xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 31088a9d58a76b3b09c130b7c309048708ee9c06)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopPass.h"
34 #include "llvm/Analysis/ScalarEvolutionExpander.h"
35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
36 #include "llvm/Analysis/TargetLibraryInfo.h"
37 #include "llvm/Analysis/TargetTransformInfo.h"
38 #include "llvm/IR/BasicBlock.h"
39 #include "llvm/IR/CFG.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/Dominators.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/PatternMatch.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/raw_ostream.h"
51 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
52 #include "llvm/Transforms/Utils/Local.h"
53 #include "llvm/Transforms/Utils/LoopUtils.h"
54 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
55 using namespace llvm;
56 
57 #define DEBUG_TYPE "indvars"
58 
59 STATISTIC(NumWidened     , "Number of indvars widened");
60 STATISTIC(NumReplaced    , "Number of exit values replaced");
61 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
62 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
63 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
64 
65 // Trip count verification can be enabled by default under NDEBUG if we
66 // implement a strong expression equivalence checker in SCEV. Until then, we
67 // use the verify-indvars flag, which may assert in some cases.
68 static cl::opt<bool> VerifyIndvars(
69   "verify-indvars", cl::Hidden,
70   cl::desc("Verify the ScalarEvolution result after running indvars"));
71 
72 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
73   cl::desc("Reduce live induction variables."));
74 
75 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
76 
77 static cl::opt<ReplaceExitVal> ReplaceExitValue(
78     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
79     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
80     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
81                clEnumValN(OnlyCheapRepl, "cheap",
82                           "only replace exit value when the cost is cheap"),
83                clEnumValN(AlwaysRepl, "always",
84                           "always replace exit value whenever possible"),
85                clEnumValEnd));
86 
87 namespace {
88 struct RewritePhi;
89 
90 class IndVarSimplify : public LoopPass {
91   LoopInfo                  *LI;
92   ScalarEvolution           *SE;
93   DominatorTree             *DT;
94   TargetLibraryInfo         *TLI;
95   const TargetTransformInfo *TTI;
96 
97   SmallVector<WeakVH, 16> DeadInsts;
98   bool Changed;
99 public:
100 
101   static char ID; // Pass identification, replacement for typeid
102   IndVarSimplify()
103     : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
104     initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
105   }
106 
107   bool runOnLoop(Loop *L, LPPassManager &LPM) override;
108 
109   void getAnalysisUsage(AnalysisUsage &AU) const override {
110     AU.setPreservesCFG();
111     getLoopAnalysisUsage(AU);
112   }
113 
114 private:
115   void releaseMemory() override {
116     DeadInsts.clear();
117   }
118 
119   bool isValidRewrite(Value *FromVal, Value *ToVal);
120 
121   void handleFloatingPointIV(Loop *L, PHINode *PH);
122   void rewriteNonIntegerIVs(Loop *L);
123 
124   void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
125 
126   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
127   void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
128   void rewriteFirstIterationLoopExitValues(Loop *L);
129 
130   Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
131                                    PHINode *IndVar, SCEVExpander &Rewriter);
132 
133   void sinkUnusedInvariants(Loop *L);
134 
135   Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
136                             Instruction *InsertPt, Type *Ty);
137 };
138 }
139 
140 char IndVarSimplify::ID = 0;
141 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
142                 "Induction Variable Simplification", false, false)
143 INITIALIZE_PASS_DEPENDENCY(LoopPass)
144 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
145                 "Induction Variable Simplification", false, false)
146 
147 Pass *llvm::createIndVarSimplifyPass() {
148   return new IndVarSimplify();
149 }
150 
151 /// Return true if the SCEV expansion generated by the rewriter can replace the
152 /// original value. SCEV guarantees that it produces the same value, but the way
153 /// it is produced may be illegal IR.  Ideally, this function will only be
154 /// called for verification.
155 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
156   // If an SCEV expression subsumed multiple pointers, its expansion could
157   // reassociate the GEP changing the base pointer. This is illegal because the
158   // final address produced by a GEP chain must be inbounds relative to its
159   // underlying object. Otherwise basic alias analysis, among other things,
160   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
161   // producing an expression involving multiple pointers. Until then, we must
162   // bail out here.
163   //
164   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
165   // because it understands lcssa phis while SCEV does not.
166   Value *FromPtr = FromVal;
167   Value *ToPtr = ToVal;
168   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
169     FromPtr = GEP->getPointerOperand();
170   }
171   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
172     ToPtr = GEP->getPointerOperand();
173   }
174   if (FromPtr != FromVal || ToPtr != ToVal) {
175     // Quickly check the common case
176     if (FromPtr == ToPtr)
177       return true;
178 
179     // SCEV may have rewritten an expression that produces the GEP's pointer
180     // operand. That's ok as long as the pointer operand has the same base
181     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
182     // base of a recurrence. This handles the case in which SCEV expansion
183     // converts a pointer type recurrence into a nonrecurrent pointer base
184     // indexed by an integer recurrence.
185 
186     // If the GEP base pointer is a vector of pointers, abort.
187     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
188       return false;
189 
190     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
191     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
192     if (FromBase == ToBase)
193       return true;
194 
195     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
196           << *FromBase << " != " << *ToBase << "\n");
197 
198     return false;
199   }
200   return true;
201 }
202 
203 /// Determine the insertion point for this user. By default, insert immediately
204 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
205 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
206 /// common dominator for the incoming blocks.
207 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
208                                           DominatorTree *DT, LoopInfo *LI) {
209   PHINode *PHI = dyn_cast<PHINode>(User);
210   if (!PHI)
211     return User;
212 
213   Instruction *InsertPt = nullptr;
214   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
215     if (PHI->getIncomingValue(i) != Def)
216       continue;
217 
218     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
219     if (!InsertPt) {
220       InsertPt = InsertBB->getTerminator();
221       continue;
222     }
223     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
224     InsertPt = InsertBB->getTerminator();
225   }
226   assert(InsertPt && "Missing phi operand");
227 
228   auto *DefI = dyn_cast<Instruction>(Def);
229   if (!DefI)
230     return InsertPt;
231 
232   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
233 
234   auto *L = LI->getLoopFor(DefI->getParent());
235   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
236 
237   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
238     if (LI->getLoopFor(DTN->getBlock()) == L)
239       return DTN->getBlock()->getTerminator();
240 
241   llvm_unreachable("DefI dominates InsertPt!");
242 }
243 
244 //===----------------------------------------------------------------------===//
245 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
246 //===----------------------------------------------------------------------===//
247 
248 /// Convert APF to an integer, if possible.
249 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
250   bool isExact = false;
251   // See if we can convert this to an int64_t
252   uint64_t UIntVal;
253   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
254                            &isExact) != APFloat::opOK || !isExact)
255     return false;
256   IntVal = UIntVal;
257   return true;
258 }
259 
260 /// If the loop has floating induction variable then insert corresponding
261 /// integer induction variable if possible.
262 /// For example,
263 /// for(double i = 0; i < 10000; ++i)
264 ///   bar(i)
265 /// is converted into
266 /// for(int i = 0; i < 10000; ++i)
267 ///   bar((double)i);
268 ///
269 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
270   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
271   unsigned BackEdge     = IncomingEdge^1;
272 
273   // Check incoming value.
274   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
275 
276   int64_t InitValue;
277   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
278     return;
279 
280   // Check IV increment. Reject this PN if increment operation is not
281   // an add or increment value can not be represented by an integer.
282   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
283   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
284 
285   // If this is not an add of the PHI with a constantfp, or if the constant fp
286   // is not an integer, bail out.
287   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
288   int64_t IncValue;
289   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
290       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
291     return;
292 
293   // Check Incr uses. One user is PN and the other user is an exit condition
294   // used by the conditional terminator.
295   Value::user_iterator IncrUse = Incr->user_begin();
296   Instruction *U1 = cast<Instruction>(*IncrUse++);
297   if (IncrUse == Incr->user_end()) return;
298   Instruction *U2 = cast<Instruction>(*IncrUse++);
299   if (IncrUse != Incr->user_end()) return;
300 
301   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
302   // only used by a branch, we can't transform it.
303   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
304   if (!Compare)
305     Compare = dyn_cast<FCmpInst>(U2);
306   if (!Compare || !Compare->hasOneUse() ||
307       !isa<BranchInst>(Compare->user_back()))
308     return;
309 
310   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
311 
312   // We need to verify that the branch actually controls the iteration count
313   // of the loop.  If not, the new IV can overflow and no one will notice.
314   // The branch block must be in the loop and one of the successors must be out
315   // of the loop.
316   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
317   if (!L->contains(TheBr->getParent()) ||
318       (L->contains(TheBr->getSuccessor(0)) &&
319        L->contains(TheBr->getSuccessor(1))))
320     return;
321 
322 
323   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
324   // transform it.
325   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
326   int64_t ExitValue;
327   if (ExitValueVal == nullptr ||
328       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
329     return;
330 
331   // Find new predicate for integer comparison.
332   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
333   switch (Compare->getPredicate()) {
334   default: return;  // Unknown comparison.
335   case CmpInst::FCMP_OEQ:
336   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
337   case CmpInst::FCMP_ONE:
338   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
339   case CmpInst::FCMP_OGT:
340   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
341   case CmpInst::FCMP_OGE:
342   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
343   case CmpInst::FCMP_OLT:
344   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
345   case CmpInst::FCMP_OLE:
346   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
347   }
348 
349   // We convert the floating point induction variable to a signed i32 value if
350   // we can.  This is only safe if the comparison will not overflow in a way
351   // that won't be trapped by the integer equivalent operations.  Check for this
352   // now.
353   // TODO: We could use i64 if it is native and the range requires it.
354 
355   // The start/stride/exit values must all fit in signed i32.
356   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
357     return;
358 
359   // If not actually striding (add x, 0.0), avoid touching the code.
360   if (IncValue == 0)
361     return;
362 
363   // Positive and negative strides have different safety conditions.
364   if (IncValue > 0) {
365     // If we have a positive stride, we require the init to be less than the
366     // exit value.
367     if (InitValue >= ExitValue)
368       return;
369 
370     uint32_t Range = uint32_t(ExitValue-InitValue);
371     // Check for infinite loop, either:
372     // while (i <= Exit) or until (i > Exit)
373     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
374       if (++Range == 0) return;  // Range overflows.
375     }
376 
377     unsigned Leftover = Range % uint32_t(IncValue);
378 
379     // If this is an equality comparison, we require that the strided value
380     // exactly land on the exit value, otherwise the IV condition will wrap
381     // around and do things the fp IV wouldn't.
382     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
383         Leftover != 0)
384       return;
385 
386     // If the stride would wrap around the i32 before exiting, we can't
387     // transform the IV.
388     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
389       return;
390 
391   } else {
392     // If we have a negative stride, we require the init to be greater than the
393     // exit value.
394     if (InitValue <= ExitValue)
395       return;
396 
397     uint32_t Range = uint32_t(InitValue-ExitValue);
398     // Check for infinite loop, either:
399     // while (i >= Exit) or until (i < Exit)
400     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
401       if (++Range == 0) return;  // Range overflows.
402     }
403 
404     unsigned Leftover = Range % uint32_t(-IncValue);
405 
406     // If this is an equality comparison, we require that the strided value
407     // exactly land on the exit value, otherwise the IV condition will wrap
408     // around and do things the fp IV wouldn't.
409     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
410         Leftover != 0)
411       return;
412 
413     // If the stride would wrap around the i32 before exiting, we can't
414     // transform the IV.
415     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
416       return;
417   }
418 
419   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
420 
421   // Insert new integer induction variable.
422   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
423   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
424                       PN->getIncomingBlock(IncomingEdge));
425 
426   Value *NewAdd =
427     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
428                               Incr->getName()+".int", Incr);
429   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
430 
431   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
432                                       ConstantInt::get(Int32Ty, ExitValue),
433                                       Compare->getName());
434 
435   // In the following deletions, PN may become dead and may be deleted.
436   // Use a WeakVH to observe whether this happens.
437   WeakVH WeakPH = PN;
438 
439   // Delete the old floating point exit comparison.  The branch starts using the
440   // new comparison.
441   NewCompare->takeName(Compare);
442   Compare->replaceAllUsesWith(NewCompare);
443   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
444 
445   // Delete the old floating point increment.
446   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
447   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
448 
449   // If the FP induction variable still has uses, this is because something else
450   // in the loop uses its value.  In order to canonicalize the induction
451   // variable, we chose to eliminate the IV and rewrite it in terms of an
452   // int->fp cast.
453   //
454   // We give preference to sitofp over uitofp because it is faster on most
455   // platforms.
456   if (WeakPH) {
457     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
458                                  &*PN->getParent()->getFirstInsertionPt());
459     PN->replaceAllUsesWith(Conv);
460     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
461   }
462   Changed = true;
463 }
464 
465 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
466   // First step.  Check to see if there are any floating-point recurrences.
467   // If there are, change them into integer recurrences, permitting analysis by
468   // the SCEV routines.
469   //
470   BasicBlock *Header = L->getHeader();
471 
472   SmallVector<WeakVH, 8> PHIs;
473   for (BasicBlock::iterator I = Header->begin();
474        PHINode *PN = dyn_cast<PHINode>(I); ++I)
475     PHIs.push_back(PN);
476 
477   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
478     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
479       handleFloatingPointIV(L, PN);
480 
481   // If the loop previously had floating-point IV, ScalarEvolution
482   // may not have been able to compute a trip count. Now that we've done some
483   // re-writing, the trip count may be computable.
484   if (Changed)
485     SE->forgetLoop(L);
486 }
487 
488 namespace {
489 // Collect information about PHI nodes which can be transformed in
490 // rewriteLoopExitValues.
491 struct RewritePhi {
492   PHINode *PN;
493   unsigned Ith;  // Ith incoming value.
494   Value *Val;    // Exit value after expansion.
495   bool HighCost; // High Cost when expansion.
496 
497   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
498       : PN(P), Ith(I), Val(V), HighCost(H) {}
499 };
500 }
501 
502 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
503                                           Loop *L, Instruction *InsertPt,
504                                           Type *ResultTy) {
505   // Before expanding S into an expensive LLVM expression, see if we can use an
506   // already existing value as the expansion for S.
507   if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L))
508     if (ExistingValue->getType() == ResultTy)
509       return ExistingValue;
510 
511   // We didn't find anything, fall back to using SCEVExpander.
512   return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
513 }
514 
515 //===----------------------------------------------------------------------===//
516 // rewriteLoopExitValues - Optimize IV users outside the loop.
517 // As a side effect, reduces the amount of IV processing within the loop.
518 //===----------------------------------------------------------------------===//
519 
520 /// Check to see if this loop has a computable loop-invariant execution count.
521 /// If so, this means that we can compute the final value of any expressions
522 /// that are recurrent in the loop, and substitute the exit values from the loop
523 /// into any instructions outside of the loop that use the final values of the
524 /// current expressions.
525 ///
526 /// This is mostly redundant with the regular IndVarSimplify activities that
527 /// happen later, except that it's more powerful in some cases, because it's
528 /// able to brute-force evaluate arbitrary instructions as long as they have
529 /// constant operands at the beginning of the loop.
530 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
531   // Check a pre-condition.
532   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
533 
534   SmallVector<BasicBlock*, 8> ExitBlocks;
535   L->getUniqueExitBlocks(ExitBlocks);
536 
537   SmallVector<RewritePhi, 8> RewritePhiSet;
538   // Find all values that are computed inside the loop, but used outside of it.
539   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
540   // the exit blocks of the loop to find them.
541   for (BasicBlock *ExitBB : ExitBlocks) {
542     // If there are no PHI nodes in this exit block, then no values defined
543     // inside the loop are used on this path, skip it.
544     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
545     if (!PN) continue;
546 
547     unsigned NumPreds = PN->getNumIncomingValues();
548 
549     // Iterate over all of the PHI nodes.
550     BasicBlock::iterator BBI = ExitBB->begin();
551     while ((PN = dyn_cast<PHINode>(BBI++))) {
552       if (PN->use_empty())
553         continue; // dead use, don't replace it
554 
555       if (!SE->isSCEVable(PN->getType()))
556         continue;
557 
558       // It's necessary to tell ScalarEvolution about this explicitly so that
559       // it can walk the def-use list and forget all SCEVs, as it may not be
560       // watching the PHI itself. Once the new exit value is in place, there
561       // may not be a def-use connection between the loop and every instruction
562       // which got a SCEVAddRecExpr for that loop.
563       SE->forgetValue(PN);
564 
565       // Iterate over all of the values in all the PHI nodes.
566       for (unsigned i = 0; i != NumPreds; ++i) {
567         // If the value being merged in is not integer or is not defined
568         // in the loop, skip it.
569         Value *InVal = PN->getIncomingValue(i);
570         if (!isa<Instruction>(InVal))
571           continue;
572 
573         // If this pred is for a subloop, not L itself, skip it.
574         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
575           continue; // The Block is in a subloop, skip it.
576 
577         // Check that InVal is defined in the loop.
578         Instruction *Inst = cast<Instruction>(InVal);
579         if (!L->contains(Inst))
580           continue;
581 
582         // Okay, this instruction has a user outside of the current loop
583         // and varies predictably *inside* the loop.  Evaluate the value it
584         // contains when the loop exits, if possible.
585         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
586         if (!SE->isLoopInvariant(ExitValue, L) ||
587             !isSafeToExpand(ExitValue, *SE))
588           continue;
589 
590         // Computing the value outside of the loop brings no benefit if :
591         //  - it is definitely used inside the loop in a way which can not be
592         //    optimized away.
593         //  - no use outside of the loop can take advantage of hoisting the
594         //    computation out of the loop
595         if (ExitValue->getSCEVType()>=scMulExpr) {
596           unsigned NumHardInternalUses = 0;
597           unsigned NumSoftExternalUses = 0;
598           unsigned NumUses = 0;
599           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
600                IB != IE && NumUses <= 6; ++IB) {
601             Instruction *UseInstr = cast<Instruction>(*IB);
602             unsigned Opc = UseInstr->getOpcode();
603             NumUses++;
604             if (L->contains(UseInstr)) {
605               if (Opc == Instruction::Call || Opc == Instruction::Ret)
606                 NumHardInternalUses++;
607             } else {
608               if (Opc == Instruction::PHI) {
609                 // Do not count the Phi as a use. LCSSA may have inserted
610                 // plenty of trivial ones.
611                 NumUses--;
612                 for (auto PB = UseInstr->user_begin(),
613                           PE = UseInstr->user_end();
614                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
615                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
616                   if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
617                     NumSoftExternalUses++;
618                 }
619                 continue;
620               }
621               if (Opc != Instruction::Call && Opc != Instruction::Ret)
622                 NumSoftExternalUses++;
623             }
624           }
625           if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
626             continue;
627         }
628 
629         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
630         Value *ExitVal =
631             expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType());
632 
633         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
634                      << "  LoopVal = " << *Inst << "\n");
635 
636         if (!isValidRewrite(Inst, ExitVal)) {
637           DeadInsts.push_back(ExitVal);
638           continue;
639         }
640 
641         // Collect all the candidate PHINodes to be rewritten.
642         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
643       }
644     }
645   }
646 
647   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
648 
649   // Transformation.
650   for (const RewritePhi &Phi : RewritePhiSet) {
651     PHINode *PN = Phi.PN;
652     Value *ExitVal = Phi.Val;
653 
654     // Only do the rewrite when the ExitValue can be expanded cheaply.
655     // If LoopCanBeDel is true, rewrite exit value aggressively.
656     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
657       DeadInsts.push_back(ExitVal);
658       continue;
659     }
660 
661     Changed = true;
662     ++NumReplaced;
663     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
664     PN->setIncomingValue(Phi.Ith, ExitVal);
665 
666     // If this instruction is dead now, delete it. Don't do it now to avoid
667     // invalidating iterators.
668     if (isInstructionTriviallyDead(Inst, TLI))
669       DeadInsts.push_back(Inst);
670 
671     // Replace PN with ExitVal if that is legal and does not break LCSSA.
672     if (PN->getNumIncomingValues() == 1 &&
673         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
674       PN->replaceAllUsesWith(ExitVal);
675       PN->eraseFromParent();
676     }
677   }
678 
679   // The insertion point instruction may have been deleted; clear it out
680   // so that the rewriter doesn't trip over it later.
681   Rewriter.clearInsertPoint();
682 }
683 
684 //===---------------------------------------------------------------------===//
685 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
686 // they will exit at the first iteration.
687 //===---------------------------------------------------------------------===//
688 
689 /// Check to see if this loop has loop invariant conditions which lead to loop
690 /// exits. If so, we know that if the exit path is taken, it is at the first
691 /// loop iteration. This lets us predict exit values of PHI nodes that live in
692 /// loop header.
693 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
694   // Verify the input to the pass is already in LCSSA form.
695   assert(L->isLCSSAForm(*DT));
696 
697   SmallVector<BasicBlock *, 8> ExitBlocks;
698   L->getUniqueExitBlocks(ExitBlocks);
699   auto *LoopHeader = L->getHeader();
700   assert(LoopHeader && "Invalid loop");
701 
702   for (auto *ExitBB : ExitBlocks) {
703     BasicBlock::iterator BBI = ExitBB->begin();
704     // If there are no more PHI nodes in this exit block, then no more
705     // values defined inside the loop are used on this path.
706     while (auto *PN = dyn_cast<PHINode>(BBI++)) {
707       for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues();
708           IncomingValIdx != E; ++IncomingValIdx) {
709         auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx);
710 
711         // We currently only support loop exits from loop header. If the
712         // incoming block is not loop header, we need to recursively check
713         // all conditions starting from loop header are loop invariants.
714         // Additional support might be added in the future.
715         if (IncomingBB != LoopHeader)
716           continue;
717 
718         // Get condition that leads to the exit path.
719         auto *TermInst = IncomingBB->getTerminator();
720 
721         Value *Cond = nullptr;
722         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
723           // Must be a conditional branch, otherwise the block
724           // should not be in the loop.
725           Cond = BI->getCondition();
726         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
727           Cond = SI->getCondition();
728         else
729           continue;
730 
731         if (!L->isLoopInvariant(Cond))
732           continue;
733 
734         auto *ExitVal =
735             dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx));
736 
737         // Only deal with PHIs.
738         if (!ExitVal)
739           continue;
740 
741         // If ExitVal is a PHI on the loop header, then we know its
742         // value along this exit because the exit can only be taken
743         // on the first iteration.
744         auto *LoopPreheader = L->getLoopPreheader();
745         assert(LoopPreheader && "Invalid loop");
746         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
747         if (PreheaderIdx != -1) {
748           assert(ExitVal->getParent() == LoopHeader &&
749                  "ExitVal must be in loop header");
750           PN->setIncomingValue(IncomingValIdx,
751               ExitVal->getIncomingValue(PreheaderIdx));
752         }
753       }
754     }
755   }
756 }
757 
758 /// Check whether it is possible to delete the loop after rewriting exit
759 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
760 /// aggressively.
761 bool IndVarSimplify::canLoopBeDeleted(
762     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
763 
764   BasicBlock *Preheader = L->getLoopPreheader();
765   // If there is no preheader, the loop will not be deleted.
766   if (!Preheader)
767     return false;
768 
769   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
770   // We obviate multiple ExitingBlocks case for simplicity.
771   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
772   // after exit value rewriting, we can enhance the logic here.
773   SmallVector<BasicBlock *, 4> ExitingBlocks;
774   L->getExitingBlocks(ExitingBlocks);
775   SmallVector<BasicBlock *, 8> ExitBlocks;
776   L->getUniqueExitBlocks(ExitBlocks);
777   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
778     return false;
779 
780   BasicBlock *ExitBlock = ExitBlocks[0];
781   BasicBlock::iterator BI = ExitBlock->begin();
782   while (PHINode *P = dyn_cast<PHINode>(BI)) {
783     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
784 
785     // If the Incoming value of P is found in RewritePhiSet, we know it
786     // could be rewritten to use a loop invariant value in transformation
787     // phase later. Skip it in the loop invariant check below.
788     bool found = false;
789     for (const RewritePhi &Phi : RewritePhiSet) {
790       unsigned i = Phi.Ith;
791       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
792         found = true;
793         break;
794       }
795     }
796 
797     Instruction *I;
798     if (!found && (I = dyn_cast<Instruction>(Incoming)))
799       if (!L->hasLoopInvariantOperands(I))
800         return false;
801 
802     ++BI;
803   }
804 
805   for (auto *BB : L->blocks())
806     if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); }))
807       return false;
808 
809   return true;
810 }
811 
812 //===----------------------------------------------------------------------===//
813 //  IV Widening - Extend the width of an IV to cover its widest uses.
814 //===----------------------------------------------------------------------===//
815 
816 namespace {
817 // Collect information about induction variables that are used by sign/zero
818 // extend operations. This information is recorded by CollectExtend and provides
819 // the input to WidenIV.
820 struct WideIVInfo {
821   PHINode *NarrowIV = nullptr;
822   Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext
823   bool IsSigned = false;            // Was a sext user seen before a zext?
824 };
825 }
826 
827 /// Update information about the induction variable that is extended by this
828 /// sign or zero extend operation. This is used to determine the final width of
829 /// the IV before actually widening it.
830 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
831                         const TargetTransformInfo *TTI) {
832   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
833   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
834     return;
835 
836   Type *Ty = Cast->getType();
837   uint64_t Width = SE->getTypeSizeInBits(Ty);
838   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
839     return;
840 
841   // Cast is either an sext or zext up to this point.
842   // We should not widen an indvar if arithmetics on the wider indvar are more
843   // expensive than those on the narrower indvar. We check only the cost of ADD
844   // because at least an ADD is required to increment the induction variable. We
845   // could compute more comprehensively the cost of all instructions on the
846   // induction variable when necessary.
847   if (TTI &&
848       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
849           TTI->getArithmeticInstrCost(Instruction::Add,
850                                       Cast->getOperand(0)->getType())) {
851     return;
852   }
853 
854   if (!WI.WidestNativeType) {
855     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
856     WI.IsSigned = IsSigned;
857     return;
858   }
859 
860   // We extend the IV to satisfy the sign of its first user, arbitrarily.
861   if (WI.IsSigned != IsSigned)
862     return;
863 
864   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
865     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
866 }
867 
868 namespace {
869 
870 /// Record a link in the Narrow IV def-use chain along with the WideIV that
871 /// computes the same value as the Narrow IV def.  This avoids caching Use*
872 /// pointers.
873 struct NarrowIVDefUse {
874   Instruction *NarrowDef = nullptr;
875   Instruction *NarrowUse = nullptr;
876   Instruction *WideDef = nullptr;
877 
878   // True if the narrow def is never negative.  Tracking this information lets
879   // us use a sign extension instead of a zero extension or vice versa, when
880   // profitable and legal.
881   bool NeverNegative = false;
882 
883   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
884                  bool NeverNegative)
885       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
886         NeverNegative(NeverNegative) {}
887 };
888 
889 /// The goal of this transform is to remove sign and zero extends without
890 /// creating any new induction variables. To do this, it creates a new phi of
891 /// the wider type and redirects all users, either removing extends or inserting
892 /// truncs whenever we stop propagating the type.
893 ///
894 class WidenIV {
895   // Parameters
896   PHINode *OrigPhi;
897   Type *WideType;
898   bool IsSigned;
899 
900   // Context
901   LoopInfo        *LI;
902   Loop            *L;
903   ScalarEvolution *SE;
904   DominatorTree   *DT;
905 
906   // Result
907   PHINode *WidePhi;
908   Instruction *WideInc;
909   const SCEV *WideIncExpr;
910   SmallVectorImpl<WeakVH> &DeadInsts;
911 
912   SmallPtrSet<Instruction*,16> Widened;
913   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
914 
915 public:
916   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
917           ScalarEvolution *SEv, DominatorTree *DTree,
918           SmallVectorImpl<WeakVH> &DI) :
919     OrigPhi(WI.NarrowIV),
920     WideType(WI.WidestNativeType),
921     IsSigned(WI.IsSigned),
922     LI(LInfo),
923     L(LI->getLoopFor(OrigPhi->getParent())),
924     SE(SEv),
925     DT(DTree),
926     WidePhi(nullptr),
927     WideInc(nullptr),
928     WideIncExpr(nullptr),
929     DeadInsts(DI) {
930     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
931   }
932 
933   PHINode *createWideIV(SCEVExpander &Rewriter);
934 
935 protected:
936   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
937                           Instruction *Use);
938 
939   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
940   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
941                                      const SCEVAddRecExpr *WideAR);
942   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
943 
944   const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse);
945 
946   const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU);
947 
948   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
949                               unsigned OpCode) const;
950 
951   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
952 
953   bool widenLoopCompare(NarrowIVDefUse DU);
954 
955   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
956 };
957 } // anonymous namespace
958 
959 /// Perform a quick domtree based check for loop invariance assuming that V is
960 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
961 /// purpose.
962 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
963   Instruction *Inst = dyn_cast<Instruction>(V);
964   if (!Inst)
965     return true;
966 
967   return DT->properlyDominates(Inst->getParent(), L->getHeader());
968 }
969 
970 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
971                                  bool IsSigned, Instruction *Use) {
972   // Set the debug location and conservative insertion point.
973   IRBuilder<> Builder(Use);
974   // Hoist the insertion point into loop preheaders as far as possible.
975   for (const Loop *L = LI->getLoopFor(Use->getParent());
976        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
977        L = L->getParentLoop())
978     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
979 
980   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
981                     Builder.CreateZExt(NarrowOper, WideType);
982 }
983 
984 /// Instantiate a wide operation to replace a narrow operation. This only needs
985 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
986 /// 0 for any operation we decide not to clone.
987 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
988                                   const SCEVAddRecExpr *WideAR) {
989   unsigned Opcode = DU.NarrowUse->getOpcode();
990   switch (Opcode) {
991   default:
992     return nullptr;
993   case Instruction::Add:
994   case Instruction::Mul:
995   case Instruction::UDiv:
996   case Instruction::Sub:
997     return cloneArithmeticIVUser(DU, WideAR);
998 
999   case Instruction::And:
1000   case Instruction::Or:
1001   case Instruction::Xor:
1002   case Instruction::Shl:
1003   case Instruction::LShr:
1004   case Instruction::AShr:
1005     return cloneBitwiseIVUser(DU);
1006   }
1007 }
1008 
1009 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1010   Instruction *NarrowUse = DU.NarrowUse;
1011   Instruction *NarrowDef = DU.NarrowDef;
1012   Instruction *WideDef = DU.WideDef;
1013 
1014   DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1015 
1016   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1017   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1018   // invariant and will be folded or hoisted. If it actually comes from a
1019   // widened IV, it should be removed during a future call to widenIVUse.
1020   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1021                    ? WideDef
1022                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1023                                       IsSigned, NarrowUse);
1024   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1025                    ? WideDef
1026                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1027                                       IsSigned, NarrowUse);
1028 
1029   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1030   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1031                                         NarrowBO->getName());
1032   IRBuilder<> Builder(NarrowUse);
1033   Builder.Insert(WideBO);
1034   WideBO->copyIRFlags(NarrowBO);
1035   return WideBO;
1036 }
1037 
1038 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1039                                             const SCEVAddRecExpr *WideAR) {
1040   Instruction *NarrowUse = DU.NarrowUse;
1041   Instruction *NarrowDef = DU.NarrowDef;
1042   Instruction *WideDef = DU.WideDef;
1043 
1044   DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1045 
1046   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1047 
1048   // We're trying to find X such that
1049   //
1050   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1051   //
1052   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1053   // and check using SCEV if any of them are correct.
1054 
1055   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1056   // correct solution to X.
1057   auto GuessNonIVOperand = [&](bool SignExt) {
1058     const SCEV *WideLHS;
1059     const SCEV *WideRHS;
1060 
1061     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1062       if (SignExt)
1063         return SE->getSignExtendExpr(S, Ty);
1064       return SE->getZeroExtendExpr(S, Ty);
1065     };
1066 
1067     if (IVOpIdx == 0) {
1068       WideLHS = SE->getSCEV(WideDef);
1069       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1070       WideRHS = GetExtend(NarrowRHS, WideType);
1071     } else {
1072       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1073       WideLHS = GetExtend(NarrowLHS, WideType);
1074       WideRHS = SE->getSCEV(WideDef);
1075     }
1076 
1077     // WideUse is "WideDef `op.wide` X" as described in the comment.
1078     const SCEV *WideUse = nullptr;
1079 
1080     switch (NarrowUse->getOpcode()) {
1081     default:
1082       llvm_unreachable("No other possibility!");
1083 
1084     case Instruction::Add:
1085       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1086       break;
1087 
1088     case Instruction::Mul:
1089       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1090       break;
1091 
1092     case Instruction::UDiv:
1093       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1094       break;
1095 
1096     case Instruction::Sub:
1097       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1098       break;
1099     }
1100 
1101     return WideUse == WideAR;
1102   };
1103 
1104   bool SignExtend = IsSigned;
1105   if (!GuessNonIVOperand(SignExtend)) {
1106     SignExtend = !SignExtend;
1107     if (!GuessNonIVOperand(SignExtend))
1108       return nullptr;
1109   }
1110 
1111   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1112                    ? WideDef
1113                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1114                                       SignExtend, NarrowUse);
1115   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1116                    ? WideDef
1117                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1118                                       SignExtend, NarrowUse);
1119 
1120   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1121   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1122                                         NarrowBO->getName());
1123 
1124   IRBuilder<> Builder(NarrowUse);
1125   Builder.Insert(WideBO);
1126   WideBO->copyIRFlags(NarrowBO);
1127   return WideBO;
1128 }
1129 
1130 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1131                                      unsigned OpCode) const {
1132   if (OpCode == Instruction::Add)
1133     return SE->getAddExpr(LHS, RHS);
1134   if (OpCode == Instruction::Sub)
1135     return SE->getMinusSCEV(LHS, RHS);
1136   if (OpCode == Instruction::Mul)
1137     return SE->getMulExpr(LHS, RHS);
1138 
1139   llvm_unreachable("Unsupported opcode.");
1140 }
1141 
1142 /// No-wrap operations can transfer sign extension of their result to their
1143 /// operands. Generate the SCEV value for the widened operation without
1144 /// actually modifying the IR yet. If the expression after extending the
1145 /// operands is an AddRec for this loop, return it.
1146 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1147 
1148   // Handle the common case of add<nsw/nuw>
1149   const unsigned OpCode = DU.NarrowUse->getOpcode();
1150   // Only Add/Sub/Mul instructions supported yet.
1151   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1152       OpCode != Instruction::Mul)
1153     return nullptr;
1154 
1155   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1156   // if extending the other will lead to a recurrence.
1157   const unsigned ExtendOperIdx =
1158       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1159   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1160 
1161   const SCEV *ExtendOperExpr = nullptr;
1162   const OverflowingBinaryOperator *OBO =
1163     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1164   if (IsSigned && OBO->hasNoSignedWrap())
1165     ExtendOperExpr = SE->getSignExtendExpr(
1166       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1167   else if(!IsSigned && OBO->hasNoUnsignedWrap())
1168     ExtendOperExpr = SE->getZeroExtendExpr(
1169       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1170   else
1171     return nullptr;
1172 
1173   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1174   // flags. This instruction may be guarded by control flow that the no-wrap
1175   // behavior depends on. Non-control-equivalent instructions can be mapped to
1176   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1177   // semantics to those operations.
1178   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1179   const SCEV *rhs = ExtendOperExpr;
1180 
1181   // Let's swap operands to the initial order for the case of non-commutative
1182   // operations, like SUB. See PR21014.
1183   if (ExtendOperIdx == 0)
1184     std::swap(lhs, rhs);
1185   const SCEVAddRecExpr *AddRec =
1186       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1187 
1188   if (!AddRec || AddRec->getLoop() != L)
1189     return nullptr;
1190   return AddRec;
1191 }
1192 
1193 /// Is this instruction potentially interesting for further simplification after
1194 /// widening it's type? In other words, can the extend be safely hoisted out of
1195 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1196 /// so, return the sign or zero extended recurrence. Otherwise return NULL.
1197 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) {
1198   if (!SE->isSCEVable(NarrowUse->getType()))
1199     return nullptr;
1200 
1201   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
1202   if (SE->getTypeSizeInBits(NarrowExpr->getType())
1203       >= SE->getTypeSizeInBits(WideType)) {
1204     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1205     // index. So don't follow this use.
1206     return nullptr;
1207   }
1208 
1209   const SCEV *WideExpr = IsSigned ?
1210     SE->getSignExtendExpr(NarrowExpr, WideType) :
1211     SE->getZeroExtendExpr(NarrowExpr, WideType);
1212   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1213   if (!AddRec || AddRec->getLoop() != L)
1214     return nullptr;
1215   return AddRec;
1216 }
1217 
1218 /// This IV user cannot be widen. Replace this use of the original narrow IV
1219 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1220 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1221   DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
1222         << " for user " << *DU.NarrowUse << "\n");
1223   IRBuilder<> Builder(
1224       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1225   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1226   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1227 }
1228 
1229 /// If the narrow use is a compare instruction, then widen the compare
1230 //  (and possibly the other operand).  The extend operation is hoisted into the
1231 // loop preheader as far as possible.
1232 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1233   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1234   if (!Cmp)
1235     return false;
1236 
1237   // We can legally widen the comparison in the following two cases:
1238   //
1239   //  - The signedness of the IV extension and comparison match
1240   //
1241   //  - The narrow IV is always positive (and thus its sign extension is equal
1242   //    to its zero extension).  For instance, let's say we're zero extending
1243   //    %narrow for the following use
1244   //
1245   //      icmp slt i32 %narrow, %val   ... (A)
1246   //
1247   //    and %narrow is always positive.  Then
1248   //
1249   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1250   //          == icmp slt i32 zext(%narrow), sext(%val)
1251 
1252   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1253     return false;
1254 
1255   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1256   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1257   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1258   assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
1259 
1260   // Widen the compare instruction.
1261   IRBuilder<> Builder(
1262       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1263   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1264 
1265   // Widen the other operand of the compare, if necessary.
1266   if (CastWidth < IVWidth) {
1267     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1268     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1269   }
1270   return true;
1271 }
1272 
1273 /// Determine whether an individual user of the narrow IV can be widened. If so,
1274 /// return the wide clone of the user.
1275 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1276 
1277   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1278   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1279     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1280       // For LCSSA phis, sink the truncate outside the loop.
1281       // After SimplifyCFG most loop exit targets have a single predecessor.
1282       // Otherwise fall back to a truncate within the loop.
1283       if (UsePhi->getNumOperands() != 1)
1284         truncateIVUse(DU, DT, LI);
1285       else {
1286         PHINode *WidePhi =
1287           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1288                           UsePhi);
1289         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1290         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1291         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1292         UsePhi->replaceAllUsesWith(Trunc);
1293         DeadInsts.emplace_back(UsePhi);
1294         DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1295               << " to " << *WidePhi << "\n");
1296       }
1297       return nullptr;
1298     }
1299   }
1300   // Our raison d'etre! Eliminate sign and zero extension.
1301   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
1302     Value *NewDef = DU.WideDef;
1303     if (DU.NarrowUse->getType() != WideType) {
1304       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1305       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1306       if (CastWidth < IVWidth) {
1307         // The cast isn't as wide as the IV, so insert a Trunc.
1308         IRBuilder<> Builder(DU.NarrowUse);
1309         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1310       }
1311       else {
1312         // A wider extend was hidden behind a narrower one. This may induce
1313         // another round of IV widening in which the intermediate IV becomes
1314         // dead. It should be very rare.
1315         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1316               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1317         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1318         NewDef = DU.NarrowUse;
1319       }
1320     }
1321     if (NewDef != DU.NarrowUse) {
1322       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1323             << " replaced by " << *DU.WideDef << "\n");
1324       ++NumElimExt;
1325       DU.NarrowUse->replaceAllUsesWith(NewDef);
1326       DeadInsts.emplace_back(DU.NarrowUse);
1327     }
1328     // Now that the extend is gone, we want to expose it's uses for potential
1329     // further simplification. We don't need to directly inform SimplifyIVUsers
1330     // of the new users, because their parent IV will be processed later as a
1331     // new loop phi. If we preserved IVUsers analysis, we would also want to
1332     // push the uses of WideDef here.
1333 
1334     // No further widening is needed. The deceased [sz]ext had done it for us.
1335     return nullptr;
1336   }
1337 
1338   // Does this user itself evaluate to a recurrence after widening?
1339   const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse);
1340   if (!WideAddRec)
1341     WideAddRec = getExtendedOperandRecurrence(DU);
1342 
1343   if (!WideAddRec) {
1344     // If use is a loop condition, try to promote the condition instead of
1345     // truncating the IV first.
1346     if (widenLoopCompare(DU))
1347       return nullptr;
1348 
1349     // This user does not evaluate to a recurence after widening, so don't
1350     // follow it. Instead insert a Trunc to kill off the original use,
1351     // eventually isolating the original narrow IV so it can be removed.
1352     truncateIVUse(DU, DT, LI);
1353     return nullptr;
1354   }
1355   // Assume block terminators cannot evaluate to a recurrence. We can't to
1356   // insert a Trunc after a terminator if there happens to be a critical edge.
1357   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1358          "SCEV is not expected to evaluate a block terminator");
1359 
1360   // Reuse the IV increment that SCEVExpander created as long as it dominates
1361   // NarrowUse.
1362   Instruction *WideUse = nullptr;
1363   if (WideAddRec == WideIncExpr
1364       && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1365     WideUse = WideInc;
1366   else {
1367     WideUse = cloneIVUser(DU, WideAddRec);
1368     if (!WideUse)
1369       return nullptr;
1370   }
1371   // Evaluation of WideAddRec ensured that the narrow expression could be
1372   // extended outside the loop without overflow. This suggests that the wide use
1373   // evaluates to the same expression as the extended narrow use, but doesn't
1374   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1375   // where it fails, we simply throw away the newly created wide use.
1376   if (WideAddRec != SE->getSCEV(WideUse)) {
1377     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1378           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1379     DeadInsts.emplace_back(WideUse);
1380     return nullptr;
1381   }
1382 
1383   // Returning WideUse pushes it on the worklist.
1384   return WideUse;
1385 }
1386 
1387 /// Add eligible users of NarrowDef to NarrowIVUsers.
1388 ///
1389 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1390   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1391   bool NeverNegative =
1392       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1393                            SE->getConstant(NarrowSCEV->getType(), 0));
1394   for (User *U : NarrowDef->users()) {
1395     Instruction *NarrowUser = cast<Instruction>(U);
1396 
1397     // Handle data flow merges and bizarre phi cycles.
1398     if (!Widened.insert(NarrowUser).second)
1399       continue;
1400 
1401     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative);
1402   }
1403 }
1404 
1405 /// Process a single induction variable. First use the SCEVExpander to create a
1406 /// wide induction variable that evaluates to the same recurrence as the
1407 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1408 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1409 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1410 ///
1411 /// It would be simpler to delete uses as they are processed, but we must avoid
1412 /// invalidating SCEV expressions.
1413 ///
1414 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1415   // Is this phi an induction variable?
1416   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1417   if (!AddRec)
1418     return nullptr;
1419 
1420   // Widen the induction variable expression.
1421   const SCEV *WideIVExpr = IsSigned ?
1422     SE->getSignExtendExpr(AddRec, WideType) :
1423     SE->getZeroExtendExpr(AddRec, WideType);
1424 
1425   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1426          "Expect the new IV expression to preserve its type");
1427 
1428   // Can the IV be extended outside the loop without overflow?
1429   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1430   if (!AddRec || AddRec->getLoop() != L)
1431     return nullptr;
1432 
1433   // An AddRec must have loop-invariant operands. Since this AddRec is
1434   // materialized by a loop header phi, the expression cannot have any post-loop
1435   // operands, so they must dominate the loop header.
1436   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1437          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1438          && "Loop header phi recurrence inputs do not dominate the loop");
1439 
1440   // The rewriter provides a value for the desired IV expression. This may
1441   // either find an existing phi or materialize a new one. Either way, we
1442   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1443   // of the phi-SCC dominates the loop entry.
1444   Instruction *InsertPt = &L->getHeader()->front();
1445   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1446 
1447   // Remembering the WideIV increment generated by SCEVExpander allows
1448   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1449   // employ a general reuse mechanism because the call above is the only call to
1450   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1451   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1452     WideInc =
1453       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1454     WideIncExpr = SE->getSCEV(WideInc);
1455   }
1456 
1457   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1458   ++NumWidened;
1459 
1460   // Traverse the def-use chain using a worklist starting at the original IV.
1461   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1462 
1463   Widened.insert(OrigPhi);
1464   pushNarrowIVUsers(OrigPhi, WidePhi);
1465 
1466   while (!NarrowIVUsers.empty()) {
1467     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1468 
1469     // Process a def-use edge. This may replace the use, so don't hold a
1470     // use_iterator across it.
1471     Instruction *WideUse = widenIVUse(DU, Rewriter);
1472 
1473     // Follow all def-use edges from the previous narrow use.
1474     if (WideUse)
1475       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1476 
1477     // widenIVUse may have removed the def-use edge.
1478     if (DU.NarrowDef->use_empty())
1479       DeadInsts.emplace_back(DU.NarrowDef);
1480   }
1481   return WidePhi;
1482 }
1483 
1484 //===----------------------------------------------------------------------===//
1485 //  Live IV Reduction - Minimize IVs live across the loop.
1486 //===----------------------------------------------------------------------===//
1487 
1488 
1489 //===----------------------------------------------------------------------===//
1490 //  Simplification of IV users based on SCEV evaluation.
1491 //===----------------------------------------------------------------------===//
1492 
1493 namespace {
1494 class IndVarSimplifyVisitor : public IVVisitor {
1495   ScalarEvolution *SE;
1496   const TargetTransformInfo *TTI;
1497   PHINode *IVPhi;
1498 
1499 public:
1500   WideIVInfo WI;
1501 
1502   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1503                         const TargetTransformInfo *TTI,
1504                         const DominatorTree *DTree)
1505     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1506     DT = DTree;
1507     WI.NarrowIV = IVPhi;
1508     if (ReduceLiveIVs)
1509       setSplitOverflowIntrinsics();
1510   }
1511 
1512   // Implement the interface used by simplifyUsersOfIV.
1513   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1514 };
1515 }
1516 
1517 /// Iteratively perform simplification on a worklist of IV users. Each
1518 /// successive simplification may push more users which may themselves be
1519 /// candidates for simplification.
1520 ///
1521 /// Sign/Zero extend elimination is interleaved with IV simplification.
1522 ///
1523 void IndVarSimplify::simplifyAndExtend(Loop *L,
1524                                        SCEVExpander &Rewriter,
1525                                        LoopInfo *LI) {
1526   SmallVector<WideIVInfo, 8> WideIVs;
1527 
1528   SmallVector<PHINode*, 8> LoopPhis;
1529   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1530     LoopPhis.push_back(cast<PHINode>(I));
1531   }
1532   // Each round of simplification iterates through the SimplifyIVUsers worklist
1533   // for all current phis, then determines whether any IVs can be
1534   // widened. Widening adds new phis to LoopPhis, inducing another round of
1535   // simplification on the wide IVs.
1536   while (!LoopPhis.empty()) {
1537     // Evaluate as many IV expressions as possible before widening any IVs. This
1538     // forces SCEV to set no-wrap flags before evaluating sign/zero
1539     // extension. The first time SCEV attempts to normalize sign/zero extension,
1540     // the result becomes final. So for the most predictable results, we delay
1541     // evaluation of sign/zero extend evaluation until needed, and avoid running
1542     // other SCEV based analysis prior to simplifyAndExtend.
1543     do {
1544       PHINode *CurrIV = LoopPhis.pop_back_val();
1545 
1546       // Information about sign/zero extensions of CurrIV.
1547       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1548 
1549       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor);
1550 
1551       if (Visitor.WI.WidestNativeType) {
1552         WideIVs.push_back(Visitor.WI);
1553       }
1554     } while(!LoopPhis.empty());
1555 
1556     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1557       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1558       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1559         Changed = true;
1560         LoopPhis.push_back(WidePhi);
1561       }
1562     }
1563   }
1564 }
1565 
1566 //===----------------------------------------------------------------------===//
1567 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1568 //===----------------------------------------------------------------------===//
1569 
1570 /// Return true if this loop's backedge taken count expression can be safely and
1571 /// cheaply expanded into an instruction sequence that can be used by
1572 /// linearFunctionTestReplace.
1573 ///
1574 /// TODO: This fails for pointer-type loop counters with greater than one byte
1575 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1576 /// we could skip this check in the case that the LFTR loop counter (chosen by
1577 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1578 /// the loop test to an inequality test by checking the target data's alignment
1579 /// of element types (given that the initial pointer value originates from or is
1580 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1581 /// However, we don't yet have a strong motivation for converting loop tests
1582 /// into inequality tests.
1583 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1584                                         SCEVExpander &Rewriter) {
1585   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1586   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1587       BackedgeTakenCount->isZero())
1588     return false;
1589 
1590   if (!L->getExitingBlock())
1591     return false;
1592 
1593   // Can't rewrite non-branch yet.
1594   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
1595     return false;
1596 
1597   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
1598     return false;
1599 
1600   return true;
1601 }
1602 
1603 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
1604 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1605   Instruction *IncI = dyn_cast<Instruction>(IncV);
1606   if (!IncI)
1607     return nullptr;
1608 
1609   switch (IncI->getOpcode()) {
1610   case Instruction::Add:
1611   case Instruction::Sub:
1612     break;
1613   case Instruction::GetElementPtr:
1614     // An IV counter must preserve its type.
1615     if (IncI->getNumOperands() == 2)
1616       break;
1617   default:
1618     return nullptr;
1619   }
1620 
1621   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1622   if (Phi && Phi->getParent() == L->getHeader()) {
1623     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1624       return Phi;
1625     return nullptr;
1626   }
1627   if (IncI->getOpcode() == Instruction::GetElementPtr)
1628     return nullptr;
1629 
1630   // Allow add/sub to be commuted.
1631   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1632   if (Phi && Phi->getParent() == L->getHeader()) {
1633     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1634       return Phi;
1635   }
1636   return nullptr;
1637 }
1638 
1639 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1640 static ICmpInst *getLoopTest(Loop *L) {
1641   assert(L->getExitingBlock() && "expected loop exit");
1642 
1643   BasicBlock *LatchBlock = L->getLoopLatch();
1644   // Don't bother with LFTR if the loop is not properly simplified.
1645   if (!LatchBlock)
1646     return nullptr;
1647 
1648   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1649   assert(BI && "expected exit branch");
1650 
1651   return dyn_cast<ICmpInst>(BI->getCondition());
1652 }
1653 
1654 /// linearFunctionTestReplace policy. Return true unless we can show that the
1655 /// current exit test is already sufficiently canonical.
1656 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1657   // Do LFTR to simplify the exit condition to an ICMP.
1658   ICmpInst *Cond = getLoopTest(L);
1659   if (!Cond)
1660     return true;
1661 
1662   // Do LFTR to simplify the exit ICMP to EQ/NE
1663   ICmpInst::Predicate Pred = Cond->getPredicate();
1664   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1665     return true;
1666 
1667   // Look for a loop invariant RHS
1668   Value *LHS = Cond->getOperand(0);
1669   Value *RHS = Cond->getOperand(1);
1670   if (!isLoopInvariant(RHS, L, DT)) {
1671     if (!isLoopInvariant(LHS, L, DT))
1672       return true;
1673     std::swap(LHS, RHS);
1674   }
1675   // Look for a simple IV counter LHS
1676   PHINode *Phi = dyn_cast<PHINode>(LHS);
1677   if (!Phi)
1678     Phi = getLoopPhiForCounter(LHS, L, DT);
1679 
1680   if (!Phi)
1681     return true;
1682 
1683   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1684   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1685   if (Idx < 0)
1686     return true;
1687 
1688   // Do LFTR if the exit condition's IV is *not* a simple counter.
1689   Value *IncV = Phi->getIncomingValue(Idx);
1690   return Phi != getLoopPhiForCounter(IncV, L, DT);
1691 }
1692 
1693 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1694 /// down to checking that all operands are constant and listing instructions
1695 /// that may hide undef.
1696 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1697                                unsigned Depth) {
1698   if (isa<Constant>(V))
1699     return !isa<UndefValue>(V);
1700 
1701   if (Depth >= 6)
1702     return false;
1703 
1704   // Conservatively handle non-constant non-instructions. For example, Arguments
1705   // may be undef.
1706   Instruction *I = dyn_cast<Instruction>(V);
1707   if (!I)
1708     return false;
1709 
1710   // Load and return values may be undef.
1711   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1712     return false;
1713 
1714   // Optimistically handle other instructions.
1715   for (Value *Op : I->operands()) {
1716     if (!Visited.insert(Op).second)
1717       continue;
1718     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
1719       return false;
1720   }
1721   return true;
1722 }
1723 
1724 /// Return true if the given value is concrete. We must prove that undef can
1725 /// never reach it.
1726 ///
1727 /// TODO: If we decide that this is a good approach to checking for undef, we
1728 /// may factor it into a common location.
1729 static bool hasConcreteDef(Value *V) {
1730   SmallPtrSet<Value*, 8> Visited;
1731   Visited.insert(V);
1732   return hasConcreteDefImpl(V, Visited, 0);
1733 }
1734 
1735 /// Return true if this IV has any uses other than the (soon to be rewritten)
1736 /// loop exit test.
1737 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1738   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1739   Value *IncV = Phi->getIncomingValue(LatchIdx);
1740 
1741   for (User *U : Phi->users())
1742     if (U != Cond && U != IncV) return false;
1743 
1744   for (User *U : IncV->users())
1745     if (U != Cond && U != Phi) return false;
1746   return true;
1747 }
1748 
1749 /// Find an affine IV in canonical form.
1750 ///
1751 /// BECount may be an i8* pointer type. The pointer difference is already
1752 /// valid count without scaling the address stride, so it remains a pointer
1753 /// expression as far as SCEV is concerned.
1754 ///
1755 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1756 ///
1757 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1758 ///
1759 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1760 /// This is difficult in general for SCEV because of potential overflow. But we
1761 /// could at least handle constant BECounts.
1762 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
1763                                 ScalarEvolution *SE, DominatorTree *DT) {
1764   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1765 
1766   Value *Cond =
1767     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1768 
1769   // Loop over all of the PHI nodes, looking for a simple counter.
1770   PHINode *BestPhi = nullptr;
1771   const SCEV *BestInit = nullptr;
1772   BasicBlock *LatchBlock = L->getLoopLatch();
1773   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1774   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1775 
1776   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1777     PHINode *Phi = cast<PHINode>(I);
1778     if (!SE->isSCEVable(Phi->getType()))
1779       continue;
1780 
1781     // Avoid comparing an integer IV against a pointer Limit.
1782     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1783       continue;
1784 
1785     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1786     if (!AR || AR->getLoop() != L || !AR->isAffine())
1787       continue;
1788 
1789     // AR may be a pointer type, while BECount is an integer type.
1790     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1791     // AR may not be a narrower type, or we may never exit.
1792     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1793     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
1794       continue;
1795 
1796     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1797     if (!Step || !Step->isOne())
1798       continue;
1799 
1800     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1801     Value *IncV = Phi->getIncomingValue(LatchIdx);
1802     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1803       continue;
1804 
1805     // Avoid reusing a potentially undef value to compute other values that may
1806     // have originally had a concrete definition.
1807     if (!hasConcreteDef(Phi)) {
1808       // We explicitly allow unknown phis as long as they are already used by
1809       // the loop test. In this case we assume that performing LFTR could not
1810       // increase the number of undef users.
1811       if (ICmpInst *Cond = getLoopTest(L)) {
1812         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1813             && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1814           continue;
1815         }
1816       }
1817     }
1818     const SCEV *Init = AR->getStart();
1819 
1820     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1821       // Don't force a live loop counter if another IV can be used.
1822       if (AlmostDeadIV(Phi, LatchBlock, Cond))
1823         continue;
1824 
1825       // Prefer to count-from-zero. This is a more "canonical" counter form. It
1826       // also prefers integer to pointer IVs.
1827       if (BestInit->isZero() != Init->isZero()) {
1828         if (BestInit->isZero())
1829           continue;
1830       }
1831       // If two IVs both count from zero or both count from nonzero then the
1832       // narrower is likely a dead phi that has been widened. Use the wider phi
1833       // to allow the other to be eliminated.
1834       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1835         continue;
1836     }
1837     BestPhi = Phi;
1838     BestInit = Init;
1839   }
1840   return BestPhi;
1841 }
1842 
1843 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
1844 /// the new loop test.
1845 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1846                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
1847   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1848   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1849   const SCEV *IVInit = AR->getStart();
1850 
1851   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1852   // finds a valid pointer IV. Sign extend BECount in order to materialize a
1853   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1854   // the existing GEPs whenever possible.
1855   if (IndVar->getType()->isPointerTy()
1856       && !IVCount->getType()->isPointerTy()) {
1857 
1858     // IVOffset will be the new GEP offset that is interpreted by GEP as a
1859     // signed value. IVCount on the other hand represents the loop trip count,
1860     // which is an unsigned value. FindLoopCounter only allows induction
1861     // variables that have a positive unit stride of one. This means we don't
1862     // have to handle the case of negative offsets (yet) and just need to zero
1863     // extend IVCount.
1864     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1865     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1866 
1867     // Expand the code for the iteration count.
1868     assert(SE->isLoopInvariant(IVOffset, L) &&
1869            "Computed iteration count is not loop invariant!");
1870     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1871     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1872 
1873     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1874     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1875     // We could handle pointer IVs other than i8*, but we need to compensate for
1876     // gep index scaling. See canExpandBackedgeTakenCount comments.
1877     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1878              cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
1879            && "unit stride pointer IV must be i8*");
1880 
1881     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1882     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
1883   }
1884   else {
1885     // In any other case, convert both IVInit and IVCount to integers before
1886     // comparing. This may result in SCEV expension of pointers, but in practice
1887     // SCEV will fold the pointer arithmetic away as such:
1888     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1889     //
1890     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1891     // for simple memset-style loops.
1892     //
1893     // IVInit integer and IVCount pointer would only occur if a canonical IV
1894     // were generated on top of case #2, which is not expected.
1895 
1896     const SCEV *IVLimit = nullptr;
1897     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1898     // For non-zero Start, compute IVCount here.
1899     if (AR->getStart()->isZero())
1900       IVLimit = IVCount;
1901     else {
1902       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1903       const SCEV *IVInit = AR->getStart();
1904 
1905       // For integer IVs, truncate the IV before computing IVInit + BECount.
1906       if (SE->getTypeSizeInBits(IVInit->getType())
1907           > SE->getTypeSizeInBits(IVCount->getType()))
1908         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1909 
1910       IVLimit = SE->getAddExpr(IVInit, IVCount);
1911     }
1912     // Expand the code for the iteration count.
1913     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1914     IRBuilder<> Builder(BI);
1915     assert(SE->isLoopInvariant(IVLimit, L) &&
1916            "Computed iteration count is not loop invariant!");
1917     // Ensure that we generate the same type as IndVar, or a smaller integer
1918     // type. In the presence of null pointer values, we have an integer type
1919     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1920     Type *LimitTy = IVCount->getType()->isPointerTy() ?
1921       IndVar->getType() : IVCount->getType();
1922     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1923   }
1924 }
1925 
1926 /// This method rewrites the exit condition of the loop to be a canonical !=
1927 /// comparison against the incremented loop induction variable.  This pass is
1928 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1929 /// determine a loop-invariant trip count of the loop, which is actually a much
1930 /// broader range than just linear tests.
1931 Value *IndVarSimplify::
1932 linearFunctionTestReplace(Loop *L,
1933                           const SCEV *BackedgeTakenCount,
1934                           PHINode *IndVar,
1935                           SCEVExpander &Rewriter) {
1936   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
1937 
1938   // Initialize CmpIndVar and IVCount to their preincremented values.
1939   Value *CmpIndVar = IndVar;
1940   const SCEV *IVCount = BackedgeTakenCount;
1941 
1942   // If the exiting block is the same as the backedge block, we prefer to
1943   // compare against the post-incremented value, otherwise we must compare
1944   // against the preincremented value.
1945   if (L->getExitingBlock() == L->getLoopLatch()) {
1946     // Add one to the "backedge-taken" count to get the trip count.
1947     // This addition may overflow, which is valid as long as the comparison is
1948     // truncated to BackedgeTakenCount->getType().
1949     IVCount = SE->getAddExpr(BackedgeTakenCount,
1950                              SE->getOne(BackedgeTakenCount->getType()));
1951     // The BackedgeTaken expression contains the number of times that the
1952     // backedge branches to the loop header.  This is one less than the
1953     // number of times the loop executes, so use the incremented indvar.
1954     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1955   }
1956 
1957   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1958   assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1959          && "genLoopLimit missed a cast");
1960 
1961   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1962   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1963   ICmpInst::Predicate P;
1964   if (L->contains(BI->getSuccessor(0)))
1965     P = ICmpInst::ICMP_NE;
1966   else
1967     P = ICmpInst::ICMP_EQ;
1968 
1969   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1970                << "      LHS:" << *CmpIndVar << '\n'
1971                << "       op:\t"
1972                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1973                << "      RHS:\t" << *ExitCnt << "\n"
1974                << "  IVCount:\t" << *IVCount << "\n");
1975 
1976   IRBuilder<> Builder(BI);
1977 
1978   // LFTR can ignore IV overflow and truncate to the width of
1979   // BECount. This avoids materializing the add(zext(add)) expression.
1980   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1981   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1982   if (CmpIndVarSize > ExitCntSize) {
1983     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1984     const SCEV *ARStart = AR->getStart();
1985     const SCEV *ARStep = AR->getStepRecurrence(*SE);
1986     // For constant IVCount, avoid truncation.
1987     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
1988       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
1989       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
1990       // Note that the post-inc value of BackedgeTakenCount may have overflowed
1991       // above such that IVCount is now zero.
1992       if (IVCount != BackedgeTakenCount && Count == 0) {
1993         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
1994         ++Count;
1995       }
1996       else
1997         Count = Count.zext(CmpIndVarSize);
1998       APInt NewLimit;
1999       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2000         NewLimit = Start - Count;
2001       else
2002         NewLimit = Start + Count;
2003       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2004 
2005       DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2006     } else {
2007       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2008                                       "lftr.wideiv");
2009     }
2010   }
2011   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2012   Value *OrigCond = BI->getCondition();
2013   // It's tempting to use replaceAllUsesWith here to fully replace the old
2014   // comparison, but that's not immediately safe, since users of the old
2015   // comparison may not be dominated by the new comparison. Instead, just
2016   // update the branch to use the new comparison; in the common case this
2017   // will make old comparison dead.
2018   BI->setCondition(Cond);
2019   DeadInsts.push_back(OrigCond);
2020 
2021   ++NumLFTR;
2022   Changed = true;
2023   return Cond;
2024 }
2025 
2026 //===----------------------------------------------------------------------===//
2027 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2028 //===----------------------------------------------------------------------===//
2029 
2030 /// If there's a single exit block, sink any loop-invariant values that
2031 /// were defined in the preheader but not used inside the loop into the
2032 /// exit block to reduce register pressure in the loop.
2033 void IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2034   BasicBlock *ExitBlock = L->getExitBlock();
2035   if (!ExitBlock) return;
2036 
2037   BasicBlock *Preheader = L->getLoopPreheader();
2038   if (!Preheader) return;
2039 
2040   Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt();
2041   BasicBlock::iterator I(Preheader->getTerminator());
2042   while (I != Preheader->begin()) {
2043     --I;
2044     // New instructions were inserted at the end of the preheader.
2045     if (isa<PHINode>(I))
2046       break;
2047 
2048     // Don't move instructions which might have side effects, since the side
2049     // effects need to complete before instructions inside the loop.  Also don't
2050     // move instructions which might read memory, since the loop may modify
2051     // memory. Note that it's okay if the instruction might have undefined
2052     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2053     // block.
2054     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2055       continue;
2056 
2057     // Skip debug info intrinsics.
2058     if (isa<DbgInfoIntrinsic>(I))
2059       continue;
2060 
2061     // Skip eh pad instructions.
2062     if (I->isEHPad())
2063       continue;
2064 
2065     // Don't sink alloca: we never want to sink static alloca's out of the
2066     // entry block, and correctly sinking dynamic alloca's requires
2067     // checks for stacksave/stackrestore intrinsics.
2068     // FIXME: Refactor this check somehow?
2069     if (isa<AllocaInst>(I))
2070       continue;
2071 
2072     // Determine if there is a use in or before the loop (direct or
2073     // otherwise).
2074     bool UsedInLoop = false;
2075     for (Use &U : I->uses()) {
2076       Instruction *User = cast<Instruction>(U.getUser());
2077       BasicBlock *UseBB = User->getParent();
2078       if (PHINode *P = dyn_cast<PHINode>(User)) {
2079         unsigned i =
2080           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2081         UseBB = P->getIncomingBlock(i);
2082       }
2083       if (UseBB == Preheader || L->contains(UseBB)) {
2084         UsedInLoop = true;
2085         break;
2086       }
2087     }
2088 
2089     // If there is, the def must remain in the preheader.
2090     if (UsedInLoop)
2091       continue;
2092 
2093     // Otherwise, sink it to the exit block.
2094     Instruction *ToMove = &*I;
2095     bool Done = false;
2096 
2097     if (I != Preheader->begin()) {
2098       // Skip debug info intrinsics.
2099       do {
2100         --I;
2101       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2102 
2103       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2104         Done = true;
2105     } else {
2106       Done = true;
2107     }
2108 
2109     ToMove->moveBefore(InsertPt);
2110     if (Done) break;
2111     InsertPt = ToMove;
2112   }
2113 }
2114 
2115 //===----------------------------------------------------------------------===//
2116 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2117 //===----------------------------------------------------------------------===//
2118 
2119 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
2120   if (skipOptnoneFunction(L))
2121     return false;
2122 
2123   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2124   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2125   //    canonicalization can be a pessimization without LSR to "clean up"
2126   //    afterwards.
2127   //  - We depend on having a preheader; in particular,
2128   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2129   //    and we're in trouble if we can't find the induction variable even when
2130   //    we've manually inserted one.
2131   if (!L->isLoopSimplifyForm())
2132     return false;
2133 
2134   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2135   SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2136   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2137   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2138   TLI = TLIP ? &TLIP->getTLI() : nullptr;
2139   auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2140   TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2141   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2142 
2143   DeadInsts.clear();
2144   Changed = false;
2145 
2146   // If there are any floating-point recurrences, attempt to
2147   // transform them to use integer recurrences.
2148   rewriteNonIntegerIVs(L);
2149 
2150   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2151 
2152   // Create a rewriter object which we'll use to transform the code with.
2153   SCEVExpander Rewriter(*SE, DL, "indvars");
2154 #ifndef NDEBUG
2155   Rewriter.setDebugType(DEBUG_TYPE);
2156 #endif
2157 
2158   // Eliminate redundant IV users.
2159   //
2160   // Simplification works best when run before other consumers of SCEV. We
2161   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2162   // other expressions involving loop IVs have been evaluated. This helps SCEV
2163   // set no-wrap flags before normalizing sign/zero extension.
2164   Rewriter.disableCanonicalMode();
2165   simplifyAndExtend(L, Rewriter, LI);
2166 
2167   // Check to see if this loop has a computable loop-invariant execution count.
2168   // If so, this means that we can compute the final value of any expressions
2169   // that are recurrent in the loop, and substitute the exit values from the
2170   // loop into any instructions outside of the loop that use the final values of
2171   // the current expressions.
2172   //
2173   if (ReplaceExitValue != NeverRepl &&
2174       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2175     rewriteLoopExitValues(L, Rewriter);
2176 
2177   // Eliminate redundant IV cycles.
2178   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2179 
2180   // If we have a trip count expression, rewrite the loop's exit condition
2181   // using it.  We can currently only handle loops with a single exit.
2182   if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) {
2183     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2184     if (IndVar) {
2185       // Check preconditions for proper SCEVExpander operation. SCEV does not
2186       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2187       // pass that uses the SCEVExpander must do it. This does not work well for
2188       // loop passes because SCEVExpander makes assumptions about all loops,
2189       // while LoopPassManager only forces the current loop to be simplified.
2190       //
2191       // FIXME: SCEV expansion has no way to bail out, so the caller must
2192       // explicitly check any assumptions made by SCEV. Brittle.
2193       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2194       if (!AR || AR->getLoop()->getLoopPreheader())
2195         (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2196                                         Rewriter);
2197     }
2198   }
2199   // Clear the rewriter cache, because values that are in the rewriter's cache
2200   // can be deleted in the loop below, causing the AssertingVH in the cache to
2201   // trigger.
2202   Rewriter.clear();
2203 
2204   // Now that we're done iterating through lists, clean up any instructions
2205   // which are now dead.
2206   while (!DeadInsts.empty())
2207     if (Instruction *Inst =
2208             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2209       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2210 
2211   // The Rewriter may not be used from this point on.
2212 
2213   // Loop-invariant instructions in the preheader that aren't used in the
2214   // loop may be sunk below the loop to reduce register pressure.
2215   sinkUnusedInvariants(L);
2216 
2217   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2218   // trip count and therefore can further simplify exit values in addition to
2219   // rewriteLoopExitValues.
2220   rewriteFirstIterationLoopExitValues(L);
2221 
2222   // Clean up dead instructions.
2223   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2224 
2225   // Check a post-condition.
2226   assert(L->isRecursivelyLCSSAForm(*DT) && "Indvars did not preserve LCSSA!");
2227 
2228   // Verify that LFTR, and any other change have not interfered with SCEV's
2229   // ability to compute trip count.
2230 #ifndef NDEBUG
2231   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2232     SE->forgetLoop(L);
2233     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2234     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2235         SE->getTypeSizeInBits(NewBECount->getType()))
2236       NewBECount = SE->getTruncateOrNoop(NewBECount,
2237                                          BackedgeTakenCount->getType());
2238     else
2239       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2240                                                  NewBECount->getType());
2241     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2242   }
2243 #endif
2244 
2245   return Changed;
2246 }
2247