xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 3502511548d86dfb09256f0f19d370be71812a62)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
28 #include "llvm/Transforms/Scalar.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopPass.h"
34 #include "llvm/Analysis/LoopPassManager.h"
35 #include "llvm/Analysis/ScalarEvolutionExpander.h"
36 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TargetTransformInfo.h"
39 #include "llvm/Analysis/ValueTracking.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/CFG.h"
42 #include "llvm/IR/Constants.h"
43 #include "llvm/IR/DataLayout.h"
44 #include "llvm/IR/Dominators.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/PatternMatch.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/Support/CommandLine.h"
51 #include "llvm/Support/Debug.h"
52 #include "llvm/Support/raw_ostream.h"
53 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
54 #include "llvm/Transforms/Utils/Local.h"
55 #include "llvm/Transforms/Utils/LoopUtils.h"
56 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "indvars"
60 
61 STATISTIC(NumWidened     , "Number of indvars widened");
62 STATISTIC(NumReplaced    , "Number of exit values replaced");
63 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
64 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
65 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
66 
67 // Trip count verification can be enabled by default under NDEBUG if we
68 // implement a strong expression equivalence checker in SCEV. Until then, we
69 // use the verify-indvars flag, which may assert in some cases.
70 static cl::opt<bool> VerifyIndvars(
71   "verify-indvars", cl::Hidden,
72   cl::desc("Verify the ScalarEvolution result after running indvars"));
73 
74 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
75 
76 static cl::opt<ReplaceExitVal> ReplaceExitValue(
77     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
78     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
79     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
80                clEnumValN(OnlyCheapRepl, "cheap",
81                           "only replace exit value when the cost is cheap"),
82                clEnumValN(AlwaysRepl, "always",
83                           "always replace exit value whenever possible"),
84                clEnumValEnd));
85 
86 namespace {
87 struct RewritePhi;
88 
89 class IndVarSimplify {
90   LoopInfo *LI;
91   ScalarEvolution *SE;
92   DominatorTree *DT;
93   const DataLayout &DL;
94   TargetLibraryInfo *TLI;
95   const TargetTransformInfo *TTI;
96 
97   SmallVector<WeakVH, 16> DeadInsts;
98   bool Changed = false;
99 
100   bool isValidRewrite(Value *FromVal, Value *ToVal);
101 
102   void handleFloatingPointIV(Loop *L, PHINode *PH);
103   void rewriteNonIntegerIVs(Loop *L);
104 
105   void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
106 
107   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
108   void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
109   void rewriteFirstIterationLoopExitValues(Loop *L);
110 
111   Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
112                                    PHINode *IndVar, SCEVExpander &Rewriter);
113 
114   void sinkUnusedInvariants(Loop *L);
115 
116   Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
117                             Instruction *InsertPt, Type *Ty);
118 
119 public:
120   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
121                  const DataLayout &DL, TargetLibraryInfo *TLI,
122                  TargetTransformInfo *TTI)
123       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
124 
125   bool run(Loop *L);
126 };
127 }
128 
129 /// Return true if the SCEV expansion generated by the rewriter can replace the
130 /// original value. SCEV guarantees that it produces the same value, but the way
131 /// it is produced may be illegal IR.  Ideally, this function will only be
132 /// called for verification.
133 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
134   // If an SCEV expression subsumed multiple pointers, its expansion could
135   // reassociate the GEP changing the base pointer. This is illegal because the
136   // final address produced by a GEP chain must be inbounds relative to its
137   // underlying object. Otherwise basic alias analysis, among other things,
138   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
139   // producing an expression involving multiple pointers. Until then, we must
140   // bail out here.
141   //
142   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
143   // because it understands lcssa phis while SCEV does not.
144   Value *FromPtr = FromVal;
145   Value *ToPtr = ToVal;
146   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
147     FromPtr = GEP->getPointerOperand();
148   }
149   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
150     ToPtr = GEP->getPointerOperand();
151   }
152   if (FromPtr != FromVal || ToPtr != ToVal) {
153     // Quickly check the common case
154     if (FromPtr == ToPtr)
155       return true;
156 
157     // SCEV may have rewritten an expression that produces the GEP's pointer
158     // operand. That's ok as long as the pointer operand has the same base
159     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
160     // base of a recurrence. This handles the case in which SCEV expansion
161     // converts a pointer type recurrence into a nonrecurrent pointer base
162     // indexed by an integer recurrence.
163 
164     // If the GEP base pointer is a vector of pointers, abort.
165     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
166       return false;
167 
168     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
169     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
170     if (FromBase == ToBase)
171       return true;
172 
173     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
174           << *FromBase << " != " << *ToBase << "\n");
175 
176     return false;
177   }
178   return true;
179 }
180 
181 /// Determine the insertion point for this user. By default, insert immediately
182 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
183 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
184 /// common dominator for the incoming blocks.
185 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
186                                           DominatorTree *DT, LoopInfo *LI) {
187   PHINode *PHI = dyn_cast<PHINode>(User);
188   if (!PHI)
189     return User;
190 
191   Instruction *InsertPt = nullptr;
192   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
193     if (PHI->getIncomingValue(i) != Def)
194       continue;
195 
196     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
197     if (!InsertPt) {
198       InsertPt = InsertBB->getTerminator();
199       continue;
200     }
201     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
202     InsertPt = InsertBB->getTerminator();
203   }
204   assert(InsertPt && "Missing phi operand");
205 
206   auto *DefI = dyn_cast<Instruction>(Def);
207   if (!DefI)
208     return InsertPt;
209 
210   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
211 
212   auto *L = LI->getLoopFor(DefI->getParent());
213   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
214 
215   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
216     if (LI->getLoopFor(DTN->getBlock()) == L)
217       return DTN->getBlock()->getTerminator();
218 
219   llvm_unreachable("DefI dominates InsertPt!");
220 }
221 
222 //===----------------------------------------------------------------------===//
223 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
224 //===----------------------------------------------------------------------===//
225 
226 /// Convert APF to an integer, if possible.
227 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
228   bool isExact = false;
229   // See if we can convert this to an int64_t
230   uint64_t UIntVal;
231   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
232                            &isExact) != APFloat::opOK || !isExact)
233     return false;
234   IntVal = UIntVal;
235   return true;
236 }
237 
238 /// If the loop has floating induction variable then insert corresponding
239 /// integer induction variable if possible.
240 /// For example,
241 /// for(double i = 0; i < 10000; ++i)
242 ///   bar(i)
243 /// is converted into
244 /// for(int i = 0; i < 10000; ++i)
245 ///   bar((double)i);
246 ///
247 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
248   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
249   unsigned BackEdge     = IncomingEdge^1;
250 
251   // Check incoming value.
252   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
253 
254   int64_t InitValue;
255   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
256     return;
257 
258   // Check IV increment. Reject this PN if increment operation is not
259   // an add or increment value can not be represented by an integer.
260   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
261   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
262 
263   // If this is not an add of the PHI with a constantfp, or if the constant fp
264   // is not an integer, bail out.
265   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
266   int64_t IncValue;
267   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
268       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
269     return;
270 
271   // Check Incr uses. One user is PN and the other user is an exit condition
272   // used by the conditional terminator.
273   Value::user_iterator IncrUse = Incr->user_begin();
274   Instruction *U1 = cast<Instruction>(*IncrUse++);
275   if (IncrUse == Incr->user_end()) return;
276   Instruction *U2 = cast<Instruction>(*IncrUse++);
277   if (IncrUse != Incr->user_end()) return;
278 
279   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
280   // only used by a branch, we can't transform it.
281   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
282   if (!Compare)
283     Compare = dyn_cast<FCmpInst>(U2);
284   if (!Compare || !Compare->hasOneUse() ||
285       !isa<BranchInst>(Compare->user_back()))
286     return;
287 
288   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
289 
290   // We need to verify that the branch actually controls the iteration count
291   // of the loop.  If not, the new IV can overflow and no one will notice.
292   // The branch block must be in the loop and one of the successors must be out
293   // of the loop.
294   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
295   if (!L->contains(TheBr->getParent()) ||
296       (L->contains(TheBr->getSuccessor(0)) &&
297        L->contains(TheBr->getSuccessor(1))))
298     return;
299 
300 
301   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
302   // transform it.
303   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
304   int64_t ExitValue;
305   if (ExitValueVal == nullptr ||
306       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
307     return;
308 
309   // Find new predicate for integer comparison.
310   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
311   switch (Compare->getPredicate()) {
312   default: return;  // Unknown comparison.
313   case CmpInst::FCMP_OEQ:
314   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
315   case CmpInst::FCMP_ONE:
316   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
317   case CmpInst::FCMP_OGT:
318   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
319   case CmpInst::FCMP_OGE:
320   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
321   case CmpInst::FCMP_OLT:
322   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
323   case CmpInst::FCMP_OLE:
324   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
325   }
326 
327   // We convert the floating point induction variable to a signed i32 value if
328   // we can.  This is only safe if the comparison will not overflow in a way
329   // that won't be trapped by the integer equivalent operations.  Check for this
330   // now.
331   // TODO: We could use i64 if it is native and the range requires it.
332 
333   // The start/stride/exit values must all fit in signed i32.
334   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
335     return;
336 
337   // If not actually striding (add x, 0.0), avoid touching the code.
338   if (IncValue == 0)
339     return;
340 
341   // Positive and negative strides have different safety conditions.
342   if (IncValue > 0) {
343     // If we have a positive stride, we require the init to be less than the
344     // exit value.
345     if (InitValue >= ExitValue)
346       return;
347 
348     uint32_t Range = uint32_t(ExitValue-InitValue);
349     // Check for infinite loop, either:
350     // while (i <= Exit) or until (i > Exit)
351     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
352       if (++Range == 0) return;  // Range overflows.
353     }
354 
355     unsigned Leftover = Range % uint32_t(IncValue);
356 
357     // If this is an equality comparison, we require that the strided value
358     // exactly land on the exit value, otherwise the IV condition will wrap
359     // around and do things the fp IV wouldn't.
360     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
361         Leftover != 0)
362       return;
363 
364     // If the stride would wrap around the i32 before exiting, we can't
365     // transform the IV.
366     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
367       return;
368 
369   } else {
370     // If we have a negative stride, we require the init to be greater than the
371     // exit value.
372     if (InitValue <= ExitValue)
373       return;
374 
375     uint32_t Range = uint32_t(InitValue-ExitValue);
376     // Check for infinite loop, either:
377     // while (i >= Exit) or until (i < Exit)
378     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
379       if (++Range == 0) return;  // Range overflows.
380     }
381 
382     unsigned Leftover = Range % uint32_t(-IncValue);
383 
384     // If this is an equality comparison, we require that the strided value
385     // exactly land on the exit value, otherwise the IV condition will wrap
386     // around and do things the fp IV wouldn't.
387     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
388         Leftover != 0)
389       return;
390 
391     // If the stride would wrap around the i32 before exiting, we can't
392     // transform the IV.
393     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
394       return;
395   }
396 
397   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
398 
399   // Insert new integer induction variable.
400   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
401   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
402                       PN->getIncomingBlock(IncomingEdge));
403 
404   Value *NewAdd =
405     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
406                               Incr->getName()+".int", Incr);
407   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
408 
409   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
410                                       ConstantInt::get(Int32Ty, ExitValue),
411                                       Compare->getName());
412 
413   // In the following deletions, PN may become dead and may be deleted.
414   // Use a WeakVH to observe whether this happens.
415   WeakVH WeakPH = PN;
416 
417   // Delete the old floating point exit comparison.  The branch starts using the
418   // new comparison.
419   NewCompare->takeName(Compare);
420   Compare->replaceAllUsesWith(NewCompare);
421   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
422 
423   // Delete the old floating point increment.
424   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
425   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
426 
427   // If the FP induction variable still has uses, this is because something else
428   // in the loop uses its value.  In order to canonicalize the induction
429   // variable, we chose to eliminate the IV and rewrite it in terms of an
430   // int->fp cast.
431   //
432   // We give preference to sitofp over uitofp because it is faster on most
433   // platforms.
434   if (WeakPH) {
435     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
436                                  &*PN->getParent()->getFirstInsertionPt());
437     PN->replaceAllUsesWith(Conv);
438     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
439   }
440   Changed = true;
441 }
442 
443 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
444   // First step.  Check to see if there are any floating-point recurrences.
445   // If there are, change them into integer recurrences, permitting analysis by
446   // the SCEV routines.
447   //
448   BasicBlock *Header = L->getHeader();
449 
450   SmallVector<WeakVH, 8> PHIs;
451   for (BasicBlock::iterator I = Header->begin();
452        PHINode *PN = dyn_cast<PHINode>(I); ++I)
453     PHIs.push_back(PN);
454 
455   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
456     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
457       handleFloatingPointIV(L, PN);
458 
459   // If the loop previously had floating-point IV, ScalarEvolution
460   // may not have been able to compute a trip count. Now that we've done some
461   // re-writing, the trip count may be computable.
462   if (Changed)
463     SE->forgetLoop(L);
464 }
465 
466 namespace {
467 // Collect information about PHI nodes which can be transformed in
468 // rewriteLoopExitValues.
469 struct RewritePhi {
470   PHINode *PN;
471   unsigned Ith;  // Ith incoming value.
472   Value *Val;    // Exit value after expansion.
473   bool HighCost; // High Cost when expansion.
474 
475   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
476       : PN(P), Ith(I), Val(V), HighCost(H) {}
477 };
478 }
479 
480 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
481                                           Loop *L, Instruction *InsertPt,
482                                           Type *ResultTy) {
483   // Before expanding S into an expensive LLVM expression, see if we can use an
484   // already existing value as the expansion for S.
485   if (Value *ExistingValue = Rewriter.getExactExistingExpansion(S, InsertPt, L))
486     if (ExistingValue->getType() == ResultTy)
487       return ExistingValue;
488 
489   // We didn't find anything, fall back to using SCEVExpander.
490   return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
491 }
492 
493 //===----------------------------------------------------------------------===//
494 // rewriteLoopExitValues - Optimize IV users outside the loop.
495 // As a side effect, reduces the amount of IV processing within the loop.
496 //===----------------------------------------------------------------------===//
497 
498 /// Check to see if this loop has a computable loop-invariant execution count.
499 /// If so, this means that we can compute the final value of any expressions
500 /// that are recurrent in the loop, and substitute the exit values from the loop
501 /// into any instructions outside of the loop that use the final values of the
502 /// current expressions.
503 ///
504 /// This is mostly redundant with the regular IndVarSimplify activities that
505 /// happen later, except that it's more powerful in some cases, because it's
506 /// able to brute-force evaluate arbitrary instructions as long as they have
507 /// constant operands at the beginning of the loop.
508 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
509   // Check a pre-condition.
510   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
511 
512   SmallVector<BasicBlock*, 8> ExitBlocks;
513   L->getUniqueExitBlocks(ExitBlocks);
514 
515   SmallVector<RewritePhi, 8> RewritePhiSet;
516   // Find all values that are computed inside the loop, but used outside of it.
517   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
518   // the exit blocks of the loop to find them.
519   for (BasicBlock *ExitBB : ExitBlocks) {
520     // If there are no PHI nodes in this exit block, then no values defined
521     // inside the loop are used on this path, skip it.
522     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
523     if (!PN) continue;
524 
525     unsigned NumPreds = PN->getNumIncomingValues();
526 
527     // Iterate over all of the PHI nodes.
528     BasicBlock::iterator BBI = ExitBB->begin();
529     while ((PN = dyn_cast<PHINode>(BBI++))) {
530       if (PN->use_empty())
531         continue; // dead use, don't replace it
532 
533       if (!SE->isSCEVable(PN->getType()))
534         continue;
535 
536       // It's necessary to tell ScalarEvolution about this explicitly so that
537       // it can walk the def-use list and forget all SCEVs, as it may not be
538       // watching the PHI itself. Once the new exit value is in place, there
539       // may not be a def-use connection between the loop and every instruction
540       // which got a SCEVAddRecExpr for that loop.
541       SE->forgetValue(PN);
542 
543       // Iterate over all of the values in all the PHI nodes.
544       for (unsigned i = 0; i != NumPreds; ++i) {
545         // If the value being merged in is not integer or is not defined
546         // in the loop, skip it.
547         Value *InVal = PN->getIncomingValue(i);
548         if (!isa<Instruction>(InVal))
549           continue;
550 
551         // If this pred is for a subloop, not L itself, skip it.
552         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
553           continue; // The Block is in a subloop, skip it.
554 
555         // Check that InVal is defined in the loop.
556         Instruction *Inst = cast<Instruction>(InVal);
557         if (!L->contains(Inst))
558           continue;
559 
560         // Okay, this instruction has a user outside of the current loop
561         // and varies predictably *inside* the loop.  Evaluate the value it
562         // contains when the loop exits, if possible.
563         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
564         if (!SE->isLoopInvariant(ExitValue, L) ||
565             !isSafeToExpand(ExitValue, *SE))
566           continue;
567 
568         // Computing the value outside of the loop brings no benefit if :
569         //  - it is definitely used inside the loop in a way which can not be
570         //    optimized away.
571         //  - no use outside of the loop can take advantage of hoisting the
572         //    computation out of the loop
573         if (ExitValue->getSCEVType()>=scMulExpr) {
574           unsigned NumHardInternalUses = 0;
575           unsigned NumSoftExternalUses = 0;
576           unsigned NumUses = 0;
577           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
578                IB != IE && NumUses <= 6; ++IB) {
579             Instruction *UseInstr = cast<Instruction>(*IB);
580             unsigned Opc = UseInstr->getOpcode();
581             NumUses++;
582             if (L->contains(UseInstr)) {
583               if (Opc == Instruction::Call || Opc == Instruction::Ret)
584                 NumHardInternalUses++;
585             } else {
586               if (Opc == Instruction::PHI) {
587                 // Do not count the Phi as a use. LCSSA may have inserted
588                 // plenty of trivial ones.
589                 NumUses--;
590                 for (auto PB = UseInstr->user_begin(),
591                           PE = UseInstr->user_end();
592                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
593                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
594                   if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
595                     NumSoftExternalUses++;
596                 }
597                 continue;
598               }
599               if (Opc != Instruction::Call && Opc != Instruction::Ret)
600                 NumSoftExternalUses++;
601             }
602           }
603           if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
604             continue;
605         }
606 
607         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
608         Value *ExitVal =
609             expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType());
610 
611         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
612                      << "  LoopVal = " << *Inst << "\n");
613 
614         if (!isValidRewrite(Inst, ExitVal)) {
615           DeadInsts.push_back(ExitVal);
616           continue;
617         }
618 
619         // Collect all the candidate PHINodes to be rewritten.
620         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
621       }
622     }
623   }
624 
625   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
626 
627   // Transformation.
628   for (const RewritePhi &Phi : RewritePhiSet) {
629     PHINode *PN = Phi.PN;
630     Value *ExitVal = Phi.Val;
631 
632     // Only do the rewrite when the ExitValue can be expanded cheaply.
633     // If LoopCanBeDel is true, rewrite exit value aggressively.
634     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
635       DeadInsts.push_back(ExitVal);
636       continue;
637     }
638 
639     Changed = true;
640     ++NumReplaced;
641     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
642     PN->setIncomingValue(Phi.Ith, ExitVal);
643 
644     // If this instruction is dead now, delete it. Don't do it now to avoid
645     // invalidating iterators.
646     if (isInstructionTriviallyDead(Inst, TLI))
647       DeadInsts.push_back(Inst);
648 
649     // Replace PN with ExitVal if that is legal and does not break LCSSA.
650     if (PN->getNumIncomingValues() == 1 &&
651         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
652       PN->replaceAllUsesWith(ExitVal);
653       PN->eraseFromParent();
654     }
655   }
656 
657   // The insertion point instruction may have been deleted; clear it out
658   // so that the rewriter doesn't trip over it later.
659   Rewriter.clearInsertPoint();
660 }
661 
662 //===---------------------------------------------------------------------===//
663 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
664 // they will exit at the first iteration.
665 //===---------------------------------------------------------------------===//
666 
667 /// Check to see if this loop has loop invariant conditions which lead to loop
668 /// exits. If so, we know that if the exit path is taken, it is at the first
669 /// loop iteration. This lets us predict exit values of PHI nodes that live in
670 /// loop header.
671 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
672   // Verify the input to the pass is already in LCSSA form.
673   assert(L->isLCSSAForm(*DT));
674 
675   SmallVector<BasicBlock *, 8> ExitBlocks;
676   L->getUniqueExitBlocks(ExitBlocks);
677   auto *LoopHeader = L->getHeader();
678   assert(LoopHeader && "Invalid loop");
679 
680   for (auto *ExitBB : ExitBlocks) {
681     BasicBlock::iterator BBI = ExitBB->begin();
682     // If there are no more PHI nodes in this exit block, then no more
683     // values defined inside the loop are used on this path.
684     while (auto *PN = dyn_cast<PHINode>(BBI++)) {
685       for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues();
686           IncomingValIdx != E; ++IncomingValIdx) {
687         auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx);
688 
689         // We currently only support loop exits from loop header. If the
690         // incoming block is not loop header, we need to recursively check
691         // all conditions starting from loop header are loop invariants.
692         // Additional support might be added in the future.
693         if (IncomingBB != LoopHeader)
694           continue;
695 
696         // Get condition that leads to the exit path.
697         auto *TermInst = IncomingBB->getTerminator();
698 
699         Value *Cond = nullptr;
700         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
701           // Must be a conditional branch, otherwise the block
702           // should not be in the loop.
703           Cond = BI->getCondition();
704         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
705           Cond = SI->getCondition();
706         else
707           continue;
708 
709         if (!L->isLoopInvariant(Cond))
710           continue;
711 
712         auto *ExitVal =
713             dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx));
714 
715         // Only deal with PHIs.
716         if (!ExitVal)
717           continue;
718 
719         // If ExitVal is a PHI on the loop header, then we know its
720         // value along this exit because the exit can only be taken
721         // on the first iteration.
722         auto *LoopPreheader = L->getLoopPreheader();
723         assert(LoopPreheader && "Invalid loop");
724         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
725         if (PreheaderIdx != -1) {
726           assert(ExitVal->getParent() == LoopHeader &&
727                  "ExitVal must be in loop header");
728           PN->setIncomingValue(IncomingValIdx,
729               ExitVal->getIncomingValue(PreheaderIdx));
730         }
731       }
732     }
733   }
734 }
735 
736 /// Check whether it is possible to delete the loop after rewriting exit
737 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
738 /// aggressively.
739 bool IndVarSimplify::canLoopBeDeleted(
740     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
741 
742   BasicBlock *Preheader = L->getLoopPreheader();
743   // If there is no preheader, the loop will not be deleted.
744   if (!Preheader)
745     return false;
746 
747   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
748   // We obviate multiple ExitingBlocks case for simplicity.
749   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
750   // after exit value rewriting, we can enhance the logic here.
751   SmallVector<BasicBlock *, 4> ExitingBlocks;
752   L->getExitingBlocks(ExitingBlocks);
753   SmallVector<BasicBlock *, 8> ExitBlocks;
754   L->getUniqueExitBlocks(ExitBlocks);
755   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
756     return false;
757 
758   BasicBlock *ExitBlock = ExitBlocks[0];
759   BasicBlock::iterator BI = ExitBlock->begin();
760   while (PHINode *P = dyn_cast<PHINode>(BI)) {
761     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
762 
763     // If the Incoming value of P is found in RewritePhiSet, we know it
764     // could be rewritten to use a loop invariant value in transformation
765     // phase later. Skip it in the loop invariant check below.
766     bool found = false;
767     for (const RewritePhi &Phi : RewritePhiSet) {
768       unsigned i = Phi.Ith;
769       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
770         found = true;
771         break;
772       }
773     }
774 
775     Instruction *I;
776     if (!found && (I = dyn_cast<Instruction>(Incoming)))
777       if (!L->hasLoopInvariantOperands(I))
778         return false;
779 
780     ++BI;
781   }
782 
783   for (auto *BB : L->blocks())
784     if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); }))
785       return false;
786 
787   return true;
788 }
789 
790 //===----------------------------------------------------------------------===//
791 //  IV Widening - Extend the width of an IV to cover its widest uses.
792 //===----------------------------------------------------------------------===//
793 
794 namespace {
795 // Collect information about induction variables that are used by sign/zero
796 // extend operations. This information is recorded by CollectExtend and provides
797 // the input to WidenIV.
798 struct WideIVInfo {
799   PHINode *NarrowIV = nullptr;
800   Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext
801   bool IsSigned = false;            // Was a sext user seen before a zext?
802 };
803 }
804 
805 /// Update information about the induction variable that is extended by this
806 /// sign or zero extend operation. This is used to determine the final width of
807 /// the IV before actually widening it.
808 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
809                         const TargetTransformInfo *TTI) {
810   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
811   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
812     return;
813 
814   Type *Ty = Cast->getType();
815   uint64_t Width = SE->getTypeSizeInBits(Ty);
816   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
817     return;
818 
819   // Check that `Cast` actually extends the induction variable (we rely on this
820   // later).  This takes care of cases where `Cast` is extending a truncation of
821   // the narrow induction variable, and thus can end up being narrower than the
822   // "narrow" induction variable.
823   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
824   if (NarrowIVWidth >= Width)
825     return;
826 
827   // Cast is either an sext or zext up to this point.
828   // We should not widen an indvar if arithmetics on the wider indvar are more
829   // expensive than those on the narrower indvar. We check only the cost of ADD
830   // because at least an ADD is required to increment the induction variable. We
831   // could compute more comprehensively the cost of all instructions on the
832   // induction variable when necessary.
833   if (TTI &&
834       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
835           TTI->getArithmeticInstrCost(Instruction::Add,
836                                       Cast->getOperand(0)->getType())) {
837     return;
838   }
839 
840   if (!WI.WidestNativeType) {
841     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
842     WI.IsSigned = IsSigned;
843     return;
844   }
845 
846   // We extend the IV to satisfy the sign of its first user, arbitrarily.
847   if (WI.IsSigned != IsSigned)
848     return;
849 
850   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
851     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
852 }
853 
854 namespace {
855 
856 /// Record a link in the Narrow IV def-use chain along with the WideIV that
857 /// computes the same value as the Narrow IV def.  This avoids caching Use*
858 /// pointers.
859 struct NarrowIVDefUse {
860   Instruction *NarrowDef = nullptr;
861   Instruction *NarrowUse = nullptr;
862   Instruction *WideDef = nullptr;
863 
864   // True if the narrow def is never negative.  Tracking this information lets
865   // us use a sign extension instead of a zero extension or vice versa, when
866   // profitable and legal.
867   bool NeverNegative = false;
868 
869   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
870                  bool NeverNegative)
871       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
872         NeverNegative(NeverNegative) {}
873 };
874 
875 /// The goal of this transform is to remove sign and zero extends without
876 /// creating any new induction variables. To do this, it creates a new phi of
877 /// the wider type and redirects all users, either removing extends or inserting
878 /// truncs whenever we stop propagating the type.
879 ///
880 class WidenIV {
881   // Parameters
882   PHINode *OrigPhi;
883   Type *WideType;
884   bool IsSigned;
885 
886   // Context
887   LoopInfo        *LI;
888   Loop            *L;
889   ScalarEvolution *SE;
890   DominatorTree   *DT;
891 
892   // Result
893   PHINode *WidePhi;
894   Instruction *WideInc;
895   const SCEV *WideIncExpr;
896   SmallVectorImpl<WeakVH> &DeadInsts;
897 
898   SmallPtrSet<Instruction*,16> Widened;
899   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
900 
901 public:
902   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
903           ScalarEvolution *SEv, DominatorTree *DTree,
904           SmallVectorImpl<WeakVH> &DI) :
905     OrigPhi(WI.NarrowIV),
906     WideType(WI.WidestNativeType),
907     IsSigned(WI.IsSigned),
908     LI(LInfo),
909     L(LI->getLoopFor(OrigPhi->getParent())),
910     SE(SEv),
911     DT(DTree),
912     WidePhi(nullptr),
913     WideInc(nullptr),
914     WideIncExpr(nullptr),
915     DeadInsts(DI) {
916     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
917   }
918 
919   PHINode *createWideIV(SCEVExpander &Rewriter);
920 
921 protected:
922   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
923                           Instruction *Use);
924 
925   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
926   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
927                                      const SCEVAddRecExpr *WideAR);
928   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
929 
930   const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse);
931 
932   const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU);
933 
934   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
935                               unsigned OpCode) const;
936 
937   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
938 
939   bool widenLoopCompare(NarrowIVDefUse DU);
940 
941   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
942 };
943 } // anonymous namespace
944 
945 /// Perform a quick domtree based check for loop invariance assuming that V is
946 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
947 /// purpose.
948 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
949   Instruction *Inst = dyn_cast<Instruction>(V);
950   if (!Inst)
951     return true;
952 
953   return DT->properlyDominates(Inst->getParent(), L->getHeader());
954 }
955 
956 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
957                                  bool IsSigned, Instruction *Use) {
958   // Set the debug location and conservative insertion point.
959   IRBuilder<> Builder(Use);
960   // Hoist the insertion point into loop preheaders as far as possible.
961   for (const Loop *L = LI->getLoopFor(Use->getParent());
962        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
963        L = L->getParentLoop())
964     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
965 
966   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
967                     Builder.CreateZExt(NarrowOper, WideType);
968 }
969 
970 /// Instantiate a wide operation to replace a narrow operation. This only needs
971 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
972 /// 0 for any operation we decide not to clone.
973 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
974                                   const SCEVAddRecExpr *WideAR) {
975   unsigned Opcode = DU.NarrowUse->getOpcode();
976   switch (Opcode) {
977   default:
978     return nullptr;
979   case Instruction::Add:
980   case Instruction::Mul:
981   case Instruction::UDiv:
982   case Instruction::Sub:
983     return cloneArithmeticIVUser(DU, WideAR);
984 
985   case Instruction::And:
986   case Instruction::Or:
987   case Instruction::Xor:
988   case Instruction::Shl:
989   case Instruction::LShr:
990   case Instruction::AShr:
991     return cloneBitwiseIVUser(DU);
992   }
993 }
994 
995 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
996   Instruction *NarrowUse = DU.NarrowUse;
997   Instruction *NarrowDef = DU.NarrowDef;
998   Instruction *WideDef = DU.WideDef;
999 
1000   DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1001 
1002   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1003   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1004   // invariant and will be folded or hoisted. If it actually comes from a
1005   // widened IV, it should be removed during a future call to widenIVUse.
1006   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1007                    ? WideDef
1008                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1009                                       IsSigned, NarrowUse);
1010   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1011                    ? WideDef
1012                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1013                                       IsSigned, NarrowUse);
1014 
1015   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1016   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1017                                         NarrowBO->getName());
1018   IRBuilder<> Builder(NarrowUse);
1019   Builder.Insert(WideBO);
1020   WideBO->copyIRFlags(NarrowBO);
1021   return WideBO;
1022 }
1023 
1024 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1025                                             const SCEVAddRecExpr *WideAR) {
1026   Instruction *NarrowUse = DU.NarrowUse;
1027   Instruction *NarrowDef = DU.NarrowDef;
1028   Instruction *WideDef = DU.WideDef;
1029 
1030   DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1031 
1032   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1033 
1034   // We're trying to find X such that
1035   //
1036   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1037   //
1038   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1039   // and check using SCEV if any of them are correct.
1040 
1041   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1042   // correct solution to X.
1043   auto GuessNonIVOperand = [&](bool SignExt) {
1044     const SCEV *WideLHS;
1045     const SCEV *WideRHS;
1046 
1047     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1048       if (SignExt)
1049         return SE->getSignExtendExpr(S, Ty);
1050       return SE->getZeroExtendExpr(S, Ty);
1051     };
1052 
1053     if (IVOpIdx == 0) {
1054       WideLHS = SE->getSCEV(WideDef);
1055       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1056       WideRHS = GetExtend(NarrowRHS, WideType);
1057     } else {
1058       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1059       WideLHS = GetExtend(NarrowLHS, WideType);
1060       WideRHS = SE->getSCEV(WideDef);
1061     }
1062 
1063     // WideUse is "WideDef `op.wide` X" as described in the comment.
1064     const SCEV *WideUse = nullptr;
1065 
1066     switch (NarrowUse->getOpcode()) {
1067     default:
1068       llvm_unreachable("No other possibility!");
1069 
1070     case Instruction::Add:
1071       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1072       break;
1073 
1074     case Instruction::Mul:
1075       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1076       break;
1077 
1078     case Instruction::UDiv:
1079       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1080       break;
1081 
1082     case Instruction::Sub:
1083       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1084       break;
1085     }
1086 
1087     return WideUse == WideAR;
1088   };
1089 
1090   bool SignExtend = IsSigned;
1091   if (!GuessNonIVOperand(SignExtend)) {
1092     SignExtend = !SignExtend;
1093     if (!GuessNonIVOperand(SignExtend))
1094       return nullptr;
1095   }
1096 
1097   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1098                    ? WideDef
1099                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1100                                       SignExtend, NarrowUse);
1101   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1102                    ? WideDef
1103                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1104                                       SignExtend, NarrowUse);
1105 
1106   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1107   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1108                                         NarrowBO->getName());
1109 
1110   IRBuilder<> Builder(NarrowUse);
1111   Builder.Insert(WideBO);
1112   WideBO->copyIRFlags(NarrowBO);
1113   return WideBO;
1114 }
1115 
1116 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1117                                      unsigned OpCode) const {
1118   if (OpCode == Instruction::Add)
1119     return SE->getAddExpr(LHS, RHS);
1120   if (OpCode == Instruction::Sub)
1121     return SE->getMinusSCEV(LHS, RHS);
1122   if (OpCode == Instruction::Mul)
1123     return SE->getMulExpr(LHS, RHS);
1124 
1125   llvm_unreachable("Unsupported opcode.");
1126 }
1127 
1128 /// No-wrap operations can transfer sign extension of their result to their
1129 /// operands. Generate the SCEV value for the widened operation without
1130 /// actually modifying the IR yet. If the expression after extending the
1131 /// operands is an AddRec for this loop, return it.
1132 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1133 
1134   // Handle the common case of add<nsw/nuw>
1135   const unsigned OpCode = DU.NarrowUse->getOpcode();
1136   // Only Add/Sub/Mul instructions supported yet.
1137   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1138       OpCode != Instruction::Mul)
1139     return nullptr;
1140 
1141   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1142   // if extending the other will lead to a recurrence.
1143   const unsigned ExtendOperIdx =
1144       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1145   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1146 
1147   const SCEV *ExtendOperExpr = nullptr;
1148   const OverflowingBinaryOperator *OBO =
1149     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1150   if (IsSigned && OBO->hasNoSignedWrap())
1151     ExtendOperExpr = SE->getSignExtendExpr(
1152       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1153   else if(!IsSigned && OBO->hasNoUnsignedWrap())
1154     ExtendOperExpr = SE->getZeroExtendExpr(
1155       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1156   else
1157     return nullptr;
1158 
1159   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1160   // flags. This instruction may be guarded by control flow that the no-wrap
1161   // behavior depends on. Non-control-equivalent instructions can be mapped to
1162   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1163   // semantics to those operations.
1164   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1165   const SCEV *rhs = ExtendOperExpr;
1166 
1167   // Let's swap operands to the initial order for the case of non-commutative
1168   // operations, like SUB. See PR21014.
1169   if (ExtendOperIdx == 0)
1170     std::swap(lhs, rhs);
1171   const SCEVAddRecExpr *AddRec =
1172       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1173 
1174   if (!AddRec || AddRec->getLoop() != L)
1175     return nullptr;
1176   return AddRec;
1177 }
1178 
1179 /// Is this instruction potentially interesting for further simplification after
1180 /// widening it's type? In other words, can the extend be safely hoisted out of
1181 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1182 /// so, return the sign or zero extended recurrence. Otherwise return NULL.
1183 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) {
1184   if (!SE->isSCEVable(NarrowUse->getType()))
1185     return nullptr;
1186 
1187   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
1188   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1189       SE->getTypeSizeInBits(WideType)) {
1190     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1191     // index. So don't follow this use.
1192     return nullptr;
1193   }
1194 
1195   const SCEV *WideExpr = IsSigned ?
1196     SE->getSignExtendExpr(NarrowExpr, WideType) :
1197     SE->getZeroExtendExpr(NarrowExpr, WideType);
1198   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1199   if (!AddRec || AddRec->getLoop() != L)
1200     return nullptr;
1201   return AddRec;
1202 }
1203 
1204 /// This IV user cannot be widen. Replace this use of the original narrow IV
1205 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1206 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1207   DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
1208         << " for user " << *DU.NarrowUse << "\n");
1209   IRBuilder<> Builder(
1210       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1211   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1212   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1213 }
1214 
1215 /// If the narrow use is a compare instruction, then widen the compare
1216 //  (and possibly the other operand).  The extend operation is hoisted into the
1217 // loop preheader as far as possible.
1218 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1219   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1220   if (!Cmp)
1221     return false;
1222 
1223   // We can legally widen the comparison in the following two cases:
1224   //
1225   //  - The signedness of the IV extension and comparison match
1226   //
1227   //  - The narrow IV is always positive (and thus its sign extension is equal
1228   //    to its zero extension).  For instance, let's say we're zero extending
1229   //    %narrow for the following use
1230   //
1231   //      icmp slt i32 %narrow, %val   ... (A)
1232   //
1233   //    and %narrow is always positive.  Then
1234   //
1235   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1236   //          == icmp slt i32 zext(%narrow), sext(%val)
1237 
1238   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1239     return false;
1240 
1241   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1242   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1243   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1244   assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
1245 
1246   // Widen the compare instruction.
1247   IRBuilder<> Builder(
1248       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1249   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1250 
1251   // Widen the other operand of the compare, if necessary.
1252   if (CastWidth < IVWidth) {
1253     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1254     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1255   }
1256   return true;
1257 }
1258 
1259 /// Determine whether an individual user of the narrow IV can be widened. If so,
1260 /// return the wide clone of the user.
1261 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1262 
1263   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1264   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1265     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1266       // For LCSSA phis, sink the truncate outside the loop.
1267       // After SimplifyCFG most loop exit targets have a single predecessor.
1268       // Otherwise fall back to a truncate within the loop.
1269       if (UsePhi->getNumOperands() != 1)
1270         truncateIVUse(DU, DT, LI);
1271       else {
1272         // Widening the PHI requires us to insert a trunc.  The logical place
1273         // for this trunc is in the same BB as the PHI.  This is not possible if
1274         // the BB is terminated by a catchswitch.
1275         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1276           return nullptr;
1277 
1278         PHINode *WidePhi =
1279           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1280                           UsePhi);
1281         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1282         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1283         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1284         UsePhi->replaceAllUsesWith(Trunc);
1285         DeadInsts.emplace_back(UsePhi);
1286         DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1287               << " to " << *WidePhi << "\n");
1288       }
1289       return nullptr;
1290     }
1291   }
1292   // Our raison d'etre! Eliminate sign and zero extension.
1293   if ((isa<SExtInst>(DU.NarrowUse) && (IsSigned || DU.NeverNegative)) ||
1294       (isa<ZExtInst>(DU.NarrowUse) && (!IsSigned || DU.NeverNegative))) {
1295     Value *NewDef = DU.WideDef;
1296     if (DU.NarrowUse->getType() != WideType) {
1297       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1298       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1299       if (CastWidth < IVWidth) {
1300         // The cast isn't as wide as the IV, so insert a Trunc.
1301         IRBuilder<> Builder(DU.NarrowUse);
1302         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1303       }
1304       else {
1305         // A wider extend was hidden behind a narrower one. This may induce
1306         // another round of IV widening in which the intermediate IV becomes
1307         // dead. It should be very rare.
1308         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1309               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1310         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1311         NewDef = DU.NarrowUse;
1312       }
1313     }
1314     if (NewDef != DU.NarrowUse) {
1315       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1316             << " replaced by " << *DU.WideDef << "\n");
1317       ++NumElimExt;
1318       DU.NarrowUse->replaceAllUsesWith(NewDef);
1319       DeadInsts.emplace_back(DU.NarrowUse);
1320     }
1321     // Now that the extend is gone, we want to expose it's uses for potential
1322     // further simplification. We don't need to directly inform SimplifyIVUsers
1323     // of the new users, because their parent IV will be processed later as a
1324     // new loop phi. If we preserved IVUsers analysis, we would also want to
1325     // push the uses of WideDef here.
1326 
1327     // No further widening is needed. The deceased [sz]ext had done it for us.
1328     return nullptr;
1329   }
1330 
1331   // Does this user itself evaluate to a recurrence after widening?
1332   const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse);
1333   if (!WideAddRec)
1334     WideAddRec = getExtendedOperandRecurrence(DU);
1335 
1336   if (!WideAddRec) {
1337     // If use is a loop condition, try to promote the condition instead of
1338     // truncating the IV first.
1339     if (widenLoopCompare(DU))
1340       return nullptr;
1341 
1342     // This user does not evaluate to a recurence after widening, so don't
1343     // follow it. Instead insert a Trunc to kill off the original use,
1344     // eventually isolating the original narrow IV so it can be removed.
1345     truncateIVUse(DU, DT, LI);
1346     return nullptr;
1347   }
1348   // Assume block terminators cannot evaluate to a recurrence. We can't to
1349   // insert a Trunc after a terminator if there happens to be a critical edge.
1350   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1351          "SCEV is not expected to evaluate a block terminator");
1352 
1353   // Reuse the IV increment that SCEVExpander created as long as it dominates
1354   // NarrowUse.
1355   Instruction *WideUse = nullptr;
1356   if (WideAddRec == WideIncExpr && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1357     WideUse = WideInc;
1358   else {
1359     WideUse = cloneIVUser(DU, WideAddRec);
1360     if (!WideUse)
1361       return nullptr;
1362   }
1363   // Evaluation of WideAddRec ensured that the narrow expression could be
1364   // extended outside the loop without overflow. This suggests that the wide use
1365   // evaluates to the same expression as the extended narrow use, but doesn't
1366   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1367   // where it fails, we simply throw away the newly created wide use.
1368   if (WideAddRec != SE->getSCEV(WideUse)) {
1369     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1370           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1371     DeadInsts.emplace_back(WideUse);
1372     return nullptr;
1373   }
1374 
1375   // Returning WideUse pushes it on the worklist.
1376   return WideUse;
1377 }
1378 
1379 /// Add eligible users of NarrowDef to NarrowIVUsers.
1380 ///
1381 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1382   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1383   // isKnownPredicate is enough for most cases but still need isKnownNonNegative
1384   // here to work around conservatism in ScalarEvolution about no-wrap flags.
1385   bool NeverNegative =
1386       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1387                            SE->getConstant(NarrowSCEV->getType(), 0)) ||
1388       isKnownNonNegative(NarrowDef, NarrowDef->getModule()->getDataLayout());
1389   for (User *U : NarrowDef->users()) {
1390     Instruction *NarrowUser = cast<Instruction>(U);
1391 
1392     // Handle data flow merges and bizarre phi cycles.
1393     if (!Widened.insert(NarrowUser).second)
1394       continue;
1395 
1396     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative);
1397   }
1398 }
1399 
1400 /// Process a single induction variable. First use the SCEVExpander to create a
1401 /// wide induction variable that evaluates to the same recurrence as the
1402 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1403 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1404 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1405 ///
1406 /// It would be simpler to delete uses as they are processed, but we must avoid
1407 /// invalidating SCEV expressions.
1408 ///
1409 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1410   // Is this phi an induction variable?
1411   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1412   if (!AddRec)
1413     return nullptr;
1414 
1415   // Widen the induction variable expression.
1416   const SCEV *WideIVExpr = IsSigned ?
1417     SE->getSignExtendExpr(AddRec, WideType) :
1418     SE->getZeroExtendExpr(AddRec, WideType);
1419 
1420   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1421          "Expect the new IV expression to preserve its type");
1422 
1423   // Can the IV be extended outside the loop without overflow?
1424   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1425   if (!AddRec || AddRec->getLoop() != L)
1426     return nullptr;
1427 
1428   // An AddRec must have loop-invariant operands. Since this AddRec is
1429   // materialized by a loop header phi, the expression cannot have any post-loop
1430   // operands, so they must dominate the loop header.
1431   assert(
1432       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1433       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1434       "Loop header phi recurrence inputs do not dominate the loop");
1435 
1436   // The rewriter provides a value for the desired IV expression. This may
1437   // either find an existing phi or materialize a new one. Either way, we
1438   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1439   // of the phi-SCC dominates the loop entry.
1440   Instruction *InsertPt = &L->getHeader()->front();
1441   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1442 
1443   // Remembering the WideIV increment generated by SCEVExpander allows
1444   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1445   // employ a general reuse mechanism because the call above is the only call to
1446   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1447   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1448     WideInc =
1449       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1450     WideIncExpr = SE->getSCEV(WideInc);
1451   }
1452 
1453   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1454   ++NumWidened;
1455 
1456   // Traverse the def-use chain using a worklist starting at the original IV.
1457   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1458 
1459   Widened.insert(OrigPhi);
1460   pushNarrowIVUsers(OrigPhi, WidePhi);
1461 
1462   while (!NarrowIVUsers.empty()) {
1463     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1464 
1465     // Process a def-use edge. This may replace the use, so don't hold a
1466     // use_iterator across it.
1467     Instruction *WideUse = widenIVUse(DU, Rewriter);
1468 
1469     // Follow all def-use edges from the previous narrow use.
1470     if (WideUse)
1471       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1472 
1473     // widenIVUse may have removed the def-use edge.
1474     if (DU.NarrowDef->use_empty())
1475       DeadInsts.emplace_back(DU.NarrowDef);
1476   }
1477   return WidePhi;
1478 }
1479 
1480 //===----------------------------------------------------------------------===//
1481 //  Live IV Reduction - Minimize IVs live across the loop.
1482 //===----------------------------------------------------------------------===//
1483 
1484 
1485 //===----------------------------------------------------------------------===//
1486 //  Simplification of IV users based on SCEV evaluation.
1487 //===----------------------------------------------------------------------===//
1488 
1489 namespace {
1490 class IndVarSimplifyVisitor : public IVVisitor {
1491   ScalarEvolution *SE;
1492   const TargetTransformInfo *TTI;
1493   PHINode *IVPhi;
1494 
1495 public:
1496   WideIVInfo WI;
1497 
1498   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1499                         const TargetTransformInfo *TTI,
1500                         const DominatorTree *DTree)
1501     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1502     DT = DTree;
1503     WI.NarrowIV = IVPhi;
1504   }
1505 
1506   // Implement the interface used by simplifyUsersOfIV.
1507   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1508 };
1509 }
1510 
1511 /// Iteratively perform simplification on a worklist of IV users. Each
1512 /// successive simplification may push more users which may themselves be
1513 /// candidates for simplification.
1514 ///
1515 /// Sign/Zero extend elimination is interleaved with IV simplification.
1516 ///
1517 void IndVarSimplify::simplifyAndExtend(Loop *L,
1518                                        SCEVExpander &Rewriter,
1519                                        LoopInfo *LI) {
1520   SmallVector<WideIVInfo, 8> WideIVs;
1521 
1522   SmallVector<PHINode*, 8> LoopPhis;
1523   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1524     LoopPhis.push_back(cast<PHINode>(I));
1525   }
1526   // Each round of simplification iterates through the SimplifyIVUsers worklist
1527   // for all current phis, then determines whether any IVs can be
1528   // widened. Widening adds new phis to LoopPhis, inducing another round of
1529   // simplification on the wide IVs.
1530   while (!LoopPhis.empty()) {
1531     // Evaluate as many IV expressions as possible before widening any IVs. This
1532     // forces SCEV to set no-wrap flags before evaluating sign/zero
1533     // extension. The first time SCEV attempts to normalize sign/zero extension,
1534     // the result becomes final. So for the most predictable results, we delay
1535     // evaluation of sign/zero extend evaluation until needed, and avoid running
1536     // other SCEV based analysis prior to simplifyAndExtend.
1537     do {
1538       PHINode *CurrIV = LoopPhis.pop_back_val();
1539 
1540       // Information about sign/zero extensions of CurrIV.
1541       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1542 
1543       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor);
1544 
1545       if (Visitor.WI.WidestNativeType) {
1546         WideIVs.push_back(Visitor.WI);
1547       }
1548     } while(!LoopPhis.empty());
1549 
1550     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1551       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1552       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1553         Changed = true;
1554         LoopPhis.push_back(WidePhi);
1555       }
1556     }
1557   }
1558 }
1559 
1560 //===----------------------------------------------------------------------===//
1561 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1562 //===----------------------------------------------------------------------===//
1563 
1564 /// Return true if this loop's backedge taken count expression can be safely and
1565 /// cheaply expanded into an instruction sequence that can be used by
1566 /// linearFunctionTestReplace.
1567 ///
1568 /// TODO: This fails for pointer-type loop counters with greater than one byte
1569 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1570 /// we could skip this check in the case that the LFTR loop counter (chosen by
1571 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1572 /// the loop test to an inequality test by checking the target data's alignment
1573 /// of element types (given that the initial pointer value originates from or is
1574 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1575 /// However, we don't yet have a strong motivation for converting loop tests
1576 /// into inequality tests.
1577 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1578                                         SCEVExpander &Rewriter) {
1579   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1580   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1581       BackedgeTakenCount->isZero())
1582     return false;
1583 
1584   if (!L->getExitingBlock())
1585     return false;
1586 
1587   // Can't rewrite non-branch yet.
1588   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
1589     return false;
1590 
1591   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
1592     return false;
1593 
1594   return true;
1595 }
1596 
1597 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
1598 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1599   Instruction *IncI = dyn_cast<Instruction>(IncV);
1600   if (!IncI)
1601     return nullptr;
1602 
1603   switch (IncI->getOpcode()) {
1604   case Instruction::Add:
1605   case Instruction::Sub:
1606     break;
1607   case Instruction::GetElementPtr:
1608     // An IV counter must preserve its type.
1609     if (IncI->getNumOperands() == 2)
1610       break;
1611   default:
1612     return nullptr;
1613   }
1614 
1615   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1616   if (Phi && Phi->getParent() == L->getHeader()) {
1617     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1618       return Phi;
1619     return nullptr;
1620   }
1621   if (IncI->getOpcode() == Instruction::GetElementPtr)
1622     return nullptr;
1623 
1624   // Allow add/sub to be commuted.
1625   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1626   if (Phi && Phi->getParent() == L->getHeader()) {
1627     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1628       return Phi;
1629   }
1630   return nullptr;
1631 }
1632 
1633 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1634 static ICmpInst *getLoopTest(Loop *L) {
1635   assert(L->getExitingBlock() && "expected loop exit");
1636 
1637   BasicBlock *LatchBlock = L->getLoopLatch();
1638   // Don't bother with LFTR if the loop is not properly simplified.
1639   if (!LatchBlock)
1640     return nullptr;
1641 
1642   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1643   assert(BI && "expected exit branch");
1644 
1645   return dyn_cast<ICmpInst>(BI->getCondition());
1646 }
1647 
1648 /// linearFunctionTestReplace policy. Return true unless we can show that the
1649 /// current exit test is already sufficiently canonical.
1650 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1651   // Do LFTR to simplify the exit condition to an ICMP.
1652   ICmpInst *Cond = getLoopTest(L);
1653   if (!Cond)
1654     return true;
1655 
1656   // Do LFTR to simplify the exit ICMP to EQ/NE
1657   ICmpInst::Predicate Pred = Cond->getPredicate();
1658   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1659     return true;
1660 
1661   // Look for a loop invariant RHS
1662   Value *LHS = Cond->getOperand(0);
1663   Value *RHS = Cond->getOperand(1);
1664   if (!isLoopInvariant(RHS, L, DT)) {
1665     if (!isLoopInvariant(LHS, L, DT))
1666       return true;
1667     std::swap(LHS, RHS);
1668   }
1669   // Look for a simple IV counter LHS
1670   PHINode *Phi = dyn_cast<PHINode>(LHS);
1671   if (!Phi)
1672     Phi = getLoopPhiForCounter(LHS, L, DT);
1673 
1674   if (!Phi)
1675     return true;
1676 
1677   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1678   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1679   if (Idx < 0)
1680     return true;
1681 
1682   // Do LFTR if the exit condition's IV is *not* a simple counter.
1683   Value *IncV = Phi->getIncomingValue(Idx);
1684   return Phi != getLoopPhiForCounter(IncV, L, DT);
1685 }
1686 
1687 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1688 /// down to checking that all operands are constant and listing instructions
1689 /// that may hide undef.
1690 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1691                                unsigned Depth) {
1692   if (isa<Constant>(V))
1693     return !isa<UndefValue>(V);
1694 
1695   if (Depth >= 6)
1696     return false;
1697 
1698   // Conservatively handle non-constant non-instructions. For example, Arguments
1699   // may be undef.
1700   Instruction *I = dyn_cast<Instruction>(V);
1701   if (!I)
1702     return false;
1703 
1704   // Load and return values may be undef.
1705   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1706     return false;
1707 
1708   // Optimistically handle other instructions.
1709   for (Value *Op : I->operands()) {
1710     if (!Visited.insert(Op).second)
1711       continue;
1712     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
1713       return false;
1714   }
1715   return true;
1716 }
1717 
1718 /// Return true if the given value is concrete. We must prove that undef can
1719 /// never reach it.
1720 ///
1721 /// TODO: If we decide that this is a good approach to checking for undef, we
1722 /// may factor it into a common location.
1723 static bool hasConcreteDef(Value *V) {
1724   SmallPtrSet<Value*, 8> Visited;
1725   Visited.insert(V);
1726   return hasConcreteDefImpl(V, Visited, 0);
1727 }
1728 
1729 /// Return true if this IV has any uses other than the (soon to be rewritten)
1730 /// loop exit test.
1731 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1732   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1733   Value *IncV = Phi->getIncomingValue(LatchIdx);
1734 
1735   for (User *U : Phi->users())
1736     if (U != Cond && U != IncV) return false;
1737 
1738   for (User *U : IncV->users())
1739     if (U != Cond && U != Phi) return false;
1740   return true;
1741 }
1742 
1743 /// Find an affine IV in canonical form.
1744 ///
1745 /// BECount may be an i8* pointer type. The pointer difference is already
1746 /// valid count without scaling the address stride, so it remains a pointer
1747 /// expression as far as SCEV is concerned.
1748 ///
1749 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1750 ///
1751 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1752 ///
1753 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1754 /// This is difficult in general for SCEV because of potential overflow. But we
1755 /// could at least handle constant BECounts.
1756 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
1757                                 ScalarEvolution *SE, DominatorTree *DT) {
1758   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1759 
1760   Value *Cond =
1761     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1762 
1763   // Loop over all of the PHI nodes, looking for a simple counter.
1764   PHINode *BestPhi = nullptr;
1765   const SCEV *BestInit = nullptr;
1766   BasicBlock *LatchBlock = L->getLoopLatch();
1767   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1768   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1769 
1770   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1771     PHINode *Phi = cast<PHINode>(I);
1772     if (!SE->isSCEVable(Phi->getType()))
1773       continue;
1774 
1775     // Avoid comparing an integer IV against a pointer Limit.
1776     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1777       continue;
1778 
1779     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1780     if (!AR || AR->getLoop() != L || !AR->isAffine())
1781       continue;
1782 
1783     // AR may be a pointer type, while BECount is an integer type.
1784     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1785     // AR may not be a narrower type, or we may never exit.
1786     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1787     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
1788       continue;
1789 
1790     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1791     if (!Step || !Step->isOne())
1792       continue;
1793 
1794     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1795     Value *IncV = Phi->getIncomingValue(LatchIdx);
1796     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1797       continue;
1798 
1799     // Avoid reusing a potentially undef value to compute other values that may
1800     // have originally had a concrete definition.
1801     if (!hasConcreteDef(Phi)) {
1802       // We explicitly allow unknown phis as long as they are already used by
1803       // the loop test. In this case we assume that performing LFTR could not
1804       // increase the number of undef users.
1805       if (ICmpInst *Cond = getLoopTest(L)) {
1806         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) &&
1807             Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1808           continue;
1809         }
1810       }
1811     }
1812     const SCEV *Init = AR->getStart();
1813 
1814     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1815       // Don't force a live loop counter if another IV can be used.
1816       if (AlmostDeadIV(Phi, LatchBlock, Cond))
1817         continue;
1818 
1819       // Prefer to count-from-zero. This is a more "canonical" counter form. It
1820       // also prefers integer to pointer IVs.
1821       if (BestInit->isZero() != Init->isZero()) {
1822         if (BestInit->isZero())
1823           continue;
1824       }
1825       // If two IVs both count from zero or both count from nonzero then the
1826       // narrower is likely a dead phi that has been widened. Use the wider phi
1827       // to allow the other to be eliminated.
1828       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1829         continue;
1830     }
1831     BestPhi = Phi;
1832     BestInit = Init;
1833   }
1834   return BestPhi;
1835 }
1836 
1837 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
1838 /// the new loop test.
1839 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1840                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
1841   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1842   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1843   const SCEV *IVInit = AR->getStart();
1844 
1845   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1846   // finds a valid pointer IV. Sign extend BECount in order to materialize a
1847   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1848   // the existing GEPs whenever possible.
1849   if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
1850     // IVOffset will be the new GEP offset that is interpreted by GEP as a
1851     // signed value. IVCount on the other hand represents the loop trip count,
1852     // which is an unsigned value. FindLoopCounter only allows induction
1853     // variables that have a positive unit stride of one. This means we don't
1854     // have to handle the case of negative offsets (yet) and just need to zero
1855     // extend IVCount.
1856     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1857     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1858 
1859     // Expand the code for the iteration count.
1860     assert(SE->isLoopInvariant(IVOffset, L) &&
1861            "Computed iteration count is not loop invariant!");
1862     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1863     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1864 
1865     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1866     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1867     // We could handle pointer IVs other than i8*, but we need to compensate for
1868     // gep index scaling. See canExpandBackedgeTakenCount comments.
1869     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1870                              cast<PointerType>(GEPBase->getType())
1871                                  ->getElementType())->isOne() &&
1872            "unit stride pointer IV must be i8*");
1873 
1874     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1875     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
1876   } else {
1877     // In any other case, convert both IVInit and IVCount to integers before
1878     // comparing. This may result in SCEV expension of pointers, but in practice
1879     // SCEV will fold the pointer arithmetic away as such:
1880     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1881     //
1882     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1883     // for simple memset-style loops.
1884     //
1885     // IVInit integer and IVCount pointer would only occur if a canonical IV
1886     // were generated on top of case #2, which is not expected.
1887 
1888     const SCEV *IVLimit = nullptr;
1889     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1890     // For non-zero Start, compute IVCount here.
1891     if (AR->getStart()->isZero())
1892       IVLimit = IVCount;
1893     else {
1894       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1895       const SCEV *IVInit = AR->getStart();
1896 
1897       // For integer IVs, truncate the IV before computing IVInit + BECount.
1898       if (SE->getTypeSizeInBits(IVInit->getType())
1899           > SE->getTypeSizeInBits(IVCount->getType()))
1900         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1901 
1902       IVLimit = SE->getAddExpr(IVInit, IVCount);
1903     }
1904     // Expand the code for the iteration count.
1905     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1906     IRBuilder<> Builder(BI);
1907     assert(SE->isLoopInvariant(IVLimit, L) &&
1908            "Computed iteration count is not loop invariant!");
1909     // Ensure that we generate the same type as IndVar, or a smaller integer
1910     // type. In the presence of null pointer values, we have an integer type
1911     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1912     Type *LimitTy = IVCount->getType()->isPointerTy() ?
1913       IndVar->getType() : IVCount->getType();
1914     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1915   }
1916 }
1917 
1918 /// This method rewrites the exit condition of the loop to be a canonical !=
1919 /// comparison against the incremented loop induction variable.  This pass is
1920 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1921 /// determine a loop-invariant trip count of the loop, which is actually a much
1922 /// broader range than just linear tests.
1923 Value *IndVarSimplify::
1924 linearFunctionTestReplace(Loop *L,
1925                           const SCEV *BackedgeTakenCount,
1926                           PHINode *IndVar,
1927                           SCEVExpander &Rewriter) {
1928   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
1929 
1930   // Initialize CmpIndVar and IVCount to their preincremented values.
1931   Value *CmpIndVar = IndVar;
1932   const SCEV *IVCount = BackedgeTakenCount;
1933 
1934   // If the exiting block is the same as the backedge block, we prefer to
1935   // compare against the post-incremented value, otherwise we must compare
1936   // against the preincremented value.
1937   if (L->getExitingBlock() == L->getLoopLatch()) {
1938     // Add one to the "backedge-taken" count to get the trip count.
1939     // This addition may overflow, which is valid as long as the comparison is
1940     // truncated to BackedgeTakenCount->getType().
1941     IVCount = SE->getAddExpr(BackedgeTakenCount,
1942                              SE->getOne(BackedgeTakenCount->getType()));
1943     // The BackedgeTaken expression contains the number of times that the
1944     // backedge branches to the loop header.  This is one less than the
1945     // number of times the loop executes, so use the incremented indvar.
1946     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1947   }
1948 
1949   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1950   assert(ExitCnt->getType()->isPointerTy() ==
1951              IndVar->getType()->isPointerTy() &&
1952          "genLoopLimit missed a cast");
1953 
1954   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1955   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1956   ICmpInst::Predicate P;
1957   if (L->contains(BI->getSuccessor(0)))
1958     P = ICmpInst::ICMP_NE;
1959   else
1960     P = ICmpInst::ICMP_EQ;
1961 
1962   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1963                << "      LHS:" << *CmpIndVar << '\n'
1964                << "       op:\t"
1965                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1966                << "      RHS:\t" << *ExitCnt << "\n"
1967                << "  IVCount:\t" << *IVCount << "\n");
1968 
1969   IRBuilder<> Builder(BI);
1970 
1971   // LFTR can ignore IV overflow and truncate to the width of
1972   // BECount. This avoids materializing the add(zext(add)) expression.
1973   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1974   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1975   if (CmpIndVarSize > ExitCntSize) {
1976     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1977     const SCEV *ARStart = AR->getStart();
1978     const SCEV *ARStep = AR->getStepRecurrence(*SE);
1979     // For constant IVCount, avoid truncation.
1980     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1981       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
1982       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
1983       // Note that the post-inc value of BackedgeTakenCount may have overflowed
1984       // above such that IVCount is now zero.
1985       if (IVCount != BackedgeTakenCount && Count == 0) {
1986         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1987         ++Count;
1988       }
1989       else
1990         Count = Count.zext(CmpIndVarSize);
1991       APInt NewLimit;
1992       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
1993         NewLimit = Start - Count;
1994       else
1995         NewLimit = Start + Count;
1996       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
1997 
1998       DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
1999     } else {
2000       // We try to extend trip count first. If that doesn't work we truncate IV.
2001       // Zext(trunc(IV)) == IV implies equivalence of the following two:
2002       // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2003       // one of the two holds, extend the trip count, otherwise we truncate IV.
2004       bool Extended = false;
2005       const SCEV *IV = SE->getSCEV(CmpIndVar);
2006       const SCEV *ZExtTrunc =
2007            SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2008                                                      ExitCnt->getType()),
2009                                  CmpIndVar->getType());
2010 
2011       if (ZExtTrunc == IV) {
2012         Extended = true;
2013         ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2014                                      "wide.trip.count");
2015       } else {
2016         const SCEV *SExtTrunc =
2017           SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2018                                                     ExitCnt->getType()),
2019                                 CmpIndVar->getType());
2020         if (SExtTrunc == IV) {
2021           Extended = true;
2022           ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2023                                        "wide.trip.count");
2024         }
2025       }
2026 
2027       if (!Extended)
2028         CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2029                                         "lftr.wideiv");
2030     }
2031   }
2032   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2033   Value *OrigCond = BI->getCondition();
2034   // It's tempting to use replaceAllUsesWith here to fully replace the old
2035   // comparison, but that's not immediately safe, since users of the old
2036   // comparison may not be dominated by the new comparison. Instead, just
2037   // update the branch to use the new comparison; in the common case this
2038   // will make old comparison dead.
2039   BI->setCondition(Cond);
2040   DeadInsts.push_back(OrigCond);
2041 
2042   ++NumLFTR;
2043   Changed = true;
2044   return Cond;
2045 }
2046 
2047 //===----------------------------------------------------------------------===//
2048 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2049 //===----------------------------------------------------------------------===//
2050 
2051 /// If there's a single exit block, sink any loop-invariant values that
2052 /// were defined in the preheader but not used inside the loop into the
2053 /// exit block to reduce register pressure in the loop.
2054 void IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2055   BasicBlock *ExitBlock = L->getExitBlock();
2056   if (!ExitBlock) return;
2057 
2058   BasicBlock *Preheader = L->getLoopPreheader();
2059   if (!Preheader) return;
2060 
2061   Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt();
2062   BasicBlock::iterator I(Preheader->getTerminator());
2063   while (I != Preheader->begin()) {
2064     --I;
2065     // New instructions were inserted at the end of the preheader.
2066     if (isa<PHINode>(I))
2067       break;
2068 
2069     // Don't move instructions which might have side effects, since the side
2070     // effects need to complete before instructions inside the loop.  Also don't
2071     // move instructions which might read memory, since the loop may modify
2072     // memory. Note that it's okay if the instruction might have undefined
2073     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2074     // block.
2075     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2076       continue;
2077 
2078     // Skip debug info intrinsics.
2079     if (isa<DbgInfoIntrinsic>(I))
2080       continue;
2081 
2082     // Skip eh pad instructions.
2083     if (I->isEHPad())
2084       continue;
2085 
2086     // Don't sink alloca: we never want to sink static alloca's out of the
2087     // entry block, and correctly sinking dynamic alloca's requires
2088     // checks for stacksave/stackrestore intrinsics.
2089     // FIXME: Refactor this check somehow?
2090     if (isa<AllocaInst>(I))
2091       continue;
2092 
2093     // Determine if there is a use in or before the loop (direct or
2094     // otherwise).
2095     bool UsedInLoop = false;
2096     for (Use &U : I->uses()) {
2097       Instruction *User = cast<Instruction>(U.getUser());
2098       BasicBlock *UseBB = User->getParent();
2099       if (PHINode *P = dyn_cast<PHINode>(User)) {
2100         unsigned i =
2101           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2102         UseBB = P->getIncomingBlock(i);
2103       }
2104       if (UseBB == Preheader || L->contains(UseBB)) {
2105         UsedInLoop = true;
2106         break;
2107       }
2108     }
2109 
2110     // If there is, the def must remain in the preheader.
2111     if (UsedInLoop)
2112       continue;
2113 
2114     // Otherwise, sink it to the exit block.
2115     Instruction *ToMove = &*I;
2116     bool Done = false;
2117 
2118     if (I != Preheader->begin()) {
2119       // Skip debug info intrinsics.
2120       do {
2121         --I;
2122       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2123 
2124       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2125         Done = true;
2126     } else {
2127       Done = true;
2128     }
2129 
2130     ToMove->moveBefore(InsertPt);
2131     if (Done) break;
2132     InsertPt = ToMove;
2133   }
2134 }
2135 
2136 //===----------------------------------------------------------------------===//
2137 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2138 //===----------------------------------------------------------------------===//
2139 
2140 bool IndVarSimplify::run(Loop *L) {
2141   // We need (and expect!) the incoming loop to be in LCSSA.
2142   assert(L->isRecursivelyLCSSAForm(*DT) && "LCSSA required to run indvars!");
2143 
2144   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2145   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2146   //    canonicalization can be a pessimization without LSR to "clean up"
2147   //    afterwards.
2148   //  - We depend on having a preheader; in particular,
2149   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2150   //    and we're in trouble if we can't find the induction variable even when
2151   //    we've manually inserted one.
2152   if (!L->isLoopSimplifyForm())
2153     return false;
2154 
2155   // If there are any floating-point recurrences, attempt to
2156   // transform them to use integer recurrences.
2157   rewriteNonIntegerIVs(L);
2158 
2159   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2160 
2161   // Create a rewriter object which we'll use to transform the code with.
2162   SCEVExpander Rewriter(*SE, DL, "indvars");
2163 #ifndef NDEBUG
2164   Rewriter.setDebugType(DEBUG_TYPE);
2165 #endif
2166 
2167   // Eliminate redundant IV users.
2168   //
2169   // Simplification works best when run before other consumers of SCEV. We
2170   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2171   // other expressions involving loop IVs have been evaluated. This helps SCEV
2172   // set no-wrap flags before normalizing sign/zero extension.
2173   Rewriter.disableCanonicalMode();
2174   simplifyAndExtend(L, Rewriter, LI);
2175 
2176   // Check to see if this loop has a computable loop-invariant execution count.
2177   // If so, this means that we can compute the final value of any expressions
2178   // that are recurrent in the loop, and substitute the exit values from the
2179   // loop into any instructions outside of the loop that use the final values of
2180   // the current expressions.
2181   //
2182   if (ReplaceExitValue != NeverRepl &&
2183       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2184     rewriteLoopExitValues(L, Rewriter);
2185 
2186   // Eliminate redundant IV cycles.
2187   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2188 
2189   // If we have a trip count expression, rewrite the loop's exit condition
2190   // using it.  We can currently only handle loops with a single exit.
2191   if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) {
2192     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2193     if (IndVar) {
2194       // Check preconditions for proper SCEVExpander operation. SCEV does not
2195       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2196       // pass that uses the SCEVExpander must do it. This does not work well for
2197       // loop passes because SCEVExpander makes assumptions about all loops,
2198       // while LoopPassManager only forces the current loop to be simplified.
2199       //
2200       // FIXME: SCEV expansion has no way to bail out, so the caller must
2201       // explicitly check any assumptions made by SCEV. Brittle.
2202       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2203       if (!AR || AR->getLoop()->getLoopPreheader())
2204         (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2205                                         Rewriter);
2206     }
2207   }
2208   // Clear the rewriter cache, because values that are in the rewriter's cache
2209   // can be deleted in the loop below, causing the AssertingVH in the cache to
2210   // trigger.
2211   Rewriter.clear();
2212 
2213   // Now that we're done iterating through lists, clean up any instructions
2214   // which are now dead.
2215   while (!DeadInsts.empty())
2216     if (Instruction *Inst =
2217             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2218       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2219 
2220   // The Rewriter may not be used from this point on.
2221 
2222   // Loop-invariant instructions in the preheader that aren't used in the
2223   // loop may be sunk below the loop to reduce register pressure.
2224   sinkUnusedInvariants(L);
2225 
2226   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2227   // trip count and therefore can further simplify exit values in addition to
2228   // rewriteLoopExitValues.
2229   rewriteFirstIterationLoopExitValues(L);
2230 
2231   // Clean up dead instructions.
2232   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2233 
2234   // Check a post-condition.
2235   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
2236 
2237   // Verify that LFTR, and any other change have not interfered with SCEV's
2238   // ability to compute trip count.
2239 #ifndef NDEBUG
2240   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2241     SE->forgetLoop(L);
2242     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2243     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2244         SE->getTypeSizeInBits(NewBECount->getType()))
2245       NewBECount = SE->getTruncateOrNoop(NewBECount,
2246                                          BackedgeTakenCount->getType());
2247     else
2248       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2249                                                  NewBECount->getType());
2250     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2251   }
2252 #endif
2253 
2254   return Changed;
2255 }
2256 
2257 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM) {
2258   auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
2259   Function *F = L.getHeader()->getParent();
2260   const DataLayout &DL = F->getParent()->getDataLayout();
2261 
2262   auto *LI = FAM.getCachedResult<LoopAnalysis>(*F);
2263   auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
2264   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
2265 
2266   assert((LI && SE && DT) &&
2267          "Analyses required for indvarsimplify not available!");
2268 
2269   // Optional analyses.
2270   auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
2271   auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(*F);
2272 
2273   IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2274   if (!IVS.run(&L))
2275     return PreservedAnalyses::all();
2276 
2277   // FIXME: This should also 'preserve the CFG'.
2278   return getLoopPassPreservedAnalyses();
2279 }
2280 
2281 namespace {
2282 struct IndVarSimplifyLegacyPass : public LoopPass {
2283   static char ID; // Pass identification, replacement for typeid
2284   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2285     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2286   }
2287 
2288   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2289     if (skipLoop(L))
2290       return false;
2291 
2292     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2293     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2294     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2295     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2296     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2297     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2298     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2299     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2300 
2301     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2302     return IVS.run(L);
2303   }
2304 
2305   void getAnalysisUsage(AnalysisUsage &AU) const override {
2306     AU.setPreservesCFG();
2307     getLoopAnalysisUsage(AU);
2308   }
2309 };
2310 }
2311 
2312 char IndVarSimplifyLegacyPass::ID = 0;
2313 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2314                       "Induction Variable Simplification", false, false)
2315 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2316 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2317                     "Induction Variable Simplification", false, false)
2318 
2319 Pass *llvm::createIndVarSimplifyPass() {
2320   return new IndVarSimplifyLegacyPass();
2321 }
2322