1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/ADT/APFloat.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/None.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/Analysis/ScalarEvolutionExpander.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/ConstantRange.h" 50 #include "llvm/IR/Constants.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/IR/ValueHandle.h" 70 #include "llvm/Pass.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/MathExtras.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/LoopPassManager.h" 80 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 81 #include "llvm/Transforms/Utils/LoopUtils.h" 82 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 83 #include <cassert> 84 #include <cstdint> 85 #include <utility> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "indvars" 90 91 STATISTIC(NumWidened , "Number of indvars widened"); 92 STATISTIC(NumReplaced , "Number of exit values replaced"); 93 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 94 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 95 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 96 97 // Trip count verification can be enabled by default under NDEBUG if we 98 // implement a strong expression equivalence checker in SCEV. Until then, we 99 // use the verify-indvars flag, which may assert in some cases. 100 static cl::opt<bool> VerifyIndvars( 101 "verify-indvars", cl::Hidden, 102 cl::desc("Verify the ScalarEvolution result after running indvars")); 103 104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 105 106 static cl::opt<ReplaceExitVal> ReplaceExitValue( 107 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 108 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 109 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 110 clEnumValN(OnlyCheapRepl, "cheap", 111 "only replace exit value when the cost is cheap"), 112 clEnumValN(AlwaysRepl, "always", 113 "always replace exit value whenever possible"))); 114 115 static cl::opt<bool> UsePostIncrementRanges( 116 "indvars-post-increment-ranges", cl::Hidden, 117 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 118 cl::init(true)); 119 120 static cl::opt<bool> 121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 122 cl::desc("Disable Linear Function Test Replace optimization")); 123 124 namespace { 125 126 struct RewritePhi; 127 128 class IndVarSimplify { 129 LoopInfo *LI; 130 ScalarEvolution *SE; 131 DominatorTree *DT; 132 const DataLayout &DL; 133 TargetLibraryInfo *TLI; 134 const TargetTransformInfo *TTI; 135 136 SmallVector<WeakTrackingVH, 16> DeadInsts; 137 bool Changed = false; 138 139 bool isValidRewrite(Value *FromVal, Value *ToVal); 140 141 void handleFloatingPointIV(Loop *L, PHINode *PH); 142 void rewriteNonIntegerIVs(Loop *L); 143 144 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 145 146 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 147 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 148 void rewriteFirstIterationLoopExitValues(Loop *L); 149 150 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 151 PHINode *IndVar, SCEVExpander &Rewriter); 152 153 void sinkUnusedInvariants(Loop *L); 154 155 public: 156 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 157 const DataLayout &DL, TargetLibraryInfo *TLI, 158 TargetTransformInfo *TTI) 159 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 160 161 bool run(Loop *L); 162 }; 163 164 } // end anonymous namespace 165 166 /// Return true if the SCEV expansion generated by the rewriter can replace the 167 /// original value. SCEV guarantees that it produces the same value, but the way 168 /// it is produced may be illegal IR. Ideally, this function will only be 169 /// called for verification. 170 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 171 // If an SCEV expression subsumed multiple pointers, its expansion could 172 // reassociate the GEP changing the base pointer. This is illegal because the 173 // final address produced by a GEP chain must be inbounds relative to its 174 // underlying object. Otherwise basic alias analysis, among other things, 175 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 176 // producing an expression involving multiple pointers. Until then, we must 177 // bail out here. 178 // 179 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 180 // because it understands lcssa phis while SCEV does not. 181 Value *FromPtr = FromVal; 182 Value *ToPtr = ToVal; 183 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 184 FromPtr = GEP->getPointerOperand(); 185 } 186 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 187 ToPtr = GEP->getPointerOperand(); 188 } 189 if (FromPtr != FromVal || ToPtr != ToVal) { 190 // Quickly check the common case 191 if (FromPtr == ToPtr) 192 return true; 193 194 // SCEV may have rewritten an expression that produces the GEP's pointer 195 // operand. That's ok as long as the pointer operand has the same base 196 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 197 // base of a recurrence. This handles the case in which SCEV expansion 198 // converts a pointer type recurrence into a nonrecurrent pointer base 199 // indexed by an integer recurrence. 200 201 // If the GEP base pointer is a vector of pointers, abort. 202 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 203 return false; 204 205 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 206 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 207 if (FromBase == ToBase) 208 return true; 209 210 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 211 << " != " << *ToBase << "\n"); 212 213 return false; 214 } 215 return true; 216 } 217 218 /// Determine the insertion point for this user. By default, insert immediately 219 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 220 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 221 /// common dominator for the incoming blocks. 222 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 223 DominatorTree *DT, LoopInfo *LI) { 224 PHINode *PHI = dyn_cast<PHINode>(User); 225 if (!PHI) 226 return User; 227 228 Instruction *InsertPt = nullptr; 229 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 230 if (PHI->getIncomingValue(i) != Def) 231 continue; 232 233 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 234 if (!InsertPt) { 235 InsertPt = InsertBB->getTerminator(); 236 continue; 237 } 238 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 239 InsertPt = InsertBB->getTerminator(); 240 } 241 assert(InsertPt && "Missing phi operand"); 242 243 auto *DefI = dyn_cast<Instruction>(Def); 244 if (!DefI) 245 return InsertPt; 246 247 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 248 249 auto *L = LI->getLoopFor(DefI->getParent()); 250 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 251 252 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 253 if (LI->getLoopFor(DTN->getBlock()) == L) 254 return DTN->getBlock()->getTerminator(); 255 256 llvm_unreachable("DefI dominates InsertPt!"); 257 } 258 259 //===----------------------------------------------------------------------===// 260 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 261 //===----------------------------------------------------------------------===// 262 263 /// Convert APF to an integer, if possible. 264 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 265 bool isExact = false; 266 // See if we can convert this to an int64_t 267 uint64_t UIntVal; 268 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 269 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 270 !isExact) 271 return false; 272 IntVal = UIntVal; 273 return true; 274 } 275 276 /// If the loop has floating induction variable then insert corresponding 277 /// integer induction variable if possible. 278 /// For example, 279 /// for(double i = 0; i < 10000; ++i) 280 /// bar(i) 281 /// is converted into 282 /// for(int i = 0; i < 10000; ++i) 283 /// bar((double)i); 284 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 285 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 286 unsigned BackEdge = IncomingEdge^1; 287 288 // Check incoming value. 289 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 290 291 int64_t InitValue; 292 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 293 return; 294 295 // Check IV increment. Reject this PN if increment operation is not 296 // an add or increment value can not be represented by an integer. 297 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 298 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 299 300 // If this is not an add of the PHI with a constantfp, or if the constant fp 301 // is not an integer, bail out. 302 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 303 int64_t IncValue; 304 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 305 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 306 return; 307 308 // Check Incr uses. One user is PN and the other user is an exit condition 309 // used by the conditional terminator. 310 Value::user_iterator IncrUse = Incr->user_begin(); 311 Instruction *U1 = cast<Instruction>(*IncrUse++); 312 if (IncrUse == Incr->user_end()) return; 313 Instruction *U2 = cast<Instruction>(*IncrUse++); 314 if (IncrUse != Incr->user_end()) return; 315 316 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 317 // only used by a branch, we can't transform it. 318 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 319 if (!Compare) 320 Compare = dyn_cast<FCmpInst>(U2); 321 if (!Compare || !Compare->hasOneUse() || 322 !isa<BranchInst>(Compare->user_back())) 323 return; 324 325 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 326 327 // We need to verify that the branch actually controls the iteration count 328 // of the loop. If not, the new IV can overflow and no one will notice. 329 // The branch block must be in the loop and one of the successors must be out 330 // of the loop. 331 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 332 if (!L->contains(TheBr->getParent()) || 333 (L->contains(TheBr->getSuccessor(0)) && 334 L->contains(TheBr->getSuccessor(1)))) 335 return; 336 337 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 338 // transform it. 339 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 340 int64_t ExitValue; 341 if (ExitValueVal == nullptr || 342 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 343 return; 344 345 // Find new predicate for integer comparison. 346 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 347 switch (Compare->getPredicate()) { 348 default: return; // Unknown comparison. 349 case CmpInst::FCMP_OEQ: 350 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 351 case CmpInst::FCMP_ONE: 352 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 353 case CmpInst::FCMP_OGT: 354 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 355 case CmpInst::FCMP_OGE: 356 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 357 case CmpInst::FCMP_OLT: 358 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 359 case CmpInst::FCMP_OLE: 360 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 361 } 362 363 // We convert the floating point induction variable to a signed i32 value if 364 // we can. This is only safe if the comparison will not overflow in a way 365 // that won't be trapped by the integer equivalent operations. Check for this 366 // now. 367 // TODO: We could use i64 if it is native and the range requires it. 368 369 // The start/stride/exit values must all fit in signed i32. 370 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 371 return; 372 373 // If not actually striding (add x, 0.0), avoid touching the code. 374 if (IncValue == 0) 375 return; 376 377 // Positive and negative strides have different safety conditions. 378 if (IncValue > 0) { 379 // If we have a positive stride, we require the init to be less than the 380 // exit value. 381 if (InitValue >= ExitValue) 382 return; 383 384 uint32_t Range = uint32_t(ExitValue-InitValue); 385 // Check for infinite loop, either: 386 // while (i <= Exit) or until (i > Exit) 387 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 388 if (++Range == 0) return; // Range overflows. 389 } 390 391 unsigned Leftover = Range % uint32_t(IncValue); 392 393 // If this is an equality comparison, we require that the strided value 394 // exactly land on the exit value, otherwise the IV condition will wrap 395 // around and do things the fp IV wouldn't. 396 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 397 Leftover != 0) 398 return; 399 400 // If the stride would wrap around the i32 before exiting, we can't 401 // transform the IV. 402 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 403 return; 404 } else { 405 // If we have a negative stride, we require the init to be greater than the 406 // exit value. 407 if (InitValue <= ExitValue) 408 return; 409 410 uint32_t Range = uint32_t(InitValue-ExitValue); 411 // Check for infinite loop, either: 412 // while (i >= Exit) or until (i < Exit) 413 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 414 if (++Range == 0) return; // Range overflows. 415 } 416 417 unsigned Leftover = Range % uint32_t(-IncValue); 418 419 // If this is an equality comparison, we require that the strided value 420 // exactly land on the exit value, otherwise the IV condition will wrap 421 // around and do things the fp IV wouldn't. 422 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 423 Leftover != 0) 424 return; 425 426 // If the stride would wrap around the i32 before exiting, we can't 427 // transform the IV. 428 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 429 return; 430 } 431 432 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 433 434 // Insert new integer induction variable. 435 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 436 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 437 PN->getIncomingBlock(IncomingEdge)); 438 439 Value *NewAdd = 440 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 441 Incr->getName()+".int", Incr); 442 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 443 444 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 445 ConstantInt::get(Int32Ty, ExitValue), 446 Compare->getName()); 447 448 // In the following deletions, PN may become dead and may be deleted. 449 // Use a WeakTrackingVH to observe whether this happens. 450 WeakTrackingVH WeakPH = PN; 451 452 // Delete the old floating point exit comparison. The branch starts using the 453 // new comparison. 454 NewCompare->takeName(Compare); 455 Compare->replaceAllUsesWith(NewCompare); 456 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 457 458 // Delete the old floating point increment. 459 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 460 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 461 462 // If the FP induction variable still has uses, this is because something else 463 // in the loop uses its value. In order to canonicalize the induction 464 // variable, we chose to eliminate the IV and rewrite it in terms of an 465 // int->fp cast. 466 // 467 // We give preference to sitofp over uitofp because it is faster on most 468 // platforms. 469 if (WeakPH) { 470 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 471 &*PN->getParent()->getFirstInsertionPt()); 472 PN->replaceAllUsesWith(Conv); 473 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 474 } 475 Changed = true; 476 } 477 478 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 479 // First step. Check to see if there are any floating-point recurrences. 480 // If there are, change them into integer recurrences, permitting analysis by 481 // the SCEV routines. 482 BasicBlock *Header = L->getHeader(); 483 484 SmallVector<WeakTrackingVH, 8> PHIs; 485 for (PHINode &PN : Header->phis()) 486 PHIs.push_back(&PN); 487 488 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 489 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 490 handleFloatingPointIV(L, PN); 491 492 // If the loop previously had floating-point IV, ScalarEvolution 493 // may not have been able to compute a trip count. Now that we've done some 494 // re-writing, the trip count may be computable. 495 if (Changed) 496 SE->forgetLoop(L); 497 } 498 499 namespace { 500 501 // Collect information about PHI nodes which can be transformed in 502 // rewriteLoopExitValues. 503 struct RewritePhi { 504 PHINode *PN; 505 506 // Ith incoming value. 507 unsigned Ith; 508 509 // Exit value after expansion. 510 Value *Val; 511 512 // High Cost when expansion. 513 bool HighCost; 514 515 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 516 : PN(P), Ith(I), Val(V), HighCost(H) {} 517 }; 518 519 } // end anonymous namespace 520 521 //===----------------------------------------------------------------------===// 522 // rewriteLoopExitValues - Optimize IV users outside the loop. 523 // As a side effect, reduces the amount of IV processing within the loop. 524 //===----------------------------------------------------------------------===// 525 526 /// Check to see if this loop has a computable loop-invariant execution count. 527 /// If so, this means that we can compute the final value of any expressions 528 /// that are recurrent in the loop, and substitute the exit values from the loop 529 /// into any instructions outside of the loop that use the final values of the 530 /// current expressions. 531 /// 532 /// This is mostly redundant with the regular IndVarSimplify activities that 533 /// happen later, except that it's more powerful in some cases, because it's 534 /// able to brute-force evaluate arbitrary instructions as long as they have 535 /// constant operands at the beginning of the loop. 536 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 537 // Check a pre-condition. 538 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 539 "Indvars did not preserve LCSSA!"); 540 541 SmallVector<BasicBlock*, 8> ExitBlocks; 542 L->getUniqueExitBlocks(ExitBlocks); 543 544 SmallVector<RewritePhi, 8> RewritePhiSet; 545 // Find all values that are computed inside the loop, but used outside of it. 546 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 547 // the exit blocks of the loop to find them. 548 for (BasicBlock *ExitBB : ExitBlocks) { 549 // If there are no PHI nodes in this exit block, then no values defined 550 // inside the loop are used on this path, skip it. 551 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 552 if (!PN) continue; 553 554 unsigned NumPreds = PN->getNumIncomingValues(); 555 556 // Iterate over all of the PHI nodes. 557 BasicBlock::iterator BBI = ExitBB->begin(); 558 while ((PN = dyn_cast<PHINode>(BBI++))) { 559 if (PN->use_empty()) 560 continue; // dead use, don't replace it 561 562 if (!SE->isSCEVable(PN->getType())) 563 continue; 564 565 // It's necessary to tell ScalarEvolution about this explicitly so that 566 // it can walk the def-use list and forget all SCEVs, as it may not be 567 // watching the PHI itself. Once the new exit value is in place, there 568 // may not be a def-use connection between the loop and every instruction 569 // which got a SCEVAddRecExpr for that loop. 570 SE->forgetValue(PN); 571 572 // Iterate over all of the values in all the PHI nodes. 573 for (unsigned i = 0; i != NumPreds; ++i) { 574 // If the value being merged in is not integer or is not defined 575 // in the loop, skip it. 576 Value *InVal = PN->getIncomingValue(i); 577 if (!isa<Instruction>(InVal)) 578 continue; 579 580 // If this pred is for a subloop, not L itself, skip it. 581 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 582 continue; // The Block is in a subloop, skip it. 583 584 // Check that InVal is defined in the loop. 585 Instruction *Inst = cast<Instruction>(InVal); 586 if (!L->contains(Inst)) 587 continue; 588 589 // Okay, this instruction has a user outside of the current loop 590 // and varies predictably *inside* the loop. Evaluate the value it 591 // contains when the loop exits, if possible. 592 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 593 if (!SE->isLoopInvariant(ExitValue, L) || 594 !isSafeToExpand(ExitValue, *SE)) 595 continue; 596 597 // Computing the value outside of the loop brings no benefit if : 598 // - it is definitely used inside the loop in a way which can not be 599 // optimized away. 600 // - no use outside of the loop can take advantage of hoisting the 601 // computation out of the loop 602 if (ExitValue->getSCEVType()>=scMulExpr) { 603 unsigned NumHardInternalUses = 0; 604 unsigned NumSoftExternalUses = 0; 605 unsigned NumUses = 0; 606 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 607 IB != IE && NumUses <= 6; ++IB) { 608 Instruction *UseInstr = cast<Instruction>(*IB); 609 unsigned Opc = UseInstr->getOpcode(); 610 NumUses++; 611 if (L->contains(UseInstr)) { 612 if (Opc == Instruction::Call) 613 NumHardInternalUses++; 614 } else { 615 if (Opc == Instruction::PHI) { 616 // Do not count the Phi as a use. LCSSA may have inserted 617 // plenty of trivial ones. 618 NumUses--; 619 for (auto PB = UseInstr->user_begin(), 620 PE = UseInstr->user_end(); 621 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 622 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 623 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 624 NumSoftExternalUses++; 625 } 626 continue; 627 } 628 if (Opc != Instruction::Call && Opc != Instruction::Ret) 629 NumSoftExternalUses++; 630 } 631 } 632 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 633 continue; 634 } 635 636 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 637 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 638 639 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 640 << '\n' 641 << " LoopVal = " << *Inst << "\n"); 642 643 if (!isValidRewrite(Inst, ExitVal)) { 644 DeadInsts.push_back(ExitVal); 645 continue; 646 } 647 648 // Collect all the candidate PHINodes to be rewritten. 649 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 650 } 651 } 652 } 653 654 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 655 656 // Transformation. 657 for (const RewritePhi &Phi : RewritePhiSet) { 658 PHINode *PN = Phi.PN; 659 Value *ExitVal = Phi.Val; 660 661 // Only do the rewrite when the ExitValue can be expanded cheaply. 662 // If LoopCanBeDel is true, rewrite exit value aggressively. 663 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 664 DeadInsts.push_back(ExitVal); 665 continue; 666 } 667 668 Changed = true; 669 ++NumReplaced; 670 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 671 PN->setIncomingValue(Phi.Ith, ExitVal); 672 673 // If this instruction is dead now, delete it. Don't do it now to avoid 674 // invalidating iterators. 675 if (isInstructionTriviallyDead(Inst, TLI)) 676 DeadInsts.push_back(Inst); 677 678 // Replace PN with ExitVal if that is legal and does not break LCSSA. 679 if (PN->getNumIncomingValues() == 1 && 680 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 681 PN->replaceAllUsesWith(ExitVal); 682 PN->eraseFromParent(); 683 } 684 } 685 686 // The insertion point instruction may have been deleted; clear it out 687 // so that the rewriter doesn't trip over it later. 688 Rewriter.clearInsertPoint(); 689 } 690 691 //===---------------------------------------------------------------------===// 692 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 693 // they will exit at the first iteration. 694 //===---------------------------------------------------------------------===// 695 696 /// Check to see if this loop has loop invariant conditions which lead to loop 697 /// exits. If so, we know that if the exit path is taken, it is at the first 698 /// loop iteration. This lets us predict exit values of PHI nodes that live in 699 /// loop header. 700 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 701 // Verify the input to the pass is already in LCSSA form. 702 assert(L->isLCSSAForm(*DT)); 703 704 SmallVector<BasicBlock *, 8> ExitBlocks; 705 L->getUniqueExitBlocks(ExitBlocks); 706 auto *LoopHeader = L->getHeader(); 707 assert(LoopHeader && "Invalid loop"); 708 709 for (auto *ExitBB : ExitBlocks) { 710 // If there are no more PHI nodes in this exit block, then no more 711 // values defined inside the loop are used on this path. 712 for (PHINode &PN : ExitBB->phis()) { 713 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 714 IncomingValIdx != E; ++IncomingValIdx) { 715 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 716 717 // We currently only support loop exits from loop header. If the 718 // incoming block is not loop header, we need to recursively check 719 // all conditions starting from loop header are loop invariants. 720 // Additional support might be added in the future. 721 if (IncomingBB != LoopHeader) 722 continue; 723 724 // Get condition that leads to the exit path. 725 auto *TermInst = IncomingBB->getTerminator(); 726 727 Value *Cond = nullptr; 728 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 729 // Must be a conditional branch, otherwise the block 730 // should not be in the loop. 731 Cond = BI->getCondition(); 732 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 733 Cond = SI->getCondition(); 734 else 735 continue; 736 737 if (!L->isLoopInvariant(Cond)) 738 continue; 739 740 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 741 742 // Only deal with PHIs. 743 if (!ExitVal) 744 continue; 745 746 // If ExitVal is a PHI on the loop header, then we know its 747 // value along this exit because the exit can only be taken 748 // on the first iteration. 749 auto *LoopPreheader = L->getLoopPreheader(); 750 assert(LoopPreheader && "Invalid loop"); 751 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 752 if (PreheaderIdx != -1) { 753 assert(ExitVal->getParent() == LoopHeader && 754 "ExitVal must be in loop header"); 755 PN.setIncomingValue(IncomingValIdx, 756 ExitVal->getIncomingValue(PreheaderIdx)); 757 } 758 } 759 } 760 } 761 } 762 763 /// Check whether it is possible to delete the loop after rewriting exit 764 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 765 /// aggressively. 766 bool IndVarSimplify::canLoopBeDeleted( 767 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 768 BasicBlock *Preheader = L->getLoopPreheader(); 769 // If there is no preheader, the loop will not be deleted. 770 if (!Preheader) 771 return false; 772 773 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 774 // We obviate multiple ExitingBlocks case for simplicity. 775 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 776 // after exit value rewriting, we can enhance the logic here. 777 SmallVector<BasicBlock *, 4> ExitingBlocks; 778 L->getExitingBlocks(ExitingBlocks); 779 SmallVector<BasicBlock *, 8> ExitBlocks; 780 L->getUniqueExitBlocks(ExitBlocks); 781 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 782 return false; 783 784 BasicBlock *ExitBlock = ExitBlocks[0]; 785 BasicBlock::iterator BI = ExitBlock->begin(); 786 while (PHINode *P = dyn_cast<PHINode>(BI)) { 787 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 788 789 // If the Incoming value of P is found in RewritePhiSet, we know it 790 // could be rewritten to use a loop invariant value in transformation 791 // phase later. Skip it in the loop invariant check below. 792 bool found = false; 793 for (const RewritePhi &Phi : RewritePhiSet) { 794 unsigned i = Phi.Ith; 795 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 796 found = true; 797 break; 798 } 799 } 800 801 Instruction *I; 802 if (!found && (I = dyn_cast<Instruction>(Incoming))) 803 if (!L->hasLoopInvariantOperands(I)) 804 return false; 805 806 ++BI; 807 } 808 809 for (auto *BB : L->blocks()) 810 if (llvm::any_of(*BB, [](Instruction &I) { 811 return I.mayHaveSideEffects(); 812 })) 813 return false; 814 815 return true; 816 } 817 818 //===----------------------------------------------------------------------===// 819 // IV Widening - Extend the width of an IV to cover its widest uses. 820 //===----------------------------------------------------------------------===// 821 822 namespace { 823 824 // Collect information about induction variables that are used by sign/zero 825 // extend operations. This information is recorded by CollectExtend and provides 826 // the input to WidenIV. 827 struct WideIVInfo { 828 PHINode *NarrowIV = nullptr; 829 830 // Widest integer type created [sz]ext 831 Type *WidestNativeType = nullptr; 832 833 // Was a sext user seen before a zext? 834 bool IsSigned = false; 835 }; 836 837 } // end anonymous namespace 838 839 /// Update information about the induction variable that is extended by this 840 /// sign or zero extend operation. This is used to determine the final width of 841 /// the IV before actually widening it. 842 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 843 const TargetTransformInfo *TTI) { 844 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 845 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 846 return; 847 848 Type *Ty = Cast->getType(); 849 uint64_t Width = SE->getTypeSizeInBits(Ty); 850 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 851 return; 852 853 // Check that `Cast` actually extends the induction variable (we rely on this 854 // later). This takes care of cases where `Cast` is extending a truncation of 855 // the narrow induction variable, and thus can end up being narrower than the 856 // "narrow" induction variable. 857 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 858 if (NarrowIVWidth >= Width) 859 return; 860 861 // Cast is either an sext or zext up to this point. 862 // We should not widen an indvar if arithmetics on the wider indvar are more 863 // expensive than those on the narrower indvar. We check only the cost of ADD 864 // because at least an ADD is required to increment the induction variable. We 865 // could compute more comprehensively the cost of all instructions on the 866 // induction variable when necessary. 867 if (TTI && 868 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 869 TTI->getArithmeticInstrCost(Instruction::Add, 870 Cast->getOperand(0)->getType())) { 871 return; 872 } 873 874 if (!WI.WidestNativeType) { 875 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 876 WI.IsSigned = IsSigned; 877 return; 878 } 879 880 // We extend the IV to satisfy the sign of its first user, arbitrarily. 881 if (WI.IsSigned != IsSigned) 882 return; 883 884 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 885 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 886 } 887 888 namespace { 889 890 /// Record a link in the Narrow IV def-use chain along with the WideIV that 891 /// computes the same value as the Narrow IV def. This avoids caching Use* 892 /// pointers. 893 struct NarrowIVDefUse { 894 Instruction *NarrowDef = nullptr; 895 Instruction *NarrowUse = nullptr; 896 Instruction *WideDef = nullptr; 897 898 // True if the narrow def is never negative. Tracking this information lets 899 // us use a sign extension instead of a zero extension or vice versa, when 900 // profitable and legal. 901 bool NeverNegative = false; 902 903 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 904 bool NeverNegative) 905 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 906 NeverNegative(NeverNegative) {} 907 }; 908 909 /// The goal of this transform is to remove sign and zero extends without 910 /// creating any new induction variables. To do this, it creates a new phi of 911 /// the wider type and redirects all users, either removing extends or inserting 912 /// truncs whenever we stop propagating the type. 913 class WidenIV { 914 // Parameters 915 PHINode *OrigPhi; 916 Type *WideType; 917 918 // Context 919 LoopInfo *LI; 920 Loop *L; 921 ScalarEvolution *SE; 922 DominatorTree *DT; 923 924 // Does the module have any calls to the llvm.experimental.guard intrinsic 925 // at all? If not we can avoid scanning instructions looking for guards. 926 bool HasGuards; 927 928 // Result 929 PHINode *WidePhi = nullptr; 930 Instruction *WideInc = nullptr; 931 const SCEV *WideIncExpr = nullptr; 932 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 933 934 SmallPtrSet<Instruction *,16> Widened; 935 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 936 937 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 938 939 // A map tracking the kind of extension used to widen each narrow IV 940 // and narrow IV user. 941 // Key: pointer to a narrow IV or IV user. 942 // Value: the kind of extension used to widen this Instruction. 943 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 944 945 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 946 947 // A map with control-dependent ranges for post increment IV uses. The key is 948 // a pair of IV def and a use of this def denoting the context. The value is 949 // a ConstantRange representing possible values of the def at the given 950 // context. 951 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 952 953 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 954 Instruction *UseI) { 955 DefUserPair Key(Def, UseI); 956 auto It = PostIncRangeInfos.find(Key); 957 return It == PostIncRangeInfos.end() 958 ? Optional<ConstantRange>(None) 959 : Optional<ConstantRange>(It->second); 960 } 961 962 void calculatePostIncRanges(PHINode *OrigPhi); 963 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 964 965 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 966 DefUserPair Key(Def, UseI); 967 auto It = PostIncRangeInfos.find(Key); 968 if (It == PostIncRangeInfos.end()) 969 PostIncRangeInfos.insert({Key, R}); 970 else 971 It->second = R.intersectWith(It->second); 972 } 973 974 public: 975 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 976 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 977 bool HasGuards) 978 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 979 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 980 HasGuards(HasGuards), DeadInsts(DI) { 981 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 982 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 983 } 984 985 PHINode *createWideIV(SCEVExpander &Rewriter); 986 987 protected: 988 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 989 Instruction *Use); 990 991 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 992 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 993 const SCEVAddRecExpr *WideAR); 994 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 995 996 ExtendKind getExtendKind(Instruction *I); 997 998 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 999 1000 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1001 1002 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1003 1004 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1005 unsigned OpCode) const; 1006 1007 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1008 1009 bool widenLoopCompare(NarrowIVDefUse DU); 1010 1011 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1012 }; 1013 1014 } // end anonymous namespace 1015 1016 /// Perform a quick domtree based check for loop invariance assuming that V is 1017 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 1018 /// purpose. 1019 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 1020 Instruction *Inst = dyn_cast<Instruction>(V); 1021 if (!Inst) 1022 return true; 1023 1024 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1025 } 1026 1027 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1028 bool IsSigned, Instruction *Use) { 1029 // Set the debug location and conservative insertion point. 1030 IRBuilder<> Builder(Use); 1031 // Hoist the insertion point into loop preheaders as far as possible. 1032 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1033 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1034 L = L->getParentLoop()) 1035 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1036 1037 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1038 Builder.CreateZExt(NarrowOper, WideType); 1039 } 1040 1041 /// Instantiate a wide operation to replace a narrow operation. This only needs 1042 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1043 /// 0 for any operation we decide not to clone. 1044 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1045 const SCEVAddRecExpr *WideAR) { 1046 unsigned Opcode = DU.NarrowUse->getOpcode(); 1047 switch (Opcode) { 1048 default: 1049 return nullptr; 1050 case Instruction::Add: 1051 case Instruction::Mul: 1052 case Instruction::UDiv: 1053 case Instruction::Sub: 1054 return cloneArithmeticIVUser(DU, WideAR); 1055 1056 case Instruction::And: 1057 case Instruction::Or: 1058 case Instruction::Xor: 1059 case Instruction::Shl: 1060 case Instruction::LShr: 1061 case Instruction::AShr: 1062 return cloneBitwiseIVUser(DU); 1063 } 1064 } 1065 1066 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1067 Instruction *NarrowUse = DU.NarrowUse; 1068 Instruction *NarrowDef = DU.NarrowDef; 1069 Instruction *WideDef = DU.WideDef; 1070 1071 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1072 1073 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1074 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1075 // invariant and will be folded or hoisted. If it actually comes from a 1076 // widened IV, it should be removed during a future call to widenIVUse. 1077 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1078 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1079 ? WideDef 1080 : createExtendInst(NarrowUse->getOperand(0), WideType, 1081 IsSigned, NarrowUse); 1082 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1083 ? WideDef 1084 : createExtendInst(NarrowUse->getOperand(1), WideType, 1085 IsSigned, NarrowUse); 1086 1087 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1088 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1089 NarrowBO->getName()); 1090 IRBuilder<> Builder(NarrowUse); 1091 Builder.Insert(WideBO); 1092 WideBO->copyIRFlags(NarrowBO); 1093 return WideBO; 1094 } 1095 1096 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1097 const SCEVAddRecExpr *WideAR) { 1098 Instruction *NarrowUse = DU.NarrowUse; 1099 Instruction *NarrowDef = DU.NarrowDef; 1100 Instruction *WideDef = DU.WideDef; 1101 1102 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1103 1104 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1105 1106 // We're trying to find X such that 1107 // 1108 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1109 // 1110 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1111 // and check using SCEV if any of them are correct. 1112 1113 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1114 // correct solution to X. 1115 auto GuessNonIVOperand = [&](bool SignExt) { 1116 const SCEV *WideLHS; 1117 const SCEV *WideRHS; 1118 1119 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1120 if (SignExt) 1121 return SE->getSignExtendExpr(S, Ty); 1122 return SE->getZeroExtendExpr(S, Ty); 1123 }; 1124 1125 if (IVOpIdx == 0) { 1126 WideLHS = SE->getSCEV(WideDef); 1127 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1128 WideRHS = GetExtend(NarrowRHS, WideType); 1129 } else { 1130 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1131 WideLHS = GetExtend(NarrowLHS, WideType); 1132 WideRHS = SE->getSCEV(WideDef); 1133 } 1134 1135 // WideUse is "WideDef `op.wide` X" as described in the comment. 1136 const SCEV *WideUse = nullptr; 1137 1138 switch (NarrowUse->getOpcode()) { 1139 default: 1140 llvm_unreachable("No other possibility!"); 1141 1142 case Instruction::Add: 1143 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1144 break; 1145 1146 case Instruction::Mul: 1147 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1148 break; 1149 1150 case Instruction::UDiv: 1151 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1152 break; 1153 1154 case Instruction::Sub: 1155 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1156 break; 1157 } 1158 1159 return WideUse == WideAR; 1160 }; 1161 1162 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1163 if (!GuessNonIVOperand(SignExtend)) { 1164 SignExtend = !SignExtend; 1165 if (!GuessNonIVOperand(SignExtend)) 1166 return nullptr; 1167 } 1168 1169 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1170 ? WideDef 1171 : createExtendInst(NarrowUse->getOperand(0), WideType, 1172 SignExtend, NarrowUse); 1173 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1174 ? WideDef 1175 : createExtendInst(NarrowUse->getOperand(1), WideType, 1176 SignExtend, NarrowUse); 1177 1178 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1179 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1180 NarrowBO->getName()); 1181 1182 IRBuilder<> Builder(NarrowUse); 1183 Builder.Insert(WideBO); 1184 WideBO->copyIRFlags(NarrowBO); 1185 return WideBO; 1186 } 1187 1188 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1189 auto It = ExtendKindMap.find(I); 1190 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1191 return It->second; 1192 } 1193 1194 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1195 unsigned OpCode) const { 1196 if (OpCode == Instruction::Add) 1197 return SE->getAddExpr(LHS, RHS); 1198 if (OpCode == Instruction::Sub) 1199 return SE->getMinusSCEV(LHS, RHS); 1200 if (OpCode == Instruction::Mul) 1201 return SE->getMulExpr(LHS, RHS); 1202 1203 llvm_unreachable("Unsupported opcode."); 1204 } 1205 1206 /// No-wrap operations can transfer sign extension of their result to their 1207 /// operands. Generate the SCEV value for the widened operation without 1208 /// actually modifying the IR yet. If the expression after extending the 1209 /// operands is an AddRec for this loop, return the AddRec and the kind of 1210 /// extension used. 1211 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1212 // Handle the common case of add<nsw/nuw> 1213 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1214 // Only Add/Sub/Mul instructions supported yet. 1215 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1216 OpCode != Instruction::Mul) 1217 return {nullptr, Unknown}; 1218 1219 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1220 // if extending the other will lead to a recurrence. 1221 const unsigned ExtendOperIdx = 1222 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1223 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1224 1225 const SCEV *ExtendOperExpr = nullptr; 1226 const OverflowingBinaryOperator *OBO = 1227 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1228 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1229 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1230 ExtendOperExpr = SE->getSignExtendExpr( 1231 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1232 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1233 ExtendOperExpr = SE->getZeroExtendExpr( 1234 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1235 else 1236 return {nullptr, Unknown}; 1237 1238 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1239 // flags. This instruction may be guarded by control flow that the no-wrap 1240 // behavior depends on. Non-control-equivalent instructions can be mapped to 1241 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1242 // semantics to those operations. 1243 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1244 const SCEV *rhs = ExtendOperExpr; 1245 1246 // Let's swap operands to the initial order for the case of non-commutative 1247 // operations, like SUB. See PR21014. 1248 if (ExtendOperIdx == 0) 1249 std::swap(lhs, rhs); 1250 const SCEVAddRecExpr *AddRec = 1251 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1252 1253 if (!AddRec || AddRec->getLoop() != L) 1254 return {nullptr, Unknown}; 1255 1256 return {AddRec, ExtKind}; 1257 } 1258 1259 /// Is this instruction potentially interesting for further simplification after 1260 /// widening it's type? In other words, can the extend be safely hoisted out of 1261 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1262 /// so, return the extended recurrence and the kind of extension used. Otherwise 1263 /// return {nullptr, Unknown}. 1264 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1265 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1266 return {nullptr, Unknown}; 1267 1268 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1269 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1270 SE->getTypeSizeInBits(WideType)) { 1271 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1272 // index. So don't follow this use. 1273 return {nullptr, Unknown}; 1274 } 1275 1276 const SCEV *WideExpr; 1277 ExtendKind ExtKind; 1278 if (DU.NeverNegative) { 1279 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1280 if (isa<SCEVAddRecExpr>(WideExpr)) 1281 ExtKind = SignExtended; 1282 else { 1283 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1284 ExtKind = ZeroExtended; 1285 } 1286 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1287 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1288 ExtKind = SignExtended; 1289 } else { 1290 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1291 ExtKind = ZeroExtended; 1292 } 1293 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1294 if (!AddRec || AddRec->getLoop() != L) 1295 return {nullptr, Unknown}; 1296 return {AddRec, ExtKind}; 1297 } 1298 1299 /// This IV user cannot be widen. Replace this use of the original narrow IV 1300 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1301 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1302 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1303 << *DU.NarrowUse << "\n"); 1304 IRBuilder<> Builder( 1305 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1306 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1307 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1308 } 1309 1310 /// If the narrow use is a compare instruction, then widen the compare 1311 // (and possibly the other operand). The extend operation is hoisted into the 1312 // loop preheader as far as possible. 1313 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1314 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1315 if (!Cmp) 1316 return false; 1317 1318 // We can legally widen the comparison in the following two cases: 1319 // 1320 // - The signedness of the IV extension and comparison match 1321 // 1322 // - The narrow IV is always positive (and thus its sign extension is equal 1323 // to its zero extension). For instance, let's say we're zero extending 1324 // %narrow for the following use 1325 // 1326 // icmp slt i32 %narrow, %val ... (A) 1327 // 1328 // and %narrow is always positive. Then 1329 // 1330 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1331 // == icmp slt i32 zext(%narrow), sext(%val) 1332 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1333 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1334 return false; 1335 1336 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1337 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1338 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1339 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1340 1341 // Widen the compare instruction. 1342 IRBuilder<> Builder( 1343 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1344 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1345 1346 // Widen the other operand of the compare, if necessary. 1347 if (CastWidth < IVWidth) { 1348 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1349 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1350 } 1351 return true; 1352 } 1353 1354 /// Determine whether an individual user of the narrow IV can be widened. If so, 1355 /// return the wide clone of the user. 1356 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1357 assert(ExtendKindMap.count(DU.NarrowDef) && 1358 "Should already know the kind of extension used to widen NarrowDef"); 1359 1360 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1361 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1362 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1363 // For LCSSA phis, sink the truncate outside the loop. 1364 // After SimplifyCFG most loop exit targets have a single predecessor. 1365 // Otherwise fall back to a truncate within the loop. 1366 if (UsePhi->getNumOperands() != 1) 1367 truncateIVUse(DU, DT, LI); 1368 else { 1369 // Widening the PHI requires us to insert a trunc. The logical place 1370 // for this trunc is in the same BB as the PHI. This is not possible if 1371 // the BB is terminated by a catchswitch. 1372 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1373 return nullptr; 1374 1375 PHINode *WidePhi = 1376 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1377 UsePhi); 1378 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1379 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1380 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1381 UsePhi->replaceAllUsesWith(Trunc); 1382 DeadInsts.emplace_back(UsePhi); 1383 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1384 << *WidePhi << "\n"); 1385 } 1386 return nullptr; 1387 } 1388 } 1389 1390 // This narrow use can be widened by a sext if it's non-negative or its narrow 1391 // def was widended by a sext. Same for zext. 1392 auto canWidenBySExt = [&]() { 1393 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1394 }; 1395 auto canWidenByZExt = [&]() { 1396 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1397 }; 1398 1399 // Our raison d'etre! Eliminate sign and zero extension. 1400 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1401 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1402 Value *NewDef = DU.WideDef; 1403 if (DU.NarrowUse->getType() != WideType) { 1404 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1405 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1406 if (CastWidth < IVWidth) { 1407 // The cast isn't as wide as the IV, so insert a Trunc. 1408 IRBuilder<> Builder(DU.NarrowUse); 1409 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1410 } 1411 else { 1412 // A wider extend was hidden behind a narrower one. This may induce 1413 // another round of IV widening in which the intermediate IV becomes 1414 // dead. It should be very rare. 1415 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1416 << " not wide enough to subsume " << *DU.NarrowUse 1417 << "\n"); 1418 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1419 NewDef = DU.NarrowUse; 1420 } 1421 } 1422 if (NewDef != DU.NarrowUse) { 1423 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1424 << " replaced by " << *DU.WideDef << "\n"); 1425 ++NumElimExt; 1426 DU.NarrowUse->replaceAllUsesWith(NewDef); 1427 DeadInsts.emplace_back(DU.NarrowUse); 1428 } 1429 // Now that the extend is gone, we want to expose it's uses for potential 1430 // further simplification. We don't need to directly inform SimplifyIVUsers 1431 // of the new users, because their parent IV will be processed later as a 1432 // new loop phi. If we preserved IVUsers analysis, we would also want to 1433 // push the uses of WideDef here. 1434 1435 // No further widening is needed. The deceased [sz]ext had done it for us. 1436 return nullptr; 1437 } 1438 1439 // Does this user itself evaluate to a recurrence after widening? 1440 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1441 if (!WideAddRec.first) 1442 WideAddRec = getWideRecurrence(DU); 1443 1444 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1445 if (!WideAddRec.first) { 1446 // If use is a loop condition, try to promote the condition instead of 1447 // truncating the IV first. 1448 if (widenLoopCompare(DU)) 1449 return nullptr; 1450 1451 // This user does not evaluate to a recurrence after widening, so don't 1452 // follow it. Instead insert a Trunc to kill off the original use, 1453 // eventually isolating the original narrow IV so it can be removed. 1454 truncateIVUse(DU, DT, LI); 1455 return nullptr; 1456 } 1457 // Assume block terminators cannot evaluate to a recurrence. We can't to 1458 // insert a Trunc after a terminator if there happens to be a critical edge. 1459 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1460 "SCEV is not expected to evaluate a block terminator"); 1461 1462 // Reuse the IV increment that SCEVExpander created as long as it dominates 1463 // NarrowUse. 1464 Instruction *WideUse = nullptr; 1465 if (WideAddRec.first == WideIncExpr && 1466 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1467 WideUse = WideInc; 1468 else { 1469 WideUse = cloneIVUser(DU, WideAddRec.first); 1470 if (!WideUse) 1471 return nullptr; 1472 } 1473 // Evaluation of WideAddRec ensured that the narrow expression could be 1474 // extended outside the loop without overflow. This suggests that the wide use 1475 // evaluates to the same expression as the extended narrow use, but doesn't 1476 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1477 // where it fails, we simply throw away the newly created wide use. 1478 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1479 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1480 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1481 << "\n"); 1482 DeadInsts.emplace_back(WideUse); 1483 return nullptr; 1484 } 1485 1486 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1487 // Returning WideUse pushes it on the worklist. 1488 return WideUse; 1489 } 1490 1491 /// Add eligible users of NarrowDef to NarrowIVUsers. 1492 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1493 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1494 bool NonNegativeDef = 1495 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1496 SE->getConstant(NarrowSCEV->getType(), 0)); 1497 for (User *U : NarrowDef->users()) { 1498 Instruction *NarrowUser = cast<Instruction>(U); 1499 1500 // Handle data flow merges and bizarre phi cycles. 1501 if (!Widened.insert(NarrowUser).second) 1502 continue; 1503 1504 bool NonNegativeUse = false; 1505 if (!NonNegativeDef) { 1506 // We might have a control-dependent range information for this context. 1507 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1508 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1509 } 1510 1511 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1512 NonNegativeDef || NonNegativeUse); 1513 } 1514 } 1515 1516 /// Process a single induction variable. First use the SCEVExpander to create a 1517 /// wide induction variable that evaluates to the same recurrence as the 1518 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1519 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1520 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1521 /// 1522 /// It would be simpler to delete uses as they are processed, but we must avoid 1523 /// invalidating SCEV expressions. 1524 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1525 // Is this phi an induction variable? 1526 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1527 if (!AddRec) 1528 return nullptr; 1529 1530 // Widen the induction variable expression. 1531 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1532 ? SE->getSignExtendExpr(AddRec, WideType) 1533 : SE->getZeroExtendExpr(AddRec, WideType); 1534 1535 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1536 "Expect the new IV expression to preserve its type"); 1537 1538 // Can the IV be extended outside the loop without overflow? 1539 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1540 if (!AddRec || AddRec->getLoop() != L) 1541 return nullptr; 1542 1543 // An AddRec must have loop-invariant operands. Since this AddRec is 1544 // materialized by a loop header phi, the expression cannot have any post-loop 1545 // operands, so they must dominate the loop header. 1546 assert( 1547 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1548 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1549 "Loop header phi recurrence inputs do not dominate the loop"); 1550 1551 // Iterate over IV uses (including transitive ones) looking for IV increments 1552 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1553 // the increment calculate control-dependent range information basing on 1554 // dominating conditions inside of the loop (e.g. a range check inside of the 1555 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1556 // 1557 // Control-dependent range information is later used to prove that a narrow 1558 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1559 // this on demand because when pushNarrowIVUsers needs this information some 1560 // of the dominating conditions might be already widened. 1561 if (UsePostIncrementRanges) 1562 calculatePostIncRanges(OrigPhi); 1563 1564 // The rewriter provides a value for the desired IV expression. This may 1565 // either find an existing phi or materialize a new one. Either way, we 1566 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1567 // of the phi-SCC dominates the loop entry. 1568 Instruction *InsertPt = &L->getHeader()->front(); 1569 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1570 1571 // Remembering the WideIV increment generated by SCEVExpander allows 1572 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1573 // employ a general reuse mechanism because the call above is the only call to 1574 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1575 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1576 WideInc = 1577 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1578 WideIncExpr = SE->getSCEV(WideInc); 1579 // Propagate the debug location associated with the original loop increment 1580 // to the new (widened) increment. 1581 auto *OrigInc = 1582 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1583 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1584 } 1585 1586 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1587 ++NumWidened; 1588 1589 // Traverse the def-use chain using a worklist starting at the original IV. 1590 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1591 1592 Widened.insert(OrigPhi); 1593 pushNarrowIVUsers(OrigPhi, WidePhi); 1594 1595 while (!NarrowIVUsers.empty()) { 1596 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1597 1598 // Process a def-use edge. This may replace the use, so don't hold a 1599 // use_iterator across it. 1600 Instruction *WideUse = widenIVUse(DU, Rewriter); 1601 1602 // Follow all def-use edges from the previous narrow use. 1603 if (WideUse) 1604 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1605 1606 // widenIVUse may have removed the def-use edge. 1607 if (DU.NarrowDef->use_empty()) 1608 DeadInsts.emplace_back(DU.NarrowDef); 1609 } 1610 1611 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1612 // evaluate the same recurrence, we can just copy the debug info over. 1613 SmallVector<DbgValueInst *, 1> DbgValues; 1614 llvm::findDbgValues(DbgValues, OrigPhi); 1615 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1616 ValueAsMetadata::get(WidePhi)); 1617 for (auto &DbgValue : DbgValues) 1618 DbgValue->setOperand(0, MDPhi); 1619 return WidePhi; 1620 } 1621 1622 /// Calculates control-dependent range for the given def at the given context 1623 /// by looking at dominating conditions inside of the loop 1624 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1625 Instruction *NarrowUser) { 1626 using namespace llvm::PatternMatch; 1627 1628 Value *NarrowDefLHS; 1629 const APInt *NarrowDefRHS; 1630 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1631 m_APInt(NarrowDefRHS))) || 1632 !NarrowDefRHS->isNonNegative()) 1633 return; 1634 1635 auto UpdateRangeFromCondition = [&] (Value *Condition, 1636 bool TrueDest) { 1637 CmpInst::Predicate Pred; 1638 Value *CmpRHS; 1639 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1640 m_Value(CmpRHS)))) 1641 return; 1642 1643 CmpInst::Predicate P = 1644 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1645 1646 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1647 auto CmpConstrainedLHSRange = 1648 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1649 auto NarrowDefRange = 1650 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1651 1652 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1653 }; 1654 1655 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1656 if (!HasGuards) 1657 return; 1658 1659 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1660 Ctx->getParent()->rend())) { 1661 Value *C = nullptr; 1662 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1663 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1664 } 1665 }; 1666 1667 UpdateRangeFromGuards(NarrowUser); 1668 1669 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1670 // If NarrowUserBB is statically unreachable asking dominator queries may 1671 // yield surprising results. (e.g. the block may not have a dom tree node) 1672 if (!DT->isReachableFromEntry(NarrowUserBB)) 1673 return; 1674 1675 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1676 L->contains(DTB->getBlock()); 1677 DTB = DTB->getIDom()) { 1678 auto *BB = DTB->getBlock(); 1679 auto *TI = BB->getTerminator(); 1680 UpdateRangeFromGuards(TI); 1681 1682 auto *BI = dyn_cast<BranchInst>(TI); 1683 if (!BI || !BI->isConditional()) 1684 continue; 1685 1686 auto *TrueSuccessor = BI->getSuccessor(0); 1687 auto *FalseSuccessor = BI->getSuccessor(1); 1688 1689 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1690 return BBE.isSingleEdge() && 1691 DT->dominates(BBE, NarrowUser->getParent()); 1692 }; 1693 1694 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1695 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1696 1697 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1698 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1699 } 1700 } 1701 1702 /// Calculates PostIncRangeInfos map for the given IV 1703 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1704 SmallPtrSet<Instruction *, 16> Visited; 1705 SmallVector<Instruction *, 6> Worklist; 1706 Worklist.push_back(OrigPhi); 1707 Visited.insert(OrigPhi); 1708 1709 while (!Worklist.empty()) { 1710 Instruction *NarrowDef = Worklist.pop_back_val(); 1711 1712 for (Use &U : NarrowDef->uses()) { 1713 auto *NarrowUser = cast<Instruction>(U.getUser()); 1714 1715 // Don't go looking outside the current loop. 1716 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1717 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1718 continue; 1719 1720 if (!Visited.insert(NarrowUser).second) 1721 continue; 1722 1723 Worklist.push_back(NarrowUser); 1724 1725 calculatePostIncRange(NarrowDef, NarrowUser); 1726 } 1727 } 1728 } 1729 1730 //===----------------------------------------------------------------------===// 1731 // Live IV Reduction - Minimize IVs live across the loop. 1732 //===----------------------------------------------------------------------===// 1733 1734 //===----------------------------------------------------------------------===// 1735 // Simplification of IV users based on SCEV evaluation. 1736 //===----------------------------------------------------------------------===// 1737 1738 namespace { 1739 1740 class IndVarSimplifyVisitor : public IVVisitor { 1741 ScalarEvolution *SE; 1742 const TargetTransformInfo *TTI; 1743 PHINode *IVPhi; 1744 1745 public: 1746 WideIVInfo WI; 1747 1748 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1749 const TargetTransformInfo *TTI, 1750 const DominatorTree *DTree) 1751 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1752 DT = DTree; 1753 WI.NarrowIV = IVPhi; 1754 } 1755 1756 // Implement the interface used by simplifyUsersOfIV. 1757 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1758 }; 1759 1760 } // end anonymous namespace 1761 1762 /// Iteratively perform simplification on a worklist of IV users. Each 1763 /// successive simplification may push more users which may themselves be 1764 /// candidates for simplification. 1765 /// 1766 /// Sign/Zero extend elimination is interleaved with IV simplification. 1767 void IndVarSimplify::simplifyAndExtend(Loop *L, 1768 SCEVExpander &Rewriter, 1769 LoopInfo *LI) { 1770 SmallVector<WideIVInfo, 8> WideIVs; 1771 1772 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1773 Intrinsic::getName(Intrinsic::experimental_guard)); 1774 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1775 1776 SmallVector<PHINode*, 8> LoopPhis; 1777 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1778 LoopPhis.push_back(cast<PHINode>(I)); 1779 } 1780 // Each round of simplification iterates through the SimplifyIVUsers worklist 1781 // for all current phis, then determines whether any IVs can be 1782 // widened. Widening adds new phis to LoopPhis, inducing another round of 1783 // simplification on the wide IVs. 1784 while (!LoopPhis.empty()) { 1785 // Evaluate as many IV expressions as possible before widening any IVs. This 1786 // forces SCEV to set no-wrap flags before evaluating sign/zero 1787 // extension. The first time SCEV attempts to normalize sign/zero extension, 1788 // the result becomes final. So for the most predictable results, we delay 1789 // evaluation of sign/zero extend evaluation until needed, and avoid running 1790 // other SCEV based analysis prior to simplifyAndExtend. 1791 do { 1792 PHINode *CurrIV = LoopPhis.pop_back_val(); 1793 1794 // Information about sign/zero extensions of CurrIV. 1795 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1796 1797 Changed |= 1798 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1799 1800 if (Visitor.WI.WidestNativeType) { 1801 WideIVs.push_back(Visitor.WI); 1802 } 1803 } while(!LoopPhis.empty()); 1804 1805 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1806 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1807 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1808 Changed = true; 1809 LoopPhis.push_back(WidePhi); 1810 } 1811 } 1812 } 1813 } 1814 1815 //===----------------------------------------------------------------------===// 1816 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1817 //===----------------------------------------------------------------------===// 1818 1819 /// Return true if this loop's backedge taken count expression can be safely and 1820 /// cheaply expanded into an instruction sequence that can be used by 1821 /// linearFunctionTestReplace. 1822 /// 1823 /// TODO: This fails for pointer-type loop counters with greater than one byte 1824 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1825 /// we could skip this check in the case that the LFTR loop counter (chosen by 1826 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1827 /// the loop test to an inequality test by checking the target data's alignment 1828 /// of element types (given that the initial pointer value originates from or is 1829 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1830 /// However, we don't yet have a strong motivation for converting loop tests 1831 /// into inequality tests. 1832 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1833 SCEVExpander &Rewriter) { 1834 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1835 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1836 BackedgeTakenCount->isZero()) 1837 return false; 1838 1839 if (!L->getExitingBlock()) 1840 return false; 1841 1842 // Can't rewrite non-branch yet. 1843 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1844 return false; 1845 1846 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1847 return false; 1848 1849 return true; 1850 } 1851 1852 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1853 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1854 Instruction *IncI = dyn_cast<Instruction>(IncV); 1855 if (!IncI) 1856 return nullptr; 1857 1858 switch (IncI->getOpcode()) { 1859 case Instruction::Add: 1860 case Instruction::Sub: 1861 break; 1862 case Instruction::GetElementPtr: 1863 // An IV counter must preserve its type. 1864 if (IncI->getNumOperands() == 2) 1865 break; 1866 LLVM_FALLTHROUGH; 1867 default: 1868 return nullptr; 1869 } 1870 1871 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1872 if (Phi && Phi->getParent() == L->getHeader()) { 1873 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1874 return Phi; 1875 return nullptr; 1876 } 1877 if (IncI->getOpcode() == Instruction::GetElementPtr) 1878 return nullptr; 1879 1880 // Allow add/sub to be commuted. 1881 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1882 if (Phi && Phi->getParent() == L->getHeader()) { 1883 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1884 return Phi; 1885 } 1886 return nullptr; 1887 } 1888 1889 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1890 static ICmpInst *getLoopTest(Loop *L) { 1891 assert(L->getExitingBlock() && "expected loop exit"); 1892 1893 BasicBlock *LatchBlock = L->getLoopLatch(); 1894 // Don't bother with LFTR if the loop is not properly simplified. 1895 if (!LatchBlock) 1896 return nullptr; 1897 1898 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1899 assert(BI && "expected exit branch"); 1900 1901 return dyn_cast<ICmpInst>(BI->getCondition()); 1902 } 1903 1904 /// linearFunctionTestReplace policy. Return true unless we can show that the 1905 /// current exit test is already sufficiently canonical. 1906 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1907 // Do LFTR to simplify the exit condition to an ICMP. 1908 ICmpInst *Cond = getLoopTest(L); 1909 if (!Cond) 1910 return true; 1911 1912 // Do LFTR to simplify the exit ICMP to EQ/NE 1913 ICmpInst::Predicate Pred = Cond->getPredicate(); 1914 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1915 return true; 1916 1917 // Look for a loop invariant RHS 1918 Value *LHS = Cond->getOperand(0); 1919 Value *RHS = Cond->getOperand(1); 1920 if (!isLoopInvariant(RHS, L, DT)) { 1921 if (!isLoopInvariant(LHS, L, DT)) 1922 return true; 1923 std::swap(LHS, RHS); 1924 } 1925 // Look for a simple IV counter LHS 1926 PHINode *Phi = dyn_cast<PHINode>(LHS); 1927 if (!Phi) 1928 Phi = getLoopPhiForCounter(LHS, L, DT); 1929 1930 if (!Phi) 1931 return true; 1932 1933 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1934 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1935 if (Idx < 0) 1936 return true; 1937 1938 // Do LFTR if the exit condition's IV is *not* a simple counter. 1939 Value *IncV = Phi->getIncomingValue(Idx); 1940 return Phi != getLoopPhiForCounter(IncV, L, DT); 1941 } 1942 1943 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1944 /// down to checking that all operands are constant and listing instructions 1945 /// that may hide undef. 1946 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1947 unsigned Depth) { 1948 if (isa<Constant>(V)) 1949 return !isa<UndefValue>(V); 1950 1951 if (Depth >= 6) 1952 return false; 1953 1954 // Conservatively handle non-constant non-instructions. For example, Arguments 1955 // may be undef. 1956 Instruction *I = dyn_cast<Instruction>(V); 1957 if (!I) 1958 return false; 1959 1960 // Load and return values may be undef. 1961 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1962 return false; 1963 1964 // Optimistically handle other instructions. 1965 for (Value *Op : I->operands()) { 1966 if (!Visited.insert(Op).second) 1967 continue; 1968 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 1969 return false; 1970 } 1971 return true; 1972 } 1973 1974 /// Return true if the given value is concrete. We must prove that undef can 1975 /// never reach it. 1976 /// 1977 /// TODO: If we decide that this is a good approach to checking for undef, we 1978 /// may factor it into a common location. 1979 static bool hasConcreteDef(Value *V) { 1980 SmallPtrSet<Value*, 8> Visited; 1981 Visited.insert(V); 1982 return hasConcreteDefImpl(V, Visited, 0); 1983 } 1984 1985 /// Return true if this IV has any uses other than the (soon to be rewritten) 1986 /// loop exit test. 1987 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1988 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1989 Value *IncV = Phi->getIncomingValue(LatchIdx); 1990 1991 for (User *U : Phi->users()) 1992 if (U != Cond && U != IncV) return false; 1993 1994 for (User *U : IncV->users()) 1995 if (U != Cond && U != Phi) return false; 1996 return true; 1997 } 1998 1999 /// Find an affine IV in canonical form. 2000 /// 2001 /// BECount may be an i8* pointer type. The pointer difference is already 2002 /// valid count without scaling the address stride, so it remains a pointer 2003 /// expression as far as SCEV is concerned. 2004 /// 2005 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 2006 /// 2007 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 2008 /// 2009 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 2010 /// This is difficult in general for SCEV because of potential overflow. But we 2011 /// could at least handle constant BECounts. 2012 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2013 ScalarEvolution *SE, DominatorTree *DT) { 2014 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2015 2016 Value *Cond = 2017 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2018 2019 // Loop over all of the PHI nodes, looking for a simple counter. 2020 PHINode *BestPhi = nullptr; 2021 const SCEV *BestInit = nullptr; 2022 BasicBlock *LatchBlock = L->getLoopLatch(); 2023 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2024 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2025 2026 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2027 PHINode *Phi = cast<PHINode>(I); 2028 if (!SE->isSCEVable(Phi->getType())) 2029 continue; 2030 2031 // Avoid comparing an integer IV against a pointer Limit. 2032 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2033 continue; 2034 2035 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2036 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2037 continue; 2038 2039 // AR may be a pointer type, while BECount is an integer type. 2040 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2041 // AR may not be a narrower type, or we may never exit. 2042 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2043 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2044 continue; 2045 2046 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2047 if (!Step || !Step->isOne()) 2048 continue; 2049 2050 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2051 Value *IncV = Phi->getIncomingValue(LatchIdx); 2052 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2053 continue; 2054 2055 // Avoid reusing a potentially undef value to compute other values that may 2056 // have originally had a concrete definition. 2057 if (!hasConcreteDef(Phi)) { 2058 // We explicitly allow unknown phis as long as they are already used by 2059 // the loop test. In this case we assume that performing LFTR could not 2060 // increase the number of undef users. 2061 if (ICmpInst *Cond = getLoopTest(L)) { 2062 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2063 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2064 continue; 2065 } 2066 } 2067 } 2068 const SCEV *Init = AR->getStart(); 2069 2070 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2071 // Don't force a live loop counter if another IV can be used. 2072 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2073 continue; 2074 2075 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2076 // also prefers integer to pointer IVs. 2077 if (BestInit->isZero() != Init->isZero()) { 2078 if (BestInit->isZero()) 2079 continue; 2080 } 2081 // If two IVs both count from zero or both count from nonzero then the 2082 // narrower is likely a dead phi that has been widened. Use the wider phi 2083 // to allow the other to be eliminated. 2084 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2085 continue; 2086 } 2087 BestPhi = Phi; 2088 BestInit = Init; 2089 } 2090 return BestPhi; 2091 } 2092 2093 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2094 /// the new loop test. 2095 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2096 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2097 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2098 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2099 const SCEV *IVInit = AR->getStart(); 2100 2101 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2102 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2103 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2104 // the existing GEPs whenever possible. 2105 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2106 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2107 // signed value. IVCount on the other hand represents the loop trip count, 2108 // which is an unsigned value. FindLoopCounter only allows induction 2109 // variables that have a positive unit stride of one. This means we don't 2110 // have to handle the case of negative offsets (yet) and just need to zero 2111 // extend IVCount. 2112 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2113 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2114 2115 // Expand the code for the iteration count. 2116 assert(SE->isLoopInvariant(IVOffset, L) && 2117 "Computed iteration count is not loop invariant!"); 2118 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2119 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2120 2121 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2122 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2123 // We could handle pointer IVs other than i8*, but we need to compensate for 2124 // gep index scaling. See canExpandBackedgeTakenCount comments. 2125 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2126 cast<PointerType>(GEPBase->getType()) 2127 ->getElementType())->isOne() && 2128 "unit stride pointer IV must be i8*"); 2129 2130 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2131 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 2132 } else { 2133 // In any other case, convert both IVInit and IVCount to integers before 2134 // comparing. This may result in SCEV expansion of pointers, but in practice 2135 // SCEV will fold the pointer arithmetic away as such: 2136 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2137 // 2138 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2139 // for simple memset-style loops. 2140 // 2141 // IVInit integer and IVCount pointer would only occur if a canonical IV 2142 // were generated on top of case #2, which is not expected. 2143 2144 const SCEV *IVLimit = nullptr; 2145 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2146 // For non-zero Start, compute IVCount here. 2147 if (AR->getStart()->isZero()) 2148 IVLimit = IVCount; 2149 else { 2150 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2151 const SCEV *IVInit = AR->getStart(); 2152 2153 // For integer IVs, truncate the IV before computing IVInit + BECount. 2154 if (SE->getTypeSizeInBits(IVInit->getType()) 2155 > SE->getTypeSizeInBits(IVCount->getType())) 2156 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2157 2158 IVLimit = SE->getAddExpr(IVInit, IVCount); 2159 } 2160 // Expand the code for the iteration count. 2161 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2162 IRBuilder<> Builder(BI); 2163 assert(SE->isLoopInvariant(IVLimit, L) && 2164 "Computed iteration count is not loop invariant!"); 2165 // Ensure that we generate the same type as IndVar, or a smaller integer 2166 // type. In the presence of null pointer values, we have an integer type 2167 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2168 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2169 IndVar->getType() : IVCount->getType(); 2170 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2171 } 2172 } 2173 2174 /// This method rewrites the exit condition of the loop to be a canonical != 2175 /// comparison against the incremented loop induction variable. This pass is 2176 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2177 /// determine a loop-invariant trip count of the loop, which is actually a much 2178 /// broader range than just linear tests. 2179 Value *IndVarSimplify:: 2180 linearFunctionTestReplace(Loop *L, 2181 const SCEV *BackedgeTakenCount, 2182 PHINode *IndVar, 2183 SCEVExpander &Rewriter) { 2184 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2185 2186 // Initialize CmpIndVar and IVCount to their preincremented values. 2187 Value *CmpIndVar = IndVar; 2188 const SCEV *IVCount = BackedgeTakenCount; 2189 2190 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2191 2192 // If the exiting block is the same as the backedge block, we prefer to 2193 // compare against the post-incremented value, otherwise we must compare 2194 // against the preincremented value. 2195 if (L->getExitingBlock() == L->getLoopLatch()) { 2196 // Add one to the "backedge-taken" count to get the trip count. 2197 // This addition may overflow, which is valid as long as the comparison is 2198 // truncated to BackedgeTakenCount->getType(). 2199 IVCount = SE->getAddExpr(BackedgeTakenCount, 2200 SE->getOne(BackedgeTakenCount->getType())); 2201 // The BackedgeTaken expression contains the number of times that the 2202 // backedge branches to the loop header. This is one less than the 2203 // number of times the loop executes, so use the incremented indvar. 2204 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2205 } 2206 2207 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2208 assert(ExitCnt->getType()->isPointerTy() == 2209 IndVar->getType()->isPointerTy() && 2210 "genLoopLimit missed a cast"); 2211 2212 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2213 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2214 ICmpInst::Predicate P; 2215 if (L->contains(BI->getSuccessor(0))) 2216 P = ICmpInst::ICMP_NE; 2217 else 2218 P = ICmpInst::ICMP_EQ; 2219 2220 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2221 << " LHS:" << *CmpIndVar << '\n' 2222 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2223 << "\n" 2224 << " RHS:\t" << *ExitCnt << "\n" 2225 << " IVCount:\t" << *IVCount << "\n"); 2226 2227 IRBuilder<> Builder(BI); 2228 2229 // The new loop exit condition should reuse the debug location of the 2230 // original loop exit condition. 2231 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2232 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2233 2234 // LFTR can ignore IV overflow and truncate to the width of 2235 // BECount. This avoids materializing the add(zext(add)) expression. 2236 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2237 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2238 if (CmpIndVarSize > ExitCntSize) { 2239 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2240 const SCEV *ARStart = AR->getStart(); 2241 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2242 // For constant IVCount, avoid truncation. 2243 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2244 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2245 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2246 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2247 // above such that IVCount is now zero. 2248 if (IVCount != BackedgeTakenCount && Count == 0) { 2249 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2250 ++Count; 2251 } 2252 else 2253 Count = Count.zext(CmpIndVarSize); 2254 APInt NewLimit; 2255 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2256 NewLimit = Start - Count; 2257 else 2258 NewLimit = Start + Count; 2259 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2260 2261 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2262 } else { 2263 // We try to extend trip count first. If that doesn't work we truncate IV. 2264 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2265 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2266 // one of the two holds, extend the trip count, otherwise we truncate IV. 2267 bool Extended = false; 2268 const SCEV *IV = SE->getSCEV(CmpIndVar); 2269 const SCEV *ZExtTrunc = 2270 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2271 ExitCnt->getType()), 2272 CmpIndVar->getType()); 2273 2274 if (ZExtTrunc == IV) { 2275 Extended = true; 2276 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2277 "wide.trip.count"); 2278 } else { 2279 const SCEV *SExtTrunc = 2280 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2281 ExitCnt->getType()), 2282 CmpIndVar->getType()); 2283 if (SExtTrunc == IV) { 2284 Extended = true; 2285 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2286 "wide.trip.count"); 2287 } 2288 } 2289 2290 if (!Extended) 2291 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2292 "lftr.wideiv"); 2293 } 2294 } 2295 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2296 Value *OrigCond = BI->getCondition(); 2297 // It's tempting to use replaceAllUsesWith here to fully replace the old 2298 // comparison, but that's not immediately safe, since users of the old 2299 // comparison may not be dominated by the new comparison. Instead, just 2300 // update the branch to use the new comparison; in the common case this 2301 // will make old comparison dead. 2302 BI->setCondition(Cond); 2303 DeadInsts.push_back(OrigCond); 2304 2305 ++NumLFTR; 2306 Changed = true; 2307 return Cond; 2308 } 2309 2310 //===----------------------------------------------------------------------===// 2311 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2312 //===----------------------------------------------------------------------===// 2313 2314 /// If there's a single exit block, sink any loop-invariant values that 2315 /// were defined in the preheader but not used inside the loop into the 2316 /// exit block to reduce register pressure in the loop. 2317 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2318 BasicBlock *ExitBlock = L->getExitBlock(); 2319 if (!ExitBlock) return; 2320 2321 BasicBlock *Preheader = L->getLoopPreheader(); 2322 if (!Preheader) return; 2323 2324 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2325 BasicBlock::iterator I(Preheader->getTerminator()); 2326 while (I != Preheader->begin()) { 2327 --I; 2328 // New instructions were inserted at the end of the preheader. 2329 if (isa<PHINode>(I)) 2330 break; 2331 2332 // Don't move instructions which might have side effects, since the side 2333 // effects need to complete before instructions inside the loop. Also don't 2334 // move instructions which might read memory, since the loop may modify 2335 // memory. Note that it's okay if the instruction might have undefined 2336 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2337 // block. 2338 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2339 continue; 2340 2341 // Skip debug info intrinsics. 2342 if (isa<DbgInfoIntrinsic>(I)) 2343 continue; 2344 2345 // Skip eh pad instructions. 2346 if (I->isEHPad()) 2347 continue; 2348 2349 // Don't sink alloca: we never want to sink static alloca's out of the 2350 // entry block, and correctly sinking dynamic alloca's requires 2351 // checks for stacksave/stackrestore intrinsics. 2352 // FIXME: Refactor this check somehow? 2353 if (isa<AllocaInst>(I)) 2354 continue; 2355 2356 // Determine if there is a use in or before the loop (direct or 2357 // otherwise). 2358 bool UsedInLoop = false; 2359 for (Use &U : I->uses()) { 2360 Instruction *User = cast<Instruction>(U.getUser()); 2361 BasicBlock *UseBB = User->getParent(); 2362 if (PHINode *P = dyn_cast<PHINode>(User)) { 2363 unsigned i = 2364 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2365 UseBB = P->getIncomingBlock(i); 2366 } 2367 if (UseBB == Preheader || L->contains(UseBB)) { 2368 UsedInLoop = true; 2369 break; 2370 } 2371 } 2372 2373 // If there is, the def must remain in the preheader. 2374 if (UsedInLoop) 2375 continue; 2376 2377 // Otherwise, sink it to the exit block. 2378 Instruction *ToMove = &*I; 2379 bool Done = false; 2380 2381 if (I != Preheader->begin()) { 2382 // Skip debug info intrinsics. 2383 do { 2384 --I; 2385 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2386 2387 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2388 Done = true; 2389 } else { 2390 Done = true; 2391 } 2392 2393 ToMove->moveBefore(*ExitBlock, InsertPt); 2394 if (Done) break; 2395 InsertPt = ToMove->getIterator(); 2396 } 2397 } 2398 2399 //===----------------------------------------------------------------------===// 2400 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2401 //===----------------------------------------------------------------------===// 2402 2403 bool IndVarSimplify::run(Loop *L) { 2404 // We need (and expect!) the incoming loop to be in LCSSA. 2405 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2406 "LCSSA required to run indvars!"); 2407 2408 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2409 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2410 // canonicalization can be a pessimization without LSR to "clean up" 2411 // afterwards. 2412 // - We depend on having a preheader; in particular, 2413 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2414 // and we're in trouble if we can't find the induction variable even when 2415 // we've manually inserted one. 2416 // - LFTR relies on having a single backedge. 2417 if (!L->isLoopSimplifyForm()) 2418 return false; 2419 2420 // If there are any floating-point recurrences, attempt to 2421 // transform them to use integer recurrences. 2422 rewriteNonIntegerIVs(L); 2423 2424 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2425 2426 // Create a rewriter object which we'll use to transform the code with. 2427 SCEVExpander Rewriter(*SE, DL, "indvars"); 2428 #ifndef NDEBUG 2429 Rewriter.setDebugType(DEBUG_TYPE); 2430 #endif 2431 2432 // Eliminate redundant IV users. 2433 // 2434 // Simplification works best when run before other consumers of SCEV. We 2435 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2436 // other expressions involving loop IVs have been evaluated. This helps SCEV 2437 // set no-wrap flags before normalizing sign/zero extension. 2438 Rewriter.disableCanonicalMode(); 2439 simplifyAndExtend(L, Rewriter, LI); 2440 2441 // Check to see if this loop has a computable loop-invariant execution count. 2442 // If so, this means that we can compute the final value of any expressions 2443 // that are recurrent in the loop, and substitute the exit values from the 2444 // loop into any instructions outside of the loop that use the final values of 2445 // the current expressions. 2446 // 2447 if (ReplaceExitValue != NeverRepl && 2448 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2449 rewriteLoopExitValues(L, Rewriter); 2450 2451 // Eliminate redundant IV cycles. 2452 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2453 2454 // If we have a trip count expression, rewrite the loop's exit condition 2455 // using it. We can currently only handle loops with a single exit. 2456 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2457 needsLFTR(L, DT)) { 2458 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2459 if (IndVar) { 2460 // Check preconditions for proper SCEVExpander operation. SCEV does not 2461 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2462 // pass that uses the SCEVExpander must do it. This does not work well for 2463 // loop passes because SCEVExpander makes assumptions about all loops, 2464 // while LoopPassManager only forces the current loop to be simplified. 2465 // 2466 // FIXME: SCEV expansion has no way to bail out, so the caller must 2467 // explicitly check any assumptions made by SCEV. Brittle. 2468 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2469 if (!AR || AR->getLoop()->getLoopPreheader()) 2470 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2471 Rewriter); 2472 } 2473 } 2474 // Clear the rewriter cache, because values that are in the rewriter's cache 2475 // can be deleted in the loop below, causing the AssertingVH in the cache to 2476 // trigger. 2477 Rewriter.clear(); 2478 2479 // Now that we're done iterating through lists, clean up any instructions 2480 // which are now dead. 2481 while (!DeadInsts.empty()) 2482 if (Instruction *Inst = 2483 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2484 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2485 2486 // The Rewriter may not be used from this point on. 2487 2488 // Loop-invariant instructions in the preheader that aren't used in the 2489 // loop may be sunk below the loop to reduce register pressure. 2490 sinkUnusedInvariants(L); 2491 2492 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2493 // trip count and therefore can further simplify exit values in addition to 2494 // rewriteLoopExitValues. 2495 rewriteFirstIterationLoopExitValues(L); 2496 2497 // Clean up dead instructions. 2498 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2499 2500 // Check a post-condition. 2501 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2502 "Indvars did not preserve LCSSA!"); 2503 2504 // Verify that LFTR, and any other change have not interfered with SCEV's 2505 // ability to compute trip count. 2506 #ifndef NDEBUG 2507 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2508 SE->forgetLoop(L); 2509 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2510 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2511 SE->getTypeSizeInBits(NewBECount->getType())) 2512 NewBECount = SE->getTruncateOrNoop(NewBECount, 2513 BackedgeTakenCount->getType()); 2514 else 2515 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2516 NewBECount->getType()); 2517 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2518 } 2519 #endif 2520 2521 return Changed; 2522 } 2523 2524 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2525 LoopStandardAnalysisResults &AR, 2526 LPMUpdater &) { 2527 Function *F = L.getHeader()->getParent(); 2528 const DataLayout &DL = F->getParent()->getDataLayout(); 2529 2530 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2531 if (!IVS.run(&L)) 2532 return PreservedAnalyses::all(); 2533 2534 auto PA = getLoopPassPreservedAnalyses(); 2535 PA.preserveSet<CFGAnalyses>(); 2536 return PA; 2537 } 2538 2539 namespace { 2540 2541 struct IndVarSimplifyLegacyPass : public LoopPass { 2542 static char ID; // Pass identification, replacement for typeid 2543 2544 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2545 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2546 } 2547 2548 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2549 if (skipLoop(L)) 2550 return false; 2551 2552 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2553 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2554 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2555 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2556 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2557 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2558 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2559 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2560 2561 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2562 return IVS.run(L); 2563 } 2564 2565 void getAnalysisUsage(AnalysisUsage &AU) const override { 2566 AU.setPreservesCFG(); 2567 getLoopAnalysisUsage(AU); 2568 } 2569 }; 2570 2571 } // end anonymous namespace 2572 2573 char IndVarSimplifyLegacyPass::ID = 0; 2574 2575 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2576 "Induction Variable Simplification", false, false) 2577 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2578 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2579 "Induction Variable Simplification", false, false) 2580 2581 Pass *llvm::createIndVarSimplifyPass() { 2582 return new IndVarSimplifyLegacyPass(); 2583 } 2584