1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/LoopInfo.h" 32 #include "llvm/Analysis/LoopPass.h" 33 #include "llvm/Analysis/ScalarEvolutionExpander.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/TargetTransformInfo.h" 36 #include "llvm/IR/BasicBlock.h" 37 #include "llvm/IR/CFG.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/DataLayout.h" 40 #include "llvm/IR/Dominators.h" 41 #include "llvm/IR/Instructions.h" 42 #include "llvm/IR/IntrinsicInst.h" 43 #include "llvm/IR/LLVMContext.h" 44 #include "llvm/IR/PatternMatch.h" 45 #include "llvm/IR/Type.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Support/Debug.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 50 #include "llvm/Transforms/Utils/Local.h" 51 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 52 using namespace llvm; 53 54 #define DEBUG_TYPE "indvars" 55 56 STATISTIC(NumWidened , "Number of indvars widened"); 57 STATISTIC(NumReplaced , "Number of exit values replaced"); 58 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 59 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 60 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 61 62 // Trip count verification can be enabled by default under NDEBUG if we 63 // implement a strong expression equivalence checker in SCEV. Until then, we 64 // use the verify-indvars flag, which may assert in some cases. 65 static cl::opt<bool> VerifyIndvars( 66 "verify-indvars", cl::Hidden, 67 cl::desc("Verify the ScalarEvolution result after running indvars")); 68 69 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 70 cl::desc("Reduce live induction variables.")); 71 72 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 73 74 static cl::opt<ReplaceExitVal> ReplaceExitValue( 75 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 76 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 77 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 78 clEnumValN(OnlyCheapRepl, "cheap", 79 "only replace exit value when the cost is cheap"), 80 clEnumValN(AlwaysRepl, "always", 81 "always replace exit value whenever possible"), 82 clEnumValEnd)); 83 84 namespace { 85 struct RewritePhi; 86 } 87 88 namespace { 89 class IndVarSimplify : public LoopPass { 90 LoopInfo *LI; 91 ScalarEvolution *SE; 92 DominatorTree *DT; 93 TargetLibraryInfo *TLI; 94 const TargetTransformInfo *TTI; 95 96 SmallVector<WeakVH, 16> DeadInsts; 97 bool Changed; 98 public: 99 100 static char ID; // Pass identification, replacement for typeid 101 IndVarSimplify() 102 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) { 103 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 104 } 105 106 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 107 108 void getAnalysisUsage(AnalysisUsage &AU) const override { 109 AU.addRequired<DominatorTreeWrapperPass>(); 110 AU.addRequired<LoopInfoWrapperPass>(); 111 AU.addRequired<ScalarEvolutionWrapperPass>(); 112 AU.addRequiredID(LoopSimplifyID); 113 AU.addRequiredID(LCSSAID); 114 AU.addPreserved<ScalarEvolutionWrapperPass>(); 115 AU.addPreservedID(LoopSimplifyID); 116 AU.addPreservedID(LCSSAID); 117 AU.setPreservesCFG(); 118 } 119 120 private: 121 void releaseMemory() override { 122 DeadInsts.clear(); 123 } 124 125 bool isValidRewrite(Value *FromVal, Value *ToVal); 126 127 void HandleFloatingPointIV(Loop *L, PHINode *PH); 128 void RewriteNonIntegerIVs(Loop *L); 129 130 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 131 132 bool CanLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 133 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 134 135 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 136 PHINode *IndVar, SCEVExpander &Rewriter); 137 138 void SinkUnusedInvariants(Loop *L); 139 140 Value *ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 141 Instruction *InsertPt, Type *Ty); 142 }; 143 } 144 145 char IndVarSimplify::ID = 0; 146 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 147 "Induction Variable Simplification", false, false) 148 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 149 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 150 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 151 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 152 INITIALIZE_PASS_DEPENDENCY(LCSSA) 153 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 154 "Induction Variable Simplification", false, false) 155 156 Pass *llvm::createIndVarSimplifyPass() { 157 return new IndVarSimplify(); 158 } 159 160 /// isValidRewrite - Return true if the SCEV expansion generated by the 161 /// rewriter can replace the original value. SCEV guarantees that it 162 /// produces the same value, but the way it is produced may be illegal IR. 163 /// Ideally, this function will only be called for verification. 164 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 165 // If an SCEV expression subsumed multiple pointers, its expansion could 166 // reassociate the GEP changing the base pointer. This is illegal because the 167 // final address produced by a GEP chain must be inbounds relative to its 168 // underlying object. Otherwise basic alias analysis, among other things, 169 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 170 // producing an expression involving multiple pointers. Until then, we must 171 // bail out here. 172 // 173 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 174 // because it understands lcssa phis while SCEV does not. 175 Value *FromPtr = FromVal; 176 Value *ToPtr = ToVal; 177 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 178 FromPtr = GEP->getPointerOperand(); 179 } 180 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 181 ToPtr = GEP->getPointerOperand(); 182 } 183 if (FromPtr != FromVal || ToPtr != ToVal) { 184 // Quickly check the common case 185 if (FromPtr == ToPtr) 186 return true; 187 188 // SCEV may have rewritten an expression that produces the GEP's pointer 189 // operand. That's ok as long as the pointer operand has the same base 190 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 191 // base of a recurrence. This handles the case in which SCEV expansion 192 // converts a pointer type recurrence into a nonrecurrent pointer base 193 // indexed by an integer recurrence. 194 195 // If the GEP base pointer is a vector of pointers, abort. 196 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 197 return false; 198 199 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 200 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 201 if (FromBase == ToBase) 202 return true; 203 204 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 205 << *FromBase << " != " << *ToBase << "\n"); 206 207 return false; 208 } 209 return true; 210 } 211 212 /// Determine the insertion point for this user. By default, insert immediately 213 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 214 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 215 /// common dominator for the incoming blocks. 216 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 217 DominatorTree *DT) { 218 PHINode *PHI = dyn_cast<PHINode>(User); 219 if (!PHI) 220 return User; 221 222 Instruction *InsertPt = nullptr; 223 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 224 if (PHI->getIncomingValue(i) != Def) 225 continue; 226 227 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 228 if (!InsertPt) { 229 InsertPt = InsertBB->getTerminator(); 230 continue; 231 } 232 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 233 InsertPt = InsertBB->getTerminator(); 234 } 235 assert(InsertPt && "Missing phi operand"); 236 assert((!isa<Instruction>(Def) || 237 DT->dominates(cast<Instruction>(Def), InsertPt)) && 238 "def does not dominate all uses"); 239 return InsertPt; 240 } 241 242 //===----------------------------------------------------------------------===// 243 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 244 //===----------------------------------------------------------------------===// 245 246 /// ConvertToSInt - Convert APF to an integer, if possible. 247 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 248 bool isExact = false; 249 // See if we can convert this to an int64_t 250 uint64_t UIntVal; 251 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 252 &isExact) != APFloat::opOK || !isExact) 253 return false; 254 IntVal = UIntVal; 255 return true; 256 } 257 258 /// HandleFloatingPointIV - If the loop has floating induction variable 259 /// then insert corresponding integer induction variable if possible. 260 /// For example, 261 /// for(double i = 0; i < 10000; ++i) 262 /// bar(i) 263 /// is converted into 264 /// for(int i = 0; i < 10000; ++i) 265 /// bar((double)i); 266 /// 267 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 268 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 269 unsigned BackEdge = IncomingEdge^1; 270 271 // Check incoming value. 272 ConstantFP *InitValueVal = 273 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 274 275 int64_t InitValue; 276 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 277 return; 278 279 // Check IV increment. Reject this PN if increment operation is not 280 // an add or increment value can not be represented by an integer. 281 BinaryOperator *Incr = 282 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 283 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 284 285 // If this is not an add of the PHI with a constantfp, or if the constant fp 286 // is not an integer, bail out. 287 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 288 int64_t IncValue; 289 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 290 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 291 return; 292 293 // Check Incr uses. One user is PN and the other user is an exit condition 294 // used by the conditional terminator. 295 Value::user_iterator IncrUse = Incr->user_begin(); 296 Instruction *U1 = cast<Instruction>(*IncrUse++); 297 if (IncrUse == Incr->user_end()) return; 298 Instruction *U2 = cast<Instruction>(*IncrUse++); 299 if (IncrUse != Incr->user_end()) return; 300 301 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 302 // only used by a branch, we can't transform it. 303 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 304 if (!Compare) 305 Compare = dyn_cast<FCmpInst>(U2); 306 if (!Compare || !Compare->hasOneUse() || 307 !isa<BranchInst>(Compare->user_back())) 308 return; 309 310 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 311 312 // We need to verify that the branch actually controls the iteration count 313 // of the loop. If not, the new IV can overflow and no one will notice. 314 // The branch block must be in the loop and one of the successors must be out 315 // of the loop. 316 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 317 if (!L->contains(TheBr->getParent()) || 318 (L->contains(TheBr->getSuccessor(0)) && 319 L->contains(TheBr->getSuccessor(1)))) 320 return; 321 322 323 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 324 // transform it. 325 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 326 int64_t ExitValue; 327 if (ExitValueVal == nullptr || 328 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 329 return; 330 331 // Find new predicate for integer comparison. 332 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 333 switch (Compare->getPredicate()) { 334 default: return; // Unknown comparison. 335 case CmpInst::FCMP_OEQ: 336 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 337 case CmpInst::FCMP_ONE: 338 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 339 case CmpInst::FCMP_OGT: 340 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 341 case CmpInst::FCMP_OGE: 342 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 343 case CmpInst::FCMP_OLT: 344 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 345 case CmpInst::FCMP_OLE: 346 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 347 } 348 349 // We convert the floating point induction variable to a signed i32 value if 350 // we can. This is only safe if the comparison will not overflow in a way 351 // that won't be trapped by the integer equivalent operations. Check for this 352 // now. 353 // TODO: We could use i64 if it is native and the range requires it. 354 355 // The start/stride/exit values must all fit in signed i32. 356 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 357 return; 358 359 // If not actually striding (add x, 0.0), avoid touching the code. 360 if (IncValue == 0) 361 return; 362 363 // Positive and negative strides have different safety conditions. 364 if (IncValue > 0) { 365 // If we have a positive stride, we require the init to be less than the 366 // exit value. 367 if (InitValue >= ExitValue) 368 return; 369 370 uint32_t Range = uint32_t(ExitValue-InitValue); 371 // Check for infinite loop, either: 372 // while (i <= Exit) or until (i > Exit) 373 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 374 if (++Range == 0) return; // Range overflows. 375 } 376 377 unsigned Leftover = Range % uint32_t(IncValue); 378 379 // If this is an equality comparison, we require that the strided value 380 // exactly land on the exit value, otherwise the IV condition will wrap 381 // around and do things the fp IV wouldn't. 382 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 383 Leftover != 0) 384 return; 385 386 // If the stride would wrap around the i32 before exiting, we can't 387 // transform the IV. 388 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 389 return; 390 391 } else { 392 // If we have a negative stride, we require the init to be greater than the 393 // exit value. 394 if (InitValue <= ExitValue) 395 return; 396 397 uint32_t Range = uint32_t(InitValue-ExitValue); 398 // Check for infinite loop, either: 399 // while (i >= Exit) or until (i < Exit) 400 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 401 if (++Range == 0) return; // Range overflows. 402 } 403 404 unsigned Leftover = Range % uint32_t(-IncValue); 405 406 // If this is an equality comparison, we require that the strided value 407 // exactly land on the exit value, otherwise the IV condition will wrap 408 // around and do things the fp IV wouldn't. 409 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 410 Leftover != 0) 411 return; 412 413 // If the stride would wrap around the i32 before exiting, we can't 414 // transform the IV. 415 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 416 return; 417 } 418 419 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 420 421 // Insert new integer induction variable. 422 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 423 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 424 PN->getIncomingBlock(IncomingEdge)); 425 426 Value *NewAdd = 427 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 428 Incr->getName()+".int", Incr); 429 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 430 431 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 432 ConstantInt::get(Int32Ty, ExitValue), 433 Compare->getName()); 434 435 // In the following deletions, PN may become dead and may be deleted. 436 // Use a WeakVH to observe whether this happens. 437 WeakVH WeakPH = PN; 438 439 // Delete the old floating point exit comparison. The branch starts using the 440 // new comparison. 441 NewCompare->takeName(Compare); 442 Compare->replaceAllUsesWith(NewCompare); 443 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 444 445 // Delete the old floating point increment. 446 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 447 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 448 449 // If the FP induction variable still has uses, this is because something else 450 // in the loop uses its value. In order to canonicalize the induction 451 // variable, we chose to eliminate the IV and rewrite it in terms of an 452 // int->fp cast. 453 // 454 // We give preference to sitofp over uitofp because it is faster on most 455 // platforms. 456 if (WeakPH) { 457 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 458 PN->getParent()->getFirstInsertionPt()); 459 PN->replaceAllUsesWith(Conv); 460 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 461 } 462 Changed = true; 463 } 464 465 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 466 // First step. Check to see if there are any floating-point recurrences. 467 // If there are, change them into integer recurrences, permitting analysis by 468 // the SCEV routines. 469 // 470 BasicBlock *Header = L->getHeader(); 471 472 SmallVector<WeakVH, 8> PHIs; 473 for (BasicBlock::iterator I = Header->begin(); 474 PHINode *PN = dyn_cast<PHINode>(I); ++I) 475 PHIs.push_back(PN); 476 477 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 478 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 479 HandleFloatingPointIV(L, PN); 480 481 // If the loop previously had floating-point IV, ScalarEvolution 482 // may not have been able to compute a trip count. Now that we've done some 483 // re-writing, the trip count may be computable. 484 if (Changed) 485 SE->forgetLoop(L); 486 } 487 488 namespace { 489 // Collect information about PHI nodes which can be transformed in 490 // RewriteLoopExitValues. 491 struct RewritePhi { 492 PHINode *PN; 493 unsigned Ith; // Ith incoming value. 494 Value *Val; // Exit value after expansion. 495 bool HighCost; // High Cost when expansion. 496 bool SafePhi; // LCSSASafePhiForRAUW. 497 498 RewritePhi(PHINode *P, unsigned I, Value *V, bool H, bool S) 499 : PN(P), Ith(I), Val(V), HighCost(H), SafePhi(S) {} 500 }; 501 } 502 503 Value *IndVarSimplify::ExpandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 504 Loop *L, Instruction *InsertPt, 505 Type *ResultTy) { 506 // Before expanding S into an expensive LLVM expression, see if we can use an 507 // already existing value as the expansion for S. 508 if (Value *RetValue = Rewriter.findExistingExpansion(S, InsertPt, L)) 509 return RetValue; 510 511 // We didn't find anything, fall back to using SCEVExpander. 512 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 513 } 514 515 //===----------------------------------------------------------------------===// 516 // RewriteLoopExitValues - Optimize IV users outside the loop. 517 // As a side effect, reduces the amount of IV processing within the loop. 518 //===----------------------------------------------------------------------===// 519 520 /// RewriteLoopExitValues - Check to see if this loop has a computable 521 /// loop-invariant execution count. If so, this means that we can compute the 522 /// final value of any expressions that are recurrent in the loop, and 523 /// substitute the exit values from the loop into any instructions outside of 524 /// the loop that use the final values of the current expressions. 525 /// 526 /// This is mostly redundant with the regular IndVarSimplify activities that 527 /// happen later, except that it's more powerful in some cases, because it's 528 /// able to brute-force evaluate arbitrary instructions as long as they have 529 /// constant operands at the beginning of the loop. 530 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 531 // Verify the input to the pass in already in LCSSA form. 532 assert(L->isLCSSAForm(*DT)); 533 534 SmallVector<BasicBlock*, 8> ExitBlocks; 535 L->getUniqueExitBlocks(ExitBlocks); 536 537 SmallVector<RewritePhi, 8> RewritePhiSet; 538 // Find all values that are computed inside the loop, but used outside of it. 539 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 540 // the exit blocks of the loop to find them. 541 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 542 BasicBlock *ExitBB = ExitBlocks[i]; 543 544 // If there are no PHI nodes in this exit block, then no values defined 545 // inside the loop are used on this path, skip it. 546 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 547 if (!PN) continue; 548 549 unsigned NumPreds = PN->getNumIncomingValues(); 550 551 // We would like to be able to RAUW single-incoming value PHI nodes. We 552 // have to be certain this is safe even when this is an LCSSA PHI node. 553 // While the computed exit value is no longer varying in *this* loop, the 554 // exit block may be an exit block for an outer containing loop as well, 555 // the exit value may be varying in the outer loop, and thus it may still 556 // require an LCSSA PHI node. The safe case is when this is 557 // single-predecessor PHI node (LCSSA) and the exit block containing it is 558 // part of the enclosing loop, or this is the outer most loop of the nest. 559 // In either case the exit value could (at most) be varying in the same 560 // loop body as the phi node itself. Thus if it is in turn used outside of 561 // an enclosing loop it will only be via a separate LCSSA node. 562 bool LCSSASafePhiForRAUW = 563 NumPreds == 1 && 564 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB)); 565 566 // Iterate over all of the PHI nodes. 567 BasicBlock::iterator BBI = ExitBB->begin(); 568 while ((PN = dyn_cast<PHINode>(BBI++))) { 569 if (PN->use_empty()) 570 continue; // dead use, don't replace it 571 572 // SCEV only supports integer expressions for now. 573 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 574 continue; 575 576 // It's necessary to tell ScalarEvolution about this explicitly so that 577 // it can walk the def-use list and forget all SCEVs, as it may not be 578 // watching the PHI itself. Once the new exit value is in place, there 579 // may not be a def-use connection between the loop and every instruction 580 // which got a SCEVAddRecExpr for that loop. 581 SE->forgetValue(PN); 582 583 // Iterate over all of the values in all the PHI nodes. 584 for (unsigned i = 0; i != NumPreds; ++i) { 585 // If the value being merged in is not integer or is not defined 586 // in the loop, skip it. 587 Value *InVal = PN->getIncomingValue(i); 588 if (!isa<Instruction>(InVal)) 589 continue; 590 591 // If this pred is for a subloop, not L itself, skip it. 592 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 593 continue; // The Block is in a subloop, skip it. 594 595 // Check that InVal is defined in the loop. 596 Instruction *Inst = cast<Instruction>(InVal); 597 if (!L->contains(Inst)) 598 continue; 599 600 // Okay, this instruction has a user outside of the current loop 601 // and varies predictably *inside* the loop. Evaluate the value it 602 // contains when the loop exits, if possible. 603 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 604 if (!SE->isLoopInvariant(ExitValue, L) || 605 !isSafeToExpand(ExitValue, *SE)) 606 continue; 607 608 // Computing the value outside of the loop brings no benefit if : 609 // - it is definitely used inside the loop in a way which can not be 610 // optimized away. 611 // - no use outside of the loop can take advantage of hoisting the 612 // computation out of the loop 613 if (ExitValue->getSCEVType()>=scMulExpr) { 614 unsigned NumHardInternalUses = 0; 615 unsigned NumSoftExternalUses = 0; 616 unsigned NumUses = 0; 617 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 618 IB != IE && NumUses <= 6; ++IB) { 619 Instruction *UseInstr = cast<Instruction>(*IB); 620 unsigned Opc = UseInstr->getOpcode(); 621 NumUses++; 622 if (L->contains(UseInstr)) { 623 if (Opc == Instruction::Call || Opc == Instruction::Ret) 624 NumHardInternalUses++; 625 } else { 626 if (Opc == Instruction::PHI) { 627 // Do not count the Phi as a use. LCSSA may have inserted 628 // plenty of trivial ones. 629 NumUses--; 630 for (auto PB = UseInstr->user_begin(), 631 PE = UseInstr->user_end(); 632 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 633 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 634 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 635 NumSoftExternalUses++; 636 } 637 continue; 638 } 639 if (Opc != Instruction::Call && Opc != Instruction::Ret) 640 NumSoftExternalUses++; 641 } 642 } 643 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 644 continue; 645 } 646 647 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 648 Value *ExitVal = 649 ExpandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 650 651 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 652 << " LoopVal = " << *Inst << "\n"); 653 654 if (!isValidRewrite(Inst, ExitVal)) { 655 DeadInsts.push_back(ExitVal); 656 continue; 657 } 658 659 // Collect all the candidate PHINodes to be rewritten. 660 RewritePhiSet.push_back( 661 RewritePhi(PN, i, ExitVal, HighCost, LCSSASafePhiForRAUW)); 662 } 663 } 664 } 665 666 bool LoopCanBeDel = CanLoopBeDeleted(L, RewritePhiSet); 667 668 // Transformation. 669 for (const RewritePhi &Phi : RewritePhiSet) { 670 PHINode *PN = Phi.PN; 671 Value *ExitVal = Phi.Val; 672 673 // Only do the rewrite when the ExitValue can be expanded cheaply. 674 // If LoopCanBeDel is true, rewrite exit value aggressively. 675 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 676 DeadInsts.push_back(ExitVal); 677 continue; 678 } 679 680 Changed = true; 681 ++NumReplaced; 682 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 683 PN->setIncomingValue(Phi.Ith, ExitVal); 684 685 // If this instruction is dead now, delete it. Don't do it now to avoid 686 // invalidating iterators. 687 if (isInstructionTriviallyDead(Inst, TLI)) 688 DeadInsts.push_back(Inst); 689 690 // If we determined that this PHI is safe to replace even if an LCSSA 691 // PHI, do so. 692 if (Phi.SafePhi) { 693 PN->replaceAllUsesWith(ExitVal); 694 PN->eraseFromParent(); 695 } 696 } 697 698 // The insertion point instruction may have been deleted; clear it out 699 // so that the rewriter doesn't trip over it later. 700 Rewriter.clearInsertPoint(); 701 } 702 703 /// CanLoopBeDeleted - Check whether it is possible to delete the loop after 704 /// rewriting exit value. If it is possible, ignore ReplaceExitValue and 705 /// do rewriting aggressively. 706 bool IndVarSimplify::CanLoopBeDeleted( 707 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 708 709 BasicBlock *Preheader = L->getLoopPreheader(); 710 // If there is no preheader, the loop will not be deleted. 711 if (!Preheader) 712 return false; 713 714 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 715 // We obviate multiple ExitingBlocks case for simplicity. 716 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 717 // after exit value rewriting, we can enhance the logic here. 718 SmallVector<BasicBlock *, 4> ExitingBlocks; 719 L->getExitingBlocks(ExitingBlocks); 720 SmallVector<BasicBlock *, 8> ExitBlocks; 721 L->getUniqueExitBlocks(ExitBlocks); 722 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 723 return false; 724 725 BasicBlock *ExitBlock = ExitBlocks[0]; 726 BasicBlock::iterator BI = ExitBlock->begin(); 727 while (PHINode *P = dyn_cast<PHINode>(BI)) { 728 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 729 730 // If the Incoming value of P is found in RewritePhiSet, we know it 731 // could be rewritten to use a loop invariant value in transformation 732 // phase later. Skip it in the loop invariant check below. 733 bool found = false; 734 for (const RewritePhi &Phi : RewritePhiSet) { 735 unsigned i = Phi.Ith; 736 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 737 found = true; 738 break; 739 } 740 } 741 742 Instruction *I; 743 if (!found && (I = dyn_cast<Instruction>(Incoming))) 744 if (!L->hasLoopInvariantOperands(I)) 745 return false; 746 747 ++BI; 748 } 749 750 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); 751 LI != LE; ++LI) { 752 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end(); BI != BE; 753 ++BI) { 754 if (BI->mayHaveSideEffects()) 755 return false; 756 } 757 } 758 759 return true; 760 } 761 762 //===----------------------------------------------------------------------===// 763 // IV Widening - Extend the width of an IV to cover its widest uses. 764 //===----------------------------------------------------------------------===// 765 766 namespace { 767 // Collect information about induction variables that are used by sign/zero 768 // extend operations. This information is recorded by CollectExtend and 769 // provides the input to WidenIV. 770 struct WideIVInfo { 771 PHINode *NarrowIV; 772 Type *WidestNativeType; // Widest integer type created [sz]ext 773 bool IsSigned; // Was a sext user seen before a zext? 774 775 WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr), 776 IsSigned(false) {} 777 }; 778 } 779 780 /// visitCast - Update information about the induction variable that is 781 /// extended by this sign or zero extend operation. This is used to determine 782 /// the final width of the IV before actually widening it. 783 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 784 const TargetTransformInfo *TTI) { 785 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 786 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 787 return; 788 789 Type *Ty = Cast->getType(); 790 uint64_t Width = SE->getTypeSizeInBits(Ty); 791 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 792 return; 793 794 // Cast is either an sext or zext up to this point. 795 // We should not widen an indvar if arithmetics on the wider indvar are more 796 // expensive than those on the narrower indvar. We check only the cost of ADD 797 // because at least an ADD is required to increment the induction variable. We 798 // could compute more comprehensively the cost of all instructions on the 799 // induction variable when necessary. 800 if (TTI && 801 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 802 TTI->getArithmeticInstrCost(Instruction::Add, 803 Cast->getOperand(0)->getType())) { 804 return; 805 } 806 807 if (!WI.WidestNativeType) { 808 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 809 WI.IsSigned = IsSigned; 810 return; 811 } 812 813 // We extend the IV to satisfy the sign of its first user, arbitrarily. 814 if (WI.IsSigned != IsSigned) 815 return; 816 817 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 818 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 819 } 820 821 namespace { 822 823 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 824 /// WideIV that computes the same value as the Narrow IV def. This avoids 825 /// caching Use* pointers. 826 struct NarrowIVDefUse { 827 Instruction *NarrowDef; 828 Instruction *NarrowUse; 829 Instruction *WideDef; 830 831 NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {} 832 833 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 834 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 835 }; 836 837 /// WidenIV - The goal of this transform is to remove sign and zero extends 838 /// without creating any new induction variables. To do this, it creates a new 839 /// phi of the wider type and redirects all users, either removing extends or 840 /// inserting truncs whenever we stop propagating the type. 841 /// 842 class WidenIV { 843 // Parameters 844 PHINode *OrigPhi; 845 Type *WideType; 846 bool IsSigned; 847 848 // Context 849 LoopInfo *LI; 850 Loop *L; 851 ScalarEvolution *SE; 852 DominatorTree *DT; 853 854 // Result 855 PHINode *WidePhi; 856 Instruction *WideInc; 857 const SCEV *WideIncExpr; 858 SmallVectorImpl<WeakVH> &DeadInsts; 859 860 SmallPtrSet<Instruction*,16> Widened; 861 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 862 863 public: 864 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 865 ScalarEvolution *SEv, DominatorTree *DTree, 866 SmallVectorImpl<WeakVH> &DI) : 867 OrigPhi(WI.NarrowIV), 868 WideType(WI.WidestNativeType), 869 IsSigned(WI.IsSigned), 870 LI(LInfo), 871 L(LI->getLoopFor(OrigPhi->getParent())), 872 SE(SEv), 873 DT(DTree), 874 WidePhi(nullptr), 875 WideInc(nullptr), 876 WideIncExpr(nullptr), 877 DeadInsts(DI) { 878 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 879 } 880 881 PHINode *CreateWideIV(SCEVExpander &Rewriter); 882 883 protected: 884 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 885 Instruction *Use); 886 887 Instruction *CloneIVUser(NarrowIVDefUse DU); 888 889 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 890 891 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 892 893 const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 894 unsigned OpCode) const; 895 896 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 897 898 bool WidenLoopCompare(NarrowIVDefUse DU); 899 900 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 901 }; 902 } // anonymous namespace 903 904 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 905 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 906 /// gratuitous for this purpose. 907 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 908 Instruction *Inst = dyn_cast<Instruction>(V); 909 if (!Inst) 910 return true; 911 912 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 913 } 914 915 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 916 Instruction *Use) { 917 // Set the debug location and conservative insertion point. 918 IRBuilder<> Builder(Use); 919 // Hoist the insertion point into loop preheaders as far as possible. 920 for (const Loop *L = LI->getLoopFor(Use->getParent()); 921 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 922 L = L->getParentLoop()) 923 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 924 925 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 926 Builder.CreateZExt(NarrowOper, WideType); 927 } 928 929 /// CloneIVUser - Instantiate a wide operation to replace a narrow 930 /// operation. This only needs to handle operations that can evaluation to 931 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 932 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 933 unsigned Opcode = DU.NarrowUse->getOpcode(); 934 switch (Opcode) { 935 default: 936 return nullptr; 937 case Instruction::Add: 938 case Instruction::Mul: 939 case Instruction::UDiv: 940 case Instruction::Sub: 941 case Instruction::And: 942 case Instruction::Or: 943 case Instruction::Xor: 944 case Instruction::Shl: 945 case Instruction::LShr: 946 case Instruction::AShr: 947 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 948 949 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 950 // anything about the narrow operand yet so must insert a [sz]ext. It is 951 // probably loop invariant and will be folded or hoisted. If it actually 952 // comes from a widened IV, it should be removed during a future call to 953 // WidenIVUse. 954 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 955 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 956 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 957 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 958 959 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 960 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 961 LHS, RHS, 962 NarrowBO->getName()); 963 IRBuilder<> Builder(DU.NarrowUse); 964 Builder.Insert(WideBO); 965 if (const OverflowingBinaryOperator *OBO = 966 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 967 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 968 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 969 } 970 return WideBO; 971 } 972 } 973 974 const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 975 unsigned OpCode) const { 976 if (OpCode == Instruction::Add) 977 return SE->getAddExpr(LHS, RHS); 978 if (OpCode == Instruction::Sub) 979 return SE->getMinusSCEV(LHS, RHS); 980 if (OpCode == Instruction::Mul) 981 return SE->getMulExpr(LHS, RHS); 982 983 llvm_unreachable("Unsupported opcode."); 984 } 985 986 /// No-wrap operations can transfer sign extension of their result to their 987 /// operands. Generate the SCEV value for the widened operation without 988 /// actually modifying the IR yet. If the expression after extending the 989 /// operands is an AddRec for this loop, return it. 990 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 991 992 // Handle the common case of add<nsw/nuw> 993 const unsigned OpCode = DU.NarrowUse->getOpcode(); 994 // Only Add/Sub/Mul instructions supported yet. 995 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 996 OpCode != Instruction::Mul) 997 return nullptr; 998 999 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1000 // if extending the other will lead to a recurrence. 1001 const unsigned ExtendOperIdx = 1002 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1003 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1004 1005 const SCEV *ExtendOperExpr = nullptr; 1006 const OverflowingBinaryOperator *OBO = 1007 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1008 if (IsSigned && OBO->hasNoSignedWrap()) 1009 ExtendOperExpr = SE->getSignExtendExpr( 1010 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1011 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1012 ExtendOperExpr = SE->getZeroExtendExpr( 1013 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1014 else 1015 return nullptr; 1016 1017 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1018 // flags. This instruction may be guarded by control flow that the no-wrap 1019 // behavior depends on. Non-control-equivalent instructions can be mapped to 1020 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1021 // semantics to those operations. 1022 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1023 const SCEV *rhs = ExtendOperExpr; 1024 1025 // Let's swap operands to the initial order for the case of non-commutative 1026 // operations, like SUB. See PR21014. 1027 if (ExtendOperIdx == 0) 1028 std::swap(lhs, rhs); 1029 const SCEVAddRecExpr *AddRec = 1030 dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode)); 1031 1032 if (!AddRec || AddRec->getLoop() != L) 1033 return nullptr; 1034 return AddRec; 1035 } 1036 1037 /// GetWideRecurrence - Is this instruction potentially interesting for further 1038 /// simplification after widening it's type? In other words, can the 1039 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 1040 /// recurrence on the same loop. If so, return the sign or zero extended 1041 /// recurrence. Otherwise return NULL. 1042 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 1043 if (!SE->isSCEVable(NarrowUse->getType())) 1044 return nullptr; 1045 1046 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1047 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 1048 >= SE->getTypeSizeInBits(WideType)) { 1049 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1050 // index. So don't follow this use. 1051 return nullptr; 1052 } 1053 1054 const SCEV *WideExpr = IsSigned ? 1055 SE->getSignExtendExpr(NarrowExpr, WideType) : 1056 SE->getZeroExtendExpr(NarrowExpr, WideType); 1057 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1058 if (!AddRec || AddRec->getLoop() != L) 1059 return nullptr; 1060 return AddRec; 1061 } 1062 1063 /// This IV user cannot be widen. Replace this use of the original narrow IV 1064 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1065 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) { 1066 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1067 << " for user " << *DU.NarrowUse << "\n"); 1068 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1069 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1070 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1071 } 1072 1073 /// If the narrow use is a compare instruction, then widen the compare 1074 // (and possibly the other operand). The extend operation is hoisted into the 1075 // loop preheader as far as possible. 1076 bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) { 1077 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1078 if (!Cmp) 1079 return false; 1080 1081 // Sign of IV user and compare must match. 1082 if (IsSigned != CmpInst::isSigned(Cmp->getPredicate())) 1083 return false; 1084 1085 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1086 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1087 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1088 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1089 1090 // Widen the compare instruction. 1091 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1092 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1093 1094 // Widen the other operand of the compare, if necessary. 1095 if (CastWidth < IVWidth) { 1096 Value *ExtOp = getExtend(Op, WideType, IsSigned, Cmp); 1097 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1098 } 1099 return true; 1100 } 1101 1102 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 1103 /// widened. If so, return the wide clone of the user. 1104 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1105 1106 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1107 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1108 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1109 // For LCSSA phis, sink the truncate outside the loop. 1110 // After SimplifyCFG most loop exit targets have a single predecessor. 1111 // Otherwise fall back to a truncate within the loop. 1112 if (UsePhi->getNumOperands() != 1) 1113 truncateIVUse(DU, DT); 1114 else { 1115 PHINode *WidePhi = 1116 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1117 UsePhi); 1118 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1119 IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt()); 1120 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1121 UsePhi->replaceAllUsesWith(Trunc); 1122 DeadInsts.emplace_back(UsePhi); 1123 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1124 << " to " << *WidePhi << "\n"); 1125 } 1126 return nullptr; 1127 } 1128 } 1129 // Our raison d'etre! Eliminate sign and zero extension. 1130 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1131 Value *NewDef = DU.WideDef; 1132 if (DU.NarrowUse->getType() != WideType) { 1133 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1134 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1135 if (CastWidth < IVWidth) { 1136 // The cast isn't as wide as the IV, so insert a Trunc. 1137 IRBuilder<> Builder(DU.NarrowUse); 1138 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1139 } 1140 else { 1141 // A wider extend was hidden behind a narrower one. This may induce 1142 // another round of IV widening in which the intermediate IV becomes 1143 // dead. It should be very rare. 1144 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1145 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1146 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1147 NewDef = DU.NarrowUse; 1148 } 1149 } 1150 if (NewDef != DU.NarrowUse) { 1151 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1152 << " replaced by " << *DU.WideDef << "\n"); 1153 ++NumElimExt; 1154 DU.NarrowUse->replaceAllUsesWith(NewDef); 1155 DeadInsts.emplace_back(DU.NarrowUse); 1156 } 1157 // Now that the extend is gone, we want to expose it's uses for potential 1158 // further simplification. We don't need to directly inform SimplifyIVUsers 1159 // of the new users, because their parent IV will be processed later as a 1160 // new loop phi. If we preserved IVUsers analysis, we would also want to 1161 // push the uses of WideDef here. 1162 1163 // No further widening is needed. The deceased [sz]ext had done it for us. 1164 return nullptr; 1165 } 1166 1167 // Does this user itself evaluate to a recurrence after widening? 1168 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 1169 if (!WideAddRec) 1170 WideAddRec = GetExtendedOperandRecurrence(DU); 1171 1172 if (!WideAddRec) { 1173 // If use is a loop condition, try to promote the condition instead of 1174 // truncating the IV first. 1175 if (WidenLoopCompare(DU)) 1176 return nullptr; 1177 1178 // This user does not evaluate to a recurence after widening, so don't 1179 // follow it. Instead insert a Trunc to kill off the original use, 1180 // eventually isolating the original narrow IV so it can be removed. 1181 truncateIVUse(DU, DT); 1182 return nullptr; 1183 } 1184 // Assume block terminators cannot evaluate to a recurrence. We can't to 1185 // insert a Trunc after a terminator if there happens to be a critical edge. 1186 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1187 "SCEV is not expected to evaluate a block terminator"); 1188 1189 // Reuse the IV increment that SCEVExpander created as long as it dominates 1190 // NarrowUse. 1191 Instruction *WideUse = nullptr; 1192 if (WideAddRec == WideIncExpr 1193 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1194 WideUse = WideInc; 1195 else { 1196 WideUse = CloneIVUser(DU); 1197 if (!WideUse) 1198 return nullptr; 1199 } 1200 // Evaluation of WideAddRec ensured that the narrow expression could be 1201 // extended outside the loop without overflow. This suggests that the wide use 1202 // evaluates to the same expression as the extended narrow use, but doesn't 1203 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1204 // where it fails, we simply throw away the newly created wide use. 1205 if (WideAddRec != SE->getSCEV(WideUse)) { 1206 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1207 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1208 DeadInsts.emplace_back(WideUse); 1209 return nullptr; 1210 } 1211 1212 // Returning WideUse pushes it on the worklist. 1213 return WideUse; 1214 } 1215 1216 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1217 /// 1218 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1219 for (User *U : NarrowDef->users()) { 1220 Instruction *NarrowUser = cast<Instruction>(U); 1221 1222 // Handle data flow merges and bizarre phi cycles. 1223 if (!Widened.insert(NarrowUser).second) 1224 continue; 1225 1226 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef)); 1227 } 1228 } 1229 1230 /// CreateWideIV - Process a single induction variable. First use the 1231 /// SCEVExpander to create a wide induction variable that evaluates to the same 1232 /// recurrence as the original narrow IV. Then use a worklist to forward 1233 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1234 /// interesting IV users, the narrow IV will be isolated for removal by 1235 /// DeleteDeadPHIs. 1236 /// 1237 /// It would be simpler to delete uses as they are processed, but we must avoid 1238 /// invalidating SCEV expressions. 1239 /// 1240 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1241 // Is this phi an induction variable? 1242 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1243 if (!AddRec) 1244 return nullptr; 1245 1246 // Widen the induction variable expression. 1247 const SCEV *WideIVExpr = IsSigned ? 1248 SE->getSignExtendExpr(AddRec, WideType) : 1249 SE->getZeroExtendExpr(AddRec, WideType); 1250 1251 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1252 "Expect the new IV expression to preserve its type"); 1253 1254 // Can the IV be extended outside the loop without overflow? 1255 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1256 if (!AddRec || AddRec->getLoop() != L) 1257 return nullptr; 1258 1259 // An AddRec must have loop-invariant operands. Since this AddRec is 1260 // materialized by a loop header phi, the expression cannot have any post-loop 1261 // operands, so they must dominate the loop header. 1262 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1263 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1264 && "Loop header phi recurrence inputs do not dominate the loop"); 1265 1266 // The rewriter provides a value for the desired IV expression. This may 1267 // either find an existing phi or materialize a new one. Either way, we 1268 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1269 // of the phi-SCC dominates the loop entry. 1270 Instruction *InsertPt = L->getHeader()->begin(); 1271 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1272 1273 // Remembering the WideIV increment generated by SCEVExpander allows 1274 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1275 // employ a general reuse mechanism because the call above is the only call to 1276 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1277 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1278 WideInc = 1279 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1280 WideIncExpr = SE->getSCEV(WideInc); 1281 } 1282 1283 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1284 ++NumWidened; 1285 1286 // Traverse the def-use chain using a worklist starting at the original IV. 1287 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1288 1289 Widened.insert(OrigPhi); 1290 pushNarrowIVUsers(OrigPhi, WidePhi); 1291 1292 while (!NarrowIVUsers.empty()) { 1293 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1294 1295 // Process a def-use edge. This may replace the use, so don't hold a 1296 // use_iterator across it. 1297 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1298 1299 // Follow all def-use edges from the previous narrow use. 1300 if (WideUse) 1301 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1302 1303 // WidenIVUse may have removed the def-use edge. 1304 if (DU.NarrowDef->use_empty()) 1305 DeadInsts.emplace_back(DU.NarrowDef); 1306 } 1307 return WidePhi; 1308 } 1309 1310 //===----------------------------------------------------------------------===// 1311 // Live IV Reduction - Minimize IVs live across the loop. 1312 //===----------------------------------------------------------------------===// 1313 1314 1315 //===----------------------------------------------------------------------===// 1316 // Simplification of IV users based on SCEV evaluation. 1317 //===----------------------------------------------------------------------===// 1318 1319 namespace { 1320 class IndVarSimplifyVisitor : public IVVisitor { 1321 ScalarEvolution *SE; 1322 const TargetTransformInfo *TTI; 1323 PHINode *IVPhi; 1324 1325 public: 1326 WideIVInfo WI; 1327 1328 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1329 const TargetTransformInfo *TTI, 1330 const DominatorTree *DTree) 1331 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1332 DT = DTree; 1333 WI.NarrowIV = IVPhi; 1334 if (ReduceLiveIVs) 1335 setSplitOverflowIntrinsics(); 1336 } 1337 1338 // Implement the interface used by simplifyUsersOfIV. 1339 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1340 }; 1341 } 1342 1343 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1344 /// users. Each successive simplification may push more users which may 1345 /// themselves be candidates for simplification. 1346 /// 1347 /// Sign/Zero extend elimination is interleaved with IV simplification. 1348 /// 1349 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1350 SCEVExpander &Rewriter, 1351 LPPassManager &LPM) { 1352 SmallVector<WideIVInfo, 8> WideIVs; 1353 1354 SmallVector<PHINode*, 8> LoopPhis; 1355 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1356 LoopPhis.push_back(cast<PHINode>(I)); 1357 } 1358 // Each round of simplification iterates through the SimplifyIVUsers worklist 1359 // for all current phis, then determines whether any IVs can be 1360 // widened. Widening adds new phis to LoopPhis, inducing another round of 1361 // simplification on the wide IVs. 1362 while (!LoopPhis.empty()) { 1363 // Evaluate as many IV expressions as possible before widening any IVs. This 1364 // forces SCEV to set no-wrap flags before evaluating sign/zero 1365 // extension. The first time SCEV attempts to normalize sign/zero extension, 1366 // the result becomes final. So for the most predictable results, we delay 1367 // evaluation of sign/zero extend evaluation until needed, and avoid running 1368 // other SCEV based analysis prior to SimplifyAndExtend. 1369 do { 1370 PHINode *CurrIV = LoopPhis.pop_back_val(); 1371 1372 // Information about sign/zero extensions of CurrIV. 1373 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1374 1375 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor); 1376 1377 if (Visitor.WI.WidestNativeType) { 1378 WideIVs.push_back(Visitor.WI); 1379 } 1380 } while(!LoopPhis.empty()); 1381 1382 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1383 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1384 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1385 Changed = true; 1386 LoopPhis.push_back(WidePhi); 1387 } 1388 } 1389 } 1390 } 1391 1392 //===----------------------------------------------------------------------===// 1393 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1394 //===----------------------------------------------------------------------===// 1395 1396 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1397 /// count expression can be safely and cheaply expanded into an instruction 1398 /// sequence that can be used by LinearFunctionTestReplace. 1399 /// 1400 /// TODO: This fails for pointer-type loop counters with greater than one byte 1401 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1402 /// we could skip this check in the case that the LFTR loop counter (chosen by 1403 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1404 /// the loop test to an inequality test by checking the target data's alignment 1405 /// of element types (given that the initial pointer value originates from or is 1406 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1407 /// However, we don't yet have a strong motivation for converting loop tests 1408 /// into inequality tests. 1409 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1410 SCEVExpander &Rewriter) { 1411 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1412 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1413 BackedgeTakenCount->isZero()) 1414 return false; 1415 1416 if (!L->getExitingBlock()) 1417 return false; 1418 1419 // Can't rewrite non-branch yet. 1420 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1421 return false; 1422 1423 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1424 return false; 1425 1426 return true; 1427 } 1428 1429 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1430 /// invariant value to the phi. 1431 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1432 Instruction *IncI = dyn_cast<Instruction>(IncV); 1433 if (!IncI) 1434 return nullptr; 1435 1436 switch (IncI->getOpcode()) { 1437 case Instruction::Add: 1438 case Instruction::Sub: 1439 break; 1440 case Instruction::GetElementPtr: 1441 // An IV counter must preserve its type. 1442 if (IncI->getNumOperands() == 2) 1443 break; 1444 default: 1445 return nullptr; 1446 } 1447 1448 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1449 if (Phi && Phi->getParent() == L->getHeader()) { 1450 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1451 return Phi; 1452 return nullptr; 1453 } 1454 if (IncI->getOpcode() == Instruction::GetElementPtr) 1455 return nullptr; 1456 1457 // Allow add/sub to be commuted. 1458 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1459 if (Phi && Phi->getParent() == L->getHeader()) { 1460 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1461 return Phi; 1462 } 1463 return nullptr; 1464 } 1465 1466 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1467 static ICmpInst *getLoopTest(Loop *L) { 1468 assert(L->getExitingBlock() && "expected loop exit"); 1469 1470 BasicBlock *LatchBlock = L->getLoopLatch(); 1471 // Don't bother with LFTR if the loop is not properly simplified. 1472 if (!LatchBlock) 1473 return nullptr; 1474 1475 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1476 assert(BI && "expected exit branch"); 1477 1478 return dyn_cast<ICmpInst>(BI->getCondition()); 1479 } 1480 1481 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1482 /// that the current exit test is already sufficiently canonical. 1483 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1484 // Do LFTR to simplify the exit condition to an ICMP. 1485 ICmpInst *Cond = getLoopTest(L); 1486 if (!Cond) 1487 return true; 1488 1489 // Do LFTR to simplify the exit ICMP to EQ/NE 1490 ICmpInst::Predicate Pred = Cond->getPredicate(); 1491 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1492 return true; 1493 1494 // Look for a loop invariant RHS 1495 Value *LHS = Cond->getOperand(0); 1496 Value *RHS = Cond->getOperand(1); 1497 if (!isLoopInvariant(RHS, L, DT)) { 1498 if (!isLoopInvariant(LHS, L, DT)) 1499 return true; 1500 std::swap(LHS, RHS); 1501 } 1502 // Look for a simple IV counter LHS 1503 PHINode *Phi = dyn_cast<PHINode>(LHS); 1504 if (!Phi) 1505 Phi = getLoopPhiForCounter(LHS, L, DT); 1506 1507 if (!Phi) 1508 return true; 1509 1510 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1511 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1512 if (Idx < 0) 1513 return true; 1514 1515 // Do LFTR if the exit condition's IV is *not* a simple counter. 1516 Value *IncV = Phi->getIncomingValue(Idx); 1517 return Phi != getLoopPhiForCounter(IncV, L, DT); 1518 } 1519 1520 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1521 /// down to checking that all operands are constant and listing instructions 1522 /// that may hide undef. 1523 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1524 unsigned Depth) { 1525 if (isa<Constant>(V)) 1526 return !isa<UndefValue>(V); 1527 1528 if (Depth >= 6) 1529 return false; 1530 1531 // Conservatively handle non-constant non-instructions. For example, Arguments 1532 // may be undef. 1533 Instruction *I = dyn_cast<Instruction>(V); 1534 if (!I) 1535 return false; 1536 1537 // Load and return values may be undef. 1538 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1539 return false; 1540 1541 // Optimistically handle other instructions. 1542 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1543 if (!Visited.insert(*OI).second) 1544 continue; 1545 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1546 return false; 1547 } 1548 return true; 1549 } 1550 1551 /// Return true if the given value is concrete. We must prove that undef can 1552 /// never reach it. 1553 /// 1554 /// TODO: If we decide that this is a good approach to checking for undef, we 1555 /// may factor it into a common location. 1556 static bool hasConcreteDef(Value *V) { 1557 SmallPtrSet<Value*, 8> Visited; 1558 Visited.insert(V); 1559 return hasConcreteDefImpl(V, Visited, 0); 1560 } 1561 1562 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1563 /// be rewritten) loop exit test. 1564 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1565 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1566 Value *IncV = Phi->getIncomingValue(LatchIdx); 1567 1568 for (User *U : Phi->users()) 1569 if (U != Cond && U != IncV) return false; 1570 1571 for (User *U : IncV->users()) 1572 if (U != Cond && U != Phi) return false; 1573 return true; 1574 } 1575 1576 /// FindLoopCounter - Find an affine IV in canonical form. 1577 /// 1578 /// BECount may be an i8* pointer type. The pointer difference is already 1579 /// valid count without scaling the address stride, so it remains a pointer 1580 /// expression as far as SCEV is concerned. 1581 /// 1582 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1583 /// 1584 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1585 /// 1586 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1587 /// This is difficult in general for SCEV because of potential overflow. But we 1588 /// could at least handle constant BECounts. 1589 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1590 ScalarEvolution *SE, DominatorTree *DT) { 1591 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1592 1593 Value *Cond = 1594 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1595 1596 // Loop over all of the PHI nodes, looking for a simple counter. 1597 PHINode *BestPhi = nullptr; 1598 const SCEV *BestInit = nullptr; 1599 BasicBlock *LatchBlock = L->getLoopLatch(); 1600 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1601 1602 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1603 PHINode *Phi = cast<PHINode>(I); 1604 if (!SE->isSCEVable(Phi->getType())) 1605 continue; 1606 1607 // Avoid comparing an integer IV against a pointer Limit. 1608 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1609 continue; 1610 1611 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1612 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1613 continue; 1614 1615 // AR may be a pointer type, while BECount is an integer type. 1616 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1617 // AR may not be a narrower type, or we may never exit. 1618 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1619 if (PhiWidth < BCWidth || 1620 !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth)) 1621 continue; 1622 1623 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1624 if (!Step || !Step->isOne()) 1625 continue; 1626 1627 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1628 Value *IncV = Phi->getIncomingValue(LatchIdx); 1629 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1630 continue; 1631 1632 // Avoid reusing a potentially undef value to compute other values that may 1633 // have originally had a concrete definition. 1634 if (!hasConcreteDef(Phi)) { 1635 // We explicitly allow unknown phis as long as they are already used by 1636 // the loop test. In this case we assume that performing LFTR could not 1637 // increase the number of undef users. 1638 if (ICmpInst *Cond = getLoopTest(L)) { 1639 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1640 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1641 continue; 1642 } 1643 } 1644 } 1645 const SCEV *Init = AR->getStart(); 1646 1647 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1648 // Don't force a live loop counter if another IV can be used. 1649 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1650 continue; 1651 1652 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1653 // also prefers integer to pointer IVs. 1654 if (BestInit->isZero() != Init->isZero()) { 1655 if (BestInit->isZero()) 1656 continue; 1657 } 1658 // If two IVs both count from zero or both count from nonzero then the 1659 // narrower is likely a dead phi that has been widened. Use the wider phi 1660 // to allow the other to be eliminated. 1661 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1662 continue; 1663 } 1664 BestPhi = Phi; 1665 BestInit = Init; 1666 } 1667 return BestPhi; 1668 } 1669 1670 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1671 /// holds the RHS of the new loop test. 1672 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1673 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1674 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1675 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1676 const SCEV *IVInit = AR->getStart(); 1677 1678 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1679 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1680 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1681 // the existing GEPs whenever possible. 1682 if (IndVar->getType()->isPointerTy() 1683 && !IVCount->getType()->isPointerTy()) { 1684 1685 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1686 // signed value. IVCount on the other hand represents the loop trip count, 1687 // which is an unsigned value. FindLoopCounter only allows induction 1688 // variables that have a positive unit stride of one. This means we don't 1689 // have to handle the case of negative offsets (yet) and just need to zero 1690 // extend IVCount. 1691 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1692 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1693 1694 // Expand the code for the iteration count. 1695 assert(SE->isLoopInvariant(IVOffset, L) && 1696 "Computed iteration count is not loop invariant!"); 1697 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1698 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1699 1700 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1701 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1702 // We could handle pointer IVs other than i8*, but we need to compensate for 1703 // gep index scaling. See canExpandBackedgeTakenCount comments. 1704 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1705 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1706 && "unit stride pointer IV must be i8*"); 1707 1708 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1709 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1710 } 1711 else { 1712 // In any other case, convert both IVInit and IVCount to integers before 1713 // comparing. This may result in SCEV expension of pointers, but in practice 1714 // SCEV will fold the pointer arithmetic away as such: 1715 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1716 // 1717 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1718 // for simple memset-style loops. 1719 // 1720 // IVInit integer and IVCount pointer would only occur if a canonical IV 1721 // were generated on top of case #2, which is not expected. 1722 1723 const SCEV *IVLimit = nullptr; 1724 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1725 // For non-zero Start, compute IVCount here. 1726 if (AR->getStart()->isZero()) 1727 IVLimit = IVCount; 1728 else { 1729 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1730 const SCEV *IVInit = AR->getStart(); 1731 1732 // For integer IVs, truncate the IV before computing IVInit + BECount. 1733 if (SE->getTypeSizeInBits(IVInit->getType()) 1734 > SE->getTypeSizeInBits(IVCount->getType())) 1735 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1736 1737 IVLimit = SE->getAddExpr(IVInit, IVCount); 1738 } 1739 // Expand the code for the iteration count. 1740 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1741 IRBuilder<> Builder(BI); 1742 assert(SE->isLoopInvariant(IVLimit, L) && 1743 "Computed iteration count is not loop invariant!"); 1744 // Ensure that we generate the same type as IndVar, or a smaller integer 1745 // type. In the presence of null pointer values, we have an integer type 1746 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1747 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1748 IndVar->getType() : IVCount->getType(); 1749 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1750 } 1751 } 1752 1753 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1754 /// loop to be a canonical != comparison against the incremented loop induction 1755 /// variable. This pass is able to rewrite the exit tests of any loop where the 1756 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1757 /// is actually a much broader range than just linear tests. 1758 Value *IndVarSimplify:: 1759 LinearFunctionTestReplace(Loop *L, 1760 const SCEV *BackedgeTakenCount, 1761 PHINode *IndVar, 1762 SCEVExpander &Rewriter) { 1763 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1764 1765 // Initialize CmpIndVar and IVCount to their preincremented values. 1766 Value *CmpIndVar = IndVar; 1767 const SCEV *IVCount = BackedgeTakenCount; 1768 1769 // If the exiting block is the same as the backedge block, we prefer to 1770 // compare against the post-incremented value, otherwise we must compare 1771 // against the preincremented value. 1772 if (L->getExitingBlock() == L->getLoopLatch()) { 1773 // Add one to the "backedge-taken" count to get the trip count. 1774 // This addition may overflow, which is valid as long as the comparison is 1775 // truncated to BackedgeTakenCount->getType(). 1776 IVCount = SE->getAddExpr(BackedgeTakenCount, 1777 SE->getConstant(BackedgeTakenCount->getType(), 1)); 1778 // The BackedgeTaken expression contains the number of times that the 1779 // backedge branches to the loop header. This is one less than the 1780 // number of times the loop executes, so use the incremented indvar. 1781 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1782 } 1783 1784 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1785 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1786 && "genLoopLimit missed a cast"); 1787 1788 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1789 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1790 ICmpInst::Predicate P; 1791 if (L->contains(BI->getSuccessor(0))) 1792 P = ICmpInst::ICMP_NE; 1793 else 1794 P = ICmpInst::ICMP_EQ; 1795 1796 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1797 << " LHS:" << *CmpIndVar << '\n' 1798 << " op:\t" 1799 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1800 << " RHS:\t" << *ExitCnt << "\n" 1801 << " IVCount:\t" << *IVCount << "\n"); 1802 1803 IRBuilder<> Builder(BI); 1804 1805 // LFTR can ignore IV overflow and truncate to the width of 1806 // BECount. This avoids materializing the add(zext(add)) expression. 1807 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1808 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1809 if (CmpIndVarSize > ExitCntSize) { 1810 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1811 const SCEV *ARStart = AR->getStart(); 1812 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1813 // For constant IVCount, avoid truncation. 1814 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1815 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue(); 1816 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue(); 1817 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1818 // above such that IVCount is now zero. 1819 if (IVCount != BackedgeTakenCount && Count == 0) { 1820 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1821 ++Count; 1822 } 1823 else 1824 Count = Count.zext(CmpIndVarSize); 1825 APInt NewLimit; 1826 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1827 NewLimit = Start - Count; 1828 else 1829 NewLimit = Start + Count; 1830 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1831 1832 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1833 } else { 1834 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1835 "lftr.wideiv"); 1836 } 1837 } 1838 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1839 Value *OrigCond = BI->getCondition(); 1840 // It's tempting to use replaceAllUsesWith here to fully replace the old 1841 // comparison, but that's not immediately safe, since users of the old 1842 // comparison may not be dominated by the new comparison. Instead, just 1843 // update the branch to use the new comparison; in the common case this 1844 // will make old comparison dead. 1845 BI->setCondition(Cond); 1846 DeadInsts.push_back(OrigCond); 1847 1848 ++NumLFTR; 1849 Changed = true; 1850 return Cond; 1851 } 1852 1853 //===----------------------------------------------------------------------===// 1854 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1855 //===----------------------------------------------------------------------===// 1856 1857 /// If there's a single exit block, sink any loop-invariant values that 1858 /// were defined in the preheader but not used inside the loop into the 1859 /// exit block to reduce register pressure in the loop. 1860 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1861 BasicBlock *ExitBlock = L->getExitBlock(); 1862 if (!ExitBlock) return; 1863 1864 BasicBlock *Preheader = L->getLoopPreheader(); 1865 if (!Preheader) return; 1866 1867 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1868 BasicBlock::iterator I = Preheader->getTerminator(); 1869 while (I != Preheader->begin()) { 1870 --I; 1871 // New instructions were inserted at the end of the preheader. 1872 if (isa<PHINode>(I)) 1873 break; 1874 1875 // Don't move instructions which might have side effects, since the side 1876 // effects need to complete before instructions inside the loop. Also don't 1877 // move instructions which might read memory, since the loop may modify 1878 // memory. Note that it's okay if the instruction might have undefined 1879 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1880 // block. 1881 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1882 continue; 1883 1884 // Skip debug info intrinsics. 1885 if (isa<DbgInfoIntrinsic>(I)) 1886 continue; 1887 1888 // Skip landingpad instructions. 1889 if (isa<LandingPadInst>(I)) 1890 continue; 1891 1892 // Don't sink alloca: we never want to sink static alloca's out of the 1893 // entry block, and correctly sinking dynamic alloca's requires 1894 // checks for stacksave/stackrestore intrinsics. 1895 // FIXME: Refactor this check somehow? 1896 if (isa<AllocaInst>(I)) 1897 continue; 1898 1899 // Determine if there is a use in or before the loop (direct or 1900 // otherwise). 1901 bool UsedInLoop = false; 1902 for (Use &U : I->uses()) { 1903 Instruction *User = cast<Instruction>(U.getUser()); 1904 BasicBlock *UseBB = User->getParent(); 1905 if (PHINode *P = dyn_cast<PHINode>(User)) { 1906 unsigned i = 1907 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1908 UseBB = P->getIncomingBlock(i); 1909 } 1910 if (UseBB == Preheader || L->contains(UseBB)) { 1911 UsedInLoop = true; 1912 break; 1913 } 1914 } 1915 1916 // If there is, the def must remain in the preheader. 1917 if (UsedInLoop) 1918 continue; 1919 1920 // Otherwise, sink it to the exit block. 1921 Instruction *ToMove = I; 1922 bool Done = false; 1923 1924 if (I != Preheader->begin()) { 1925 // Skip debug info intrinsics. 1926 do { 1927 --I; 1928 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1929 1930 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1931 Done = true; 1932 } else { 1933 Done = true; 1934 } 1935 1936 ToMove->moveBefore(InsertPt); 1937 if (Done) break; 1938 InsertPt = ToMove; 1939 } 1940 } 1941 1942 //===----------------------------------------------------------------------===// 1943 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1944 //===----------------------------------------------------------------------===// 1945 1946 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1947 if (skipOptnoneFunction(L)) 1948 return false; 1949 1950 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1951 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1952 // canonicalization can be a pessimization without LSR to "clean up" 1953 // afterwards. 1954 // - We depend on having a preheader; in particular, 1955 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1956 // and we're in trouble if we can't find the induction variable even when 1957 // we've manually inserted one. 1958 if (!L->isLoopSimplifyForm()) 1959 return false; 1960 1961 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 1962 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 1963 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 1964 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 1965 TLI = TLIP ? &TLIP->getTLI() : nullptr; 1966 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 1967 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 1968 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 1969 1970 DeadInsts.clear(); 1971 Changed = false; 1972 1973 // If there are any floating-point recurrences, attempt to 1974 // transform them to use integer recurrences. 1975 RewriteNonIntegerIVs(L); 1976 1977 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1978 1979 // Create a rewriter object which we'll use to transform the code with. 1980 SCEVExpander Rewriter(*SE, DL, "indvars"); 1981 #ifndef NDEBUG 1982 Rewriter.setDebugType(DEBUG_TYPE); 1983 #endif 1984 1985 // Eliminate redundant IV users. 1986 // 1987 // Simplification works best when run before other consumers of SCEV. We 1988 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1989 // other expressions involving loop IVs have been evaluated. This helps SCEV 1990 // set no-wrap flags before normalizing sign/zero extension. 1991 Rewriter.disableCanonicalMode(); 1992 SimplifyAndExtend(L, Rewriter, LPM); 1993 1994 // Check to see if this loop has a computable loop-invariant execution count. 1995 // If so, this means that we can compute the final value of any expressions 1996 // that are recurrent in the loop, and substitute the exit values from the 1997 // loop into any instructions outside of the loop that use the final values of 1998 // the current expressions. 1999 // 2000 if (ReplaceExitValue != NeverRepl && 2001 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2002 RewriteLoopExitValues(L, Rewriter); 2003 2004 // Eliminate redundant IV cycles. 2005 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2006 2007 // If we have a trip count expression, rewrite the loop's exit condition 2008 // using it. We can currently only handle loops with a single exit. 2009 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2010 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2011 if (IndVar) { 2012 // Check preconditions for proper SCEVExpander operation. SCEV does not 2013 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2014 // pass that uses the SCEVExpander must do it. This does not work well for 2015 // loop passes because SCEVExpander makes assumptions about all loops, 2016 // while LoopPassManager only forces the current loop to be simplified. 2017 // 2018 // FIXME: SCEV expansion has no way to bail out, so the caller must 2019 // explicitly check any assumptions made by SCEV. Brittle. 2020 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2021 if (!AR || AR->getLoop()->getLoopPreheader()) 2022 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2023 Rewriter); 2024 } 2025 } 2026 // Clear the rewriter cache, because values that are in the rewriter's cache 2027 // can be deleted in the loop below, causing the AssertingVH in the cache to 2028 // trigger. 2029 Rewriter.clear(); 2030 2031 // Now that we're done iterating through lists, clean up any instructions 2032 // which are now dead. 2033 while (!DeadInsts.empty()) 2034 if (Instruction *Inst = 2035 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2036 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2037 2038 // The Rewriter may not be used from this point on. 2039 2040 // Loop-invariant instructions in the preheader that aren't used in the 2041 // loop may be sunk below the loop to reduce register pressure. 2042 SinkUnusedInvariants(L); 2043 2044 // Clean up dead instructions. 2045 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2046 // Check a post-condition. 2047 assert(L->isLCSSAForm(*DT) && 2048 "Indvars did not leave the loop in lcssa form!"); 2049 2050 // Verify that LFTR, and any other change have not interfered with SCEV's 2051 // ability to compute trip count. 2052 #ifndef NDEBUG 2053 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2054 SE->forgetLoop(L); 2055 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2056 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2057 SE->getTypeSizeInBits(NewBECount->getType())) 2058 NewBECount = SE->getTruncateOrNoop(NewBECount, 2059 BackedgeTakenCount->getType()); 2060 else 2061 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2062 NewBECount->getType()); 2063 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2064 } 2065 #endif 2066 2067 return Changed; 2068 } 2069