xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 2a52583d670046f05053fcd7da978e060205b372)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallSet.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/ScalarEvolutionExpander.h"
43 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/Analysis/ValueTracking.h"
47 #include "llvm/Transforms/Utils/Local.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/ConstantRange.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/PassManager.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/Pass.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/ErrorHandling.h"
77 #include "llvm/Support/MathExtras.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Transforms/Scalar.h"
80 #include "llvm/Transforms/Scalar/LoopPassManager.h"
81 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
82 #include "llvm/Transforms/Utils/LoopUtils.h"
83 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
84 #include <cassert>
85 #include <cstdint>
86 #include <utility>
87 
88 using namespace llvm;
89 
90 #define DEBUG_TYPE "indvars"
91 
92 STATISTIC(NumWidened     , "Number of indvars widened");
93 STATISTIC(NumReplaced    , "Number of exit values replaced");
94 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
95 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
96 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
97 
98 // Trip count verification can be enabled by default under NDEBUG if we
99 // implement a strong expression equivalence checker in SCEV. Until then, we
100 // use the verify-indvars flag, which may assert in some cases.
101 static cl::opt<bool> VerifyIndvars(
102   "verify-indvars", cl::Hidden,
103   cl::desc("Verify the ScalarEvolution result after running indvars"));
104 
105 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, NoHardUse, AlwaysRepl };
106 
107 static cl::opt<ReplaceExitVal> ReplaceExitValue(
108     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
109     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
110     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
111                clEnumValN(OnlyCheapRepl, "cheap",
112                           "only replace exit value when the cost is cheap"),
113                clEnumValN(NoHardUse, "noharduse",
114                           "only replace exit values when loop def likely dead"),
115                clEnumValN(AlwaysRepl, "always",
116                           "always replace exit value whenever possible")));
117 
118 static cl::opt<bool> UsePostIncrementRanges(
119   "indvars-post-increment-ranges", cl::Hidden,
120   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
121   cl::init(true));
122 
123 static cl::opt<bool>
124 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
125             cl::desc("Disable Linear Function Test Replace optimization"));
126 
127 namespace {
128 
129 struct RewritePhi;
130 
131 class IndVarSimplify {
132   LoopInfo *LI;
133   ScalarEvolution *SE;
134   DominatorTree *DT;
135   const DataLayout &DL;
136   TargetLibraryInfo *TLI;
137   const TargetTransformInfo *TTI;
138 
139   SmallVector<WeakTrackingVH, 16> DeadInsts;
140 
141   bool isValidRewrite(Value *FromVal, Value *ToVal);
142 
143   bool handleFloatingPointIV(Loop *L, PHINode *PH);
144   bool rewriteNonIntegerIVs(Loop *L);
145 
146   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
147   bool optimizeLoopExits(Loop *L);
148 
149   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
150   bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
151   bool rewriteFirstIterationLoopExitValues(Loop *L);
152   bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const;
153 
154   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
155                                  const SCEV *ExitCount,
156                                  PHINode *IndVar, SCEVExpander &Rewriter);
157 
158   bool sinkUnusedInvariants(Loop *L);
159 
160 public:
161   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
162                  const DataLayout &DL, TargetLibraryInfo *TLI,
163                  TargetTransformInfo *TTI)
164       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
165 
166   bool run(Loop *L);
167 };
168 
169 } // end anonymous namespace
170 
171 /// Return true if the SCEV expansion generated by the rewriter can replace the
172 /// original value. SCEV guarantees that it produces the same value, but the way
173 /// it is produced may be illegal IR.  Ideally, this function will only be
174 /// called for verification.
175 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
176   // If an SCEV expression subsumed multiple pointers, its expansion could
177   // reassociate the GEP changing the base pointer. This is illegal because the
178   // final address produced by a GEP chain must be inbounds relative to its
179   // underlying object. Otherwise basic alias analysis, among other things,
180   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
181   // producing an expression involving multiple pointers. Until then, we must
182   // bail out here.
183   //
184   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
185   // because it understands lcssa phis while SCEV does not.
186   Value *FromPtr = FromVal;
187   Value *ToPtr = ToVal;
188   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
189     FromPtr = GEP->getPointerOperand();
190   }
191   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
192     ToPtr = GEP->getPointerOperand();
193   }
194   if (FromPtr != FromVal || ToPtr != ToVal) {
195     // Quickly check the common case
196     if (FromPtr == ToPtr)
197       return true;
198 
199     // SCEV may have rewritten an expression that produces the GEP's pointer
200     // operand. That's ok as long as the pointer operand has the same base
201     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
202     // base of a recurrence. This handles the case in which SCEV expansion
203     // converts a pointer type recurrence into a nonrecurrent pointer base
204     // indexed by an integer recurrence.
205 
206     // If the GEP base pointer is a vector of pointers, abort.
207     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
208       return false;
209 
210     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
211     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
212     if (FromBase == ToBase)
213       return true;
214 
215     LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
216                       << " != " << *ToBase << "\n");
217 
218     return false;
219   }
220   return true;
221 }
222 
223 /// Determine the insertion point for this user. By default, insert immediately
224 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
225 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
226 /// common dominator for the incoming blocks. A nullptr can be returned if no
227 /// viable location is found: it may happen if User is a PHI and Def only comes
228 /// to this PHI from unreachable blocks.
229 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
230                                           DominatorTree *DT, LoopInfo *LI) {
231   PHINode *PHI = dyn_cast<PHINode>(User);
232   if (!PHI)
233     return User;
234 
235   Instruction *InsertPt = nullptr;
236   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
237     if (PHI->getIncomingValue(i) != Def)
238       continue;
239 
240     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
241 
242     if (!DT->isReachableFromEntry(InsertBB))
243       continue;
244 
245     if (!InsertPt) {
246       InsertPt = InsertBB->getTerminator();
247       continue;
248     }
249     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
250     InsertPt = InsertBB->getTerminator();
251   }
252 
253   // If we have skipped all inputs, it means that Def only comes to Phi from
254   // unreachable blocks.
255   if (!InsertPt)
256     return nullptr;
257 
258   auto *DefI = dyn_cast<Instruction>(Def);
259   if (!DefI)
260     return InsertPt;
261 
262   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
263 
264   auto *L = LI->getLoopFor(DefI->getParent());
265   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
266 
267   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
268     if (LI->getLoopFor(DTN->getBlock()) == L)
269       return DTN->getBlock()->getTerminator();
270 
271   llvm_unreachable("DefI dominates InsertPt!");
272 }
273 
274 //===----------------------------------------------------------------------===//
275 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
276 //===----------------------------------------------------------------------===//
277 
278 /// Convert APF to an integer, if possible.
279 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
280   bool isExact = false;
281   // See if we can convert this to an int64_t
282   uint64_t UIntVal;
283   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
284                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
285       !isExact)
286     return false;
287   IntVal = UIntVal;
288   return true;
289 }
290 
291 /// If the loop has floating induction variable then insert corresponding
292 /// integer induction variable if possible.
293 /// For example,
294 /// for(double i = 0; i < 10000; ++i)
295 ///   bar(i)
296 /// is converted into
297 /// for(int i = 0; i < 10000; ++i)
298 ///   bar((double)i);
299 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
300   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
301   unsigned BackEdge     = IncomingEdge^1;
302 
303   // Check incoming value.
304   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
305 
306   int64_t InitValue;
307   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
308     return false;
309 
310   // Check IV increment. Reject this PN if increment operation is not
311   // an add or increment value can not be represented by an integer.
312   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
313   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
314 
315   // If this is not an add of the PHI with a constantfp, or if the constant fp
316   // is not an integer, bail out.
317   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
318   int64_t IncValue;
319   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
320       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
321     return false;
322 
323   // Check Incr uses. One user is PN and the other user is an exit condition
324   // used by the conditional terminator.
325   Value::user_iterator IncrUse = Incr->user_begin();
326   Instruction *U1 = cast<Instruction>(*IncrUse++);
327   if (IncrUse == Incr->user_end()) return false;
328   Instruction *U2 = cast<Instruction>(*IncrUse++);
329   if (IncrUse != Incr->user_end()) return false;
330 
331   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
332   // only used by a branch, we can't transform it.
333   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
334   if (!Compare)
335     Compare = dyn_cast<FCmpInst>(U2);
336   if (!Compare || !Compare->hasOneUse() ||
337       !isa<BranchInst>(Compare->user_back()))
338     return false;
339 
340   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
341 
342   // We need to verify that the branch actually controls the iteration count
343   // of the loop.  If not, the new IV can overflow and no one will notice.
344   // The branch block must be in the loop and one of the successors must be out
345   // of the loop.
346   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
347   if (!L->contains(TheBr->getParent()) ||
348       (L->contains(TheBr->getSuccessor(0)) &&
349        L->contains(TheBr->getSuccessor(1))))
350     return false;
351 
352   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
353   // transform it.
354   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
355   int64_t ExitValue;
356   if (ExitValueVal == nullptr ||
357       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
358     return false;
359 
360   // Find new predicate for integer comparison.
361   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
362   switch (Compare->getPredicate()) {
363   default: return false;  // Unknown comparison.
364   case CmpInst::FCMP_OEQ:
365   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
366   case CmpInst::FCMP_ONE:
367   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
368   case CmpInst::FCMP_OGT:
369   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
370   case CmpInst::FCMP_OGE:
371   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
372   case CmpInst::FCMP_OLT:
373   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
374   case CmpInst::FCMP_OLE:
375   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
376   }
377 
378   // We convert the floating point induction variable to a signed i32 value if
379   // we can.  This is only safe if the comparison will not overflow in a way
380   // that won't be trapped by the integer equivalent operations.  Check for this
381   // now.
382   // TODO: We could use i64 if it is native and the range requires it.
383 
384   // The start/stride/exit values must all fit in signed i32.
385   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
386     return false;
387 
388   // If not actually striding (add x, 0.0), avoid touching the code.
389   if (IncValue == 0)
390     return false;
391 
392   // Positive and negative strides have different safety conditions.
393   if (IncValue > 0) {
394     // If we have a positive stride, we require the init to be less than the
395     // exit value.
396     if (InitValue >= ExitValue)
397       return false;
398 
399     uint32_t Range = uint32_t(ExitValue-InitValue);
400     // Check for infinite loop, either:
401     // while (i <= Exit) or until (i > Exit)
402     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
403       if (++Range == 0) return false;  // Range overflows.
404     }
405 
406     unsigned Leftover = Range % uint32_t(IncValue);
407 
408     // If this is an equality comparison, we require that the strided value
409     // exactly land on the exit value, otherwise the IV condition will wrap
410     // around and do things the fp IV wouldn't.
411     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
412         Leftover != 0)
413       return false;
414 
415     // If the stride would wrap around the i32 before exiting, we can't
416     // transform the IV.
417     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
418       return false;
419   } else {
420     // If we have a negative stride, we require the init to be greater than the
421     // exit value.
422     if (InitValue <= ExitValue)
423       return false;
424 
425     uint32_t Range = uint32_t(InitValue-ExitValue);
426     // Check for infinite loop, either:
427     // while (i >= Exit) or until (i < Exit)
428     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
429       if (++Range == 0) return false;  // Range overflows.
430     }
431 
432     unsigned Leftover = Range % uint32_t(-IncValue);
433 
434     // If this is an equality comparison, we require that the strided value
435     // exactly land on the exit value, otherwise the IV condition will wrap
436     // around and do things the fp IV wouldn't.
437     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
438         Leftover != 0)
439       return false;
440 
441     // If the stride would wrap around the i32 before exiting, we can't
442     // transform the IV.
443     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
444       return false;
445   }
446 
447   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
448 
449   // Insert new integer induction variable.
450   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
451   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
452                       PN->getIncomingBlock(IncomingEdge));
453 
454   Value *NewAdd =
455     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
456                               Incr->getName()+".int", Incr);
457   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
458 
459   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
460                                       ConstantInt::get(Int32Ty, ExitValue),
461                                       Compare->getName());
462 
463   // In the following deletions, PN may become dead and may be deleted.
464   // Use a WeakTrackingVH to observe whether this happens.
465   WeakTrackingVH WeakPH = PN;
466 
467   // Delete the old floating point exit comparison.  The branch starts using the
468   // new comparison.
469   NewCompare->takeName(Compare);
470   Compare->replaceAllUsesWith(NewCompare);
471   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
472 
473   // Delete the old floating point increment.
474   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
475   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
476 
477   // If the FP induction variable still has uses, this is because something else
478   // in the loop uses its value.  In order to canonicalize the induction
479   // variable, we chose to eliminate the IV and rewrite it in terms of an
480   // int->fp cast.
481   //
482   // We give preference to sitofp over uitofp because it is faster on most
483   // platforms.
484   if (WeakPH) {
485     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
486                                  &*PN->getParent()->getFirstInsertionPt());
487     PN->replaceAllUsesWith(Conv);
488     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
489   }
490   return true;
491 }
492 
493 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
494   // First step.  Check to see if there are any floating-point recurrences.
495   // If there are, change them into integer recurrences, permitting analysis by
496   // the SCEV routines.
497   BasicBlock *Header = L->getHeader();
498 
499   SmallVector<WeakTrackingVH, 8> PHIs;
500   for (PHINode &PN : Header->phis())
501     PHIs.push_back(&PN);
502 
503   bool Changed = false;
504   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
505     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
506       Changed |= handleFloatingPointIV(L, PN);
507 
508   // If the loop previously had floating-point IV, ScalarEvolution
509   // may not have been able to compute a trip count. Now that we've done some
510   // re-writing, the trip count may be computable.
511   if (Changed)
512     SE->forgetLoop(L);
513   return Changed;
514 }
515 
516 namespace {
517 
518 // Collect information about PHI nodes which can be transformed in
519 // rewriteLoopExitValues.
520 struct RewritePhi {
521   PHINode *PN;
522 
523   // Ith incoming value.
524   unsigned Ith;
525 
526   // Exit value after expansion.
527   Value *Val;
528 
529   // High Cost when expansion.
530   bool HighCost;
531 
532   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
533       : PN(P), Ith(I), Val(V), HighCost(H) {}
534 };
535 
536 } // end anonymous namespace
537 
538 //===----------------------------------------------------------------------===//
539 // rewriteLoopExitValues - Optimize IV users outside the loop.
540 // As a side effect, reduces the amount of IV processing within the loop.
541 //===----------------------------------------------------------------------===//
542 
543 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const {
544   SmallPtrSet<const Instruction *, 8> Visited;
545   SmallVector<const Instruction *, 8> WorkList;
546   Visited.insert(I);
547   WorkList.push_back(I);
548   while (!WorkList.empty()) {
549     const Instruction *Curr = WorkList.pop_back_val();
550     // This use is outside the loop, nothing to do.
551     if (!L->contains(Curr))
552       continue;
553     // Do we assume it is a "hard" use which will not be eliminated easily?
554     if (Curr->mayHaveSideEffects())
555       return true;
556     // Otherwise, add all its users to worklist.
557     for (auto U : Curr->users()) {
558       auto *UI = cast<Instruction>(U);
559       if (Visited.insert(UI).second)
560         WorkList.push_back(UI);
561     }
562   }
563   return false;
564 }
565 
566 /// Check to see if this loop has a computable loop-invariant execution count.
567 /// If so, this means that we can compute the final value of any expressions
568 /// that are recurrent in the loop, and substitute the exit values from the loop
569 /// into any instructions outside of the loop that use the final values of the
570 /// current expressions.
571 ///
572 /// This is mostly redundant with the regular IndVarSimplify activities that
573 /// happen later, except that it's more powerful in some cases, because it's
574 /// able to brute-force evaluate arbitrary instructions as long as they have
575 /// constant operands at the beginning of the loop.
576 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
577   // Check a pre-condition.
578   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
579          "Indvars did not preserve LCSSA!");
580 
581   SmallVector<BasicBlock*, 8> ExitBlocks;
582   L->getUniqueExitBlocks(ExitBlocks);
583 
584   SmallVector<RewritePhi, 8> RewritePhiSet;
585   // Find all values that are computed inside the loop, but used outside of it.
586   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
587   // the exit blocks of the loop to find them.
588   for (BasicBlock *ExitBB : ExitBlocks) {
589     // If there are no PHI nodes in this exit block, then no values defined
590     // inside the loop are used on this path, skip it.
591     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
592     if (!PN) continue;
593 
594     unsigned NumPreds = PN->getNumIncomingValues();
595 
596     // Iterate over all of the PHI nodes.
597     BasicBlock::iterator BBI = ExitBB->begin();
598     while ((PN = dyn_cast<PHINode>(BBI++))) {
599       if (PN->use_empty())
600         continue; // dead use, don't replace it
601 
602       if (!SE->isSCEVable(PN->getType()))
603         continue;
604 
605       // It's necessary to tell ScalarEvolution about this explicitly so that
606       // it can walk the def-use list and forget all SCEVs, as it may not be
607       // watching the PHI itself. Once the new exit value is in place, there
608       // may not be a def-use connection between the loop and every instruction
609       // which got a SCEVAddRecExpr for that loop.
610       SE->forgetValue(PN);
611 
612       // Iterate over all of the values in all the PHI nodes.
613       for (unsigned i = 0; i != NumPreds; ++i) {
614         // If the value being merged in is not integer or is not defined
615         // in the loop, skip it.
616         Value *InVal = PN->getIncomingValue(i);
617         if (!isa<Instruction>(InVal))
618           continue;
619 
620         // If this pred is for a subloop, not L itself, skip it.
621         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
622           continue; // The Block is in a subloop, skip it.
623 
624         // Check that InVal is defined in the loop.
625         Instruction *Inst = cast<Instruction>(InVal);
626         if (!L->contains(Inst))
627           continue;
628 
629         // Okay, this instruction has a user outside of the current loop
630         // and varies predictably *inside* the loop.  Evaluate the value it
631         // contains when the loop exits, if possible.  We prefer to start with
632         // expressions which are true for all exits (so as to maximize
633         // expression reuse by the SCEVExpander), but resort to per-exit
634         // evaluation if that fails.
635         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
636         if (isa<SCEVCouldNotCompute>(ExitValue) ||
637             !SE->isLoopInvariant(ExitValue, L) ||
638             !isSafeToExpand(ExitValue, *SE)) {
639           // TODO: This should probably be sunk into SCEV in some way; maybe a
640           // getSCEVForExit(SCEV*, L, ExitingBB)?  It can be generalized for
641           // most SCEV expressions and other recurrence types (e.g. shift
642           // recurrences).  Is there existing code we can reuse?
643           const SCEV *ExitCount = SE->getExitCount(L, PN->getIncomingBlock(i));
644           if (isa<SCEVCouldNotCompute>(ExitCount))
645             continue;
646           if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Inst)))
647             if (AddRec->getLoop() == L)
648               ExitValue = AddRec->evaluateAtIteration(ExitCount, *SE);
649           if (isa<SCEVCouldNotCompute>(ExitValue) ||
650               !SE->isLoopInvariant(ExitValue, L) ||
651               !isSafeToExpand(ExitValue, *SE))
652             continue;
653         }
654 
655         // Computing the value outside of the loop brings no benefit if it is
656         // definitely used inside the loop in a way which can not be optimized
657         // away.  Avoid doing so unless we know we have a value which computes
658         // the ExitValue already.  TODO: This should be merged into SCEV
659         // expander to leverage its knowledge of existing expressions.
660         if (ReplaceExitValue != AlwaysRepl &&
661             !isa<SCEVConstant>(ExitValue) && !isa<SCEVUnknown>(ExitValue) &&
662             hasHardUserWithinLoop(L, Inst))
663           continue;
664 
665         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
666         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
667 
668         LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
669                           << '\n'
670                           << "  LoopVal = " << *Inst << "\n");
671 
672         if (!isValidRewrite(Inst, ExitVal)) {
673           DeadInsts.push_back(ExitVal);
674           continue;
675         }
676 
677 #ifndef NDEBUG
678         // If we reuse an instruction from a loop which is neither L nor one of
679         // its containing loops, we end up breaking LCSSA form for this loop by
680         // creating a new use of its instruction.
681         if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
682           if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
683             if (EVL != L)
684               assert(EVL->contains(L) && "LCSSA breach detected!");
685 #endif
686 
687         // Collect all the candidate PHINodes to be rewritten.
688         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
689       }
690     }
691   }
692 
693   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
694 
695   bool Changed = false;
696   // Transformation.
697   for (const RewritePhi &Phi : RewritePhiSet) {
698     PHINode *PN = Phi.PN;
699     Value *ExitVal = Phi.Val;
700 
701     // Only do the rewrite when the ExitValue can be expanded cheaply.
702     // If LoopCanBeDel is true, rewrite exit value aggressively.
703     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
704       DeadInsts.push_back(ExitVal);
705       continue;
706     }
707 
708     Changed = true;
709     ++NumReplaced;
710     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
711     PN->setIncomingValue(Phi.Ith, ExitVal);
712 
713     // If this instruction is dead now, delete it. Don't do it now to avoid
714     // invalidating iterators.
715     if (isInstructionTriviallyDead(Inst, TLI))
716       DeadInsts.push_back(Inst);
717 
718     // Replace PN with ExitVal if that is legal and does not break LCSSA.
719     if (PN->getNumIncomingValues() == 1 &&
720         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
721       PN->replaceAllUsesWith(ExitVal);
722       PN->eraseFromParent();
723     }
724   }
725 
726   // The insertion point instruction may have been deleted; clear it out
727   // so that the rewriter doesn't trip over it later.
728   Rewriter.clearInsertPoint();
729   return Changed;
730 }
731 
732 //===---------------------------------------------------------------------===//
733 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
734 // they will exit at the first iteration.
735 //===---------------------------------------------------------------------===//
736 
737 /// Check to see if this loop has loop invariant conditions which lead to loop
738 /// exits. If so, we know that if the exit path is taken, it is at the first
739 /// loop iteration. This lets us predict exit values of PHI nodes that live in
740 /// loop header.
741 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
742   // Verify the input to the pass is already in LCSSA form.
743   assert(L->isLCSSAForm(*DT));
744 
745   SmallVector<BasicBlock *, 8> ExitBlocks;
746   L->getUniqueExitBlocks(ExitBlocks);
747 
748   bool MadeAnyChanges = false;
749   for (auto *ExitBB : ExitBlocks) {
750     // If there are no more PHI nodes in this exit block, then no more
751     // values defined inside the loop are used on this path.
752     for (PHINode &PN : ExitBB->phis()) {
753       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
754            IncomingValIdx != E; ++IncomingValIdx) {
755         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
756 
757         // Can we prove that the exit must run on the first iteration if it
758         // runs at all?  (i.e. early exits are fine for our purposes, but
759         // traces which lead to this exit being taken on the 2nd iteration
760         // aren't.)  Note that this is about whether the exit branch is
761         // executed, not about whether it is taken.
762         if (!L->getLoopLatch() ||
763             !DT->dominates(IncomingBB, L->getLoopLatch()))
764           continue;
765 
766         // Get condition that leads to the exit path.
767         auto *TermInst = IncomingBB->getTerminator();
768 
769         Value *Cond = nullptr;
770         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
771           // Must be a conditional branch, otherwise the block
772           // should not be in the loop.
773           Cond = BI->getCondition();
774         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
775           Cond = SI->getCondition();
776         else
777           continue;
778 
779         if (!L->isLoopInvariant(Cond))
780           continue;
781 
782         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
783 
784         // Only deal with PHIs in the loop header.
785         if (!ExitVal || ExitVal->getParent() != L->getHeader())
786           continue;
787 
788         // If ExitVal is a PHI on the loop header, then we know its
789         // value along this exit because the exit can only be taken
790         // on the first iteration.
791         auto *LoopPreheader = L->getLoopPreheader();
792         assert(LoopPreheader && "Invalid loop");
793         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
794         if (PreheaderIdx != -1) {
795           assert(ExitVal->getParent() == L->getHeader() &&
796                  "ExitVal must be in loop header");
797           MadeAnyChanges = true;
798           PN.setIncomingValue(IncomingValIdx,
799                               ExitVal->getIncomingValue(PreheaderIdx));
800         }
801       }
802     }
803   }
804   return MadeAnyChanges;
805 }
806 
807 /// Check whether it is possible to delete the loop after rewriting exit
808 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
809 /// aggressively.
810 bool IndVarSimplify::canLoopBeDeleted(
811     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
812   BasicBlock *Preheader = L->getLoopPreheader();
813   // If there is no preheader, the loop will not be deleted.
814   if (!Preheader)
815     return false;
816 
817   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
818   // We obviate multiple ExitingBlocks case for simplicity.
819   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
820   // after exit value rewriting, we can enhance the logic here.
821   SmallVector<BasicBlock *, 4> ExitingBlocks;
822   L->getExitingBlocks(ExitingBlocks);
823   SmallVector<BasicBlock *, 8> ExitBlocks;
824   L->getUniqueExitBlocks(ExitBlocks);
825   if (ExitBlocks.size() != 1 || ExitingBlocks.size() != 1)
826     return false;
827 
828   BasicBlock *ExitBlock = ExitBlocks[0];
829   BasicBlock::iterator BI = ExitBlock->begin();
830   while (PHINode *P = dyn_cast<PHINode>(BI)) {
831     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
832 
833     // If the Incoming value of P is found in RewritePhiSet, we know it
834     // could be rewritten to use a loop invariant value in transformation
835     // phase later. Skip it in the loop invariant check below.
836     bool found = false;
837     for (const RewritePhi &Phi : RewritePhiSet) {
838       unsigned i = Phi.Ith;
839       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
840         found = true;
841         break;
842       }
843     }
844 
845     Instruction *I;
846     if (!found && (I = dyn_cast<Instruction>(Incoming)))
847       if (!L->hasLoopInvariantOperands(I))
848         return false;
849 
850     ++BI;
851   }
852 
853   for (auto *BB : L->blocks())
854     if (llvm::any_of(*BB, [](Instruction &I) {
855           return I.mayHaveSideEffects();
856         }))
857       return false;
858 
859   return true;
860 }
861 
862 //===----------------------------------------------------------------------===//
863 //  IV Widening - Extend the width of an IV to cover its widest uses.
864 //===----------------------------------------------------------------------===//
865 
866 namespace {
867 
868 // Collect information about induction variables that are used by sign/zero
869 // extend operations. This information is recorded by CollectExtend and provides
870 // the input to WidenIV.
871 struct WideIVInfo {
872   PHINode *NarrowIV = nullptr;
873 
874   // Widest integer type created [sz]ext
875   Type *WidestNativeType = nullptr;
876 
877   // Was a sext user seen before a zext?
878   bool IsSigned = false;
879 };
880 
881 } // end anonymous namespace
882 
883 /// Update information about the induction variable that is extended by this
884 /// sign or zero extend operation. This is used to determine the final width of
885 /// the IV before actually widening it.
886 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
887                         const TargetTransformInfo *TTI) {
888   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
889   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
890     return;
891 
892   Type *Ty = Cast->getType();
893   uint64_t Width = SE->getTypeSizeInBits(Ty);
894   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
895     return;
896 
897   // Check that `Cast` actually extends the induction variable (we rely on this
898   // later).  This takes care of cases where `Cast` is extending a truncation of
899   // the narrow induction variable, and thus can end up being narrower than the
900   // "narrow" induction variable.
901   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
902   if (NarrowIVWidth >= Width)
903     return;
904 
905   // Cast is either an sext or zext up to this point.
906   // We should not widen an indvar if arithmetics on the wider indvar are more
907   // expensive than those on the narrower indvar. We check only the cost of ADD
908   // because at least an ADD is required to increment the induction variable. We
909   // could compute more comprehensively the cost of all instructions on the
910   // induction variable when necessary.
911   if (TTI &&
912       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
913           TTI->getArithmeticInstrCost(Instruction::Add,
914                                       Cast->getOperand(0)->getType())) {
915     return;
916   }
917 
918   if (!WI.WidestNativeType) {
919     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
920     WI.IsSigned = IsSigned;
921     return;
922   }
923 
924   // We extend the IV to satisfy the sign of its first user, arbitrarily.
925   if (WI.IsSigned != IsSigned)
926     return;
927 
928   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
929     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
930 }
931 
932 namespace {
933 
934 /// Record a link in the Narrow IV def-use chain along with the WideIV that
935 /// computes the same value as the Narrow IV def.  This avoids caching Use*
936 /// pointers.
937 struct NarrowIVDefUse {
938   Instruction *NarrowDef = nullptr;
939   Instruction *NarrowUse = nullptr;
940   Instruction *WideDef = nullptr;
941 
942   // True if the narrow def is never negative.  Tracking this information lets
943   // us use a sign extension instead of a zero extension or vice versa, when
944   // profitable and legal.
945   bool NeverNegative = false;
946 
947   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
948                  bool NeverNegative)
949       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
950         NeverNegative(NeverNegative) {}
951 };
952 
953 /// The goal of this transform is to remove sign and zero extends without
954 /// creating any new induction variables. To do this, it creates a new phi of
955 /// the wider type and redirects all users, either removing extends or inserting
956 /// truncs whenever we stop propagating the type.
957 class WidenIV {
958   // Parameters
959   PHINode *OrigPhi;
960   Type *WideType;
961 
962   // Context
963   LoopInfo        *LI;
964   Loop            *L;
965   ScalarEvolution *SE;
966   DominatorTree   *DT;
967 
968   // Does the module have any calls to the llvm.experimental.guard intrinsic
969   // at all? If not we can avoid scanning instructions looking for guards.
970   bool HasGuards;
971 
972   // Result
973   PHINode *WidePhi = nullptr;
974   Instruction *WideInc = nullptr;
975   const SCEV *WideIncExpr = nullptr;
976   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
977 
978   SmallPtrSet<Instruction *,16> Widened;
979   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
980 
981   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
982 
983   // A map tracking the kind of extension used to widen each narrow IV
984   // and narrow IV user.
985   // Key: pointer to a narrow IV or IV user.
986   // Value: the kind of extension used to widen this Instruction.
987   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
988 
989   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
990 
991   // A map with control-dependent ranges for post increment IV uses. The key is
992   // a pair of IV def and a use of this def denoting the context. The value is
993   // a ConstantRange representing possible values of the def at the given
994   // context.
995   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
996 
997   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
998                                               Instruction *UseI) {
999     DefUserPair Key(Def, UseI);
1000     auto It = PostIncRangeInfos.find(Key);
1001     return It == PostIncRangeInfos.end()
1002                ? Optional<ConstantRange>(None)
1003                : Optional<ConstantRange>(It->second);
1004   }
1005 
1006   void calculatePostIncRanges(PHINode *OrigPhi);
1007   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
1008 
1009   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
1010     DefUserPair Key(Def, UseI);
1011     auto It = PostIncRangeInfos.find(Key);
1012     if (It == PostIncRangeInfos.end())
1013       PostIncRangeInfos.insert({Key, R});
1014     else
1015       It->second = R.intersectWith(It->second);
1016   }
1017 
1018 public:
1019   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
1020           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
1021           bool HasGuards)
1022       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
1023         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
1024         HasGuards(HasGuards), DeadInsts(DI) {
1025     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
1026     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
1027   }
1028 
1029   PHINode *createWideIV(SCEVExpander &Rewriter);
1030 
1031 protected:
1032   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
1033                           Instruction *Use);
1034 
1035   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
1036   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1037                                      const SCEVAddRecExpr *WideAR);
1038   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1039 
1040   ExtendKind getExtendKind(Instruction *I);
1041 
1042   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1043 
1044   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1045 
1046   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1047 
1048   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1049                               unsigned OpCode) const;
1050 
1051   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1052 
1053   bool widenLoopCompare(NarrowIVDefUse DU);
1054   bool widenWithVariantLoadUse(NarrowIVDefUse DU);
1055   void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
1056 
1057   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1058 };
1059 
1060 } // end anonymous namespace
1061 
1062 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1063                                  bool IsSigned, Instruction *Use) {
1064   // Set the debug location and conservative insertion point.
1065   IRBuilder<> Builder(Use);
1066   // Hoist the insertion point into loop preheaders as far as possible.
1067   for (const Loop *L = LI->getLoopFor(Use->getParent());
1068        L && L->getLoopPreheader() && L->isLoopInvariant(NarrowOper);
1069        L = L->getParentLoop())
1070     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1071 
1072   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1073                     Builder.CreateZExt(NarrowOper, WideType);
1074 }
1075 
1076 /// Instantiate a wide operation to replace a narrow operation. This only needs
1077 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1078 /// 0 for any operation we decide not to clone.
1079 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1080                                   const SCEVAddRecExpr *WideAR) {
1081   unsigned Opcode = DU.NarrowUse->getOpcode();
1082   switch (Opcode) {
1083   default:
1084     return nullptr;
1085   case Instruction::Add:
1086   case Instruction::Mul:
1087   case Instruction::UDiv:
1088   case Instruction::Sub:
1089     return cloneArithmeticIVUser(DU, WideAR);
1090 
1091   case Instruction::And:
1092   case Instruction::Or:
1093   case Instruction::Xor:
1094   case Instruction::Shl:
1095   case Instruction::LShr:
1096   case Instruction::AShr:
1097     return cloneBitwiseIVUser(DU);
1098   }
1099 }
1100 
1101 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1102   Instruction *NarrowUse = DU.NarrowUse;
1103   Instruction *NarrowDef = DU.NarrowDef;
1104   Instruction *WideDef = DU.WideDef;
1105 
1106   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1107 
1108   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1109   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1110   // invariant and will be folded or hoisted. If it actually comes from a
1111   // widened IV, it should be removed during a future call to widenIVUse.
1112   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1113   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1114                    ? WideDef
1115                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1116                                       IsSigned, NarrowUse);
1117   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1118                    ? WideDef
1119                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1120                                       IsSigned, NarrowUse);
1121 
1122   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1123   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1124                                         NarrowBO->getName());
1125   IRBuilder<> Builder(NarrowUse);
1126   Builder.Insert(WideBO);
1127   WideBO->copyIRFlags(NarrowBO);
1128   return WideBO;
1129 }
1130 
1131 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1132                                             const SCEVAddRecExpr *WideAR) {
1133   Instruction *NarrowUse = DU.NarrowUse;
1134   Instruction *NarrowDef = DU.NarrowDef;
1135   Instruction *WideDef = DU.WideDef;
1136 
1137   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1138 
1139   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1140 
1141   // We're trying to find X such that
1142   //
1143   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1144   //
1145   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1146   // and check using SCEV if any of them are correct.
1147 
1148   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1149   // correct solution to X.
1150   auto GuessNonIVOperand = [&](bool SignExt) {
1151     const SCEV *WideLHS;
1152     const SCEV *WideRHS;
1153 
1154     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1155       if (SignExt)
1156         return SE->getSignExtendExpr(S, Ty);
1157       return SE->getZeroExtendExpr(S, Ty);
1158     };
1159 
1160     if (IVOpIdx == 0) {
1161       WideLHS = SE->getSCEV(WideDef);
1162       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1163       WideRHS = GetExtend(NarrowRHS, WideType);
1164     } else {
1165       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1166       WideLHS = GetExtend(NarrowLHS, WideType);
1167       WideRHS = SE->getSCEV(WideDef);
1168     }
1169 
1170     // WideUse is "WideDef `op.wide` X" as described in the comment.
1171     const SCEV *WideUse = nullptr;
1172 
1173     switch (NarrowUse->getOpcode()) {
1174     default:
1175       llvm_unreachable("No other possibility!");
1176 
1177     case Instruction::Add:
1178       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1179       break;
1180 
1181     case Instruction::Mul:
1182       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1183       break;
1184 
1185     case Instruction::UDiv:
1186       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1187       break;
1188 
1189     case Instruction::Sub:
1190       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1191       break;
1192     }
1193 
1194     return WideUse == WideAR;
1195   };
1196 
1197   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1198   if (!GuessNonIVOperand(SignExtend)) {
1199     SignExtend = !SignExtend;
1200     if (!GuessNonIVOperand(SignExtend))
1201       return nullptr;
1202   }
1203 
1204   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1205                    ? WideDef
1206                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1207                                       SignExtend, NarrowUse);
1208   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1209                    ? WideDef
1210                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1211                                       SignExtend, NarrowUse);
1212 
1213   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1214   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1215                                         NarrowBO->getName());
1216 
1217   IRBuilder<> Builder(NarrowUse);
1218   Builder.Insert(WideBO);
1219   WideBO->copyIRFlags(NarrowBO);
1220   return WideBO;
1221 }
1222 
1223 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1224   auto It = ExtendKindMap.find(I);
1225   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1226   return It->second;
1227 }
1228 
1229 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1230                                      unsigned OpCode) const {
1231   if (OpCode == Instruction::Add)
1232     return SE->getAddExpr(LHS, RHS);
1233   if (OpCode == Instruction::Sub)
1234     return SE->getMinusSCEV(LHS, RHS);
1235   if (OpCode == Instruction::Mul)
1236     return SE->getMulExpr(LHS, RHS);
1237 
1238   llvm_unreachable("Unsupported opcode.");
1239 }
1240 
1241 /// No-wrap operations can transfer sign extension of their result to their
1242 /// operands. Generate the SCEV value for the widened operation without
1243 /// actually modifying the IR yet. If the expression after extending the
1244 /// operands is an AddRec for this loop, return the AddRec and the kind of
1245 /// extension used.
1246 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1247   // Handle the common case of add<nsw/nuw>
1248   const unsigned OpCode = DU.NarrowUse->getOpcode();
1249   // Only Add/Sub/Mul instructions supported yet.
1250   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1251       OpCode != Instruction::Mul)
1252     return {nullptr, Unknown};
1253 
1254   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1255   // if extending the other will lead to a recurrence.
1256   const unsigned ExtendOperIdx =
1257       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1258   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1259 
1260   const SCEV *ExtendOperExpr = nullptr;
1261   const OverflowingBinaryOperator *OBO =
1262     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1263   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1264   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1265     ExtendOperExpr = SE->getSignExtendExpr(
1266       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1267   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1268     ExtendOperExpr = SE->getZeroExtendExpr(
1269       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1270   else
1271     return {nullptr, Unknown};
1272 
1273   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1274   // flags. This instruction may be guarded by control flow that the no-wrap
1275   // behavior depends on. Non-control-equivalent instructions can be mapped to
1276   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1277   // semantics to those operations.
1278   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1279   const SCEV *rhs = ExtendOperExpr;
1280 
1281   // Let's swap operands to the initial order for the case of non-commutative
1282   // operations, like SUB. See PR21014.
1283   if (ExtendOperIdx == 0)
1284     std::swap(lhs, rhs);
1285   const SCEVAddRecExpr *AddRec =
1286       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1287 
1288   if (!AddRec || AddRec->getLoop() != L)
1289     return {nullptr, Unknown};
1290 
1291   return {AddRec, ExtKind};
1292 }
1293 
1294 /// Is this instruction potentially interesting for further simplification after
1295 /// widening it's type? In other words, can the extend be safely hoisted out of
1296 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1297 /// so, return the extended recurrence and the kind of extension used. Otherwise
1298 /// return {nullptr, Unknown}.
1299 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1300   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1301     return {nullptr, Unknown};
1302 
1303   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1304   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1305       SE->getTypeSizeInBits(WideType)) {
1306     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1307     // index. So don't follow this use.
1308     return {nullptr, Unknown};
1309   }
1310 
1311   const SCEV *WideExpr;
1312   ExtendKind ExtKind;
1313   if (DU.NeverNegative) {
1314     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1315     if (isa<SCEVAddRecExpr>(WideExpr))
1316       ExtKind = SignExtended;
1317     else {
1318       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1319       ExtKind = ZeroExtended;
1320     }
1321   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1322     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1323     ExtKind = SignExtended;
1324   } else {
1325     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1326     ExtKind = ZeroExtended;
1327   }
1328   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1329   if (!AddRec || AddRec->getLoop() != L)
1330     return {nullptr, Unknown};
1331   return {AddRec, ExtKind};
1332 }
1333 
1334 /// This IV user cannot be widened. Replace this use of the original narrow IV
1335 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1336 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1337   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1338   if (!InsertPt)
1339     return;
1340   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1341                     << *DU.NarrowUse << "\n");
1342   IRBuilder<> Builder(InsertPt);
1343   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1344   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1345 }
1346 
1347 /// If the narrow use is a compare instruction, then widen the compare
1348 //  (and possibly the other operand).  The extend operation is hoisted into the
1349 // loop preheader as far as possible.
1350 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1351   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1352   if (!Cmp)
1353     return false;
1354 
1355   // We can legally widen the comparison in the following two cases:
1356   //
1357   //  - The signedness of the IV extension and comparison match
1358   //
1359   //  - The narrow IV is always positive (and thus its sign extension is equal
1360   //    to its zero extension).  For instance, let's say we're zero extending
1361   //    %narrow for the following use
1362   //
1363   //      icmp slt i32 %narrow, %val   ... (A)
1364   //
1365   //    and %narrow is always positive.  Then
1366   //
1367   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1368   //          == icmp slt i32 zext(%narrow), sext(%val)
1369   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1370   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1371     return false;
1372 
1373   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1374   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1375   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1376   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1377 
1378   // Widen the compare instruction.
1379   auto *InsertPt = getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI);
1380   if (!InsertPt)
1381     return false;
1382   IRBuilder<> Builder(InsertPt);
1383   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1384 
1385   // Widen the other operand of the compare, if necessary.
1386   if (CastWidth < IVWidth) {
1387     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1388     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1389   }
1390   return true;
1391 }
1392 
1393 /// If the narrow use is an instruction whose two operands are the defining
1394 /// instruction of DU and a load instruction, then we have the following:
1395 /// if the load is hoisted outside the loop, then we do not reach this function
1396 /// as scalar evolution analysis works fine in widenIVUse with variables
1397 /// hoisted outside the loop and efficient code is subsequently generated by
1398 /// not emitting truncate instructions. But when the load is not hoisted
1399 /// (whether due to limitation in alias analysis or due to a true legality),
1400 /// then scalar evolution can not proceed with loop variant values and
1401 /// inefficient code is generated. This function handles the non-hoisted load
1402 /// special case by making the optimization generate the same type of code for
1403 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1404 /// instruction). This special case is important especially when the induction
1405 /// variables are affecting addressing mode in code generation.
1406 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
1407   Instruction *NarrowUse = DU.NarrowUse;
1408   Instruction *NarrowDef = DU.NarrowDef;
1409   Instruction *WideDef = DU.WideDef;
1410 
1411   // Handle the common case of add<nsw/nuw>
1412   const unsigned OpCode = NarrowUse->getOpcode();
1413   // Only Add/Sub/Mul instructions are supported.
1414   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1415       OpCode != Instruction::Mul)
1416     return false;
1417 
1418   // The operand that is not defined by NarrowDef of DU. Let's call it the
1419   // other operand.
1420   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
1421   assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
1422          "bad DU");
1423 
1424   const SCEV *ExtendOperExpr = nullptr;
1425   const OverflowingBinaryOperator *OBO =
1426     cast<OverflowingBinaryOperator>(NarrowUse);
1427   ExtendKind ExtKind = getExtendKind(NarrowDef);
1428   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1429     ExtendOperExpr = SE->getSignExtendExpr(
1430       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1431   else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1432     ExtendOperExpr = SE->getZeroExtendExpr(
1433       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1434   else
1435     return false;
1436 
1437   // We are interested in the other operand being a load instruction.
1438   // But, we should look into relaxing this restriction later on.
1439   auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
1440   if (I && I->getOpcode() != Instruction::Load)
1441     return false;
1442 
1443   // Verifying that Defining operand is an AddRec
1444   const SCEV *Op1 = SE->getSCEV(WideDef);
1445   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1446   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1447     return false;
1448   // Verifying that other operand is an Extend.
1449   if (ExtKind == SignExtended) {
1450     if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
1451       return false;
1452   } else {
1453     if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
1454       return false;
1455   }
1456 
1457   if (ExtKind == SignExtended) {
1458     for (Use &U : NarrowUse->uses()) {
1459       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1460       if (!User || User->getType() != WideType)
1461         return false;
1462     }
1463   } else { // ExtKind == ZeroExtended
1464     for (Use &U : NarrowUse->uses()) {
1465       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1466       if (!User || User->getType() != WideType)
1467         return false;
1468     }
1469   }
1470 
1471   return true;
1472 }
1473 
1474 /// Special Case for widening with variant Loads (see
1475 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1476 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
1477   Instruction *NarrowUse = DU.NarrowUse;
1478   Instruction *NarrowDef = DU.NarrowDef;
1479   Instruction *WideDef = DU.WideDef;
1480 
1481   ExtendKind ExtKind = getExtendKind(NarrowDef);
1482 
1483   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1484 
1485   // Generating a widening use instruction.
1486   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1487                    ? WideDef
1488                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1489                                       ExtKind, NarrowUse);
1490   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1491                    ? WideDef
1492                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1493                                       ExtKind, NarrowUse);
1494 
1495   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1496   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1497                                         NarrowBO->getName());
1498   IRBuilder<> Builder(NarrowUse);
1499   Builder.Insert(WideBO);
1500   WideBO->copyIRFlags(NarrowBO);
1501 
1502   if (ExtKind == SignExtended)
1503     ExtendKindMap[NarrowUse] = SignExtended;
1504   else
1505     ExtendKindMap[NarrowUse] = ZeroExtended;
1506 
1507   // Update the Use.
1508   if (ExtKind == SignExtended) {
1509     for (Use &U : NarrowUse->uses()) {
1510       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1511       if (User && User->getType() == WideType) {
1512         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1513                           << *WideBO << "\n");
1514         ++NumElimExt;
1515         User->replaceAllUsesWith(WideBO);
1516         DeadInsts.emplace_back(User);
1517       }
1518     }
1519   } else { // ExtKind == ZeroExtended
1520     for (Use &U : NarrowUse->uses()) {
1521       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1522       if (User && User->getType() == WideType) {
1523         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1524                           << *WideBO << "\n");
1525         ++NumElimExt;
1526         User->replaceAllUsesWith(WideBO);
1527         DeadInsts.emplace_back(User);
1528       }
1529     }
1530   }
1531 }
1532 
1533 /// Determine whether an individual user of the narrow IV can be widened. If so,
1534 /// return the wide clone of the user.
1535 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1536   assert(ExtendKindMap.count(DU.NarrowDef) &&
1537          "Should already know the kind of extension used to widen NarrowDef");
1538 
1539   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1540   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1541     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1542       // For LCSSA phis, sink the truncate outside the loop.
1543       // After SimplifyCFG most loop exit targets have a single predecessor.
1544       // Otherwise fall back to a truncate within the loop.
1545       if (UsePhi->getNumOperands() != 1)
1546         truncateIVUse(DU, DT, LI);
1547       else {
1548         // Widening the PHI requires us to insert a trunc.  The logical place
1549         // for this trunc is in the same BB as the PHI.  This is not possible if
1550         // the BB is terminated by a catchswitch.
1551         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1552           return nullptr;
1553 
1554         PHINode *WidePhi =
1555           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1556                           UsePhi);
1557         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1558         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1559         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1560         UsePhi->replaceAllUsesWith(Trunc);
1561         DeadInsts.emplace_back(UsePhi);
1562         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1563                           << *WidePhi << "\n");
1564       }
1565       return nullptr;
1566     }
1567   }
1568 
1569   // This narrow use can be widened by a sext if it's non-negative or its narrow
1570   // def was widended by a sext. Same for zext.
1571   auto canWidenBySExt = [&]() {
1572     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1573   };
1574   auto canWidenByZExt = [&]() {
1575     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1576   };
1577 
1578   // Our raison d'etre! Eliminate sign and zero extension.
1579   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1580       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1581     Value *NewDef = DU.WideDef;
1582     if (DU.NarrowUse->getType() != WideType) {
1583       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1584       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1585       if (CastWidth < IVWidth) {
1586         // The cast isn't as wide as the IV, so insert a Trunc.
1587         IRBuilder<> Builder(DU.NarrowUse);
1588         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1589       }
1590       else {
1591         // A wider extend was hidden behind a narrower one. This may induce
1592         // another round of IV widening in which the intermediate IV becomes
1593         // dead. It should be very rare.
1594         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1595                           << " not wide enough to subsume " << *DU.NarrowUse
1596                           << "\n");
1597         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1598         NewDef = DU.NarrowUse;
1599       }
1600     }
1601     if (NewDef != DU.NarrowUse) {
1602       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1603                         << " replaced by " << *DU.WideDef << "\n");
1604       ++NumElimExt;
1605       DU.NarrowUse->replaceAllUsesWith(NewDef);
1606       DeadInsts.emplace_back(DU.NarrowUse);
1607     }
1608     // Now that the extend is gone, we want to expose it's uses for potential
1609     // further simplification. We don't need to directly inform SimplifyIVUsers
1610     // of the new users, because their parent IV will be processed later as a
1611     // new loop phi. If we preserved IVUsers analysis, we would also want to
1612     // push the uses of WideDef here.
1613 
1614     // No further widening is needed. The deceased [sz]ext had done it for us.
1615     return nullptr;
1616   }
1617 
1618   // Does this user itself evaluate to a recurrence after widening?
1619   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1620   if (!WideAddRec.first)
1621     WideAddRec = getWideRecurrence(DU);
1622 
1623   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1624   if (!WideAddRec.first) {
1625     // If use is a loop condition, try to promote the condition instead of
1626     // truncating the IV first.
1627     if (widenLoopCompare(DU))
1628       return nullptr;
1629 
1630     // We are here about to generate a truncate instruction that may hurt
1631     // performance because the scalar evolution expression computed earlier
1632     // in WideAddRec.first does not indicate a polynomial induction expression.
1633     // In that case, look at the operands of the use instruction to determine
1634     // if we can still widen the use instead of truncating its operand.
1635     if (widenWithVariantLoadUse(DU)) {
1636       widenWithVariantLoadUseCodegen(DU);
1637       return nullptr;
1638     }
1639 
1640     // This user does not evaluate to a recurrence after widening, so don't
1641     // follow it. Instead insert a Trunc to kill off the original use,
1642     // eventually isolating the original narrow IV so it can be removed.
1643     truncateIVUse(DU, DT, LI);
1644     return nullptr;
1645   }
1646   // Assume block terminators cannot evaluate to a recurrence. We can't to
1647   // insert a Trunc after a terminator if there happens to be a critical edge.
1648   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1649          "SCEV is not expected to evaluate a block terminator");
1650 
1651   // Reuse the IV increment that SCEVExpander created as long as it dominates
1652   // NarrowUse.
1653   Instruction *WideUse = nullptr;
1654   if (WideAddRec.first == WideIncExpr &&
1655       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1656     WideUse = WideInc;
1657   else {
1658     WideUse = cloneIVUser(DU, WideAddRec.first);
1659     if (!WideUse)
1660       return nullptr;
1661   }
1662   // Evaluation of WideAddRec ensured that the narrow expression could be
1663   // extended outside the loop without overflow. This suggests that the wide use
1664   // evaluates to the same expression as the extended narrow use, but doesn't
1665   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1666   // where it fails, we simply throw away the newly created wide use.
1667   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1668     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1669                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1670                       << "\n");
1671     DeadInsts.emplace_back(WideUse);
1672     return nullptr;
1673   }
1674 
1675   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1676   // Returning WideUse pushes it on the worklist.
1677   return WideUse;
1678 }
1679 
1680 /// Add eligible users of NarrowDef to NarrowIVUsers.
1681 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1682   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1683   bool NonNegativeDef =
1684       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1685                            SE->getConstant(NarrowSCEV->getType(), 0));
1686   for (User *U : NarrowDef->users()) {
1687     Instruction *NarrowUser = cast<Instruction>(U);
1688 
1689     // Handle data flow merges and bizarre phi cycles.
1690     if (!Widened.insert(NarrowUser).second)
1691       continue;
1692 
1693     bool NonNegativeUse = false;
1694     if (!NonNegativeDef) {
1695       // We might have a control-dependent range information for this context.
1696       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1697         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1698     }
1699 
1700     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1701                                NonNegativeDef || NonNegativeUse);
1702   }
1703 }
1704 
1705 /// Process a single induction variable. First use the SCEVExpander to create a
1706 /// wide induction variable that evaluates to the same recurrence as the
1707 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1708 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1709 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1710 ///
1711 /// It would be simpler to delete uses as they are processed, but we must avoid
1712 /// invalidating SCEV expressions.
1713 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1714   // Is this phi an induction variable?
1715   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1716   if (!AddRec)
1717     return nullptr;
1718 
1719   // Widen the induction variable expression.
1720   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1721                                ? SE->getSignExtendExpr(AddRec, WideType)
1722                                : SE->getZeroExtendExpr(AddRec, WideType);
1723 
1724   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1725          "Expect the new IV expression to preserve its type");
1726 
1727   // Can the IV be extended outside the loop without overflow?
1728   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1729   if (!AddRec || AddRec->getLoop() != L)
1730     return nullptr;
1731 
1732   // An AddRec must have loop-invariant operands. Since this AddRec is
1733   // materialized by a loop header phi, the expression cannot have any post-loop
1734   // operands, so they must dominate the loop header.
1735   assert(
1736       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1737       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1738       "Loop header phi recurrence inputs do not dominate the loop");
1739 
1740   // Iterate over IV uses (including transitive ones) looking for IV increments
1741   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1742   // the increment calculate control-dependent range information basing on
1743   // dominating conditions inside of the loop (e.g. a range check inside of the
1744   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1745   //
1746   // Control-dependent range information is later used to prove that a narrow
1747   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1748   // this on demand because when pushNarrowIVUsers needs this information some
1749   // of the dominating conditions might be already widened.
1750   if (UsePostIncrementRanges)
1751     calculatePostIncRanges(OrigPhi);
1752 
1753   // The rewriter provides a value for the desired IV expression. This may
1754   // either find an existing phi or materialize a new one. Either way, we
1755   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1756   // of the phi-SCC dominates the loop entry.
1757   Instruction *InsertPt = &L->getHeader()->front();
1758   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1759 
1760   // Remembering the WideIV increment generated by SCEVExpander allows
1761   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1762   // employ a general reuse mechanism because the call above is the only call to
1763   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1764   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1765     WideInc =
1766       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1767     WideIncExpr = SE->getSCEV(WideInc);
1768     // Propagate the debug location associated with the original loop increment
1769     // to the new (widened) increment.
1770     auto *OrigInc =
1771       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1772     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1773   }
1774 
1775   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1776   ++NumWidened;
1777 
1778   // Traverse the def-use chain using a worklist starting at the original IV.
1779   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1780 
1781   Widened.insert(OrigPhi);
1782   pushNarrowIVUsers(OrigPhi, WidePhi);
1783 
1784   while (!NarrowIVUsers.empty()) {
1785     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1786 
1787     // Process a def-use edge. This may replace the use, so don't hold a
1788     // use_iterator across it.
1789     Instruction *WideUse = widenIVUse(DU, Rewriter);
1790 
1791     // Follow all def-use edges from the previous narrow use.
1792     if (WideUse)
1793       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1794 
1795     // widenIVUse may have removed the def-use edge.
1796     if (DU.NarrowDef->use_empty())
1797       DeadInsts.emplace_back(DU.NarrowDef);
1798   }
1799 
1800   // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1801   // evaluate the same recurrence, we can just copy the debug info over.
1802   SmallVector<DbgValueInst *, 1> DbgValues;
1803   llvm::findDbgValues(DbgValues, OrigPhi);
1804   auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1805                                      ValueAsMetadata::get(WidePhi));
1806   for (auto &DbgValue : DbgValues)
1807     DbgValue->setOperand(0, MDPhi);
1808   return WidePhi;
1809 }
1810 
1811 /// Calculates control-dependent range for the given def at the given context
1812 /// by looking at dominating conditions inside of the loop
1813 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1814                                     Instruction *NarrowUser) {
1815   using namespace llvm::PatternMatch;
1816 
1817   Value *NarrowDefLHS;
1818   const APInt *NarrowDefRHS;
1819   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1820                                  m_APInt(NarrowDefRHS))) ||
1821       !NarrowDefRHS->isNonNegative())
1822     return;
1823 
1824   auto UpdateRangeFromCondition = [&] (Value *Condition,
1825                                        bool TrueDest) {
1826     CmpInst::Predicate Pred;
1827     Value *CmpRHS;
1828     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1829                                  m_Value(CmpRHS))))
1830       return;
1831 
1832     CmpInst::Predicate P =
1833             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1834 
1835     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1836     auto CmpConstrainedLHSRange =
1837             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1838     auto NarrowDefRange =
1839             CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1840 
1841     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1842   };
1843 
1844   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1845     if (!HasGuards)
1846       return;
1847 
1848     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1849                                      Ctx->getParent()->rend())) {
1850       Value *C = nullptr;
1851       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1852         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1853     }
1854   };
1855 
1856   UpdateRangeFromGuards(NarrowUser);
1857 
1858   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1859   // If NarrowUserBB is statically unreachable asking dominator queries may
1860   // yield surprising results. (e.g. the block may not have a dom tree node)
1861   if (!DT->isReachableFromEntry(NarrowUserBB))
1862     return;
1863 
1864   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1865        L->contains(DTB->getBlock());
1866        DTB = DTB->getIDom()) {
1867     auto *BB = DTB->getBlock();
1868     auto *TI = BB->getTerminator();
1869     UpdateRangeFromGuards(TI);
1870 
1871     auto *BI = dyn_cast<BranchInst>(TI);
1872     if (!BI || !BI->isConditional())
1873       continue;
1874 
1875     auto *TrueSuccessor = BI->getSuccessor(0);
1876     auto *FalseSuccessor = BI->getSuccessor(1);
1877 
1878     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1879       return BBE.isSingleEdge() &&
1880              DT->dominates(BBE, NarrowUser->getParent());
1881     };
1882 
1883     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1884       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1885 
1886     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1887       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1888   }
1889 }
1890 
1891 /// Calculates PostIncRangeInfos map for the given IV
1892 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1893   SmallPtrSet<Instruction *, 16> Visited;
1894   SmallVector<Instruction *, 6> Worklist;
1895   Worklist.push_back(OrigPhi);
1896   Visited.insert(OrigPhi);
1897 
1898   while (!Worklist.empty()) {
1899     Instruction *NarrowDef = Worklist.pop_back_val();
1900 
1901     for (Use &U : NarrowDef->uses()) {
1902       auto *NarrowUser = cast<Instruction>(U.getUser());
1903 
1904       // Don't go looking outside the current loop.
1905       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1906       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1907         continue;
1908 
1909       if (!Visited.insert(NarrowUser).second)
1910         continue;
1911 
1912       Worklist.push_back(NarrowUser);
1913 
1914       calculatePostIncRange(NarrowDef, NarrowUser);
1915     }
1916   }
1917 }
1918 
1919 //===----------------------------------------------------------------------===//
1920 //  Live IV Reduction - Minimize IVs live across the loop.
1921 //===----------------------------------------------------------------------===//
1922 
1923 //===----------------------------------------------------------------------===//
1924 //  Simplification of IV users based on SCEV evaluation.
1925 //===----------------------------------------------------------------------===//
1926 
1927 namespace {
1928 
1929 class IndVarSimplifyVisitor : public IVVisitor {
1930   ScalarEvolution *SE;
1931   const TargetTransformInfo *TTI;
1932   PHINode *IVPhi;
1933 
1934 public:
1935   WideIVInfo WI;
1936 
1937   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1938                         const TargetTransformInfo *TTI,
1939                         const DominatorTree *DTree)
1940     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1941     DT = DTree;
1942     WI.NarrowIV = IVPhi;
1943   }
1944 
1945   // Implement the interface used by simplifyUsersOfIV.
1946   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1947 };
1948 
1949 } // end anonymous namespace
1950 
1951 /// Iteratively perform simplification on a worklist of IV users. Each
1952 /// successive simplification may push more users which may themselves be
1953 /// candidates for simplification.
1954 ///
1955 /// Sign/Zero extend elimination is interleaved with IV simplification.
1956 bool IndVarSimplify::simplifyAndExtend(Loop *L,
1957                                        SCEVExpander &Rewriter,
1958                                        LoopInfo *LI) {
1959   SmallVector<WideIVInfo, 8> WideIVs;
1960 
1961   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1962           Intrinsic::getName(Intrinsic::experimental_guard));
1963   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1964 
1965   SmallVector<PHINode*, 8> LoopPhis;
1966   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1967     LoopPhis.push_back(cast<PHINode>(I));
1968   }
1969   // Each round of simplification iterates through the SimplifyIVUsers worklist
1970   // for all current phis, then determines whether any IVs can be
1971   // widened. Widening adds new phis to LoopPhis, inducing another round of
1972   // simplification on the wide IVs.
1973   bool Changed = false;
1974   while (!LoopPhis.empty()) {
1975     // Evaluate as many IV expressions as possible before widening any IVs. This
1976     // forces SCEV to set no-wrap flags before evaluating sign/zero
1977     // extension. The first time SCEV attempts to normalize sign/zero extension,
1978     // the result becomes final. So for the most predictable results, we delay
1979     // evaluation of sign/zero extend evaluation until needed, and avoid running
1980     // other SCEV based analysis prior to simplifyAndExtend.
1981     do {
1982       PHINode *CurrIV = LoopPhis.pop_back_val();
1983 
1984       // Information about sign/zero extensions of CurrIV.
1985       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1986 
1987       Changed |=
1988           simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1989 
1990       if (Visitor.WI.WidestNativeType) {
1991         WideIVs.push_back(Visitor.WI);
1992       }
1993     } while(!LoopPhis.empty());
1994 
1995     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1996       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1997       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1998         Changed = true;
1999         LoopPhis.push_back(WidePhi);
2000       }
2001     }
2002   }
2003   return Changed;
2004 }
2005 
2006 //===----------------------------------------------------------------------===//
2007 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
2008 //===----------------------------------------------------------------------===//
2009 
2010 /// Given an Value which is hoped to be part of an add recurance in the given
2011 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
2012 /// that this is less general than SCEVs AddRec checking.
2013 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
2014   Instruction *IncI = dyn_cast<Instruction>(IncV);
2015   if (!IncI)
2016     return nullptr;
2017 
2018   switch (IncI->getOpcode()) {
2019   case Instruction::Add:
2020   case Instruction::Sub:
2021     break;
2022   case Instruction::GetElementPtr:
2023     // An IV counter must preserve its type.
2024     if (IncI->getNumOperands() == 2)
2025       break;
2026     LLVM_FALLTHROUGH;
2027   default:
2028     return nullptr;
2029   }
2030 
2031   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
2032   if (Phi && Phi->getParent() == L->getHeader()) {
2033     if (L->isLoopInvariant(IncI->getOperand(1)))
2034       return Phi;
2035     return nullptr;
2036   }
2037   if (IncI->getOpcode() == Instruction::GetElementPtr)
2038     return nullptr;
2039 
2040   // Allow add/sub to be commuted.
2041   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
2042   if (Phi && Phi->getParent() == L->getHeader()) {
2043     if (L->isLoopInvariant(IncI->getOperand(0)))
2044       return Phi;
2045   }
2046   return nullptr;
2047 }
2048 
2049 /// Whether the current loop exit test is based on this value.  Currently this
2050 /// is limited to a direct use in the loop condition.
2051 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
2052   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2053   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
2054   // TODO: Allow non-icmp loop test.
2055   if (!ICmp)
2056     return false;
2057 
2058   // TODO: Allow indirect use.
2059   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
2060 }
2061 
2062 /// linearFunctionTestReplace policy. Return true unless we can show that the
2063 /// current exit test is already sufficiently canonical.
2064 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
2065   assert(L->getLoopLatch() && "Must be in simplified form");
2066 
2067   // Avoid converting a constant or loop invariant test back to a runtime
2068   // test.  This is critical for when SCEV's cached ExitCount is less precise
2069   // than the current IR (such as after we've proven a particular exit is
2070   // actually dead and thus the BE count never reaches our ExitCount.)
2071   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2072   if (L->isLoopInvariant(BI->getCondition()))
2073     return false;
2074 
2075   // Do LFTR to simplify the exit condition to an ICMP.
2076   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
2077   if (!Cond)
2078     return true;
2079 
2080   // Do LFTR to simplify the exit ICMP to EQ/NE
2081   ICmpInst::Predicate Pred = Cond->getPredicate();
2082   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
2083     return true;
2084 
2085   // Look for a loop invariant RHS
2086   Value *LHS = Cond->getOperand(0);
2087   Value *RHS = Cond->getOperand(1);
2088   if (!L->isLoopInvariant(RHS)) {
2089     if (!L->isLoopInvariant(LHS))
2090       return true;
2091     std::swap(LHS, RHS);
2092   }
2093   // Look for a simple IV counter LHS
2094   PHINode *Phi = dyn_cast<PHINode>(LHS);
2095   if (!Phi)
2096     Phi = getLoopPhiForCounter(LHS, L);
2097 
2098   if (!Phi)
2099     return true;
2100 
2101   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2102   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
2103   if (Idx < 0)
2104     return true;
2105 
2106   // Do LFTR if the exit condition's IV is *not* a simple counter.
2107   Value *IncV = Phi->getIncomingValue(Idx);
2108   return Phi != getLoopPhiForCounter(IncV, L);
2109 }
2110 
2111 /// Return true if undefined behavior would provable be executed on the path to
2112 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
2113 /// anything about whether OnPathTo is actually executed or whether Root is
2114 /// actually poison.  This can be used to assess whether a new use of Root can
2115 /// be added at a location which is control equivalent with OnPathTo (such as
2116 /// immediately before it) without introducing UB which didn't previously
2117 /// exist.  Note that a false result conveys no information.
2118 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
2119                                           Instruction *OnPathTo,
2120                                           DominatorTree *DT) {
2121   // Basic approach is to assume Root is poison, propagate poison forward
2122   // through all users we can easily track, and then check whether any of those
2123   // users are provable UB and must execute before out exiting block might
2124   // exit.
2125 
2126   // The set of all recursive users we've visited (which are assumed to all be
2127   // poison because of said visit)
2128   SmallSet<const Value *, 16> KnownPoison;
2129   SmallVector<const Instruction*, 16> Worklist;
2130   Worklist.push_back(Root);
2131   while (!Worklist.empty()) {
2132     const Instruction *I = Worklist.pop_back_val();
2133 
2134     // If we know this must trigger UB on a path leading our target.
2135     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
2136       return true;
2137 
2138     // If we can't analyze propagation through this instruction, just skip it
2139     // and transitive users.  Safe as false is a conservative result.
2140     if (!propagatesFullPoison(I) && I != Root)
2141       continue;
2142 
2143     if (KnownPoison.insert(I).second)
2144       for (const User *User : I->users())
2145         Worklist.push_back(cast<Instruction>(User));
2146   }
2147 
2148   // Might be non-UB, or might have a path we couldn't prove must execute on
2149   // way to exiting bb.
2150   return false;
2151 }
2152 
2153 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2154 /// down to checking that all operands are constant and listing instructions
2155 /// that may hide undef.
2156 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
2157                                unsigned Depth) {
2158   if (isa<Constant>(V))
2159     return !isa<UndefValue>(V);
2160 
2161   if (Depth >= 6)
2162     return false;
2163 
2164   // Conservatively handle non-constant non-instructions. For example, Arguments
2165   // may be undef.
2166   Instruction *I = dyn_cast<Instruction>(V);
2167   if (!I)
2168     return false;
2169 
2170   // Load and return values may be undef.
2171   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
2172     return false;
2173 
2174   // Optimistically handle other instructions.
2175   for (Value *Op : I->operands()) {
2176     if (!Visited.insert(Op).second)
2177       continue;
2178     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
2179       return false;
2180   }
2181   return true;
2182 }
2183 
2184 /// Return true if the given value is concrete. We must prove that undef can
2185 /// never reach it.
2186 ///
2187 /// TODO: If we decide that this is a good approach to checking for undef, we
2188 /// may factor it into a common location.
2189 static bool hasConcreteDef(Value *V) {
2190   SmallPtrSet<Value*, 8> Visited;
2191   Visited.insert(V);
2192   return hasConcreteDefImpl(V, Visited, 0);
2193 }
2194 
2195 /// Return true if this IV has any uses other than the (soon to be rewritten)
2196 /// loop exit test.
2197 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2198   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2199   Value *IncV = Phi->getIncomingValue(LatchIdx);
2200 
2201   for (User *U : Phi->users())
2202     if (U != Cond && U != IncV) return false;
2203 
2204   for (User *U : IncV->users())
2205     if (U != Cond && U != Phi) return false;
2206   return true;
2207 }
2208 
2209 /// Return true if the given phi is a "counter" in L.  A counter is an
2210 /// add recurance (of integer or pointer type) with an arbitrary start, and a
2211 /// step of 1.  Note that L must have exactly one latch.
2212 static bool isLoopCounter(PHINode* Phi, Loop *L,
2213                           ScalarEvolution *SE) {
2214   assert(Phi->getParent() == L->getHeader());
2215   assert(L->getLoopLatch());
2216 
2217   if (!SE->isSCEVable(Phi->getType()))
2218     return false;
2219 
2220   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2221   if (!AR || AR->getLoop() != L || !AR->isAffine())
2222     return false;
2223 
2224   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2225   if (!Step || !Step->isOne())
2226     return false;
2227 
2228   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
2229   Value *IncV = Phi->getIncomingValue(LatchIdx);
2230   return (getLoopPhiForCounter(IncV, L) == Phi);
2231 }
2232 
2233 /// Search the loop header for a loop counter (anadd rec w/step of one)
2234 /// suitable for use by LFTR.  If multiple counters are available, select the
2235 /// "best" one based profitable heuristics.
2236 ///
2237 /// BECount may be an i8* pointer type. The pointer difference is already
2238 /// valid count without scaling the address stride, so it remains a pointer
2239 /// expression as far as SCEV is concerned.
2240 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
2241                                 const SCEV *BECount,
2242                                 ScalarEvolution *SE, DominatorTree *DT) {
2243   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2244 
2245   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
2246 
2247   // Loop over all of the PHI nodes, looking for a simple counter.
2248   PHINode *BestPhi = nullptr;
2249   const SCEV *BestInit = nullptr;
2250   BasicBlock *LatchBlock = L->getLoopLatch();
2251   assert(LatchBlock && "Must be in simplified form");
2252   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2253 
2254   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2255     PHINode *Phi = cast<PHINode>(I);
2256     if (!isLoopCounter(Phi, L, SE))
2257       continue;
2258 
2259     // Avoid comparing an integer IV against a pointer Limit.
2260     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2261       continue;
2262 
2263     const auto *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2264 
2265     // AR may be a pointer type, while BECount is an integer type.
2266     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2267     // AR may not be a narrower type, or we may never exit.
2268     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2269     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2270       continue;
2271 
2272     // Avoid reusing a potentially undef value to compute other values that may
2273     // have originally had a concrete definition.
2274     if (!hasConcreteDef(Phi)) {
2275       // We explicitly allow unknown phis as long as they are already used by
2276       // the loop exit test.  This is legal since performing LFTR could not
2277       // increase the number of undef users.
2278       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
2279       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
2280           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
2281         continue;
2282     }
2283 
2284     // Avoid introducing undefined behavior due to poison which didn't exist in
2285     // the original program.  (Annoyingly, the rules for poison and undef
2286     // propagation are distinct, so this does NOT cover the undef case above.)
2287     // We have to ensure that we don't introduce UB by introducing a use on an
2288     // iteration where said IV produces poison.  Our strategy here differs for
2289     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
2290     // see code in linearFunctionTestReplace.  For pointers, we restrict
2291     // transforms as there is no good way to reinfer inbounds once lost.
2292     if (!Phi->getType()->isIntegerTy() &&
2293         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
2294       continue;
2295 
2296     const SCEV *Init = AR->getStart();
2297 
2298     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2299       // Don't force a live loop counter if another IV can be used.
2300       if (AlmostDeadIV(Phi, LatchBlock, Cond))
2301         continue;
2302 
2303       // Prefer to count-from-zero. This is a more "canonical" counter form. It
2304       // also prefers integer to pointer IVs.
2305       if (BestInit->isZero() != Init->isZero()) {
2306         if (BestInit->isZero())
2307           continue;
2308       }
2309       // If two IVs both count from zero or both count from nonzero then the
2310       // narrower is likely a dead phi that has been widened. Use the wider phi
2311       // to allow the other to be eliminated.
2312       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2313         continue;
2314     }
2315     BestPhi = Phi;
2316     BestInit = Init;
2317   }
2318   return BestPhi;
2319 }
2320 
2321 /// Insert an IR expression which computes the value held by the IV IndVar
2322 /// (which must be an loop counter w/unit stride) after the backedge of loop L
2323 /// is taken ExitCount times.
2324 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
2325                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
2326                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
2327   assert(isLoopCounter(IndVar, L, SE));
2328   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2329   const SCEV *IVInit = AR->getStart();
2330 
2331   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
2332   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
2333   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2334   // the existing GEPs whenever possible.
2335   if (IndVar->getType()->isPointerTy() &&
2336       !ExitCount->getType()->isPointerTy()) {
2337     // IVOffset will be the new GEP offset that is interpreted by GEP as a
2338     // signed value. ExitCount on the other hand represents the loop trip count,
2339     // which is an unsigned value. FindLoopCounter only allows induction
2340     // variables that have a positive unit stride of one. This means we don't
2341     // have to handle the case of negative offsets (yet) and just need to zero
2342     // extend ExitCount.
2343     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2344     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
2345     if (UsePostInc)
2346       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
2347 
2348     // Expand the code for the iteration count.
2349     assert(SE->isLoopInvariant(IVOffset, L) &&
2350            "Computed iteration count is not loop invariant!");
2351 
2352     // We could handle pointer IVs other than i8*, but we need to compensate for
2353     // gep index scaling.
2354     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2355                              cast<PointerType>(IndVar->getType())
2356                                  ->getElementType())->isOne() &&
2357            "unit stride pointer IV must be i8*");
2358 
2359     const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
2360     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2361     return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
2362   } else {
2363     // In any other case, convert both IVInit and ExitCount to integers before
2364     // comparing. This may result in SCEV expansion of pointers, but in practice
2365     // SCEV will fold the pointer arithmetic away as such:
2366     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2367     //
2368     // Valid Cases: (1) both integers is most common; (2) both may be pointers
2369     // for simple memset-style loops.
2370     //
2371     // IVInit integer and ExitCount pointer would only occur if a canonical IV
2372     // were generated on top of case #2, which is not expected.
2373 
2374     assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2375     // For unit stride, IVCount = Start + ExitCount with 2's complement
2376     // overflow.
2377 
2378     // For integer IVs, truncate the IV before computing IVInit + BECount,
2379     // unless we know apriori that the limit must be a constant when evaluated
2380     // in the bitwidth of the IV.  We prefer (potentially) keeping a truncate
2381     // of the IV in the loop over a (potentially) expensive expansion of the
2382     // widened exit count add(zext(add)) expression.
2383     if (SE->getTypeSizeInBits(IVInit->getType())
2384         > SE->getTypeSizeInBits(ExitCount->getType())) {
2385       if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
2386         ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
2387       else
2388         IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
2389     }
2390 
2391     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
2392 
2393     if (UsePostInc)
2394       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
2395 
2396     // Expand the code for the iteration count.
2397     assert(SE->isLoopInvariant(IVLimit, L) &&
2398            "Computed iteration count is not loop invariant!");
2399     // Ensure that we generate the same type as IndVar, or a smaller integer
2400     // type. In the presence of null pointer values, we have an integer type
2401     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2402     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
2403       IndVar->getType() : ExitCount->getType();
2404     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2405     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2406   }
2407 }
2408 
2409 /// This method rewrites the exit condition of the loop to be a canonical !=
2410 /// comparison against the incremented loop induction variable.  This pass is
2411 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2412 /// determine a loop-invariant trip count of the loop, which is actually a much
2413 /// broader range than just linear tests.
2414 bool IndVarSimplify::
2415 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
2416                           const SCEV *ExitCount,
2417                           PHINode *IndVar, SCEVExpander &Rewriter) {
2418   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2419   assert(isLoopCounter(IndVar, L, SE));
2420   Instruction * const IncVar =
2421     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
2422 
2423   // Initialize CmpIndVar to the preincremented IV.
2424   Value *CmpIndVar = IndVar;
2425   bool UsePostInc = false;
2426 
2427   // If the exiting block is the same as the backedge block, we prefer to
2428   // compare against the post-incremented value, otherwise we must compare
2429   // against the preincremented value.
2430   if (ExitingBB == L->getLoopLatch()) {
2431     // For pointer IVs, we chose to not strip inbounds which requires us not
2432     // to add a potentially UB introducing use.  We need to either a) show
2433     // the loop test we're modifying is already in post-inc form, or b) show
2434     // that adding a use must not introduce UB.
2435     bool SafeToPostInc =
2436         IndVar->getType()->isIntegerTy() ||
2437         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
2438         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
2439     if (SafeToPostInc) {
2440       UsePostInc = true;
2441       CmpIndVar = IncVar;
2442     }
2443   }
2444 
2445   // It may be necessary to drop nowrap flags on the incrementing instruction
2446   // if either LFTR moves from a pre-inc check to a post-inc check (in which
2447   // case the increment might have previously been poison on the last iteration
2448   // only) or if LFTR switches to a different IV that was previously dynamically
2449   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
2450   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
2451   // check), because the pre-inc addrec flags may be adopted from the original
2452   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
2453   // TODO: This handling is inaccurate for one case: If we switch to a
2454   // dynamically dead IV that wraps on the first loop iteration only, which is
2455   // not covered by the post-inc addrec. (If the new IV was not dynamically
2456   // dead, it could not be poison on the first iteration in the first place.)
2457   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
2458     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
2459     if (BO->hasNoUnsignedWrap())
2460       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
2461     if (BO->hasNoSignedWrap())
2462       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
2463   }
2464 
2465   Value *ExitCnt = genLoopLimit(
2466       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
2467   assert(ExitCnt->getType()->isPointerTy() ==
2468              IndVar->getType()->isPointerTy() &&
2469          "genLoopLimit missed a cast");
2470 
2471   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2472   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
2473   ICmpInst::Predicate P;
2474   if (L->contains(BI->getSuccessor(0)))
2475     P = ICmpInst::ICMP_NE;
2476   else
2477     P = ICmpInst::ICMP_EQ;
2478 
2479   IRBuilder<> Builder(BI);
2480 
2481   // The new loop exit condition should reuse the debug location of the
2482   // original loop exit condition.
2483   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2484     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2485 
2486   // For integer IVs, if we evaluated the limit in the narrower bitwidth to
2487   // avoid the expensive expansion of the limit expression in the wider type,
2488   // emit a truncate to narrow the IV to the ExitCount type.  This is safe
2489   // since we know (from the exit count bitwidth), that we can't self-wrap in
2490   // the narrower type.
2491   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2492   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2493   if (CmpIndVarSize > ExitCntSize) {
2494     assert(!CmpIndVar->getType()->isPointerTy() &&
2495            !ExitCnt->getType()->isPointerTy());
2496 
2497     // Before resorting to actually inserting the truncate, use the same
2498     // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
2499     // the other side of the comparison instead.  We still evaluate the limit
2500     // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
2501     // a truncate within in.
2502     bool Extended = false;
2503     const SCEV *IV = SE->getSCEV(CmpIndVar);
2504     const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2505                                                   ExitCnt->getType());
2506     const SCEV *ZExtTrunc =
2507       SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
2508 
2509     if (ZExtTrunc == IV) {
2510       Extended = true;
2511       ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2512                                    "wide.trip.count");
2513     } else {
2514       const SCEV *SExtTrunc =
2515         SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
2516       if (SExtTrunc == IV) {
2517         Extended = true;
2518         ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2519                                      "wide.trip.count");
2520       }
2521     }
2522 
2523     if (Extended) {
2524       bool Discard;
2525       L->makeLoopInvariant(ExitCnt, Discard);
2526     } else
2527       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2528                                       "lftr.wideiv");
2529   }
2530   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2531                     << "      LHS:" << *CmpIndVar << '\n'
2532                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
2533                     << "\n"
2534                     << "      RHS:\t" << *ExitCnt << "\n"
2535                     << "ExitCount:\t" << *ExitCount << "\n"
2536                     << "  was: " << *BI->getCondition() << "\n");
2537 
2538   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2539   Value *OrigCond = BI->getCondition();
2540   // It's tempting to use replaceAllUsesWith here to fully replace the old
2541   // comparison, but that's not immediately safe, since users of the old
2542   // comparison may not be dominated by the new comparison. Instead, just
2543   // update the branch to use the new comparison; in the common case this
2544   // will make old comparison dead.
2545   BI->setCondition(Cond);
2546   DeadInsts.push_back(OrigCond);
2547 
2548   ++NumLFTR;
2549   return true;
2550 }
2551 
2552 //===----------------------------------------------------------------------===//
2553 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2554 //===----------------------------------------------------------------------===//
2555 
2556 /// If there's a single exit block, sink any loop-invariant values that
2557 /// were defined in the preheader but not used inside the loop into the
2558 /// exit block to reduce register pressure in the loop.
2559 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2560   BasicBlock *ExitBlock = L->getExitBlock();
2561   if (!ExitBlock) return false;
2562 
2563   BasicBlock *Preheader = L->getLoopPreheader();
2564   if (!Preheader) return false;
2565 
2566   bool MadeAnyChanges = false;
2567   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2568   BasicBlock::iterator I(Preheader->getTerminator());
2569   while (I != Preheader->begin()) {
2570     --I;
2571     // New instructions were inserted at the end of the preheader.
2572     if (isa<PHINode>(I))
2573       break;
2574 
2575     // Don't move instructions which might have side effects, since the side
2576     // effects need to complete before instructions inside the loop.  Also don't
2577     // move instructions which might read memory, since the loop may modify
2578     // memory. Note that it's okay if the instruction might have undefined
2579     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2580     // block.
2581     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2582       continue;
2583 
2584     // Skip debug info intrinsics.
2585     if (isa<DbgInfoIntrinsic>(I))
2586       continue;
2587 
2588     // Skip eh pad instructions.
2589     if (I->isEHPad())
2590       continue;
2591 
2592     // Don't sink alloca: we never want to sink static alloca's out of the
2593     // entry block, and correctly sinking dynamic alloca's requires
2594     // checks for stacksave/stackrestore intrinsics.
2595     // FIXME: Refactor this check somehow?
2596     if (isa<AllocaInst>(I))
2597       continue;
2598 
2599     // Determine if there is a use in or before the loop (direct or
2600     // otherwise).
2601     bool UsedInLoop = false;
2602     for (Use &U : I->uses()) {
2603       Instruction *User = cast<Instruction>(U.getUser());
2604       BasicBlock *UseBB = User->getParent();
2605       if (PHINode *P = dyn_cast<PHINode>(User)) {
2606         unsigned i =
2607           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2608         UseBB = P->getIncomingBlock(i);
2609       }
2610       if (UseBB == Preheader || L->contains(UseBB)) {
2611         UsedInLoop = true;
2612         break;
2613       }
2614     }
2615 
2616     // If there is, the def must remain in the preheader.
2617     if (UsedInLoop)
2618       continue;
2619 
2620     // Otherwise, sink it to the exit block.
2621     Instruction *ToMove = &*I;
2622     bool Done = false;
2623 
2624     if (I != Preheader->begin()) {
2625       // Skip debug info intrinsics.
2626       do {
2627         --I;
2628       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2629 
2630       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2631         Done = true;
2632     } else {
2633       Done = true;
2634     }
2635 
2636     MadeAnyChanges = true;
2637     ToMove->moveBefore(*ExitBlock, InsertPt);
2638     if (Done) break;
2639     InsertPt = ToMove->getIterator();
2640   }
2641 
2642   return MadeAnyChanges;
2643 }
2644 
2645 bool IndVarSimplify::optimizeLoopExits(Loop *L) {
2646   SmallVector<BasicBlock*, 16> ExitingBlocks;
2647   L->getExitingBlocks(ExitingBlocks);
2648 
2649   // Form an expression for the maximum exit count possible for this loop. We
2650   // merge the max and exact information to approximate a version of
2651   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
2652   // TODO: factor this out as a version of getConstantMaxBackedgeTakenCount which
2653   // isn't guaranteed to return a constant.
2654   SmallVector<const SCEV*, 4> ExitCounts;
2655   const SCEV *MaxConstEC = SE->getConstantMaxBackedgeTakenCount(L);
2656   if (!isa<SCEVCouldNotCompute>(MaxConstEC))
2657     ExitCounts.push_back(MaxConstEC);
2658   for (BasicBlock *ExitingBB : ExitingBlocks) {
2659     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
2660     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
2661       assert(DT->dominates(ExitingBB, L->getLoopLatch()) &&
2662              "We should only have known counts for exiting blocks that "
2663              "dominate latch!");
2664       ExitCounts.push_back(ExitCount);
2665     }
2666   }
2667   if (ExitCounts.empty())
2668     return false;
2669   const SCEV *MaxExitCount = SE->getUMinFromMismatchedTypes(ExitCounts);
2670 
2671   bool Changed = false;
2672   for (BasicBlock *ExitingBB : ExitingBlocks) {
2673     // If our exitting block exits multiple loops, we can only rewrite the
2674     // innermost one.  Otherwise, we're changing how many times the innermost
2675     // loop runs before it exits.
2676     if (LI->getLoopFor(ExitingBB) != L)
2677       continue;
2678 
2679     // Can't rewrite non-branch yet.
2680     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
2681     if (!BI)
2682       continue;
2683 
2684     // If already constant, nothing to do.
2685     if (isa<Constant>(BI->getCondition()))
2686       continue;
2687 
2688     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
2689     if (isa<SCEVCouldNotCompute>(ExitCount))
2690       continue;
2691 
2692     // If we know we'd exit on the first iteration, rewrite the exit to
2693     // reflect this.  This does not imply the loop must exit through this
2694     // exit; there may be an earlier one taken on the first iteration.
2695     // TODO: Given we know the backedge can't be taken, we should go ahead
2696     // and break it.  Or at least, kill all the header phis and simplify.
2697     if (ExitCount->isZero()) {
2698       bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
2699       auto *OldCond = BI->getCondition();
2700       auto *NewCond = ExitIfTrue ? ConstantInt::getTrue(OldCond->getType()) :
2701         ConstantInt::getFalse(OldCond->getType());
2702       BI->setCondition(NewCond);
2703       if (OldCond->use_empty())
2704         DeadInsts.push_back(OldCond);
2705       Changed = true;
2706       continue;
2707     }
2708 
2709     // If we end up with a pointer exit count, bail.  Note that we can end up
2710     // with a pointer exit count for one exiting block, and not for another in
2711     // the same loop.
2712     if (!ExitCount->getType()->isIntegerTy() ||
2713         !MaxExitCount->getType()->isIntegerTy())
2714       continue;
2715 
2716     Type *WiderType =
2717       SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
2718     ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
2719     MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
2720     assert(MaxExitCount->getType() == ExitCount->getType());
2721 
2722     // Can we prove that some other exit must be taken strictly before this
2723     // one?  TODO: handle cases where ule is known, and equality is covered
2724     // by a dominating exit
2725     if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
2726                                      MaxExitCount, ExitCount)) {
2727       bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
2728       auto *OldCond = BI->getCondition();
2729       auto *NewCond = ExitIfTrue ? ConstantInt::getFalse(OldCond->getType()) :
2730         ConstantInt::getTrue(OldCond->getType());
2731       BI->setCondition(NewCond);
2732       if (OldCond->use_empty())
2733         DeadInsts.push_back(OldCond);
2734       Changed = true;
2735       continue;
2736     }
2737 
2738     // TODO: If we can prove that the exiting iteration is equal to the exit
2739     // count for this exit and that no previous exit oppurtunities exist within
2740     // the loop, then we can discharge all other exits.  (May fall out of
2741     // previous TODO.)
2742 
2743     // TODO: If we can't prove any relation between our exit count and the
2744     // loops exit count, but taking this exit doesn't require actually running
2745     // the loop (i.e. no side effects, no computed values used in exit), then
2746     // we can replace the exit test with a loop invariant test which exits on
2747     // the first iteration.
2748   }
2749   return Changed;
2750 }
2751 
2752 //===----------------------------------------------------------------------===//
2753 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2754 //===----------------------------------------------------------------------===//
2755 
2756 bool IndVarSimplify::run(Loop *L) {
2757   // We need (and expect!) the incoming loop to be in LCSSA.
2758   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2759          "LCSSA required to run indvars!");
2760   bool Changed = false;
2761 
2762   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2763   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2764   //    canonicalization can be a pessimization without LSR to "clean up"
2765   //    afterwards.
2766   //  - We depend on having a preheader; in particular,
2767   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2768   //    and we're in trouble if we can't find the induction variable even when
2769   //    we've manually inserted one.
2770   //  - LFTR relies on having a single backedge.
2771   if (!L->isLoopSimplifyForm())
2772     return false;
2773 
2774   // If there are any floating-point recurrences, attempt to
2775   // transform them to use integer recurrences.
2776   Changed |= rewriteNonIntegerIVs(L);
2777 
2778 #ifndef NDEBUG
2779   // Used below for a consistency check only
2780   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2781 #endif
2782 
2783   // Create a rewriter object which we'll use to transform the code with.
2784   SCEVExpander Rewriter(*SE, DL, "indvars");
2785 #ifndef NDEBUG
2786   Rewriter.setDebugType(DEBUG_TYPE);
2787 #endif
2788 
2789   // Eliminate redundant IV users.
2790   //
2791   // Simplification works best when run before other consumers of SCEV. We
2792   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2793   // other expressions involving loop IVs have been evaluated. This helps SCEV
2794   // set no-wrap flags before normalizing sign/zero extension.
2795   Rewriter.disableCanonicalMode();
2796   Changed |= simplifyAndExtend(L, Rewriter, LI);
2797 
2798   // Check to see if we can compute the final value of any expressions
2799   // that are recurrent in the loop, and substitute the exit values from the
2800   // loop into any instructions outside of the loop that use the final values
2801   // of the current expressions.
2802   if (ReplaceExitValue != NeverRepl)
2803     Changed |= rewriteLoopExitValues(L, Rewriter);
2804 
2805   // Eliminate redundant IV cycles.
2806   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2807 
2808   Changed |= optimizeLoopExits(L);
2809 
2810   // If we have a trip count expression, rewrite the loop's exit condition
2811   // using it.
2812   if (!DisableLFTR) {
2813     SmallVector<BasicBlock*, 16> ExitingBlocks;
2814     L->getExitingBlocks(ExitingBlocks);
2815     for (BasicBlock *ExitingBB : ExitingBlocks) {
2816       // Can't rewrite non-branch yet.
2817       if (!isa<BranchInst>(ExitingBB->getTerminator()))
2818         continue;
2819 
2820       // If our exitting block exits multiple loops, we can only rewrite the
2821       // innermost one.  Otherwise, we're changing how many times the innermost
2822       // loop runs before it exits.
2823       if (LI->getLoopFor(ExitingBB) != L)
2824         continue;
2825 
2826       if (!needsLFTR(L, ExitingBB))
2827         continue;
2828 
2829       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
2830       if (isa<SCEVCouldNotCompute>(ExitCount))
2831         continue;
2832 
2833       // This was handled above, but as we form SCEVs, we can sometimes refine
2834       // existing ones; this allows exit counts to be folded to zero which
2835       // weren't when optimizeLoopExits saw them.  Arguably, we should iterate
2836       // until stable to handle cases like this better.
2837       if (ExitCount->isZero())
2838         continue;
2839 
2840       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
2841       if (!IndVar)
2842         continue;
2843 
2844       // Avoid high cost expansions.  Note: This heuristic is questionable in
2845       // that our definition of "high cost" is not exactly principled.
2846       if (Rewriter.isHighCostExpansion(ExitCount, L))
2847         continue;
2848 
2849       // Check preconditions for proper SCEVExpander operation. SCEV does not
2850       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
2851       // any pass that uses the SCEVExpander must do it. This does not work
2852       // well for loop passes because SCEVExpander makes assumptions about
2853       // all loops, while LoopPassManager only forces the current loop to be
2854       // simplified.
2855       //
2856       // FIXME: SCEV expansion has no way to bail out, so the caller must
2857       // explicitly check any assumptions made by SCEV. Brittle.
2858       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
2859       if (!AR || AR->getLoop()->getLoopPreheader())
2860         Changed |= linearFunctionTestReplace(L, ExitingBB,
2861                                              ExitCount, IndVar,
2862                                              Rewriter);
2863     }
2864   }
2865   // Clear the rewriter cache, because values that are in the rewriter's cache
2866   // can be deleted in the loop below, causing the AssertingVH in the cache to
2867   // trigger.
2868   Rewriter.clear();
2869 
2870   // Now that we're done iterating through lists, clean up any instructions
2871   // which are now dead.
2872   while (!DeadInsts.empty())
2873     if (Instruction *Inst =
2874             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2875       Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2876 
2877   // The Rewriter may not be used from this point on.
2878 
2879   // Loop-invariant instructions in the preheader that aren't used in the
2880   // loop may be sunk below the loop to reduce register pressure.
2881   Changed |= sinkUnusedInvariants(L);
2882 
2883   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2884   // trip count and therefore can further simplify exit values in addition to
2885   // rewriteLoopExitValues.
2886   Changed |= rewriteFirstIterationLoopExitValues(L);
2887 
2888   // Clean up dead instructions.
2889   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2890 
2891   // Check a post-condition.
2892   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2893          "Indvars did not preserve LCSSA!");
2894 
2895   // Verify that LFTR, and any other change have not interfered with SCEV's
2896   // ability to compute trip count.
2897 #ifndef NDEBUG
2898   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2899     SE->forgetLoop(L);
2900     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2901     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2902         SE->getTypeSizeInBits(NewBECount->getType()))
2903       NewBECount = SE->getTruncateOrNoop(NewBECount,
2904                                          BackedgeTakenCount->getType());
2905     else
2906       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2907                                                  NewBECount->getType());
2908     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2909   }
2910 #endif
2911 
2912   return Changed;
2913 }
2914 
2915 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2916                                           LoopStandardAnalysisResults &AR,
2917                                           LPMUpdater &) {
2918   Function *F = L.getHeader()->getParent();
2919   const DataLayout &DL = F->getParent()->getDataLayout();
2920 
2921   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2922   if (!IVS.run(&L))
2923     return PreservedAnalyses::all();
2924 
2925   auto PA = getLoopPassPreservedAnalyses();
2926   PA.preserveSet<CFGAnalyses>();
2927   return PA;
2928 }
2929 
2930 namespace {
2931 
2932 struct IndVarSimplifyLegacyPass : public LoopPass {
2933   static char ID; // Pass identification, replacement for typeid
2934 
2935   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2936     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2937   }
2938 
2939   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2940     if (skipLoop(L))
2941       return false;
2942 
2943     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2944     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2945     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2946     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2947     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2948     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2949     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2950     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2951 
2952     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2953     return IVS.run(L);
2954   }
2955 
2956   void getAnalysisUsage(AnalysisUsage &AU) const override {
2957     AU.setPreservesCFG();
2958     getLoopAnalysisUsage(AU);
2959   }
2960 };
2961 
2962 } // end anonymous namespace
2963 
2964 char IndVarSimplifyLegacyPass::ID = 0;
2965 
2966 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2967                       "Induction Variable Simplification", false, false)
2968 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2969 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2970                     "Induction Variable Simplification", false, false)
2971 
2972 Pass *llvm::createIndVarSimplifyPass() {
2973   return new IndVarSimplifyLegacyPass();
2974 }
2975