1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/LoopPassManager.h" 35 #include "llvm/Analysis/ScalarEvolutionExpander.h" 36 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/TargetTransformInfo.h" 39 #include "llvm/Analysis/ValueTracking.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/CFG.h" 42 #include "llvm/IR/Constants.h" 43 #include "llvm/IR/DataLayout.h" 44 #include "llvm/IR/Dominators.h" 45 #include "llvm/IR/Instructions.h" 46 #include "llvm/IR/IntrinsicInst.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/PatternMatch.h" 49 #include "llvm/IR/Type.h" 50 #include "llvm/Support/CommandLine.h" 51 #include "llvm/Support/Debug.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 54 #include "llvm/Transforms/Utils/Local.h" 55 #include "llvm/Transforms/Utils/LoopUtils.h" 56 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 57 using namespace llvm; 58 59 #define DEBUG_TYPE "indvars" 60 61 STATISTIC(NumWidened , "Number of indvars widened"); 62 STATISTIC(NumReplaced , "Number of exit values replaced"); 63 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 64 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 65 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 66 67 // Trip count verification can be enabled by default under NDEBUG if we 68 // implement a strong expression equivalence checker in SCEV. Until then, we 69 // use the verify-indvars flag, which may assert in some cases. 70 static cl::opt<bool> VerifyIndvars( 71 "verify-indvars", cl::Hidden, 72 cl::desc("Verify the ScalarEvolution result after running indvars")); 73 74 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 75 76 static cl::opt<ReplaceExitVal> ReplaceExitValue( 77 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 78 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 79 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 80 clEnumValN(OnlyCheapRepl, "cheap", 81 "only replace exit value when the cost is cheap"), 82 clEnumValN(AlwaysRepl, "always", 83 "always replace exit value whenever possible"), 84 clEnumValEnd)); 85 86 namespace { 87 struct RewritePhi; 88 89 class IndVarSimplify { 90 LoopInfo *LI; 91 ScalarEvolution *SE; 92 DominatorTree *DT; 93 const DataLayout &DL; 94 TargetLibraryInfo *TLI; 95 const TargetTransformInfo *TTI; 96 97 SmallVector<WeakVH, 16> DeadInsts; 98 bool Changed = false; 99 100 bool isValidRewrite(Value *FromVal, Value *ToVal); 101 102 void handleFloatingPointIV(Loop *L, PHINode *PH); 103 void rewriteNonIntegerIVs(Loop *L); 104 105 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 106 107 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 108 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 109 void rewriteFirstIterationLoopExitValues(Loop *L); 110 111 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 112 PHINode *IndVar, SCEVExpander &Rewriter); 113 114 void sinkUnusedInvariants(Loop *L); 115 116 Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 117 Instruction *InsertPt, Type *Ty); 118 119 public: 120 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 121 const DataLayout &DL, TargetLibraryInfo *TLI, 122 TargetTransformInfo *TTI) 123 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 124 125 bool run(Loop *L); 126 }; 127 } 128 129 /// Return true if the SCEV expansion generated by the rewriter can replace the 130 /// original value. SCEV guarantees that it produces the same value, but the way 131 /// it is produced may be illegal IR. Ideally, this function will only be 132 /// called for verification. 133 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 134 // If an SCEV expression subsumed multiple pointers, its expansion could 135 // reassociate the GEP changing the base pointer. This is illegal because the 136 // final address produced by a GEP chain must be inbounds relative to its 137 // underlying object. Otherwise basic alias analysis, among other things, 138 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 139 // producing an expression involving multiple pointers. Until then, we must 140 // bail out here. 141 // 142 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 143 // because it understands lcssa phis while SCEV does not. 144 Value *FromPtr = FromVal; 145 Value *ToPtr = ToVal; 146 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 147 FromPtr = GEP->getPointerOperand(); 148 } 149 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 150 ToPtr = GEP->getPointerOperand(); 151 } 152 if (FromPtr != FromVal || ToPtr != ToVal) { 153 // Quickly check the common case 154 if (FromPtr == ToPtr) 155 return true; 156 157 // SCEV may have rewritten an expression that produces the GEP's pointer 158 // operand. That's ok as long as the pointer operand has the same base 159 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 160 // base of a recurrence. This handles the case in which SCEV expansion 161 // converts a pointer type recurrence into a nonrecurrent pointer base 162 // indexed by an integer recurrence. 163 164 // If the GEP base pointer is a vector of pointers, abort. 165 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 166 return false; 167 168 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 169 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 170 if (FromBase == ToBase) 171 return true; 172 173 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 174 << *FromBase << " != " << *ToBase << "\n"); 175 176 return false; 177 } 178 return true; 179 } 180 181 /// Determine the insertion point for this user. By default, insert immediately 182 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 183 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 184 /// common dominator for the incoming blocks. 185 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 186 DominatorTree *DT, LoopInfo *LI) { 187 PHINode *PHI = dyn_cast<PHINode>(User); 188 if (!PHI) 189 return User; 190 191 Instruction *InsertPt = nullptr; 192 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 193 if (PHI->getIncomingValue(i) != Def) 194 continue; 195 196 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 197 if (!InsertPt) { 198 InsertPt = InsertBB->getTerminator(); 199 continue; 200 } 201 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 202 InsertPt = InsertBB->getTerminator(); 203 } 204 assert(InsertPt && "Missing phi operand"); 205 206 auto *DefI = dyn_cast<Instruction>(Def); 207 if (!DefI) 208 return InsertPt; 209 210 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 211 212 auto *L = LI->getLoopFor(DefI->getParent()); 213 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 214 215 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 216 if (LI->getLoopFor(DTN->getBlock()) == L) 217 return DTN->getBlock()->getTerminator(); 218 219 llvm_unreachable("DefI dominates InsertPt!"); 220 } 221 222 //===----------------------------------------------------------------------===// 223 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 224 //===----------------------------------------------------------------------===// 225 226 /// Convert APF to an integer, if possible. 227 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 228 bool isExact = false; 229 // See if we can convert this to an int64_t 230 uint64_t UIntVal; 231 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 232 &isExact) != APFloat::opOK || !isExact) 233 return false; 234 IntVal = UIntVal; 235 return true; 236 } 237 238 /// If the loop has floating induction variable then insert corresponding 239 /// integer induction variable if possible. 240 /// For example, 241 /// for(double i = 0; i < 10000; ++i) 242 /// bar(i) 243 /// is converted into 244 /// for(int i = 0; i < 10000; ++i) 245 /// bar((double)i); 246 /// 247 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 248 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 249 unsigned BackEdge = IncomingEdge^1; 250 251 // Check incoming value. 252 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 253 254 int64_t InitValue; 255 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 256 return; 257 258 // Check IV increment. Reject this PN if increment operation is not 259 // an add or increment value can not be represented by an integer. 260 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 261 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 262 263 // If this is not an add of the PHI with a constantfp, or if the constant fp 264 // is not an integer, bail out. 265 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 266 int64_t IncValue; 267 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 268 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 269 return; 270 271 // Check Incr uses. One user is PN and the other user is an exit condition 272 // used by the conditional terminator. 273 Value::user_iterator IncrUse = Incr->user_begin(); 274 Instruction *U1 = cast<Instruction>(*IncrUse++); 275 if (IncrUse == Incr->user_end()) return; 276 Instruction *U2 = cast<Instruction>(*IncrUse++); 277 if (IncrUse != Incr->user_end()) return; 278 279 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 280 // only used by a branch, we can't transform it. 281 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 282 if (!Compare) 283 Compare = dyn_cast<FCmpInst>(U2); 284 if (!Compare || !Compare->hasOneUse() || 285 !isa<BranchInst>(Compare->user_back())) 286 return; 287 288 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 289 290 // We need to verify that the branch actually controls the iteration count 291 // of the loop. If not, the new IV can overflow and no one will notice. 292 // The branch block must be in the loop and one of the successors must be out 293 // of the loop. 294 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 295 if (!L->contains(TheBr->getParent()) || 296 (L->contains(TheBr->getSuccessor(0)) && 297 L->contains(TheBr->getSuccessor(1)))) 298 return; 299 300 301 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 302 // transform it. 303 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 304 int64_t ExitValue; 305 if (ExitValueVal == nullptr || 306 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 307 return; 308 309 // Find new predicate for integer comparison. 310 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 311 switch (Compare->getPredicate()) { 312 default: return; // Unknown comparison. 313 case CmpInst::FCMP_OEQ: 314 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 315 case CmpInst::FCMP_ONE: 316 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 317 case CmpInst::FCMP_OGT: 318 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 319 case CmpInst::FCMP_OGE: 320 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 321 case CmpInst::FCMP_OLT: 322 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 323 case CmpInst::FCMP_OLE: 324 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 325 } 326 327 // We convert the floating point induction variable to a signed i32 value if 328 // we can. This is only safe if the comparison will not overflow in a way 329 // that won't be trapped by the integer equivalent operations. Check for this 330 // now. 331 // TODO: We could use i64 if it is native and the range requires it. 332 333 // The start/stride/exit values must all fit in signed i32. 334 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 335 return; 336 337 // If not actually striding (add x, 0.0), avoid touching the code. 338 if (IncValue == 0) 339 return; 340 341 // Positive and negative strides have different safety conditions. 342 if (IncValue > 0) { 343 // If we have a positive stride, we require the init to be less than the 344 // exit value. 345 if (InitValue >= ExitValue) 346 return; 347 348 uint32_t Range = uint32_t(ExitValue-InitValue); 349 // Check for infinite loop, either: 350 // while (i <= Exit) or until (i > Exit) 351 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 352 if (++Range == 0) return; // Range overflows. 353 } 354 355 unsigned Leftover = Range % uint32_t(IncValue); 356 357 // If this is an equality comparison, we require that the strided value 358 // exactly land on the exit value, otherwise the IV condition will wrap 359 // around and do things the fp IV wouldn't. 360 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 361 Leftover != 0) 362 return; 363 364 // If the stride would wrap around the i32 before exiting, we can't 365 // transform the IV. 366 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 367 return; 368 369 } else { 370 // If we have a negative stride, we require the init to be greater than the 371 // exit value. 372 if (InitValue <= ExitValue) 373 return; 374 375 uint32_t Range = uint32_t(InitValue-ExitValue); 376 // Check for infinite loop, either: 377 // while (i >= Exit) or until (i < Exit) 378 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 379 if (++Range == 0) return; // Range overflows. 380 } 381 382 unsigned Leftover = Range % uint32_t(-IncValue); 383 384 // If this is an equality comparison, we require that the strided value 385 // exactly land on the exit value, otherwise the IV condition will wrap 386 // around and do things the fp IV wouldn't. 387 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 388 Leftover != 0) 389 return; 390 391 // If the stride would wrap around the i32 before exiting, we can't 392 // transform the IV. 393 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 394 return; 395 } 396 397 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 398 399 // Insert new integer induction variable. 400 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 401 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 402 PN->getIncomingBlock(IncomingEdge)); 403 404 Value *NewAdd = 405 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 406 Incr->getName()+".int", Incr); 407 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 408 409 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 410 ConstantInt::get(Int32Ty, ExitValue), 411 Compare->getName()); 412 413 // In the following deletions, PN may become dead and may be deleted. 414 // Use a WeakVH to observe whether this happens. 415 WeakVH WeakPH = PN; 416 417 // Delete the old floating point exit comparison. The branch starts using the 418 // new comparison. 419 NewCompare->takeName(Compare); 420 Compare->replaceAllUsesWith(NewCompare); 421 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 422 423 // Delete the old floating point increment. 424 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 425 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 426 427 // If the FP induction variable still has uses, this is because something else 428 // in the loop uses its value. In order to canonicalize the induction 429 // variable, we chose to eliminate the IV and rewrite it in terms of an 430 // int->fp cast. 431 // 432 // We give preference to sitofp over uitofp because it is faster on most 433 // platforms. 434 if (WeakPH) { 435 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 436 &*PN->getParent()->getFirstInsertionPt()); 437 PN->replaceAllUsesWith(Conv); 438 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 439 } 440 Changed = true; 441 } 442 443 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 444 // First step. Check to see if there are any floating-point recurrences. 445 // If there are, change them into integer recurrences, permitting analysis by 446 // the SCEV routines. 447 // 448 BasicBlock *Header = L->getHeader(); 449 450 SmallVector<WeakVH, 8> PHIs; 451 for (BasicBlock::iterator I = Header->begin(); 452 PHINode *PN = dyn_cast<PHINode>(I); ++I) 453 PHIs.push_back(PN); 454 455 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 456 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 457 handleFloatingPointIV(L, PN); 458 459 // If the loop previously had floating-point IV, ScalarEvolution 460 // may not have been able to compute a trip count. Now that we've done some 461 // re-writing, the trip count may be computable. 462 if (Changed) 463 SE->forgetLoop(L); 464 } 465 466 namespace { 467 // Collect information about PHI nodes which can be transformed in 468 // rewriteLoopExitValues. 469 struct RewritePhi { 470 PHINode *PN; 471 unsigned Ith; // Ith incoming value. 472 Value *Val; // Exit value after expansion. 473 bool HighCost; // High Cost when expansion. 474 475 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 476 : PN(P), Ith(I), Val(V), HighCost(H) {} 477 }; 478 } 479 480 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 481 Loop *L, Instruction *InsertPt, 482 Type *ResultTy) { 483 // Before expanding S into an expensive LLVM expression, see if we can use an 484 // already existing value as the expansion for S. 485 if (Value *ExistingValue = Rewriter.getExactExistingExpansion(S, InsertPt, L)) 486 if (ExistingValue->getType() == ResultTy) 487 return ExistingValue; 488 489 // We didn't find anything, fall back to using SCEVExpander. 490 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 491 } 492 493 //===----------------------------------------------------------------------===// 494 // rewriteLoopExitValues - Optimize IV users outside the loop. 495 // As a side effect, reduces the amount of IV processing within the loop. 496 //===----------------------------------------------------------------------===// 497 498 /// Check to see if this loop has a computable loop-invariant execution count. 499 /// If so, this means that we can compute the final value of any expressions 500 /// that are recurrent in the loop, and substitute the exit values from the loop 501 /// into any instructions outside of the loop that use the final values of the 502 /// current expressions. 503 /// 504 /// This is mostly redundant with the regular IndVarSimplify activities that 505 /// happen later, except that it's more powerful in some cases, because it's 506 /// able to brute-force evaluate arbitrary instructions as long as they have 507 /// constant operands at the beginning of the loop. 508 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 509 // Check a pre-condition. 510 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 511 512 SmallVector<BasicBlock*, 8> ExitBlocks; 513 L->getUniqueExitBlocks(ExitBlocks); 514 515 SmallVector<RewritePhi, 8> RewritePhiSet; 516 // Find all values that are computed inside the loop, but used outside of it. 517 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 518 // the exit blocks of the loop to find them. 519 for (BasicBlock *ExitBB : ExitBlocks) { 520 // If there are no PHI nodes in this exit block, then no values defined 521 // inside the loop are used on this path, skip it. 522 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 523 if (!PN) continue; 524 525 unsigned NumPreds = PN->getNumIncomingValues(); 526 527 // Iterate over all of the PHI nodes. 528 BasicBlock::iterator BBI = ExitBB->begin(); 529 while ((PN = dyn_cast<PHINode>(BBI++))) { 530 if (PN->use_empty()) 531 continue; // dead use, don't replace it 532 533 if (!SE->isSCEVable(PN->getType())) 534 continue; 535 536 // It's necessary to tell ScalarEvolution about this explicitly so that 537 // it can walk the def-use list and forget all SCEVs, as it may not be 538 // watching the PHI itself. Once the new exit value is in place, there 539 // may not be a def-use connection between the loop and every instruction 540 // which got a SCEVAddRecExpr for that loop. 541 SE->forgetValue(PN); 542 543 // Iterate over all of the values in all the PHI nodes. 544 for (unsigned i = 0; i != NumPreds; ++i) { 545 // If the value being merged in is not integer or is not defined 546 // in the loop, skip it. 547 Value *InVal = PN->getIncomingValue(i); 548 if (!isa<Instruction>(InVal)) 549 continue; 550 551 // If this pred is for a subloop, not L itself, skip it. 552 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 553 continue; // The Block is in a subloop, skip it. 554 555 // Check that InVal is defined in the loop. 556 Instruction *Inst = cast<Instruction>(InVal); 557 if (!L->contains(Inst)) 558 continue; 559 560 // Okay, this instruction has a user outside of the current loop 561 // and varies predictably *inside* the loop. Evaluate the value it 562 // contains when the loop exits, if possible. 563 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 564 if (!SE->isLoopInvariant(ExitValue, L) || 565 !isSafeToExpand(ExitValue, *SE)) 566 continue; 567 568 // Computing the value outside of the loop brings no benefit if : 569 // - it is definitely used inside the loop in a way which can not be 570 // optimized away. 571 // - no use outside of the loop can take advantage of hoisting the 572 // computation out of the loop 573 if (ExitValue->getSCEVType()>=scMulExpr) { 574 unsigned NumHardInternalUses = 0; 575 unsigned NumSoftExternalUses = 0; 576 unsigned NumUses = 0; 577 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 578 IB != IE && NumUses <= 6; ++IB) { 579 Instruction *UseInstr = cast<Instruction>(*IB); 580 unsigned Opc = UseInstr->getOpcode(); 581 NumUses++; 582 if (L->contains(UseInstr)) { 583 if (Opc == Instruction::Call || Opc == Instruction::Ret) 584 NumHardInternalUses++; 585 } else { 586 if (Opc == Instruction::PHI) { 587 // Do not count the Phi as a use. LCSSA may have inserted 588 // plenty of trivial ones. 589 NumUses--; 590 for (auto PB = UseInstr->user_begin(), 591 PE = UseInstr->user_end(); 592 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 593 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 594 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 595 NumSoftExternalUses++; 596 } 597 continue; 598 } 599 if (Opc != Instruction::Call && Opc != Instruction::Ret) 600 NumSoftExternalUses++; 601 } 602 } 603 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 604 continue; 605 } 606 607 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 608 Value *ExitVal = 609 expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 610 611 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 612 << " LoopVal = " << *Inst << "\n"); 613 614 if (!isValidRewrite(Inst, ExitVal)) { 615 DeadInsts.push_back(ExitVal); 616 continue; 617 } 618 619 // Collect all the candidate PHINodes to be rewritten. 620 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 621 } 622 } 623 } 624 625 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 626 627 // Transformation. 628 for (const RewritePhi &Phi : RewritePhiSet) { 629 PHINode *PN = Phi.PN; 630 Value *ExitVal = Phi.Val; 631 632 // Only do the rewrite when the ExitValue can be expanded cheaply. 633 // If LoopCanBeDel is true, rewrite exit value aggressively. 634 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 635 DeadInsts.push_back(ExitVal); 636 continue; 637 } 638 639 Changed = true; 640 ++NumReplaced; 641 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 642 PN->setIncomingValue(Phi.Ith, ExitVal); 643 644 // If this instruction is dead now, delete it. Don't do it now to avoid 645 // invalidating iterators. 646 if (isInstructionTriviallyDead(Inst, TLI)) 647 DeadInsts.push_back(Inst); 648 649 // Replace PN with ExitVal if that is legal and does not break LCSSA. 650 if (PN->getNumIncomingValues() == 1 && 651 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 652 PN->replaceAllUsesWith(ExitVal); 653 PN->eraseFromParent(); 654 } 655 } 656 657 // The insertion point instruction may have been deleted; clear it out 658 // so that the rewriter doesn't trip over it later. 659 Rewriter.clearInsertPoint(); 660 } 661 662 //===---------------------------------------------------------------------===// 663 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 664 // they will exit at the first iteration. 665 //===---------------------------------------------------------------------===// 666 667 /// Check to see if this loop has loop invariant conditions which lead to loop 668 /// exits. If so, we know that if the exit path is taken, it is at the first 669 /// loop iteration. This lets us predict exit values of PHI nodes that live in 670 /// loop header. 671 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 672 // Verify the input to the pass is already in LCSSA form. 673 assert(L->isLCSSAForm(*DT)); 674 675 SmallVector<BasicBlock *, 8> ExitBlocks; 676 L->getUniqueExitBlocks(ExitBlocks); 677 auto *LoopHeader = L->getHeader(); 678 assert(LoopHeader && "Invalid loop"); 679 680 for (auto *ExitBB : ExitBlocks) { 681 BasicBlock::iterator BBI = ExitBB->begin(); 682 // If there are no more PHI nodes in this exit block, then no more 683 // values defined inside the loop are used on this path. 684 while (auto *PN = dyn_cast<PHINode>(BBI++)) { 685 for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues(); 686 IncomingValIdx != E; ++IncomingValIdx) { 687 auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx); 688 689 // We currently only support loop exits from loop header. If the 690 // incoming block is not loop header, we need to recursively check 691 // all conditions starting from loop header are loop invariants. 692 // Additional support might be added in the future. 693 if (IncomingBB != LoopHeader) 694 continue; 695 696 // Get condition that leads to the exit path. 697 auto *TermInst = IncomingBB->getTerminator(); 698 699 Value *Cond = nullptr; 700 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 701 // Must be a conditional branch, otherwise the block 702 // should not be in the loop. 703 Cond = BI->getCondition(); 704 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 705 Cond = SI->getCondition(); 706 else 707 continue; 708 709 if (!L->isLoopInvariant(Cond)) 710 continue; 711 712 auto *ExitVal = 713 dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx)); 714 715 // Only deal with PHIs. 716 if (!ExitVal) 717 continue; 718 719 // If ExitVal is a PHI on the loop header, then we know its 720 // value along this exit because the exit can only be taken 721 // on the first iteration. 722 auto *LoopPreheader = L->getLoopPreheader(); 723 assert(LoopPreheader && "Invalid loop"); 724 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 725 if (PreheaderIdx != -1) { 726 assert(ExitVal->getParent() == LoopHeader && 727 "ExitVal must be in loop header"); 728 PN->setIncomingValue(IncomingValIdx, 729 ExitVal->getIncomingValue(PreheaderIdx)); 730 } 731 } 732 } 733 } 734 } 735 736 /// Check whether it is possible to delete the loop after rewriting exit 737 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 738 /// aggressively. 739 bool IndVarSimplify::canLoopBeDeleted( 740 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 741 742 BasicBlock *Preheader = L->getLoopPreheader(); 743 // If there is no preheader, the loop will not be deleted. 744 if (!Preheader) 745 return false; 746 747 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 748 // We obviate multiple ExitingBlocks case for simplicity. 749 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 750 // after exit value rewriting, we can enhance the logic here. 751 SmallVector<BasicBlock *, 4> ExitingBlocks; 752 L->getExitingBlocks(ExitingBlocks); 753 SmallVector<BasicBlock *, 8> ExitBlocks; 754 L->getUniqueExitBlocks(ExitBlocks); 755 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 756 return false; 757 758 BasicBlock *ExitBlock = ExitBlocks[0]; 759 BasicBlock::iterator BI = ExitBlock->begin(); 760 while (PHINode *P = dyn_cast<PHINode>(BI)) { 761 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 762 763 // If the Incoming value of P is found in RewritePhiSet, we know it 764 // could be rewritten to use a loop invariant value in transformation 765 // phase later. Skip it in the loop invariant check below. 766 bool found = false; 767 for (const RewritePhi &Phi : RewritePhiSet) { 768 unsigned i = Phi.Ith; 769 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 770 found = true; 771 break; 772 } 773 } 774 775 Instruction *I; 776 if (!found && (I = dyn_cast<Instruction>(Incoming))) 777 if (!L->hasLoopInvariantOperands(I)) 778 return false; 779 780 ++BI; 781 } 782 783 for (auto *BB : L->blocks()) 784 if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); })) 785 return false; 786 787 return true; 788 } 789 790 //===----------------------------------------------------------------------===// 791 // IV Widening - Extend the width of an IV to cover its widest uses. 792 //===----------------------------------------------------------------------===// 793 794 namespace { 795 // Collect information about induction variables that are used by sign/zero 796 // extend operations. This information is recorded by CollectExtend and provides 797 // the input to WidenIV. 798 struct WideIVInfo { 799 PHINode *NarrowIV = nullptr; 800 Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext 801 bool IsSigned = false; // Was a sext user seen before a zext? 802 }; 803 } 804 805 /// Update information about the induction variable that is extended by this 806 /// sign or zero extend operation. This is used to determine the final width of 807 /// the IV before actually widening it. 808 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 809 const TargetTransformInfo *TTI) { 810 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 811 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 812 return; 813 814 Type *Ty = Cast->getType(); 815 uint64_t Width = SE->getTypeSizeInBits(Ty); 816 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 817 return; 818 819 // Check that `Cast` actually extends the induction variable (we rely on this 820 // later). This takes care of cases where `Cast` is extending a truncation of 821 // the narrow induction variable, and thus can end up being narrower than the 822 // "narrow" induction variable. 823 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 824 if (NarrowIVWidth >= Width) 825 return; 826 827 // Cast is either an sext or zext up to this point. 828 // We should not widen an indvar if arithmetics on the wider indvar are more 829 // expensive than those on the narrower indvar. We check only the cost of ADD 830 // because at least an ADD is required to increment the induction variable. We 831 // could compute more comprehensively the cost of all instructions on the 832 // induction variable when necessary. 833 if (TTI && 834 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 835 TTI->getArithmeticInstrCost(Instruction::Add, 836 Cast->getOperand(0)->getType())) { 837 return; 838 } 839 840 if (!WI.WidestNativeType) { 841 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 842 WI.IsSigned = IsSigned; 843 return; 844 } 845 846 // We extend the IV to satisfy the sign of its first user, arbitrarily. 847 if (WI.IsSigned != IsSigned) 848 return; 849 850 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 851 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 852 } 853 854 namespace { 855 856 /// Record a link in the Narrow IV def-use chain along with the WideIV that 857 /// computes the same value as the Narrow IV def. This avoids caching Use* 858 /// pointers. 859 struct NarrowIVDefUse { 860 Instruction *NarrowDef = nullptr; 861 Instruction *NarrowUse = nullptr; 862 Instruction *WideDef = nullptr; 863 864 // True if the narrow def is never negative. Tracking this information lets 865 // us use a sign extension instead of a zero extension or vice versa, when 866 // profitable and legal. 867 bool NeverNegative = false; 868 869 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 870 bool NeverNegative) 871 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 872 NeverNegative(NeverNegative) {} 873 }; 874 875 /// The goal of this transform is to remove sign and zero extends without 876 /// creating any new induction variables. To do this, it creates a new phi of 877 /// the wider type and redirects all users, either removing extends or inserting 878 /// truncs whenever we stop propagating the type. 879 /// 880 class WidenIV { 881 // Parameters 882 PHINode *OrigPhi; 883 Type *WideType; 884 bool IsSigned; 885 886 // Context 887 LoopInfo *LI; 888 Loop *L; 889 ScalarEvolution *SE; 890 DominatorTree *DT; 891 892 // Result 893 PHINode *WidePhi; 894 Instruction *WideInc; 895 const SCEV *WideIncExpr; 896 SmallVectorImpl<WeakVH> &DeadInsts; 897 898 SmallPtrSet<Instruction*,16> Widened; 899 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 900 901 public: 902 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 903 ScalarEvolution *SEv, DominatorTree *DTree, 904 SmallVectorImpl<WeakVH> &DI) : 905 OrigPhi(WI.NarrowIV), 906 WideType(WI.WidestNativeType), 907 IsSigned(WI.IsSigned), 908 LI(LInfo), 909 L(LI->getLoopFor(OrigPhi->getParent())), 910 SE(SEv), 911 DT(DTree), 912 WidePhi(nullptr), 913 WideInc(nullptr), 914 WideIncExpr(nullptr), 915 DeadInsts(DI) { 916 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 917 } 918 919 PHINode *createWideIV(SCEVExpander &Rewriter); 920 921 protected: 922 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 923 Instruction *Use); 924 925 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 926 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 927 const SCEVAddRecExpr *WideAR); 928 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 929 930 const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse); 931 932 const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU); 933 934 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 935 unsigned OpCode) const; 936 937 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 938 939 bool widenLoopCompare(NarrowIVDefUse DU); 940 941 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 942 }; 943 } // anonymous namespace 944 945 /// Perform a quick domtree based check for loop invariance assuming that V is 946 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 947 /// purpose. 948 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 949 Instruction *Inst = dyn_cast<Instruction>(V); 950 if (!Inst) 951 return true; 952 953 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 954 } 955 956 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 957 bool IsSigned, Instruction *Use) { 958 // Set the debug location and conservative insertion point. 959 IRBuilder<> Builder(Use); 960 // Hoist the insertion point into loop preheaders as far as possible. 961 for (const Loop *L = LI->getLoopFor(Use->getParent()); 962 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 963 L = L->getParentLoop()) 964 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 965 966 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 967 Builder.CreateZExt(NarrowOper, WideType); 968 } 969 970 /// Instantiate a wide operation to replace a narrow operation. This only needs 971 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 972 /// 0 for any operation we decide not to clone. 973 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 974 const SCEVAddRecExpr *WideAR) { 975 unsigned Opcode = DU.NarrowUse->getOpcode(); 976 switch (Opcode) { 977 default: 978 return nullptr; 979 case Instruction::Add: 980 case Instruction::Mul: 981 case Instruction::UDiv: 982 case Instruction::Sub: 983 return cloneArithmeticIVUser(DU, WideAR); 984 985 case Instruction::And: 986 case Instruction::Or: 987 case Instruction::Xor: 988 case Instruction::Shl: 989 case Instruction::LShr: 990 case Instruction::AShr: 991 return cloneBitwiseIVUser(DU); 992 } 993 } 994 995 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 996 Instruction *NarrowUse = DU.NarrowUse; 997 Instruction *NarrowDef = DU.NarrowDef; 998 Instruction *WideDef = DU.WideDef; 999 1000 DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1001 1002 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1003 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1004 // invariant and will be folded or hoisted. If it actually comes from a 1005 // widened IV, it should be removed during a future call to widenIVUse. 1006 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1007 ? WideDef 1008 : createExtendInst(NarrowUse->getOperand(0), WideType, 1009 IsSigned, NarrowUse); 1010 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1011 ? WideDef 1012 : createExtendInst(NarrowUse->getOperand(1), WideType, 1013 IsSigned, NarrowUse); 1014 1015 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1016 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1017 NarrowBO->getName()); 1018 IRBuilder<> Builder(NarrowUse); 1019 Builder.Insert(WideBO); 1020 WideBO->copyIRFlags(NarrowBO); 1021 return WideBO; 1022 } 1023 1024 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1025 const SCEVAddRecExpr *WideAR) { 1026 Instruction *NarrowUse = DU.NarrowUse; 1027 Instruction *NarrowDef = DU.NarrowDef; 1028 Instruction *WideDef = DU.WideDef; 1029 1030 DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1031 1032 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1033 1034 // We're trying to find X such that 1035 // 1036 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1037 // 1038 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1039 // and check using SCEV if any of them are correct. 1040 1041 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1042 // correct solution to X. 1043 auto GuessNonIVOperand = [&](bool SignExt) { 1044 const SCEV *WideLHS; 1045 const SCEV *WideRHS; 1046 1047 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1048 if (SignExt) 1049 return SE->getSignExtendExpr(S, Ty); 1050 return SE->getZeroExtendExpr(S, Ty); 1051 }; 1052 1053 if (IVOpIdx == 0) { 1054 WideLHS = SE->getSCEV(WideDef); 1055 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1056 WideRHS = GetExtend(NarrowRHS, WideType); 1057 } else { 1058 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1059 WideLHS = GetExtend(NarrowLHS, WideType); 1060 WideRHS = SE->getSCEV(WideDef); 1061 } 1062 1063 // WideUse is "WideDef `op.wide` X" as described in the comment. 1064 const SCEV *WideUse = nullptr; 1065 1066 switch (NarrowUse->getOpcode()) { 1067 default: 1068 llvm_unreachable("No other possibility!"); 1069 1070 case Instruction::Add: 1071 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1072 break; 1073 1074 case Instruction::Mul: 1075 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1076 break; 1077 1078 case Instruction::UDiv: 1079 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1080 break; 1081 1082 case Instruction::Sub: 1083 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1084 break; 1085 } 1086 1087 return WideUse == WideAR; 1088 }; 1089 1090 bool SignExtend = IsSigned; 1091 if (!GuessNonIVOperand(SignExtend)) { 1092 SignExtend = !SignExtend; 1093 if (!GuessNonIVOperand(SignExtend)) 1094 return nullptr; 1095 } 1096 1097 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1098 ? WideDef 1099 : createExtendInst(NarrowUse->getOperand(0), WideType, 1100 SignExtend, NarrowUse); 1101 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1102 ? WideDef 1103 : createExtendInst(NarrowUse->getOperand(1), WideType, 1104 SignExtend, NarrowUse); 1105 1106 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1107 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1108 NarrowBO->getName()); 1109 1110 IRBuilder<> Builder(NarrowUse); 1111 Builder.Insert(WideBO); 1112 WideBO->copyIRFlags(NarrowBO); 1113 return WideBO; 1114 } 1115 1116 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1117 unsigned OpCode) const { 1118 if (OpCode == Instruction::Add) 1119 return SE->getAddExpr(LHS, RHS); 1120 if (OpCode == Instruction::Sub) 1121 return SE->getMinusSCEV(LHS, RHS); 1122 if (OpCode == Instruction::Mul) 1123 return SE->getMulExpr(LHS, RHS); 1124 1125 llvm_unreachable("Unsupported opcode."); 1126 } 1127 1128 /// No-wrap operations can transfer sign extension of their result to their 1129 /// operands. Generate the SCEV value for the widened operation without 1130 /// actually modifying the IR yet. If the expression after extending the 1131 /// operands is an AddRec for this loop, return it. 1132 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1133 1134 // Handle the common case of add<nsw/nuw> 1135 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1136 // Only Add/Sub/Mul instructions supported yet. 1137 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1138 OpCode != Instruction::Mul) 1139 return nullptr; 1140 1141 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1142 // if extending the other will lead to a recurrence. 1143 const unsigned ExtendOperIdx = 1144 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1145 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1146 1147 const SCEV *ExtendOperExpr = nullptr; 1148 const OverflowingBinaryOperator *OBO = 1149 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1150 if (IsSigned && OBO->hasNoSignedWrap()) 1151 ExtendOperExpr = SE->getSignExtendExpr( 1152 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1153 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1154 ExtendOperExpr = SE->getZeroExtendExpr( 1155 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1156 else 1157 return nullptr; 1158 1159 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1160 // flags. This instruction may be guarded by control flow that the no-wrap 1161 // behavior depends on. Non-control-equivalent instructions can be mapped to 1162 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1163 // semantics to those operations. 1164 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1165 const SCEV *rhs = ExtendOperExpr; 1166 1167 // Let's swap operands to the initial order for the case of non-commutative 1168 // operations, like SUB. See PR21014. 1169 if (ExtendOperIdx == 0) 1170 std::swap(lhs, rhs); 1171 const SCEVAddRecExpr *AddRec = 1172 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1173 1174 if (!AddRec || AddRec->getLoop() != L) 1175 return nullptr; 1176 return AddRec; 1177 } 1178 1179 /// Is this instruction potentially interesting for further simplification after 1180 /// widening it's type? In other words, can the extend be safely hoisted out of 1181 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1182 /// so, return the sign or zero extended recurrence. Otherwise return NULL. 1183 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) { 1184 if (!SE->isSCEVable(NarrowUse->getType())) 1185 return nullptr; 1186 1187 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1188 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1189 SE->getTypeSizeInBits(WideType)) { 1190 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1191 // index. So don't follow this use. 1192 return nullptr; 1193 } 1194 1195 const SCEV *WideExpr = IsSigned ? 1196 SE->getSignExtendExpr(NarrowExpr, WideType) : 1197 SE->getZeroExtendExpr(NarrowExpr, WideType); 1198 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1199 if (!AddRec || AddRec->getLoop() != L) 1200 return nullptr; 1201 return AddRec; 1202 } 1203 1204 /// This IV user cannot be widen. Replace this use of the original narrow IV 1205 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1206 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1207 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1208 << " for user " << *DU.NarrowUse << "\n"); 1209 IRBuilder<> Builder( 1210 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1211 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1212 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1213 } 1214 1215 /// If the narrow use is a compare instruction, then widen the compare 1216 // (and possibly the other operand). The extend operation is hoisted into the 1217 // loop preheader as far as possible. 1218 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1219 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1220 if (!Cmp) 1221 return false; 1222 1223 // We can legally widen the comparison in the following two cases: 1224 // 1225 // - The signedness of the IV extension and comparison match 1226 // 1227 // - The narrow IV is always positive (and thus its sign extension is equal 1228 // to its zero extension). For instance, let's say we're zero extending 1229 // %narrow for the following use 1230 // 1231 // icmp slt i32 %narrow, %val ... (A) 1232 // 1233 // and %narrow is always positive. Then 1234 // 1235 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1236 // == icmp slt i32 zext(%narrow), sext(%val) 1237 1238 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1239 return false; 1240 1241 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1242 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1243 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1244 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1245 1246 // Widen the compare instruction. 1247 IRBuilder<> Builder( 1248 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1249 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1250 1251 // Widen the other operand of the compare, if necessary. 1252 if (CastWidth < IVWidth) { 1253 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1254 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1255 } 1256 return true; 1257 } 1258 1259 /// Determine whether an individual user of the narrow IV can be widened. If so, 1260 /// return the wide clone of the user. 1261 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1262 1263 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1264 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1265 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1266 // For LCSSA phis, sink the truncate outside the loop. 1267 // After SimplifyCFG most loop exit targets have a single predecessor. 1268 // Otherwise fall back to a truncate within the loop. 1269 if (UsePhi->getNumOperands() != 1) 1270 truncateIVUse(DU, DT, LI); 1271 else { 1272 // Widening the PHI requires us to insert a trunc. The logical place 1273 // for this trunc is in the same BB as the PHI. This is not possible if 1274 // the BB is terminated by a catchswitch. 1275 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1276 return nullptr; 1277 1278 PHINode *WidePhi = 1279 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1280 UsePhi); 1281 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1282 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1283 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1284 UsePhi->replaceAllUsesWith(Trunc); 1285 DeadInsts.emplace_back(UsePhi); 1286 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1287 << " to " << *WidePhi << "\n"); 1288 } 1289 return nullptr; 1290 } 1291 } 1292 // Our raison d'etre! Eliminate sign and zero extension. 1293 if ((isa<SExtInst>(DU.NarrowUse) && (IsSigned || DU.NeverNegative)) || 1294 (isa<ZExtInst>(DU.NarrowUse) && (!IsSigned || DU.NeverNegative))) { 1295 Value *NewDef = DU.WideDef; 1296 if (DU.NarrowUse->getType() != WideType) { 1297 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1298 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1299 if (CastWidth < IVWidth) { 1300 // The cast isn't as wide as the IV, so insert a Trunc. 1301 IRBuilder<> Builder(DU.NarrowUse); 1302 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1303 } 1304 else { 1305 // A wider extend was hidden behind a narrower one. This may induce 1306 // another round of IV widening in which the intermediate IV becomes 1307 // dead. It should be very rare. 1308 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1309 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1310 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1311 NewDef = DU.NarrowUse; 1312 } 1313 } 1314 if (NewDef != DU.NarrowUse) { 1315 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1316 << " replaced by " << *DU.WideDef << "\n"); 1317 ++NumElimExt; 1318 DU.NarrowUse->replaceAllUsesWith(NewDef); 1319 DeadInsts.emplace_back(DU.NarrowUse); 1320 } 1321 // Now that the extend is gone, we want to expose it's uses for potential 1322 // further simplification. We don't need to directly inform SimplifyIVUsers 1323 // of the new users, because their parent IV will be processed later as a 1324 // new loop phi. If we preserved IVUsers analysis, we would also want to 1325 // push the uses of WideDef here. 1326 1327 // No further widening is needed. The deceased [sz]ext had done it for us. 1328 return nullptr; 1329 } 1330 1331 // Does this user itself evaluate to a recurrence after widening? 1332 const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse); 1333 if (!WideAddRec) 1334 WideAddRec = getExtendedOperandRecurrence(DU); 1335 1336 if (!WideAddRec) { 1337 // If use is a loop condition, try to promote the condition instead of 1338 // truncating the IV first. 1339 if (widenLoopCompare(DU)) 1340 return nullptr; 1341 1342 // This user does not evaluate to a recurence after widening, so don't 1343 // follow it. Instead insert a Trunc to kill off the original use, 1344 // eventually isolating the original narrow IV so it can be removed. 1345 truncateIVUse(DU, DT, LI); 1346 return nullptr; 1347 } 1348 // Assume block terminators cannot evaluate to a recurrence. We can't to 1349 // insert a Trunc after a terminator if there happens to be a critical edge. 1350 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1351 "SCEV is not expected to evaluate a block terminator"); 1352 1353 // Reuse the IV increment that SCEVExpander created as long as it dominates 1354 // NarrowUse. 1355 Instruction *WideUse = nullptr; 1356 if (WideAddRec == WideIncExpr && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1357 WideUse = WideInc; 1358 else { 1359 WideUse = cloneIVUser(DU, WideAddRec); 1360 if (!WideUse) 1361 return nullptr; 1362 } 1363 // Evaluation of WideAddRec ensured that the narrow expression could be 1364 // extended outside the loop without overflow. This suggests that the wide use 1365 // evaluates to the same expression as the extended narrow use, but doesn't 1366 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1367 // where it fails, we simply throw away the newly created wide use. 1368 if (WideAddRec != SE->getSCEV(WideUse)) { 1369 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1370 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1371 DeadInsts.emplace_back(WideUse); 1372 return nullptr; 1373 } 1374 1375 // Returning WideUse pushes it on the worklist. 1376 return WideUse; 1377 } 1378 1379 /// Add eligible users of NarrowDef to NarrowIVUsers. 1380 /// 1381 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1382 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1383 // isKnownPredicate is enough for most cases but still need isKnownNonNegative 1384 // here to work around conservatism in ScalarEvolution about no-wrap flags. 1385 bool NeverNegative = 1386 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1387 SE->getConstant(NarrowSCEV->getType(), 0)) || 1388 isKnownNonNegative(NarrowDef, NarrowDef->getModule()->getDataLayout()); 1389 for (User *U : NarrowDef->users()) { 1390 Instruction *NarrowUser = cast<Instruction>(U); 1391 1392 // Handle data flow merges and bizarre phi cycles. 1393 if (!Widened.insert(NarrowUser).second) 1394 continue; 1395 1396 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative); 1397 } 1398 } 1399 1400 /// Process a single induction variable. First use the SCEVExpander to create a 1401 /// wide induction variable that evaluates to the same recurrence as the 1402 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1403 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1404 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1405 /// 1406 /// It would be simpler to delete uses as they are processed, but we must avoid 1407 /// invalidating SCEV expressions. 1408 /// 1409 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1410 // Is this phi an induction variable? 1411 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1412 if (!AddRec) 1413 return nullptr; 1414 1415 // Widen the induction variable expression. 1416 const SCEV *WideIVExpr = IsSigned ? 1417 SE->getSignExtendExpr(AddRec, WideType) : 1418 SE->getZeroExtendExpr(AddRec, WideType); 1419 1420 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1421 "Expect the new IV expression to preserve its type"); 1422 1423 // Can the IV be extended outside the loop without overflow? 1424 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1425 if (!AddRec || AddRec->getLoop() != L) 1426 return nullptr; 1427 1428 // An AddRec must have loop-invariant operands. Since this AddRec is 1429 // materialized by a loop header phi, the expression cannot have any post-loop 1430 // operands, so they must dominate the loop header. 1431 assert( 1432 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1433 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1434 "Loop header phi recurrence inputs do not dominate the loop"); 1435 1436 // The rewriter provides a value for the desired IV expression. This may 1437 // either find an existing phi or materialize a new one. Either way, we 1438 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1439 // of the phi-SCC dominates the loop entry. 1440 Instruction *InsertPt = &L->getHeader()->front(); 1441 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1442 1443 // Remembering the WideIV increment generated by SCEVExpander allows 1444 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1445 // employ a general reuse mechanism because the call above is the only call to 1446 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1447 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1448 WideInc = 1449 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1450 WideIncExpr = SE->getSCEV(WideInc); 1451 } 1452 1453 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1454 ++NumWidened; 1455 1456 // Traverse the def-use chain using a worklist starting at the original IV. 1457 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1458 1459 Widened.insert(OrigPhi); 1460 pushNarrowIVUsers(OrigPhi, WidePhi); 1461 1462 while (!NarrowIVUsers.empty()) { 1463 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1464 1465 // Process a def-use edge. This may replace the use, so don't hold a 1466 // use_iterator across it. 1467 Instruction *WideUse = widenIVUse(DU, Rewriter); 1468 1469 // Follow all def-use edges from the previous narrow use. 1470 if (WideUse) 1471 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1472 1473 // widenIVUse may have removed the def-use edge. 1474 if (DU.NarrowDef->use_empty()) 1475 DeadInsts.emplace_back(DU.NarrowDef); 1476 } 1477 return WidePhi; 1478 } 1479 1480 //===----------------------------------------------------------------------===// 1481 // Live IV Reduction - Minimize IVs live across the loop. 1482 //===----------------------------------------------------------------------===// 1483 1484 1485 //===----------------------------------------------------------------------===// 1486 // Simplification of IV users based on SCEV evaluation. 1487 //===----------------------------------------------------------------------===// 1488 1489 namespace { 1490 class IndVarSimplifyVisitor : public IVVisitor { 1491 ScalarEvolution *SE; 1492 const TargetTransformInfo *TTI; 1493 PHINode *IVPhi; 1494 1495 public: 1496 WideIVInfo WI; 1497 1498 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1499 const TargetTransformInfo *TTI, 1500 const DominatorTree *DTree) 1501 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1502 DT = DTree; 1503 WI.NarrowIV = IVPhi; 1504 } 1505 1506 // Implement the interface used by simplifyUsersOfIV. 1507 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1508 }; 1509 } 1510 1511 /// Iteratively perform simplification on a worklist of IV users. Each 1512 /// successive simplification may push more users which may themselves be 1513 /// candidates for simplification. 1514 /// 1515 /// Sign/Zero extend elimination is interleaved with IV simplification. 1516 /// 1517 void IndVarSimplify::simplifyAndExtend(Loop *L, 1518 SCEVExpander &Rewriter, 1519 LoopInfo *LI) { 1520 SmallVector<WideIVInfo, 8> WideIVs; 1521 1522 SmallVector<PHINode*, 8> LoopPhis; 1523 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1524 LoopPhis.push_back(cast<PHINode>(I)); 1525 } 1526 // Each round of simplification iterates through the SimplifyIVUsers worklist 1527 // for all current phis, then determines whether any IVs can be 1528 // widened. Widening adds new phis to LoopPhis, inducing another round of 1529 // simplification on the wide IVs. 1530 while (!LoopPhis.empty()) { 1531 // Evaluate as many IV expressions as possible before widening any IVs. This 1532 // forces SCEV to set no-wrap flags before evaluating sign/zero 1533 // extension. The first time SCEV attempts to normalize sign/zero extension, 1534 // the result becomes final. So for the most predictable results, we delay 1535 // evaluation of sign/zero extend evaluation until needed, and avoid running 1536 // other SCEV based analysis prior to simplifyAndExtend. 1537 do { 1538 PHINode *CurrIV = LoopPhis.pop_back_val(); 1539 1540 // Information about sign/zero extensions of CurrIV. 1541 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1542 1543 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor); 1544 1545 if (Visitor.WI.WidestNativeType) { 1546 WideIVs.push_back(Visitor.WI); 1547 } 1548 } while(!LoopPhis.empty()); 1549 1550 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1551 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1552 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1553 Changed = true; 1554 LoopPhis.push_back(WidePhi); 1555 } 1556 } 1557 } 1558 } 1559 1560 //===----------------------------------------------------------------------===// 1561 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1562 //===----------------------------------------------------------------------===// 1563 1564 /// Return true if this loop's backedge taken count expression can be safely and 1565 /// cheaply expanded into an instruction sequence that can be used by 1566 /// linearFunctionTestReplace. 1567 /// 1568 /// TODO: This fails for pointer-type loop counters with greater than one byte 1569 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1570 /// we could skip this check in the case that the LFTR loop counter (chosen by 1571 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1572 /// the loop test to an inequality test by checking the target data's alignment 1573 /// of element types (given that the initial pointer value originates from or is 1574 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1575 /// However, we don't yet have a strong motivation for converting loop tests 1576 /// into inequality tests. 1577 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1578 SCEVExpander &Rewriter) { 1579 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1580 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1581 BackedgeTakenCount->isZero()) 1582 return false; 1583 1584 if (!L->getExitingBlock()) 1585 return false; 1586 1587 // Can't rewrite non-branch yet. 1588 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1589 return false; 1590 1591 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1592 return false; 1593 1594 return true; 1595 } 1596 1597 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1598 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1599 Instruction *IncI = dyn_cast<Instruction>(IncV); 1600 if (!IncI) 1601 return nullptr; 1602 1603 switch (IncI->getOpcode()) { 1604 case Instruction::Add: 1605 case Instruction::Sub: 1606 break; 1607 case Instruction::GetElementPtr: 1608 // An IV counter must preserve its type. 1609 if (IncI->getNumOperands() == 2) 1610 break; 1611 default: 1612 return nullptr; 1613 } 1614 1615 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1616 if (Phi && Phi->getParent() == L->getHeader()) { 1617 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1618 return Phi; 1619 return nullptr; 1620 } 1621 if (IncI->getOpcode() == Instruction::GetElementPtr) 1622 return nullptr; 1623 1624 // Allow add/sub to be commuted. 1625 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1626 if (Phi && Phi->getParent() == L->getHeader()) { 1627 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1628 return Phi; 1629 } 1630 return nullptr; 1631 } 1632 1633 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1634 static ICmpInst *getLoopTest(Loop *L) { 1635 assert(L->getExitingBlock() && "expected loop exit"); 1636 1637 BasicBlock *LatchBlock = L->getLoopLatch(); 1638 // Don't bother with LFTR if the loop is not properly simplified. 1639 if (!LatchBlock) 1640 return nullptr; 1641 1642 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1643 assert(BI && "expected exit branch"); 1644 1645 return dyn_cast<ICmpInst>(BI->getCondition()); 1646 } 1647 1648 /// linearFunctionTestReplace policy. Return true unless we can show that the 1649 /// current exit test is already sufficiently canonical. 1650 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1651 // Do LFTR to simplify the exit condition to an ICMP. 1652 ICmpInst *Cond = getLoopTest(L); 1653 if (!Cond) 1654 return true; 1655 1656 // Do LFTR to simplify the exit ICMP to EQ/NE 1657 ICmpInst::Predicate Pred = Cond->getPredicate(); 1658 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1659 return true; 1660 1661 // Look for a loop invariant RHS 1662 Value *LHS = Cond->getOperand(0); 1663 Value *RHS = Cond->getOperand(1); 1664 if (!isLoopInvariant(RHS, L, DT)) { 1665 if (!isLoopInvariant(LHS, L, DT)) 1666 return true; 1667 std::swap(LHS, RHS); 1668 } 1669 // Look for a simple IV counter LHS 1670 PHINode *Phi = dyn_cast<PHINode>(LHS); 1671 if (!Phi) 1672 Phi = getLoopPhiForCounter(LHS, L, DT); 1673 1674 if (!Phi) 1675 return true; 1676 1677 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1678 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1679 if (Idx < 0) 1680 return true; 1681 1682 // Do LFTR if the exit condition's IV is *not* a simple counter. 1683 Value *IncV = Phi->getIncomingValue(Idx); 1684 return Phi != getLoopPhiForCounter(IncV, L, DT); 1685 } 1686 1687 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1688 /// down to checking that all operands are constant and listing instructions 1689 /// that may hide undef. 1690 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1691 unsigned Depth) { 1692 if (isa<Constant>(V)) 1693 return !isa<UndefValue>(V); 1694 1695 if (Depth >= 6) 1696 return false; 1697 1698 // Conservatively handle non-constant non-instructions. For example, Arguments 1699 // may be undef. 1700 Instruction *I = dyn_cast<Instruction>(V); 1701 if (!I) 1702 return false; 1703 1704 // Load and return values may be undef. 1705 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1706 return false; 1707 1708 // Optimistically handle other instructions. 1709 for (Value *Op : I->operands()) { 1710 if (!Visited.insert(Op).second) 1711 continue; 1712 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 1713 return false; 1714 } 1715 return true; 1716 } 1717 1718 /// Return true if the given value is concrete. We must prove that undef can 1719 /// never reach it. 1720 /// 1721 /// TODO: If we decide that this is a good approach to checking for undef, we 1722 /// may factor it into a common location. 1723 static bool hasConcreteDef(Value *V) { 1724 SmallPtrSet<Value*, 8> Visited; 1725 Visited.insert(V); 1726 return hasConcreteDefImpl(V, Visited, 0); 1727 } 1728 1729 /// Return true if this IV has any uses other than the (soon to be rewritten) 1730 /// loop exit test. 1731 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1732 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1733 Value *IncV = Phi->getIncomingValue(LatchIdx); 1734 1735 for (User *U : Phi->users()) 1736 if (U != Cond && U != IncV) return false; 1737 1738 for (User *U : IncV->users()) 1739 if (U != Cond && U != Phi) return false; 1740 return true; 1741 } 1742 1743 /// Find an affine IV in canonical form. 1744 /// 1745 /// BECount may be an i8* pointer type. The pointer difference is already 1746 /// valid count without scaling the address stride, so it remains a pointer 1747 /// expression as far as SCEV is concerned. 1748 /// 1749 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1750 /// 1751 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1752 /// 1753 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1754 /// This is difficult in general for SCEV because of potential overflow. But we 1755 /// could at least handle constant BECounts. 1756 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1757 ScalarEvolution *SE, DominatorTree *DT) { 1758 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1759 1760 Value *Cond = 1761 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1762 1763 // Loop over all of the PHI nodes, looking for a simple counter. 1764 PHINode *BestPhi = nullptr; 1765 const SCEV *BestInit = nullptr; 1766 BasicBlock *LatchBlock = L->getLoopLatch(); 1767 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1768 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1769 1770 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1771 PHINode *Phi = cast<PHINode>(I); 1772 if (!SE->isSCEVable(Phi->getType())) 1773 continue; 1774 1775 // Avoid comparing an integer IV against a pointer Limit. 1776 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1777 continue; 1778 1779 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1780 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1781 continue; 1782 1783 // AR may be a pointer type, while BECount is an integer type. 1784 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1785 // AR may not be a narrower type, or we may never exit. 1786 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1787 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 1788 continue; 1789 1790 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1791 if (!Step || !Step->isOne()) 1792 continue; 1793 1794 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1795 Value *IncV = Phi->getIncomingValue(LatchIdx); 1796 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1797 continue; 1798 1799 // Avoid reusing a potentially undef value to compute other values that may 1800 // have originally had a concrete definition. 1801 if (!hasConcreteDef(Phi)) { 1802 // We explicitly allow unknown phis as long as they are already used by 1803 // the loop test. In this case we assume that performing LFTR could not 1804 // increase the number of undef users. 1805 if (ICmpInst *Cond = getLoopTest(L)) { 1806 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 1807 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1808 continue; 1809 } 1810 } 1811 } 1812 const SCEV *Init = AR->getStart(); 1813 1814 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1815 // Don't force a live loop counter if another IV can be used. 1816 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1817 continue; 1818 1819 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1820 // also prefers integer to pointer IVs. 1821 if (BestInit->isZero() != Init->isZero()) { 1822 if (BestInit->isZero()) 1823 continue; 1824 } 1825 // If two IVs both count from zero or both count from nonzero then the 1826 // narrower is likely a dead phi that has been widened. Use the wider phi 1827 // to allow the other to be eliminated. 1828 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1829 continue; 1830 } 1831 BestPhi = Phi; 1832 BestInit = Init; 1833 } 1834 return BestPhi; 1835 } 1836 1837 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 1838 /// the new loop test. 1839 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1840 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1841 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1842 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1843 const SCEV *IVInit = AR->getStart(); 1844 1845 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1846 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1847 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1848 // the existing GEPs whenever possible. 1849 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 1850 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1851 // signed value. IVCount on the other hand represents the loop trip count, 1852 // which is an unsigned value. FindLoopCounter only allows induction 1853 // variables that have a positive unit stride of one. This means we don't 1854 // have to handle the case of negative offsets (yet) and just need to zero 1855 // extend IVCount. 1856 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1857 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1858 1859 // Expand the code for the iteration count. 1860 assert(SE->isLoopInvariant(IVOffset, L) && 1861 "Computed iteration count is not loop invariant!"); 1862 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1863 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1864 1865 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1866 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1867 // We could handle pointer IVs other than i8*, but we need to compensate for 1868 // gep index scaling. See canExpandBackedgeTakenCount comments. 1869 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1870 cast<PointerType>(GEPBase->getType()) 1871 ->getElementType())->isOne() && 1872 "unit stride pointer IV must be i8*"); 1873 1874 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1875 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1876 } else { 1877 // In any other case, convert both IVInit and IVCount to integers before 1878 // comparing. This may result in SCEV expension of pointers, but in practice 1879 // SCEV will fold the pointer arithmetic away as such: 1880 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1881 // 1882 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1883 // for simple memset-style loops. 1884 // 1885 // IVInit integer and IVCount pointer would only occur if a canonical IV 1886 // were generated on top of case #2, which is not expected. 1887 1888 const SCEV *IVLimit = nullptr; 1889 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1890 // For non-zero Start, compute IVCount here. 1891 if (AR->getStart()->isZero()) 1892 IVLimit = IVCount; 1893 else { 1894 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1895 const SCEV *IVInit = AR->getStart(); 1896 1897 // For integer IVs, truncate the IV before computing IVInit + BECount. 1898 if (SE->getTypeSizeInBits(IVInit->getType()) 1899 > SE->getTypeSizeInBits(IVCount->getType())) 1900 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1901 1902 IVLimit = SE->getAddExpr(IVInit, IVCount); 1903 } 1904 // Expand the code for the iteration count. 1905 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1906 IRBuilder<> Builder(BI); 1907 assert(SE->isLoopInvariant(IVLimit, L) && 1908 "Computed iteration count is not loop invariant!"); 1909 // Ensure that we generate the same type as IndVar, or a smaller integer 1910 // type. In the presence of null pointer values, we have an integer type 1911 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1912 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1913 IndVar->getType() : IVCount->getType(); 1914 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1915 } 1916 } 1917 1918 /// This method rewrites the exit condition of the loop to be a canonical != 1919 /// comparison against the incremented loop induction variable. This pass is 1920 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1921 /// determine a loop-invariant trip count of the loop, which is actually a much 1922 /// broader range than just linear tests. 1923 Value *IndVarSimplify:: 1924 linearFunctionTestReplace(Loop *L, 1925 const SCEV *BackedgeTakenCount, 1926 PHINode *IndVar, 1927 SCEVExpander &Rewriter) { 1928 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1929 1930 // Initialize CmpIndVar and IVCount to their preincremented values. 1931 Value *CmpIndVar = IndVar; 1932 const SCEV *IVCount = BackedgeTakenCount; 1933 1934 // If the exiting block is the same as the backedge block, we prefer to 1935 // compare against the post-incremented value, otherwise we must compare 1936 // against the preincremented value. 1937 if (L->getExitingBlock() == L->getLoopLatch()) { 1938 // Add one to the "backedge-taken" count to get the trip count. 1939 // This addition may overflow, which is valid as long as the comparison is 1940 // truncated to BackedgeTakenCount->getType(). 1941 IVCount = SE->getAddExpr(BackedgeTakenCount, 1942 SE->getOne(BackedgeTakenCount->getType())); 1943 // The BackedgeTaken expression contains the number of times that the 1944 // backedge branches to the loop header. This is one less than the 1945 // number of times the loop executes, so use the incremented indvar. 1946 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1947 } 1948 1949 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1950 assert(ExitCnt->getType()->isPointerTy() == 1951 IndVar->getType()->isPointerTy() && 1952 "genLoopLimit missed a cast"); 1953 1954 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1955 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1956 ICmpInst::Predicate P; 1957 if (L->contains(BI->getSuccessor(0))) 1958 P = ICmpInst::ICMP_NE; 1959 else 1960 P = ICmpInst::ICMP_EQ; 1961 1962 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1963 << " LHS:" << *CmpIndVar << '\n' 1964 << " op:\t" 1965 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1966 << " RHS:\t" << *ExitCnt << "\n" 1967 << " IVCount:\t" << *IVCount << "\n"); 1968 1969 IRBuilder<> Builder(BI); 1970 1971 // LFTR can ignore IV overflow and truncate to the width of 1972 // BECount. This avoids materializing the add(zext(add)) expression. 1973 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1974 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1975 if (CmpIndVarSize > ExitCntSize) { 1976 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1977 const SCEV *ARStart = AR->getStart(); 1978 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1979 // For constant IVCount, avoid truncation. 1980 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1981 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 1982 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 1983 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1984 // above such that IVCount is now zero. 1985 if (IVCount != BackedgeTakenCount && Count == 0) { 1986 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1987 ++Count; 1988 } 1989 else 1990 Count = Count.zext(CmpIndVarSize); 1991 APInt NewLimit; 1992 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1993 NewLimit = Start - Count; 1994 else 1995 NewLimit = Start + Count; 1996 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1997 1998 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1999 } else { 2000 // We try to extend trip count first. If that doesn't work we truncate IV. 2001 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2002 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2003 // one of the two holds, extend the trip count, otherwise we truncate IV. 2004 bool Extended = false; 2005 const SCEV *IV = SE->getSCEV(CmpIndVar); 2006 const SCEV *ZExtTrunc = 2007 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2008 ExitCnt->getType()), 2009 CmpIndVar->getType()); 2010 2011 if (ZExtTrunc == IV) { 2012 Extended = true; 2013 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2014 "wide.trip.count"); 2015 } else { 2016 const SCEV *SExtTrunc = 2017 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2018 ExitCnt->getType()), 2019 CmpIndVar->getType()); 2020 if (SExtTrunc == IV) { 2021 Extended = true; 2022 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2023 "wide.trip.count"); 2024 } 2025 } 2026 2027 if (!Extended) 2028 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2029 "lftr.wideiv"); 2030 } 2031 } 2032 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2033 Value *OrigCond = BI->getCondition(); 2034 // It's tempting to use replaceAllUsesWith here to fully replace the old 2035 // comparison, but that's not immediately safe, since users of the old 2036 // comparison may not be dominated by the new comparison. Instead, just 2037 // update the branch to use the new comparison; in the common case this 2038 // will make old comparison dead. 2039 BI->setCondition(Cond); 2040 DeadInsts.push_back(OrigCond); 2041 2042 ++NumLFTR; 2043 Changed = true; 2044 return Cond; 2045 } 2046 2047 //===----------------------------------------------------------------------===// 2048 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2049 //===----------------------------------------------------------------------===// 2050 2051 /// If there's a single exit block, sink any loop-invariant values that 2052 /// were defined in the preheader but not used inside the loop into the 2053 /// exit block to reduce register pressure in the loop. 2054 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2055 BasicBlock *ExitBlock = L->getExitBlock(); 2056 if (!ExitBlock) return; 2057 2058 BasicBlock *Preheader = L->getLoopPreheader(); 2059 if (!Preheader) return; 2060 2061 Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt(); 2062 BasicBlock::iterator I(Preheader->getTerminator()); 2063 while (I != Preheader->begin()) { 2064 --I; 2065 // New instructions were inserted at the end of the preheader. 2066 if (isa<PHINode>(I)) 2067 break; 2068 2069 // Don't move instructions which might have side effects, since the side 2070 // effects need to complete before instructions inside the loop. Also don't 2071 // move instructions which might read memory, since the loop may modify 2072 // memory. Note that it's okay if the instruction might have undefined 2073 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2074 // block. 2075 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2076 continue; 2077 2078 // Skip debug info intrinsics. 2079 if (isa<DbgInfoIntrinsic>(I)) 2080 continue; 2081 2082 // Skip eh pad instructions. 2083 if (I->isEHPad()) 2084 continue; 2085 2086 // Don't sink alloca: we never want to sink static alloca's out of the 2087 // entry block, and correctly sinking dynamic alloca's requires 2088 // checks for stacksave/stackrestore intrinsics. 2089 // FIXME: Refactor this check somehow? 2090 if (isa<AllocaInst>(I)) 2091 continue; 2092 2093 // Determine if there is a use in or before the loop (direct or 2094 // otherwise). 2095 bool UsedInLoop = false; 2096 for (Use &U : I->uses()) { 2097 Instruction *User = cast<Instruction>(U.getUser()); 2098 BasicBlock *UseBB = User->getParent(); 2099 if (PHINode *P = dyn_cast<PHINode>(User)) { 2100 unsigned i = 2101 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2102 UseBB = P->getIncomingBlock(i); 2103 } 2104 if (UseBB == Preheader || L->contains(UseBB)) { 2105 UsedInLoop = true; 2106 break; 2107 } 2108 } 2109 2110 // If there is, the def must remain in the preheader. 2111 if (UsedInLoop) 2112 continue; 2113 2114 // Otherwise, sink it to the exit block. 2115 Instruction *ToMove = &*I; 2116 bool Done = false; 2117 2118 if (I != Preheader->begin()) { 2119 // Skip debug info intrinsics. 2120 do { 2121 --I; 2122 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2123 2124 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2125 Done = true; 2126 } else { 2127 Done = true; 2128 } 2129 2130 ToMove->moveBefore(InsertPt); 2131 if (Done) break; 2132 InsertPt = ToMove; 2133 } 2134 } 2135 2136 //===----------------------------------------------------------------------===// 2137 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2138 //===----------------------------------------------------------------------===// 2139 2140 bool IndVarSimplify::run(Loop *L) { 2141 // We need (and expect!) the incoming loop to be in LCSSA. 2142 assert(L->isRecursivelyLCSSAForm(*DT) && "LCSSA required to run indvars!"); 2143 2144 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2145 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2146 // canonicalization can be a pessimization without LSR to "clean up" 2147 // afterwards. 2148 // - We depend on having a preheader; in particular, 2149 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2150 // and we're in trouble if we can't find the induction variable even when 2151 // we've manually inserted one. 2152 if (!L->isLoopSimplifyForm()) 2153 return false; 2154 2155 // If there are any floating-point recurrences, attempt to 2156 // transform them to use integer recurrences. 2157 rewriteNonIntegerIVs(L); 2158 2159 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2160 2161 // Create a rewriter object which we'll use to transform the code with. 2162 SCEVExpander Rewriter(*SE, DL, "indvars"); 2163 #ifndef NDEBUG 2164 Rewriter.setDebugType(DEBUG_TYPE); 2165 #endif 2166 2167 // Eliminate redundant IV users. 2168 // 2169 // Simplification works best when run before other consumers of SCEV. We 2170 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2171 // other expressions involving loop IVs have been evaluated. This helps SCEV 2172 // set no-wrap flags before normalizing sign/zero extension. 2173 Rewriter.disableCanonicalMode(); 2174 simplifyAndExtend(L, Rewriter, LI); 2175 2176 // Check to see if this loop has a computable loop-invariant execution count. 2177 // If so, this means that we can compute the final value of any expressions 2178 // that are recurrent in the loop, and substitute the exit values from the 2179 // loop into any instructions outside of the loop that use the final values of 2180 // the current expressions. 2181 // 2182 if (ReplaceExitValue != NeverRepl && 2183 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2184 rewriteLoopExitValues(L, Rewriter); 2185 2186 // Eliminate redundant IV cycles. 2187 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2188 2189 // If we have a trip count expression, rewrite the loop's exit condition 2190 // using it. We can currently only handle loops with a single exit. 2191 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2192 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2193 if (IndVar) { 2194 // Check preconditions for proper SCEVExpander operation. SCEV does not 2195 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2196 // pass that uses the SCEVExpander must do it. This does not work well for 2197 // loop passes because SCEVExpander makes assumptions about all loops, 2198 // while LoopPassManager only forces the current loop to be simplified. 2199 // 2200 // FIXME: SCEV expansion has no way to bail out, so the caller must 2201 // explicitly check any assumptions made by SCEV. Brittle. 2202 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2203 if (!AR || AR->getLoop()->getLoopPreheader()) 2204 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2205 Rewriter); 2206 } 2207 } 2208 // Clear the rewriter cache, because values that are in the rewriter's cache 2209 // can be deleted in the loop below, causing the AssertingVH in the cache to 2210 // trigger. 2211 Rewriter.clear(); 2212 2213 // Now that we're done iterating through lists, clean up any instructions 2214 // which are now dead. 2215 while (!DeadInsts.empty()) 2216 if (Instruction *Inst = 2217 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2218 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2219 2220 // The Rewriter may not be used from this point on. 2221 2222 // Loop-invariant instructions in the preheader that aren't used in the 2223 // loop may be sunk below the loop to reduce register pressure. 2224 sinkUnusedInvariants(L); 2225 2226 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2227 // trip count and therefore can further simplify exit values in addition to 2228 // rewriteLoopExitValues. 2229 rewriteFirstIterationLoopExitValues(L); 2230 2231 // Clean up dead instructions. 2232 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2233 2234 // Check a post-condition. 2235 assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!"); 2236 2237 // Verify that LFTR, and any other change have not interfered with SCEV's 2238 // ability to compute trip count. 2239 #ifndef NDEBUG 2240 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2241 SE->forgetLoop(L); 2242 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2243 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2244 SE->getTypeSizeInBits(NewBECount->getType())) 2245 NewBECount = SE->getTruncateOrNoop(NewBECount, 2246 BackedgeTakenCount->getType()); 2247 else 2248 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2249 NewBECount->getType()); 2250 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2251 } 2252 #endif 2253 2254 return Changed; 2255 } 2256 2257 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM) { 2258 auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager(); 2259 Function *F = L.getHeader()->getParent(); 2260 const DataLayout &DL = F->getParent()->getDataLayout(); 2261 2262 auto *LI = FAM.getCachedResult<LoopAnalysis>(*F); 2263 auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F); 2264 auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F); 2265 2266 assert((LI && SE && DT) && 2267 "Analyses required for indvarsimplify not available!"); 2268 2269 // Optional analyses. 2270 auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F); 2271 auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(*F); 2272 2273 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2274 if (!IVS.run(&L)) 2275 return PreservedAnalyses::all(); 2276 2277 // FIXME: This should also 'preserve the CFG'. 2278 return getLoopPassPreservedAnalyses(); 2279 } 2280 2281 namespace { 2282 struct IndVarSimplifyLegacyPass : public LoopPass { 2283 static char ID; // Pass identification, replacement for typeid 2284 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2285 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2286 } 2287 2288 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2289 if (skipLoop(L)) 2290 return false; 2291 2292 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2293 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2294 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2295 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2296 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2297 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2298 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2299 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2300 2301 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2302 return IVS.run(L); 2303 } 2304 2305 void getAnalysisUsage(AnalysisUsage &AU) const override { 2306 AU.setPreservesCFG(); 2307 getLoopAnalysisUsage(AU); 2308 } 2309 }; 2310 } 2311 2312 char IndVarSimplifyLegacyPass::ID = 0; 2313 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2314 "Induction Variable Simplification", false, false) 2315 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2316 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2317 "Induction Variable Simplification", false, false) 2318 2319 Pass *llvm::createIndVarSimplifyPass() { 2320 return new IndVarSimplifyLegacyPass(); 2321 } 2322