-equivalent instructions can be mapped to 1154 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1155 // semantics to those operations. 1156 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1157 const SCEV *rhs = ExtendOperExpr; 1158 1159 // Let's swap operands to the initial order for the case of non-commutative 1160 // operations, like SUB. See PR21014. 1161 if (ExtendOperIdx == 0) 1162 std::swap(lhs, rhs); 1163 const SCEVAddRecExpr *AddRec = 1164 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1165 1166 if (!AddRec || AddRec->getLoop() != L) 1167 return nullptr; 1168 return AddRec; 1169 } 1170 1171 /// Is this instruction potentially interesting for further simplification after 1172 /// widening it's type? In other words, can the extend be safely hoisted out of 1173 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1174 /// so, return the sign or zero extended recurrence. Otherwise return NULL. 1175 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) { 1176 if (!SE->isSCEVable(NarrowUse->getType())) 1177 return nullptr; 1178 1179 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1180 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1181 SE->getTypeSizeInBits(WideType)) { 1182 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1183 // index. So don't follow this use. 1184 return nullptr; 1185 } 1186 1187 const SCEV *WideExpr = IsSigned ? 1188 SE->getSignExtendExpr(NarrowExpr, WideType) : 1189 SE->getZeroExtendExpr(NarrowExpr, WideType); 1190 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1191 if (!AddRec || AddRec->getLoop() != L) 1192 return nullptr; 1193 return AddRec; 1194 } 1195 1196 /// This IV user cannot be widen. Replace this use of the original narrow IV 1197 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1198 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1199 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1200 << " for user " << *DU.NarrowUse << "\n"); 1201 IRBuilder<> Builder( 1202 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1203 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1204 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1205 } 1206 1207 /// If the narrow use is a compare instruction, then widen the compare 1208 // (and possibly the other operand). The extend operation is hoisted into the 1209 // loop preheader as far as possible. 1210 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1211 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1212 if (!Cmp) 1213 return false; 1214 1215 // We can legally widen the comparison in the following two cases: 1216 // 1217 // - The signedness of the IV extension and comparison match 1218 // 1219 // - The narrow IV is always positive (and thus its sign extension is equal 1220 // to its zero extension). For instance, let's say we're zero extending 1221 // %narrow for the following use 1222 // 1223 // icmp slt i32 %narrow, %val ... (A) 1224 // 1225 // and %narrow is always positive. Then 1226 // 1227 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1228 // == icmp slt i32 zext(%narrow), sext(%val) 1229 1230 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1231 return false; 1232 1233 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1234 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1235 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1236 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1237 1238 // Widen the compare instruction. 1239 IRBuilder<> Builder( 1240 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1241 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1242 1243 // Widen the other operand of the compare, if necessary. 1244 if (CastWidth < IVWidth) { 1245 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1246 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1247 } 1248 return true; 1249 } 1250 1251 /// Determine whether an individual user of the narrow IV can be widened. If so, 1252 /// return the wide clone of the user. 1253 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1254 1255 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1256 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1257 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1258 // For LCSSA phis, sink the truncate outside the loop. 1259 // After SimplifyCFG most loop exit targets have a single predecessor. 1260 // Otherwise fall back to a truncate within the loop. 1261 if (UsePhi->getNumOperands() != 1) 1262 truncateIVUse(DU, DT, LI); 1263 else { 1264 // Widening the PHI requires us to insert a trunc. The logical place 1265 // for this trunc is in the same BB as the PHI. This is not possible if 1266 // the BB is terminated by a catchswitch. 1267 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1268 return nullptr; 1269 1270 PHINode *WidePhi = 1271 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1272 UsePhi); 1273 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1274 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1275 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1276 UsePhi->replaceAllUsesWith(Trunc); 1277 DeadInsts.emplace_back(UsePhi); 1278 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1279 << " to " << *WidePhi << "\n"); 1280 } 1281 return nullptr; 1282 } 1283 } 1284 // Our raison d'etre! Eliminate sign and zero extension. 1285 if ((isa<SExtInst>(DU.NarrowUse) && (IsSigned || DU.NeverNegative)) || 1286 (isa<ZExtInst>(DU.NarrowUse) && (!IsSigned || DU.NeverNegative))) { 1287 Value *NewDef = DU.WideDef; 1288 if (DU.NarrowUse->getType() != WideType) { 1289 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1290 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1291 if (CastWidth < IVWidth) { 1292 // The cast isn't as wide as the IV, so insert a Trunc. 1293 IRBuilder<> Builder(DU.NarrowUse); 1294 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1295 } 1296 else { 1297 // A wider extend was hidden behind a narrower one. This may induce 1298 // another round of IV widening in which the intermediate IV becomes 1299 // dead. It should be very rare. 1300 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1301 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1302 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1303 NewDef = DU.NarrowUse; 1304 } 1305 } 1306 if (NewDef != DU.NarrowUse) { 1307 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1308 << " replaced by " << *DU.WideDef << "\n"); 1309 ++NumElimExt; 1310 DU.NarrowUse->replaceAllUsesWith(NewDef); 1311 DeadInsts.emplace_back(DU.NarrowUse); 1312 } 1313 // Now that the extend is gone, we want to expose it's uses for potential 1314 // further simplification. We don't need to directly inform SimplifyIVUsers 1315 // of the new users, because their parent IV will be processed later as a 1316 // new loop phi. If we preserved IVUsers analysis, we would also want to 1317 // push the uses of WideDef here. 1318 1319 // No further widening is needed. The deceased [sz]ext had done it for us. 1320 return nullptr; 1321 } 1322 1323 // Does this user itself evaluate to a recurrence after widening? 1324 const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse); 1325 if (!WideAddRec) 1326 WideAddRec = getExtendedOperandRecurrence(DU); 1327 1328 if (!WideAddRec) { 1329 // If use is a loop condition, try to promote the condition instead of 1330 // truncating the IV first. 1331 if (widenLoopCompare(DU)) 1332 return nullptr; 1333 1334 // This user does not evaluate to a recurence after widening, so don't 1335 // follow it. Instead insert a Trunc to kill off the original use, 1336 // eventually isolating the original narrow IV so it can be removed. 1337 truncateIVUse(DU, DT, LI); 1338 return nullptr; 1339 } 1340 // Assume block terminators cannot evaluate to a recurrence. We can't to 1341 // insert a Trunc after a terminator if there happens to be a critical edge. 1342 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1343 "SCEV is not expected to evaluate a block terminator"); 1344 1345 // Reuse the IV increment that SCEVExpander created as long as it dominates 1346 // NarrowUse. 1347 Instruction *WideUse = nullptr; 1348 if (WideAddRec == WideIncExpr && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1349 WideUse = WideInc; 1350 else { 1351 WideUse = cloneIVUser(DU, WideAddRec); 1352 if (!WideUse) 1353 return nullptr; 1354 } 1355 // Evaluation of WideAddRec ensured that the narrow expression could be 1356 // extended outside the loop without overflow. This suggests that the wide use 1357 // evaluates to the same expression as the extended narrow use, but doesn't 1358 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1359 // where it fails, we simply throw away the newly created wide use. 1360 if (WideAddRec != SE->getSCEV(WideUse)) { 1361 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1362 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1363 DeadInsts.emplace_back(WideUse); 1364 return nullptr; 1365 } 1366 1367 // Returning WideUse pushes it on the worklist. 1368 return WideUse; 1369 } 1370 1371 /// Add eligible users of NarrowDef to NarrowIVUsers. 1372 /// 1373 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1374 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1375 // isKnownPredicate is enough for most cases but still need isKnownNonNegative 1376 // here to work around conservatism in ScalarEvolution about no-wrap flags. 1377 bool NeverNegative = 1378 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1379 SE->getConstant(NarrowSCEV->getType(), 0)) || 1380 isKnownNonNegative(NarrowDef, NarrowDef->getModule()->getDataLayout()); 1381 for (User *U : NarrowDef->users()) { 1382 Instruction *NarrowUser = cast<Instruction>(U); 1383 1384 // Handle data flow merges and bizarre phi cycles. 1385 if (!Widened.insert(NarrowUser).second) 1386 continue; 1387 1388 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative); 1389 } 1390 } 1391 1392 /// Process a single induction variable. First use the SCEVExpander to create a 1393 /// wide induction variable that evaluates to the same recurrence as the 1394 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1395 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1396 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1397 /// 1398 /// It would be simpler to delete uses as they are processed, but we must avoid 1399 /// invalidating SCEV expressions. 1400 /// 1401 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1402 // Is this phi an induction variable? 1403 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1404 if (!AddRec) 1405 return nullptr; 1406 1407 // Widen the induction variable expression. 1408 const SCEV *WideIVExpr = IsSigned ? 1409 SE->getSignExtendExpr(AddRec, WideType) : 1410 SE->getZeroExtendExpr(AddRec, WideType); 1411 1412 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1413 "Expect the new IV expression to preserve its type"); 1414 1415 // Can the IV be extended outside the loop without overflow? 1416 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1417 if (!AddRec || AddRec->getLoop() != L) 1418 return nullptr; 1419 1420 // An AddRec must have loop-invariant operands. Since this AddRec is 1421 // materialized by a loop header phi, the expression cannot have any post-loop 1422 // operands, so they must dominate the loop header. 1423 assert( 1424 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1425 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1426 "Loop header phi recurrence inputs do not dominate the loop"); 1427 1428 // The rewriter provides a value for the desired IV expression. This may 1429 // either find an existing phi or materialize a new one. Either way, we 1430 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1431 // of the phi-SCC dominates the loop entry. 1432 Instruction *InsertPt = &L->getHeader()->front(); 1433 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1434 1435 // Remembering the WideIV increment generated by SCEVExpander allows 1436 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1437 // employ a general reuse mechanism because the call above is the only call to 1438 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1439 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1440 WideInc = 1441 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1442 WideIncExpr = SE->getSCEV(WideInc); 1443 } 1444 1445 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1446 ++NumWidened; 1447 1448 // Traverse the def-use chain using a worklist starting at the original IV. 1449 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1450 1451 Widened.insert(OrigPhi); 1452 pushNarrowIVUsers(OrigPhi, WidePhi); 1453 1454 while (!NarrowIVUsers.empty()) { 1455 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1456 1457 // Process a def-use edge. This may replace the use, so don't hold a 1458 // use_iterator across it. 1459 Instruction *WideUse = widenIVUse(DU, Rewriter); 1460 1461 // Follow all def-use edges from the previous narrow use. 1462 if (WideUse) 1463 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1464 1465 // widenIVUse may have removed the def-use edge. 1466 if (DU.NarrowDef->use_empty()) 1467 DeadInsts.emplace_back(DU.NarrowDef); 1468 } 1469 return WidePhi; 1470 } 1471 1472 //===----------------------------------------------------------------------===// 1473 // Live IV Reduction - Minimize IVs live across the loop. 1474 //===----------------------------------------------------------------------===// 1475 1476 1477 //===----------------------------------------------------------------------===// 1478 // Simplification of IV users based on SCEV evaluation. 1479 //===----------------------------------------------------------------------===// 1480 1481 namespace { 1482 class IndVarSimplifyVisitor : public IVVisitor { 1483 ScalarEvolution *SE; 1484 const TargetTransformInfo *TTI; 1485 PHINode *IVPhi; 1486 1487 public: 1488 WideIVInfo WI; 1489 1490 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1491 const TargetTransformInfo *TTI, 1492 const DominatorTree *DTree) 1493 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1494 DT = DTree; 1495 WI.NarrowIV = IVPhi; 1496 } 1497 1498 // Implement the interface used by simplifyUsersOfIV. 1499 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1500 }; 1501 } 1502 1503 /// Iteratively perform simplification on a worklist of IV users. Each 1504 /// successive simplification may push more users which may themselves be 1505 /// candidates for simplification. 1506 /// 1507 /// Sign/Zero extend elimination is interleaved with IV simplification. 1508 /// 1509 void IndVarSimplify::simplifyAndExtend(Loop *L, 1510 SCEVExpander &Rewriter, 1511 LoopInfo *LI) { 1512 SmallVector<WideIVInfo, 8> WideIVs; 1513 1514 SmallVector<PHINode*, 8> LoopPhis; 1515 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1516 LoopPhis.push_back(cast<PHINode>(I)); 1517 } 1518 // Each round of simplification iterates through the SimplifyIVUsers worklist 1519 // for all current phis, then determines whether any IVs can be 1520 // widened. Widening adds new phis to LoopPhis, inducing another round of 1521 // simplification on the wide IVs. 1522 while (!LoopPhis.empty()) { 1523 // Evaluate as many IV expressions as possible before widening any IVs. This 1524 // forces SCEV to set no-wrap flags before evaluating sign/zero 1525 // extension. The first time SCEV attempts to normalize sign/zero extension, 1526 // the result becomes final. So for the most predictable results, we delay 1527 // evaluation of sign/zero extend evaluation until needed, and avoid running 1528 // other SCEV based analysis prior to simplifyAndExtend. 1529 do { 1530 PHINode *CurrIV = LoopPhis.pop_back_val(); 1531 1532 // Information about sign/zero extensions of CurrIV. 1533 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1534 1535 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor); 1536 1537 if (Visitor.WI.WidestNativeType) { 1538 WideIVs.push_back(Visitor.WI); 1539 } 1540 } while(!LoopPhis.empty()); 1541 1542 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1543 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1544 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1545 Changed = true; 1546 LoopPhis.push_back(WidePhi); 1547 } 1548 } 1549 } 1550 } 1551 1552 //===----------------------------------------------------------------------===// 1553 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1554 //===----------------------------------------------------------------------===// 1555 1556 /// Return true if this loop's backedge taken count expression can be safely and 1557 /// cheaply expanded into an instruction sequence that can be used by 1558 /// linearFunctionTestReplace. 1559 /// 1560 /// TODO: This fails for pointer-type loop counters with greater than one byte 1561 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1562 /// we could skip this check in the case that the LFTR loop counter (chosen by 1563 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1564 /// the loop test to an inequality test by checking the target data's alignment 1565 /// of element types (given that the initial pointer value originates from or is 1566 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1567 /// However, we don't yet have a strong motivation for converting loop tests 1568 /// into inequality tests. 1569 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1570 SCEVExpander &Rewriter) { 1571 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1572 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1573 BackedgeTakenCount->isZero()) 1574 return false; 1575 1576 if (!L->getExitingBlock()) 1577 return false; 1578 1579 // Can't rewrite non-branch yet. 1580 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1581 return false; 1582 1583 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1584 return false; 1585 1586 return true; 1587 } 1588 1589 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1590 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1591 Instruction *IncI = dyn_cast<Instruction>(IncV); 1592 if (!IncI) 1593 return nullptr; 1594 1595 switch (IncI->getOpcode()) { 1596 case Instruction::Add: 1597 case Instruction::Sub: 1598 break; 1599 case Instruction::GetElementPtr: 1600 // An IV counter must preserve its type. 1601 if (IncI->getNumOperands() == 2) 1602 break; 1603 default: 1604 return nullptr; 1605 } 1606 1607 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1608 if (Phi && Phi->getParent() == L->getHeader()) { 1609 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1610 return Phi; 1611 return nullptr; 1612 } 1613 if (IncI->getOpcode() == Instruction::GetElementPtr) 1614 return nullptr; 1615 1616 // Allow add/sub to be commuted. 1617 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1618 if (Phi && Phi->getParent() == L->getHeader()) { 1619 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1620 return Phi; 1621 } 1622 return nullptr; 1623 } 1624 1625 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1626 static ICmpInst *getLoopTest(Loop *L) { 1627 assert(L->getExitingBlock() && "expected loop exit"); 1628 1629 BasicBlock *LatchBlock = L->getLoopLatch(); 1630 // Don't bother with LFTR if the loop is not properly simplified. 1631 if (!LatchBlock) 1632 return nullptr; 1633 1634 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1635 assert(BI && "expected exit branch"); 1636 1637 return dyn_cast<ICmpInst>(BI->getCondition()); 1638 } 1639 1640 /// linearFunctionTestReplace policy. Return true unless we can show that the 1641 /// current exit test is already sufficiently canonical. 1642 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1643 // Do LFTR to simplify the exit condition to an ICMP. 1644 ICmpInst *Cond = getLoopTest(L); 1645 if (!Cond) 1646 return true; 1647 1648 // Do LFTR to simplify the exit ICMP to EQ/NE 1649 ICmpInst::Predicate Pred = Cond->getPredicate(); 1650 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1651 return true; 1652 1653 // Look for a loop invariant RHS 1654 Value *LHS = Cond->getOperand(0); 1655 Value *RHS = Cond->getOperand(1); 1656 if (!isLoopInvariant(RHS, L, DT)) { 1657 if (!isLoopInvariant(LHS, L, DT)) 1658 return true; 1659 std::swap(LHS, RHS); 1660 } 1661 // Look for a simple IV counter LHS 1662 PHINode *Phi = dyn_cast<PHINode>(LHS); 1663 if (!Phi) 1664 Phi = getLoopPhiForCounter(LHS, L, DT); 1665 1666 if (!Phi) 1667 return true; 1668 1669 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1670 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1671 if (Idx < 0) 1672 return true; 1673 1674 // Do LFTR if the exit condition's IV is *not* a simple counter. 1675 Value *IncV = Phi->getIncomingValue(Idx); 1676 return Phi != getLoopPhiForCounter(IncV, L, DT); 1677 } 1678 1679 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1680 /// down to checking that all operands are constant and listing instructions 1681 /// that may hide undef. 1682 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1683 unsigned Depth) { 1684 if (isa<Constant>(V)) 1685 return !isa<UndefValue>(V); 1686 1687 if (Depth >= 6) 1688 return false; 1689 1690 // Conservatively handle non-constant non-instructions. For example, Arguments 1691 // may be undef. 1692 Instruction *I = dyn_cast<Instruction>(V); 1693 if (!I) 1694 return false; 1695 1696 // Load and return values may be undef. 1697 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1698 return false; 1699 1700 // Optimistically handle other instructions. 1701 for (Value *Op : I->operands()) { 1702 if (!Visited.insert(Op).second) 1703 continue; 1704 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 1705 return false; 1706 } 1707 return true; 1708 } 1709 1710 /// Return true if the given value is concrete. We must prove that undef can 1711 /// never reach it. 1712 /// 1713 /// TODO: If we decide that this is a good approach to checking for undef, we 1714 /// may factor it into a common location. 1715 static bool hasConcreteDef(Value *V) { 1716 SmallPtrSet<Value*, 8> Visited; 1717 Visited.insert(V); 1718 return hasConcreteDefImpl(V, Visited, 0); 1719 } 1720 1721 /// Return true if this IV has any uses other than the (soon to be rewritten) 1722 /// loop exit test. 1723 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1724 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1725 Value *IncV = Phi->getIncomingValue(LatchIdx); 1726 1727 for (User *U : Phi->users()) 1728 if (U != Cond && U != IncV) return false; 1729 1730 for (User *U : IncV->users()) 1731 if (U != Cond && U != Phi) return false; 1732 return true; 1733 } 1734 1735 /// Find an affine IV in canonical form. 1736 /// 1737 /// BECount may be an i8* pointer type. The pointer difference is already 1738 /// valid count without scaling the address stride, so it remains a pointer 1739 /// expression as far as SCEV is concerned. 1740 /// 1741 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1742 /// 1743 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1744 /// 1745 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1746 /// This is difficult in general for SCEV because of potential overflow. But we 1747 /// could at least handle constant BECounts. 1748 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1749 ScalarEvolution *SE, DominatorTree *DT) { 1750 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1751 1752 Value *Cond = 1753 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1754 1755 // Loop over all of the PHI nodes, looking for a simple counter. 1756 PHINode *BestPhi = nullptr; 1757 const SCEV *BestInit = nullptr; 1758 BasicBlock *LatchBlock = L->getLoopLatch(); 1759 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1760 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1761 1762 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1763 PHINode *Phi = cast<PHINode>(I); 1764 if (!SE->isSCEVable(Phi->getType())) 1765 continue; 1766 1767 // Avoid comparing an integer IV against a pointer Limit. 1768 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1769 continue; 1770 1771 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1772 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1773 continue; 1774 1775 // AR may be a pointer type, while BECount is an integer type. 1776 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1777 // AR may not be a narrower type, or we may never exit. 1778 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1779 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 1780 continue; 1781 1782 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1783 if (!Step || !Step->isOne()) 1784 continue; 1785 1786 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1787 Value *IncV = Phi->getIncomingValue(LatchIdx); 1788 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1789 continue; 1790 1791 // Avoid reusing a potentially undef value to compute other values that may 1792 // have originally had a concrete definition. 1793 if (!hasConcreteDef(Phi)) { 1794 // We explicitly allow unknown phis as long as they are already used by 1795 // the loop test. In this case we assume that performing LFTR could not 1796 // increase the number of undef users. 1797 if (ICmpInst *Cond = getLoopTest(L)) { 1798 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 1799 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1800 continue; 1801 } 1802 } 1803 } 1804 const SCEV *Init = AR->getStart(); 1805 1806 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1807 // Don't force a live loop counter if another IV can be used. 1808 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1809 continue; 1810 1811 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1812 // also prefers integer to pointer IVs. 1813 if (BestInit->isZero() != Init->isZero()) { 1814 if (BestInit->isZero()) 1815 continue; 1816 } 1817 // If two IVs both count from zero or both count from nonzero then the 1818 // narrower is likely a dead phi that has been widened. Use the wider phi 1819 // to allow the other to be eliminated. 1820 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1821 continue; 1822 } 1823 BestPhi = Phi; 1824 BestInit = Init; 1825 } 1826 return BestPhi; 1827 } 1828 1829 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 1830 /// the new loop test. 1831 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1832 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1833 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1834 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1835 const SCEV *IVInit = AR->getStart(); 1836 1837 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1838 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1839 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1840 // the existing GEPs whenever possible. 1841 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 1842 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1843 // signed value. IVCount on the other hand represents the loop trip count, 1844 // which is an unsigned value. FindLoopCounter only allows induction 1845 // variables that have a positive unit stride of one. This means we don't 1846 // have to handle the case of negative offsets (yet) and just need to zero 1847 // extend IVCount. 1848 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1849 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1850 1851 // Expand the code for the iteration count. 1852 assert(SE->isLoopInvariant(IVOffset, L) && 1853 "Computed iteration count is not loop invariant!"); 1854 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1855 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1856 1857 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1858 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1859 // We could handle pointer IVs other than i8*, but we need to compensate for 1860 // gep index scaling. See canExpandBackedgeTakenCount comments. 1861 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1862 cast<PointerType>(GEPBase->getType()) 1863 ->getElementType())->isOne() && 1864 "unit stride pointer IV must be i8*"); 1865 1866 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1867 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1868 } else { 1869 // In any other case, convert both IVInit and IVCount to integers before 1870 // comparing. This may result in SCEV expension of pointers, but in practice 1871 // SCEV will fold the pointer arithmetic away as such: 1872 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1873 // 1874 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1875 // for simple memset-style loops. 1876 // 1877 // IVInit integer and IVCount pointer would only occur if a canonical IV 1878 // were generated on top of case #2, which is not expected. 1879 1880 const SCEV *IVLimit = nullptr; 1881 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1882 // For non-zero Start, compute IVCount here. 1883 if (AR->getStart()->isZero()) 1884 IVLimit = IVCount; 1885 else { 1886 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1887 const SCEV *IVInit = AR->getStart(); 1888 1889 // For integer IVs, truncate the IV before computing IVInit + BECount. 1890 if (SE->getTypeSizeInBits(IVInit->getType()) 1891 > SE->getTypeSizeInBits(IVCount->getType())) 1892 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1893 1894 IVLimit = SE->getAddExpr(IVInit, IVCount); 1895 } 1896 // Expand the code for the iteration count. 1897 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1898 IRBuilder<> Builder(BI); 1899 assert(SE->isLoopInvariant(IVLimit, L) && 1900 "Computed iteration count is not loop invariant!"); 1901 // Ensure that we generate the same type as IndVar, or a smaller integer 1902 // type. In the presence of null pointer values, we have an integer type 1903 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1904 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1905 IndVar->getType() : IVCount->getType(); 1906 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1907 } 1908 } 1909 1910 /// This method rewrites the exit condition of the loop to be a canonical != 1911 /// comparison against the incremented loop induction variable. This pass is 1912 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1913 /// determine a loop-invariant trip count of the loop, which is actually a much 1914 /// broader range than just linear tests. 1915 Value *IndVarSimplify:: 1916 linearFunctionTestReplace(Loop *L, 1917 const SCEV *BackedgeTakenCount, 1918 PHINode *IndVar, 1919 SCEVExpander &Rewriter) { 1920 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1921 1922 // Initialize CmpIndVar and IVCount to their preincremented values. 1923 Value *CmpIndVar = IndVar; 1924 const SCEV *IVCount = BackedgeTakenCount; 1925 1926 // If the exiting block is the same as the backedge block, we prefer to 1927 // compare against the post-incremented value, otherwise we must compare 1928 // against the preincremented value. 1929 if (L->getExitingBlock() == L->getLoopLatch()) { 1930 // Add one to the "backedge-taken" count to get the trip count. 1931 // This addition may overflow, which is valid as long as the comparison is 1932 // truncated to BackedgeTakenCount->getType(). 1933 IVCount = SE->getAddExpr(BackedgeTakenCount, 1934 SE->getOne(BackedgeTakenCount->getType())); 1935 // The BackedgeTaken expression contains the number of times that the 1936 // backedge branches to the loop header. This is one less than the 1937 // number of times the loop executes, so use the incremented indvar. 1938 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1939 } 1940 1941 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1942 assert(ExitCnt->getType()->isPointerTy() == 1943 IndVar->getType()->isPointerTy() && 1944 "genLoopLimit missed a cast"); 1945 1946 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1947 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1948 ICmpInst::Predicate P; 1949 if (L->contains(BI->getSuccessor(0))) 1950 P = ICmpInst::ICMP_NE; 1951 else 1952 P = ICmpInst::ICMP_EQ; 1953 1954 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1955 << " LHS:" << *CmpIndVar << '\n' 1956 << " op:\t" 1957 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1958 << " RHS:\t" << *ExitCnt << "\n" 1959 << " IVCount:\t" << *IVCount << "\n"); 1960 1961 IRBuilder<> Builder(BI); 1962 1963 // LFTR can ignore IV overflow and truncate to the width of 1964 // BECount. This avoids materializing the add(zext(add)) expression. 1965 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1966 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1967 if (CmpIndVarSize > ExitCntSize) { 1968 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1969 const SCEV *ARStart = AR->getStart(); 1970 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1971 // For constant IVCount, avoid truncation. 1972 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1973 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 1974 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 1975 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1976 // above such that IVCount is now zero. 1977 if (IVCount != BackedgeTakenCount && Count == 0) { 1978 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1979 ++Count; 1980 } 1981 else 1982 Count = Count.zext(CmpIndVarSize); 1983 APInt NewLimit; 1984 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1985 NewLimit = Start - Count; 1986 else 1987 NewLimit = Start + Count; 1988 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1989 1990 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1991 } else { 1992 1993 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1994 "lftr.wideiv"); 1995 } 1996 } 1997 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1998 Value *OrigCond = BI->getCondition(); 1999 // It's tempting to use replaceAllUsesWith here to fully replace the old 2000 // comparison, but that's not immediately safe, since users of the old 2001 // comparison may not be dominated by the new comparison. Instead, just 2002 // update the branch to use the new comparison; in the common case this 2003 // will make old comparison dead. 2004 BI->setCondition(Cond); 2005 DeadInsts.push_back(OrigCond); 2006 2007 ++NumLFTR; 2008 Changed = true; 2009 return Cond; 2010 } 2011 2012 //===----------------------------------------------------------------------===// 2013 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2014 //===----------------------------------------------------------------------===// 2015 2016 /// If there's a single exit block, sink any loop-invariant values that 2017 /// were defined in the preheader but not used inside the loop into the 2018 /// exit block to reduce register pressure in the loop. 2019 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2020 BasicBlock *ExitBlock = L->getExitBlock(); 2021 if (!ExitBlock) return; 2022 2023 BasicBlock *Preheader = L->getLoopPreheader(); 2024 if (!Preheader) return; 2025 2026 Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt(); 2027 BasicBlock::iterator I(Preheader->getTerminator()); 2028 while (I != Preheader->begin()) { 2029 --I; 2030 // New instructions were inserted at the end of the preheader. 2031 if (isa<PHINode>(I)) 2032 break; 2033 2034 // Don't move instructions which might have side effects, since the side 2035 // effects need to complete before instructions inside the loop. Also don't 2036 // move instructions which might read memory, since the loop may modify 2037 // memory. Note that it's okay if the instruction might have undefined 2038 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2039 // block. 2040 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2041 continue; 2042 2043 // Skip debug info intrinsics. 2044 if (isa<DbgInfoIntrinsic>(I)) 2045 continue; 2046 2047 // Skip eh pad instructions. 2048 if (I->isEHPad()) 2049 continue; 2050 2051 // Don't sink alloca: we never want to sink static alloca's out of the 2052 // entry block, and correctly sinking dynamic alloca's requires 2053 // checks for stacksave/stackrestore intrinsics. 2054 // FIXME: Refactor this check somehow? 2055 if (isa<AllocaInst>(I)) 2056 continue; 2057 2058 // Determine if there is a use in or before the loop (direct or 2059 // otherwise). 2060 bool UsedInLoop = false; 2061 for (Use &U : I->uses()) { 2062 Instruction *User = cast<Instruction>(U.getUser()); 2063 BasicBlock *UseBB = User->getParent(); 2064 if (PHINode *P = dyn_cast<PHINode>(User)) { 2065 unsigned i = 2066 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2067 UseBB = P->getIncomingBlock(i); 2068 } 2069 if (UseBB == Preheader || L->contains(UseBB)) { 2070 UsedInLoop = true; 2071 break; 2072 } 2073 } 2074 2075 // If there is, the def must remain in the preheader. 2076 if (UsedInLoop) 2077 continue; 2078 2079 // Otherwise, sink it to the exit block. 2080 Instruction *ToMove = &*I; 2081 bool Done = false; 2082 2083 if (I != Preheader->begin()) { 2084 // Skip debug info intrinsics. 2085 do { 2086 --I; 2087 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2088 2089 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2090 Done = true; 2091 } else { 2092 Done = true; 2093 } 2094 2095 ToMove->moveBefore(InsertPt); 2096 if (Done) break; 2097 InsertPt = ToMove; 2098 } 2099 } 2100 2101 //===----------------------------------------------------------------------===// 2102 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2103 //===----------------------------------------------------------------------===// 2104 2105 bool IndVarSimplify::run(Loop *L) { 2106 // We need (and expect!) the incoming loop to be in LCSSA. 2107 assert(L->isRecursivelyLCSSAForm(*DT) && "LCSSA required to run indvars!"); 2108 2109 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2110 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2111 // canonicalization can be a pessimization without LSR to "clean up" 2112 // afterwards. 2113 // - We depend on having a preheader; in particular, 2114 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2115 // and we're in trouble if we can't find the induction variable even when 2116 // we've manually inserted one. 2117 if (!L->isLoopSimplifyForm()) 2118 return false; 2119 2120 // If there are any floating-point recurrences, attempt to 2121 // transform them to use integer recurrences. 2122 rewriteNonIntegerIVs(L); 2123 2124 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2125 2126 // Create a rewriter object which we'll use to transform the code with. 2127 SCEVExpander Rewriter(*SE, DL, "indvars"); 2128 #ifndef NDEBUG 2129 Rewriter.setDebugType(DEBUG_TYPE); 2130 #endif 2131 2132 // Eliminate redundant IV users. 2133 // 2134 // Simplification works best when run before other consumers of SCEV. We 2135 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2136 // other expressions involving loop IVs have been evaluated. This helps SCEV 2137 // set no-wrap flags before normalizing sign/zero extension. 2138 Rewriter.disableCanonicalMode(); 2139 simplifyAndExtend(L, Rewriter, LI); 2140 2141 // Check to see if this loop has a computable loop-invariant execution count. 2142 // If so, this means that we can compute the final value of any expressions 2143 // that are recurrent in the loop, and substitute the exit values from the 2144 // loop into any instructions outside of the loop that use the final values of 2145 // the current expressions. 2146 // 2147 if (ReplaceExitValue != NeverRepl && 2148 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2149 rewriteLoopExitValues(L, Rewriter); 2150 2151 // Eliminate redundant IV cycles. 2152 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2153 2154 // If we have a trip count expression, rewrite the loop's exit condition 2155 // using it. We can currently only handle loops with a single exit. 2156 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2157 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2158 if (IndVar) { 2159 // Check preconditions for proper SCEVExpander operation. SCEV does not 2160 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2161 // pass that uses the SCEVExpander must do it. This does not work well for 2162 // loop passes because SCEVExpander makes assumptions about all loops, 2163 // while LoopPassManager only forces the current loop to be simplified. 2164 // 2165 // FIXME: SCEV expansion has no way to bail out, so the caller must 2166 // explicitly check any assumptions made by SCEV. Brittle. 2167 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2168 if (!AR || AR->getLoop()->getLoopPreheader()) 2169 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2170 Rewriter); 2171 } 2172 } 2173 // Clear the rewriter cache, because values that are in the rewriter's cache 2174 // can be deleted in the loop below, causing the AssertingVH in the cache to 2175 // trigger. 2176 Rewriter.clear(); 2177 2178 // Now that we're done iterating through lists, clean up any instructions 2179 // which are now dead. 2180 while (!DeadInsts.empty()) 2181 if (Instruction *Inst = 2182 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2183 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2184 2185 // The Rewriter may not be used from this point on. 2186 2187 // Loop-invariant instructions in the preheader that aren't used in the 2188 // loop may be sunk below the loop to reduce register pressure. 2189 sinkUnusedInvariants(L); 2190 2191 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2192 // trip count and therefore can further simplify exit values in addition to 2193 // rewriteLoopExitValues. 2194 rewriteFirstIterationLoopExitValues(L); 2195 2196 // Clean up dead instructions. 2197 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2198 2199 // Check a post-condition. 2200 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 2201 2202 // Verify that LFTR, and any other change have not interfered with SCEV's 2203 // ability to compute trip count. 2204 #ifndef NDEBUG 2205 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2206 SE->forgetLoop(L); 2207 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2208 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2209 SE->getTypeSizeInBits(NewBECount->getType())) 2210 NewBECount = SE->getTruncateOrNoop(NewBECount, 2211 BackedgeTakenCount->getType()); 2212 else 2213 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2214 NewBECount->getType()); 2215 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2216 } 2217 #endif 2218 2219 return Changed; 2220 } 2221 2222 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM) { 2223 auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 2224 Function *F = L.getHeader()->getParent(); 2225 const DataLayout &DL = F->getParent()->getDataLayout(); 2226 2227 auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); 2228 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 2229 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 2230 2231 assert((LI && SE && DT) && 2232 "Analyses required for indvarsimplify not available!"); 2233 2234 // Optional analyses. 2235 auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 2236 auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(*F); 2237 2238 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2239 if (!IVS.run(&L)) 2240 return PreservedAnalyses::all(); 2241 2242 // FIXME: This should also 'preserve the CFG'. 2243 return getLoopPassPreservedAnalyses(); 2244 } 2245 2246 namespace { 2247 struct IndVarSimplifyLegacyPass : public LoopPass { 2248 static char ID; // Pass identification, replacement for typeid 2249 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2250 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2251 } 2252 2253 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2254 if (skipLoop(L)) 2255 return false; 2256 2257 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2258 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2259 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2260 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2261 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2262 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2263 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2264 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2265 2266 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2267 return IVS.run(L); 2268 } 2269 2270 void getAnalysisUsage(AnalysisUsage &AU) const override { 2271 AU.setPreservesCFG(); 2272 getLoopAnalysisUsage(AU); 2273 } 2274 }; 2275 } 2276 2277 char IndVarSimplifyLegacyPass::ID = 0; 2278 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2279 "Induction Variable Simplification", false, false) 2280 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2281 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2282 "Induction Variable Simplification", false, false) 2283 2284 Pass *llvm::createIndVarSimplifyPass() { 2285 return new IndVarSimplifyLegacyPass(); 2286 } 2287