xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 266c087b9dff314433f318a9ef61ec7d1b44fbb4)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
28 #include "llvm/ADT/APFloat.h"
29 #include "llvm/ADT/APInt.h"
30 #include "llvm/ADT/ArrayRef.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/None.h"
33 #include "llvm/ADT/Optional.h"
34 #include "llvm/ADT/STLExtras.h"
35 #include "llvm/ADT/SmallPtrSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/ScalarEvolutionExpander.h"
43 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
44 #include "llvm/Analysis/TargetLibraryInfo.h"
45 #include "llvm/Analysis/TargetTransformInfo.h"
46 #include "llvm/Transforms/Utils/Local.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/Constant.h"
49 #include "llvm/IR/ConstantRange.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/DataLayout.h"
52 #include "llvm/IR/DerivedTypes.h"
53 #include "llvm/IR/Dominators.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/IRBuilder.h"
56 #include "llvm/IR/InstrTypes.h"
57 #include "llvm/IR/Instruction.h"
58 #include "llvm/IR/Instructions.h"
59 #include "llvm/IR/IntrinsicInst.h"
60 #include "llvm/IR/Intrinsics.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/IR/Operator.h"
63 #include "llvm/IR/PassManager.h"
64 #include "llvm/IR/PatternMatch.h"
65 #include "llvm/IR/Type.h"
66 #include "llvm/IR/Use.h"
67 #include "llvm/IR/User.h"
68 #include "llvm/IR/Value.h"
69 #include "llvm/IR/ValueHandle.h"
70 #include "llvm/Pass.h"
71 #include "llvm/Support/Casting.h"
72 #include "llvm/Support/CommandLine.h"
73 #include "llvm/Support/Compiler.h"
74 #include "llvm/Support/Debug.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Support/raw_ostream.h"
78 #include "llvm/Transforms/Scalar.h"
79 #include "llvm/Transforms/Scalar/LoopPassManager.h"
80 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
81 #include "llvm/Transforms/Utils/LoopUtils.h"
82 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
83 #include <cassert>
84 #include <cstdint>
85 #include <utility>
86 
87 using namespace llvm;
88 
89 #define DEBUG_TYPE "indvars"
90 
91 STATISTIC(NumWidened     , "Number of indvars widened");
92 STATISTIC(NumReplaced    , "Number of exit values replaced");
93 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
94 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
95 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
96 
97 // Trip count verification can be enabled by default under NDEBUG if we
98 // implement a strong expression equivalence checker in SCEV. Until then, we
99 // use the verify-indvars flag, which may assert in some cases.
100 static cl::opt<bool> VerifyIndvars(
101   "verify-indvars", cl::Hidden,
102   cl::desc("Verify the ScalarEvolution result after running indvars"));
103 
104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
105 
106 static cl::opt<ReplaceExitVal> ReplaceExitValue(
107     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
108     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
109     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
110                clEnumValN(OnlyCheapRepl, "cheap",
111                           "only replace exit value when the cost is cheap"),
112                clEnumValN(AlwaysRepl, "always",
113                           "always replace exit value whenever possible")));
114 
115 static cl::opt<bool> UsePostIncrementRanges(
116   "indvars-post-increment-ranges", cl::Hidden,
117   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
118   cl::init(true));
119 
120 static cl::opt<bool>
121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
122             cl::desc("Disable Linear Function Test Replace optimization"));
123 
124 namespace {
125 
126 struct RewritePhi;
127 
128 class IndVarSimplify {
129   LoopInfo *LI;
130   ScalarEvolution *SE;
131   DominatorTree *DT;
132   const DataLayout &DL;
133   TargetLibraryInfo *TLI;
134   const TargetTransformInfo *TTI;
135 
136   SmallVector<WeakTrackingVH, 16> DeadInsts;
137 
138   bool isValidRewrite(Value *FromVal, Value *ToVal);
139 
140   bool handleFloatingPointIV(Loop *L, PHINode *PH);
141   bool rewriteNonIntegerIVs(Loop *L);
142 
143   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
144 
145   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
146   bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
147   bool rewriteFirstIterationLoopExitValues(Loop *L);
148   bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const;
149 
150   bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
151                                  PHINode *IndVar, SCEVExpander &Rewriter);
152 
153   bool sinkUnusedInvariants(Loop *L);
154 
155 public:
156   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
157                  const DataLayout &DL, TargetLibraryInfo *TLI,
158                  TargetTransformInfo *TTI)
159       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
160 
161   bool run(Loop *L);
162 };
163 
164 } // end anonymous namespace
165 
166 /// Return true if the SCEV expansion generated by the rewriter can replace the
167 /// original value. SCEV guarantees that it produces the same value, but the way
168 /// it is produced may be illegal IR.  Ideally, this function will only be
169 /// called for verification.
170 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
171   // If an SCEV expression subsumed multiple pointers, its expansion could
172   // reassociate the GEP changing the base pointer. This is illegal because the
173   // final address produced by a GEP chain must be inbounds relative to its
174   // underlying object. Otherwise basic alias analysis, among other things,
175   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
176   // producing an expression involving multiple pointers. Until then, we must
177   // bail out here.
178   //
179   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
180   // because it understands lcssa phis while SCEV does not.
181   Value *FromPtr = FromVal;
182   Value *ToPtr = ToVal;
183   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
184     FromPtr = GEP->getPointerOperand();
185   }
186   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
187     ToPtr = GEP->getPointerOperand();
188   }
189   if (FromPtr != FromVal || ToPtr != ToVal) {
190     // Quickly check the common case
191     if (FromPtr == ToPtr)
192       return true;
193 
194     // SCEV may have rewritten an expression that produces the GEP's pointer
195     // operand. That's ok as long as the pointer operand has the same base
196     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
197     // base of a recurrence. This handles the case in which SCEV expansion
198     // converts a pointer type recurrence into a nonrecurrent pointer base
199     // indexed by an integer recurrence.
200 
201     // If the GEP base pointer is a vector of pointers, abort.
202     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
203       return false;
204 
205     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
206     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
207     if (FromBase == ToBase)
208       return true;
209 
210     LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase
211                       << " != " << *ToBase << "\n");
212 
213     return false;
214   }
215   return true;
216 }
217 
218 /// Determine the insertion point for this user. By default, insert immediately
219 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
220 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
221 /// common dominator for the incoming blocks.
222 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
223                                           DominatorTree *DT, LoopInfo *LI) {
224   PHINode *PHI = dyn_cast<PHINode>(User);
225   if (!PHI)
226     return User;
227 
228   Instruction *InsertPt = nullptr;
229   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
230     if (PHI->getIncomingValue(i) != Def)
231       continue;
232 
233     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
234     if (!InsertPt) {
235       InsertPt = InsertBB->getTerminator();
236       continue;
237     }
238     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
239     InsertPt = InsertBB->getTerminator();
240   }
241   assert(InsertPt && "Missing phi operand");
242 
243   auto *DefI = dyn_cast<Instruction>(Def);
244   if (!DefI)
245     return InsertPt;
246 
247   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
248 
249   auto *L = LI->getLoopFor(DefI->getParent());
250   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
251 
252   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
253     if (LI->getLoopFor(DTN->getBlock()) == L)
254       return DTN->getBlock()->getTerminator();
255 
256   llvm_unreachable("DefI dominates InsertPt!");
257 }
258 
259 //===----------------------------------------------------------------------===//
260 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
261 //===----------------------------------------------------------------------===//
262 
263 /// Convert APF to an integer, if possible.
264 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
265   bool isExact = false;
266   // See if we can convert this to an int64_t
267   uint64_t UIntVal;
268   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
269                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
270       !isExact)
271     return false;
272   IntVal = UIntVal;
273   return true;
274 }
275 
276 /// If the loop has floating induction variable then insert corresponding
277 /// integer induction variable if possible.
278 /// For example,
279 /// for(double i = 0; i < 10000; ++i)
280 ///   bar(i)
281 /// is converted into
282 /// for(int i = 0; i < 10000; ++i)
283 ///   bar((double)i);
284 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
285   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
286   unsigned BackEdge     = IncomingEdge^1;
287 
288   // Check incoming value.
289   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
290 
291   int64_t InitValue;
292   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
293     return false;
294 
295   // Check IV increment. Reject this PN if increment operation is not
296   // an add or increment value can not be represented by an integer.
297   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
298   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
299 
300   // If this is not an add of the PHI with a constantfp, or if the constant fp
301   // is not an integer, bail out.
302   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
303   int64_t IncValue;
304   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
305       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
306     return false;
307 
308   // Check Incr uses. One user is PN and the other user is an exit condition
309   // used by the conditional terminator.
310   Value::user_iterator IncrUse = Incr->user_begin();
311   Instruction *U1 = cast<Instruction>(*IncrUse++);
312   if (IncrUse == Incr->user_end()) return false;
313   Instruction *U2 = cast<Instruction>(*IncrUse++);
314   if (IncrUse != Incr->user_end()) return false;
315 
316   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
317   // only used by a branch, we can't transform it.
318   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
319   if (!Compare)
320     Compare = dyn_cast<FCmpInst>(U2);
321   if (!Compare || !Compare->hasOneUse() ||
322       !isa<BranchInst>(Compare->user_back()))
323     return false;
324 
325   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
326 
327   // We need to verify that the branch actually controls the iteration count
328   // of the loop.  If not, the new IV can overflow and no one will notice.
329   // The branch block must be in the loop and one of the successors must be out
330   // of the loop.
331   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
332   if (!L->contains(TheBr->getParent()) ||
333       (L->contains(TheBr->getSuccessor(0)) &&
334        L->contains(TheBr->getSuccessor(1))))
335     return false;
336 
337   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
338   // transform it.
339   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
340   int64_t ExitValue;
341   if (ExitValueVal == nullptr ||
342       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
343     return false;
344 
345   // Find new predicate for integer comparison.
346   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
347   switch (Compare->getPredicate()) {
348   default: return false;  // Unknown comparison.
349   case CmpInst::FCMP_OEQ:
350   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
351   case CmpInst::FCMP_ONE:
352   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
353   case CmpInst::FCMP_OGT:
354   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
355   case CmpInst::FCMP_OGE:
356   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
357   case CmpInst::FCMP_OLT:
358   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
359   case CmpInst::FCMP_OLE:
360   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
361   }
362 
363   // We convert the floating point induction variable to a signed i32 value if
364   // we can.  This is only safe if the comparison will not overflow in a way
365   // that won't be trapped by the integer equivalent operations.  Check for this
366   // now.
367   // TODO: We could use i64 if it is native and the range requires it.
368 
369   // The start/stride/exit values must all fit in signed i32.
370   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
371     return false;
372 
373   // If not actually striding (add x, 0.0), avoid touching the code.
374   if (IncValue == 0)
375     return false;
376 
377   // Positive and negative strides have different safety conditions.
378   if (IncValue > 0) {
379     // If we have a positive stride, we require the init to be less than the
380     // exit value.
381     if (InitValue >= ExitValue)
382       return false;
383 
384     uint32_t Range = uint32_t(ExitValue-InitValue);
385     // Check for infinite loop, either:
386     // while (i <= Exit) or until (i > Exit)
387     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
388       if (++Range == 0) return false;  // Range overflows.
389     }
390 
391     unsigned Leftover = Range % uint32_t(IncValue);
392 
393     // If this is an equality comparison, we require that the strided value
394     // exactly land on the exit value, otherwise the IV condition will wrap
395     // around and do things the fp IV wouldn't.
396     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
397         Leftover != 0)
398       return false;
399 
400     // If the stride would wrap around the i32 before exiting, we can't
401     // transform the IV.
402     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
403       return false;
404   } else {
405     // If we have a negative stride, we require the init to be greater than the
406     // exit value.
407     if (InitValue <= ExitValue)
408       return false;
409 
410     uint32_t Range = uint32_t(InitValue-ExitValue);
411     // Check for infinite loop, either:
412     // while (i >= Exit) or until (i < Exit)
413     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
414       if (++Range == 0) return false;  // Range overflows.
415     }
416 
417     unsigned Leftover = Range % uint32_t(-IncValue);
418 
419     // If this is an equality comparison, we require that the strided value
420     // exactly land on the exit value, otherwise the IV condition will wrap
421     // around and do things the fp IV wouldn't.
422     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
423         Leftover != 0)
424       return false;
425 
426     // If the stride would wrap around the i32 before exiting, we can't
427     // transform the IV.
428     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
429       return false;
430   }
431 
432   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
433 
434   // Insert new integer induction variable.
435   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
436   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
437                       PN->getIncomingBlock(IncomingEdge));
438 
439   Value *NewAdd =
440     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
441                               Incr->getName()+".int", Incr);
442   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
443 
444   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
445                                       ConstantInt::get(Int32Ty, ExitValue),
446                                       Compare->getName());
447 
448   // In the following deletions, PN may become dead and may be deleted.
449   // Use a WeakTrackingVH to observe whether this happens.
450   WeakTrackingVH WeakPH = PN;
451 
452   // Delete the old floating point exit comparison.  The branch starts using the
453   // new comparison.
454   NewCompare->takeName(Compare);
455   Compare->replaceAllUsesWith(NewCompare);
456   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
457 
458   // Delete the old floating point increment.
459   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
460   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
461 
462   // If the FP induction variable still has uses, this is because something else
463   // in the loop uses its value.  In order to canonicalize the induction
464   // variable, we chose to eliminate the IV and rewrite it in terms of an
465   // int->fp cast.
466   //
467   // We give preference to sitofp over uitofp because it is faster on most
468   // platforms.
469   if (WeakPH) {
470     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
471                                  &*PN->getParent()->getFirstInsertionPt());
472     PN->replaceAllUsesWith(Conv);
473     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
474   }
475   return true;
476 }
477 
478 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
479   // First step.  Check to see if there are any floating-point recurrences.
480   // If there are, change them into integer recurrences, permitting analysis by
481   // the SCEV routines.
482   BasicBlock *Header = L->getHeader();
483 
484   SmallVector<WeakTrackingVH, 8> PHIs;
485   for (PHINode &PN : Header->phis())
486     PHIs.push_back(&PN);
487 
488   bool Changed = false;
489   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
490     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
491       Changed |= handleFloatingPointIV(L, PN);
492 
493   // If the loop previously had floating-point IV, ScalarEvolution
494   // may not have been able to compute a trip count. Now that we've done some
495   // re-writing, the trip count may be computable.
496   if (Changed)
497     SE->forgetLoop(L);
498   return Changed;
499 }
500 
501 namespace {
502 
503 // Collect information about PHI nodes which can be transformed in
504 // rewriteLoopExitValues.
505 struct RewritePhi {
506   PHINode *PN;
507 
508   // Ith incoming value.
509   unsigned Ith;
510 
511   // Exit value after expansion.
512   Value *Val;
513 
514   // High Cost when expansion.
515   bool HighCost;
516 
517   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
518       : PN(P), Ith(I), Val(V), HighCost(H) {}
519 };
520 
521 } // end anonymous namespace
522 
523 //===----------------------------------------------------------------------===//
524 // rewriteLoopExitValues - Optimize IV users outside the loop.
525 // As a side effect, reduces the amount of IV processing within the loop.
526 //===----------------------------------------------------------------------===//
527 
528 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const {
529   SmallPtrSet<const Instruction *, 8> Visited;
530   SmallVector<const Instruction *, 8> WorkList;
531   Visited.insert(I);
532   WorkList.push_back(I);
533   while (!WorkList.empty()) {
534     const Instruction *Curr = WorkList.pop_back_val();
535     // This use is outside the loop, nothing to do.
536     if (!L->contains(Curr))
537       continue;
538     // Do we assume it is a "hard" use which will not be eliminated easily?
539     if (Curr->mayHaveSideEffects())
540       return true;
541     // Otherwise, add all its users to worklist.
542     for (auto U : Curr->users()) {
543       auto *UI = cast<Instruction>(U);
544       if (Visited.insert(UI).second)
545         WorkList.push_back(UI);
546     }
547   }
548   return false;
549 }
550 
551 /// Check to see if this loop has a computable loop-invariant execution count.
552 /// If so, this means that we can compute the final value of any expressions
553 /// that are recurrent in the loop, and substitute the exit values from the loop
554 /// into any instructions outside of the loop that use the final values of the
555 /// current expressions.
556 ///
557 /// This is mostly redundant with the regular IndVarSimplify activities that
558 /// happen later, except that it's more powerful in some cases, because it's
559 /// able to brute-force evaluate arbitrary instructions as long as they have
560 /// constant operands at the beginning of the loop.
561 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
562   // Check a pre-condition.
563   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
564          "Indvars did not preserve LCSSA!");
565 
566   SmallVector<BasicBlock*, 8> ExitBlocks;
567   L->getUniqueExitBlocks(ExitBlocks);
568 
569   SmallVector<RewritePhi, 8> RewritePhiSet;
570   // Find all values that are computed inside the loop, but used outside of it.
571   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
572   // the exit blocks of the loop to find them.
573   for (BasicBlock *ExitBB : ExitBlocks) {
574     // If there are no PHI nodes in this exit block, then no values defined
575     // inside the loop are used on this path, skip it.
576     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
577     if (!PN) continue;
578 
579     unsigned NumPreds = PN->getNumIncomingValues();
580 
581     // Iterate over all of the PHI nodes.
582     BasicBlock::iterator BBI = ExitBB->begin();
583     while ((PN = dyn_cast<PHINode>(BBI++))) {
584       if (PN->use_empty())
585         continue; // dead use, don't replace it
586 
587       if (!SE->isSCEVable(PN->getType()))
588         continue;
589 
590       // It's necessary to tell ScalarEvolution about this explicitly so that
591       // it can walk the def-use list and forget all SCEVs, as it may not be
592       // watching the PHI itself. Once the new exit value is in place, there
593       // may not be a def-use connection between the loop and every instruction
594       // which got a SCEVAddRecExpr for that loop.
595       SE->forgetValue(PN);
596 
597       // Iterate over all of the values in all the PHI nodes.
598       for (unsigned i = 0; i != NumPreds; ++i) {
599         // If the value being merged in is not integer or is not defined
600         // in the loop, skip it.
601         Value *InVal = PN->getIncomingValue(i);
602         if (!isa<Instruction>(InVal))
603           continue;
604 
605         // If this pred is for a subloop, not L itself, skip it.
606         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
607           continue; // The Block is in a subloop, skip it.
608 
609         // Check that InVal is defined in the loop.
610         Instruction *Inst = cast<Instruction>(InVal);
611         if (!L->contains(Inst))
612           continue;
613 
614         // Okay, this instruction has a user outside of the current loop
615         // and varies predictably *inside* the loop.  Evaluate the value it
616         // contains when the loop exits, if possible.
617         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
618         if (!SE->isLoopInvariant(ExitValue, L) ||
619             !isSafeToExpand(ExitValue, *SE))
620           continue;
621 
622         // Computing the value outside of the loop brings no benefit if it is
623         // definitely used inside the loop in a way which can not be optimized
624         // away.
625         if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst))
626           continue;
627 
628         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
629         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
630 
631         LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal
632                           << '\n'
633                           << "  LoopVal = " << *Inst << "\n");
634 
635         if (!isValidRewrite(Inst, ExitVal)) {
636           DeadInsts.push_back(ExitVal);
637           continue;
638         }
639 
640 #ifndef NDEBUG
641         // If we reuse an instruction from a loop which is neither L nor one of
642         // its containing loops, we end up breaking LCSSA form for this loop by
643         // creating a new use of its instruction.
644         if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal))
645           if (auto *EVL = LI->getLoopFor(ExitInsn->getParent()))
646             if (EVL != L)
647               assert(EVL->contains(L) && "LCSSA breach detected!");
648 #endif
649 
650         // Collect all the candidate PHINodes to be rewritten.
651         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
652       }
653     }
654   }
655 
656   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
657 
658   bool Changed = false;
659   // Transformation.
660   for (const RewritePhi &Phi : RewritePhiSet) {
661     PHINode *PN = Phi.PN;
662     Value *ExitVal = Phi.Val;
663 
664     // Only do the rewrite when the ExitValue can be expanded cheaply.
665     // If LoopCanBeDel is true, rewrite exit value aggressively.
666     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
667       DeadInsts.push_back(ExitVal);
668       continue;
669     }
670 
671     Changed = true;
672     ++NumReplaced;
673     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
674     PN->setIncomingValue(Phi.Ith, ExitVal);
675 
676     // If this instruction is dead now, delete it. Don't do it now to avoid
677     // invalidating iterators.
678     if (isInstructionTriviallyDead(Inst, TLI))
679       DeadInsts.push_back(Inst);
680 
681     // Replace PN with ExitVal if that is legal and does not break LCSSA.
682     if (PN->getNumIncomingValues() == 1 &&
683         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
684       PN->replaceAllUsesWith(ExitVal);
685       PN->eraseFromParent();
686     }
687   }
688 
689   // The insertion point instruction may have been deleted; clear it out
690   // so that the rewriter doesn't trip over it later.
691   Rewriter.clearInsertPoint();
692   return Changed;
693 }
694 
695 //===---------------------------------------------------------------------===//
696 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
697 // they will exit at the first iteration.
698 //===---------------------------------------------------------------------===//
699 
700 /// Check to see if this loop has loop invariant conditions which lead to loop
701 /// exits. If so, we know that if the exit path is taken, it is at the first
702 /// loop iteration. This lets us predict exit values of PHI nodes that live in
703 /// loop header.
704 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
705   // Verify the input to the pass is already in LCSSA form.
706   assert(L->isLCSSAForm(*DT));
707 
708   SmallVector<BasicBlock *, 8> ExitBlocks;
709   L->getUniqueExitBlocks(ExitBlocks);
710   auto *LoopHeader = L->getHeader();
711   assert(LoopHeader && "Invalid loop");
712 
713   bool MadeAnyChanges = false;
714   for (auto *ExitBB : ExitBlocks) {
715     // If there are no more PHI nodes in this exit block, then no more
716     // values defined inside the loop are used on this path.
717     for (PHINode &PN : ExitBB->phis()) {
718       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
719            IncomingValIdx != E; ++IncomingValIdx) {
720         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
721 
722         // We currently only support loop exits from loop header. If the
723         // incoming block is not loop header, we need to recursively check
724         // all conditions starting from loop header are loop invariants.
725         // Additional support might be added in the future.
726         if (IncomingBB != LoopHeader)
727           continue;
728 
729         // Get condition that leads to the exit path.
730         auto *TermInst = IncomingBB->getTerminator();
731 
732         Value *Cond = nullptr;
733         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
734           // Must be a conditional branch, otherwise the block
735           // should not be in the loop.
736           Cond = BI->getCondition();
737         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
738           Cond = SI->getCondition();
739         else
740           continue;
741 
742         if (!L->isLoopInvariant(Cond))
743           continue;
744 
745         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
746 
747         // Only deal with PHIs.
748         if (!ExitVal)
749           continue;
750 
751         // If ExitVal is a PHI on the loop header, then we know its
752         // value along this exit because the exit can only be taken
753         // on the first iteration.
754         auto *LoopPreheader = L->getLoopPreheader();
755         assert(LoopPreheader && "Invalid loop");
756         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
757         if (PreheaderIdx != -1) {
758           assert(ExitVal->getParent() == LoopHeader &&
759                  "ExitVal must be in loop header");
760           MadeAnyChanges = true;
761           PN.setIncomingValue(IncomingValIdx,
762                               ExitVal->getIncomingValue(PreheaderIdx));
763         }
764       }
765     }
766   }
767   return MadeAnyChanges;
768 }
769 
770 /// Check whether it is possible to delete the loop after rewriting exit
771 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
772 /// aggressively.
773 bool IndVarSimplify::canLoopBeDeleted(
774     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
775   BasicBlock *Preheader = L->getLoopPreheader();
776   // If there is no preheader, the loop will not be deleted.
777   if (!Preheader)
778     return false;
779 
780   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
781   // We obviate multiple ExitingBlocks case for simplicity.
782   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
783   // after exit value rewriting, we can enhance the logic here.
784   SmallVector<BasicBlock *, 4> ExitingBlocks;
785   L->getExitingBlocks(ExitingBlocks);
786   SmallVector<BasicBlock *, 8> ExitBlocks;
787   L->getUniqueExitBlocks(ExitBlocks);
788   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
789     return false;
790 
791   BasicBlock *ExitBlock = ExitBlocks[0];
792   BasicBlock::iterator BI = ExitBlock->begin();
793   while (PHINode *P = dyn_cast<PHINode>(BI)) {
794     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
795 
796     // If the Incoming value of P is found in RewritePhiSet, we know it
797     // could be rewritten to use a loop invariant value in transformation
798     // phase later. Skip it in the loop invariant check below.
799     bool found = false;
800     for (const RewritePhi &Phi : RewritePhiSet) {
801       unsigned i = Phi.Ith;
802       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
803         found = true;
804         break;
805       }
806     }
807 
808     Instruction *I;
809     if (!found && (I = dyn_cast<Instruction>(Incoming)))
810       if (!L->hasLoopInvariantOperands(I))
811         return false;
812 
813     ++BI;
814   }
815 
816   for (auto *BB : L->blocks())
817     if (llvm::any_of(*BB, [](Instruction &I) {
818           return I.mayHaveSideEffects();
819         }))
820       return false;
821 
822   return true;
823 }
824 
825 //===----------------------------------------------------------------------===//
826 //  IV Widening - Extend the width of an IV to cover its widest uses.
827 //===----------------------------------------------------------------------===//
828 
829 namespace {
830 
831 // Collect information about induction variables that are used by sign/zero
832 // extend operations. This information is recorded by CollectExtend and provides
833 // the input to WidenIV.
834 struct WideIVInfo {
835   PHINode *NarrowIV = nullptr;
836 
837   // Widest integer type created [sz]ext
838   Type *WidestNativeType = nullptr;
839 
840   // Was a sext user seen before a zext?
841   bool IsSigned = false;
842 };
843 
844 } // end anonymous namespace
845 
846 /// Update information about the induction variable that is extended by this
847 /// sign or zero extend operation. This is used to determine the final width of
848 /// the IV before actually widening it.
849 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
850                         const TargetTransformInfo *TTI) {
851   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
852   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
853     return;
854 
855   Type *Ty = Cast->getType();
856   uint64_t Width = SE->getTypeSizeInBits(Ty);
857   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
858     return;
859 
860   // Check that `Cast` actually extends the induction variable (we rely on this
861   // later).  This takes care of cases where `Cast` is extending a truncation of
862   // the narrow induction variable, and thus can end up being narrower than the
863   // "narrow" induction variable.
864   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
865   if (NarrowIVWidth >= Width)
866     return;
867 
868   // Cast is either an sext or zext up to this point.
869   // We should not widen an indvar if arithmetics on the wider indvar are more
870   // expensive than those on the narrower indvar. We check only the cost of ADD
871   // because at least an ADD is required to increment the induction variable. We
872   // could compute more comprehensively the cost of all instructions on the
873   // induction variable when necessary.
874   if (TTI &&
875       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
876           TTI->getArithmeticInstrCost(Instruction::Add,
877                                       Cast->getOperand(0)->getType())) {
878     return;
879   }
880 
881   if (!WI.WidestNativeType) {
882     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
883     WI.IsSigned = IsSigned;
884     return;
885   }
886 
887   // We extend the IV to satisfy the sign of its first user, arbitrarily.
888   if (WI.IsSigned != IsSigned)
889     return;
890 
891   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
892     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
893 }
894 
895 namespace {
896 
897 /// Record a link in the Narrow IV def-use chain along with the WideIV that
898 /// computes the same value as the Narrow IV def.  This avoids caching Use*
899 /// pointers.
900 struct NarrowIVDefUse {
901   Instruction *NarrowDef = nullptr;
902   Instruction *NarrowUse = nullptr;
903   Instruction *WideDef = nullptr;
904 
905   // True if the narrow def is never negative.  Tracking this information lets
906   // us use a sign extension instead of a zero extension or vice versa, when
907   // profitable and legal.
908   bool NeverNegative = false;
909 
910   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
911                  bool NeverNegative)
912       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
913         NeverNegative(NeverNegative) {}
914 };
915 
916 /// The goal of this transform is to remove sign and zero extends without
917 /// creating any new induction variables. To do this, it creates a new phi of
918 /// the wider type and redirects all users, either removing extends or inserting
919 /// truncs whenever we stop propagating the type.
920 class WidenIV {
921   // Parameters
922   PHINode *OrigPhi;
923   Type *WideType;
924 
925   // Context
926   LoopInfo        *LI;
927   Loop            *L;
928   ScalarEvolution *SE;
929   DominatorTree   *DT;
930 
931   // Does the module have any calls to the llvm.experimental.guard intrinsic
932   // at all? If not we can avoid scanning instructions looking for guards.
933   bool HasGuards;
934 
935   // Result
936   PHINode *WidePhi = nullptr;
937   Instruction *WideInc = nullptr;
938   const SCEV *WideIncExpr = nullptr;
939   SmallVectorImpl<WeakTrackingVH> &DeadInsts;
940 
941   SmallPtrSet<Instruction *,16> Widened;
942   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
943 
944   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
945 
946   // A map tracking the kind of extension used to widen each narrow IV
947   // and narrow IV user.
948   // Key: pointer to a narrow IV or IV user.
949   // Value: the kind of extension used to widen this Instruction.
950   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
951 
952   using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>;
953 
954   // A map with control-dependent ranges for post increment IV uses. The key is
955   // a pair of IV def and a use of this def denoting the context. The value is
956   // a ConstantRange representing possible values of the def at the given
957   // context.
958   DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos;
959 
960   Optional<ConstantRange> getPostIncRangeInfo(Value *Def,
961                                               Instruction *UseI) {
962     DefUserPair Key(Def, UseI);
963     auto It = PostIncRangeInfos.find(Key);
964     return It == PostIncRangeInfos.end()
965                ? Optional<ConstantRange>(None)
966                : Optional<ConstantRange>(It->second);
967   }
968 
969   void calculatePostIncRanges(PHINode *OrigPhi);
970   void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser);
971 
972   void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) {
973     DefUserPair Key(Def, UseI);
974     auto It = PostIncRangeInfos.find(Key);
975     if (It == PostIncRangeInfos.end())
976       PostIncRangeInfos.insert({Key, R});
977     else
978       It->second = R.intersectWith(It->second);
979   }
980 
981 public:
982   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv,
983           DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI,
984           bool HasGuards)
985       : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo),
986         L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree),
987         HasGuards(HasGuards), DeadInsts(DI) {
988     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
989     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
990   }
991 
992   PHINode *createWideIV(SCEVExpander &Rewriter);
993 
994 protected:
995   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
996                           Instruction *Use);
997 
998   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
999   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
1000                                      const SCEVAddRecExpr *WideAR);
1001   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
1002 
1003   ExtendKind getExtendKind(Instruction *I);
1004 
1005   using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>;
1006 
1007   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
1008 
1009   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
1010 
1011   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1012                               unsigned OpCode) const;
1013 
1014   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
1015 
1016   bool widenLoopCompare(NarrowIVDefUse DU);
1017   bool widenWithVariantLoadUse(NarrowIVDefUse DU);
1018   void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU);
1019 
1020   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
1021 };
1022 
1023 } // end anonymous namespace
1024 
1025 /// Perform a quick domtree based check for loop invariance assuming that V is
1026 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
1027 /// purpose.
1028 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
1029   Instruction *Inst = dyn_cast<Instruction>(V);
1030   if (!Inst)
1031     return true;
1032 
1033   return DT->properlyDominates(Inst->getParent(), L->getHeader());
1034 }
1035 
1036 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
1037                                  bool IsSigned, Instruction *Use) {
1038   // Set the debug location and conservative insertion point.
1039   IRBuilder<> Builder(Use);
1040   // Hoist the insertion point into loop preheaders as far as possible.
1041   for (const Loop *L = LI->getLoopFor(Use->getParent());
1042        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
1043        L = L->getParentLoop())
1044     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1045 
1046   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
1047                     Builder.CreateZExt(NarrowOper, WideType);
1048 }
1049 
1050 /// Instantiate a wide operation to replace a narrow operation. This only needs
1051 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
1052 /// 0 for any operation we decide not to clone.
1053 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
1054                                   const SCEVAddRecExpr *WideAR) {
1055   unsigned Opcode = DU.NarrowUse->getOpcode();
1056   switch (Opcode) {
1057   default:
1058     return nullptr;
1059   case Instruction::Add:
1060   case Instruction::Mul:
1061   case Instruction::UDiv:
1062   case Instruction::Sub:
1063     return cloneArithmeticIVUser(DU, WideAR);
1064 
1065   case Instruction::And:
1066   case Instruction::Or:
1067   case Instruction::Xor:
1068   case Instruction::Shl:
1069   case Instruction::LShr:
1070   case Instruction::AShr:
1071     return cloneBitwiseIVUser(DU);
1072   }
1073 }
1074 
1075 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1076   Instruction *NarrowUse = DU.NarrowUse;
1077   Instruction *NarrowDef = DU.NarrowDef;
1078   Instruction *WideDef = DU.WideDef;
1079 
1080   LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1081 
1082   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1083   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1084   // invariant and will be folded or hoisted. If it actually comes from a
1085   // widened IV, it should be removed during a future call to widenIVUse.
1086   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1087   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1088                    ? WideDef
1089                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1090                                       IsSigned, NarrowUse);
1091   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1092                    ? WideDef
1093                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1094                                       IsSigned, NarrowUse);
1095 
1096   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1097   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1098                                         NarrowBO->getName());
1099   IRBuilder<> Builder(NarrowUse);
1100   Builder.Insert(WideBO);
1101   WideBO->copyIRFlags(NarrowBO);
1102   return WideBO;
1103 }
1104 
1105 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1106                                             const SCEVAddRecExpr *WideAR) {
1107   Instruction *NarrowUse = DU.NarrowUse;
1108   Instruction *NarrowDef = DU.NarrowDef;
1109   Instruction *WideDef = DU.WideDef;
1110 
1111   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1112 
1113   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1114 
1115   // We're trying to find X such that
1116   //
1117   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1118   //
1119   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1120   // and check using SCEV if any of them are correct.
1121 
1122   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1123   // correct solution to X.
1124   auto GuessNonIVOperand = [&](bool SignExt) {
1125     const SCEV *WideLHS;
1126     const SCEV *WideRHS;
1127 
1128     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1129       if (SignExt)
1130         return SE->getSignExtendExpr(S, Ty);
1131       return SE->getZeroExtendExpr(S, Ty);
1132     };
1133 
1134     if (IVOpIdx == 0) {
1135       WideLHS = SE->getSCEV(WideDef);
1136       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1137       WideRHS = GetExtend(NarrowRHS, WideType);
1138     } else {
1139       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1140       WideLHS = GetExtend(NarrowLHS, WideType);
1141       WideRHS = SE->getSCEV(WideDef);
1142     }
1143 
1144     // WideUse is "WideDef `op.wide` X" as described in the comment.
1145     const SCEV *WideUse = nullptr;
1146 
1147     switch (NarrowUse->getOpcode()) {
1148     default:
1149       llvm_unreachable("No other possibility!");
1150 
1151     case Instruction::Add:
1152       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1153       break;
1154 
1155     case Instruction::Mul:
1156       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1157       break;
1158 
1159     case Instruction::UDiv:
1160       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1161       break;
1162 
1163     case Instruction::Sub:
1164       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1165       break;
1166     }
1167 
1168     return WideUse == WideAR;
1169   };
1170 
1171   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1172   if (!GuessNonIVOperand(SignExtend)) {
1173     SignExtend = !SignExtend;
1174     if (!GuessNonIVOperand(SignExtend))
1175       return nullptr;
1176   }
1177 
1178   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1179                    ? WideDef
1180                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1181                                       SignExtend, NarrowUse);
1182   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1183                    ? WideDef
1184                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1185                                       SignExtend, NarrowUse);
1186 
1187   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1188   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1189                                         NarrowBO->getName());
1190 
1191   IRBuilder<> Builder(NarrowUse);
1192   Builder.Insert(WideBO);
1193   WideBO->copyIRFlags(NarrowBO);
1194   return WideBO;
1195 }
1196 
1197 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1198   auto It = ExtendKindMap.find(I);
1199   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1200   return It->second;
1201 }
1202 
1203 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1204                                      unsigned OpCode) const {
1205   if (OpCode == Instruction::Add)
1206     return SE->getAddExpr(LHS, RHS);
1207   if (OpCode == Instruction::Sub)
1208     return SE->getMinusSCEV(LHS, RHS);
1209   if (OpCode == Instruction::Mul)
1210     return SE->getMulExpr(LHS, RHS);
1211 
1212   llvm_unreachable("Unsupported opcode.");
1213 }
1214 
1215 /// No-wrap operations can transfer sign extension of their result to their
1216 /// operands. Generate the SCEV value for the widened operation without
1217 /// actually modifying the IR yet. If the expression after extending the
1218 /// operands is an AddRec for this loop, return the AddRec and the kind of
1219 /// extension used.
1220 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1221   // Handle the common case of add<nsw/nuw>
1222   const unsigned OpCode = DU.NarrowUse->getOpcode();
1223   // Only Add/Sub/Mul instructions supported yet.
1224   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1225       OpCode != Instruction::Mul)
1226     return {nullptr, Unknown};
1227 
1228   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1229   // if extending the other will lead to a recurrence.
1230   const unsigned ExtendOperIdx =
1231       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1232   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1233 
1234   const SCEV *ExtendOperExpr = nullptr;
1235   const OverflowingBinaryOperator *OBO =
1236     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1237   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1238   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1239     ExtendOperExpr = SE->getSignExtendExpr(
1240       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1241   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1242     ExtendOperExpr = SE->getZeroExtendExpr(
1243       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1244   else
1245     return {nullptr, Unknown};
1246 
1247   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1248   // flags. This instruction may be guarded by control flow that the no-wrap
1249   // behavior depends on. Non-control-equivalent instructions can be mapped to
1250   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1251   // semantics to those operations.
1252   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1253   const SCEV *rhs = ExtendOperExpr;
1254 
1255   // Let's swap operands to the initial order for the case of non-commutative
1256   // operations, like SUB. See PR21014.
1257   if (ExtendOperIdx == 0)
1258     std::swap(lhs, rhs);
1259   const SCEVAddRecExpr *AddRec =
1260       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1261 
1262   if (!AddRec || AddRec->getLoop() != L)
1263     return {nullptr, Unknown};
1264 
1265   return {AddRec, ExtKind};
1266 }
1267 
1268 /// Is this instruction potentially interesting for further simplification after
1269 /// widening it's type? In other words, can the extend be safely hoisted out of
1270 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1271 /// so, return the extended recurrence and the kind of extension used. Otherwise
1272 /// return {nullptr, Unknown}.
1273 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1274   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1275     return {nullptr, Unknown};
1276 
1277   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1278   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1279       SE->getTypeSizeInBits(WideType)) {
1280     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1281     // index. So don't follow this use.
1282     return {nullptr, Unknown};
1283   }
1284 
1285   const SCEV *WideExpr;
1286   ExtendKind ExtKind;
1287   if (DU.NeverNegative) {
1288     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1289     if (isa<SCEVAddRecExpr>(WideExpr))
1290       ExtKind = SignExtended;
1291     else {
1292       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1293       ExtKind = ZeroExtended;
1294     }
1295   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1296     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1297     ExtKind = SignExtended;
1298   } else {
1299     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1300     ExtKind = ZeroExtended;
1301   }
1302   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1303   if (!AddRec || AddRec->getLoop() != L)
1304     return {nullptr, Unknown};
1305   return {AddRec, ExtKind};
1306 }
1307 
1308 /// This IV user cannot be widen. Replace this use of the original narrow IV
1309 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1310 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1311   LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user "
1312                     << *DU.NarrowUse << "\n");
1313   IRBuilder<> Builder(
1314       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1315   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1316   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1317 }
1318 
1319 /// If the narrow use is a compare instruction, then widen the compare
1320 //  (and possibly the other operand).  The extend operation is hoisted into the
1321 // loop preheader as far as possible.
1322 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1323   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1324   if (!Cmp)
1325     return false;
1326 
1327   // We can legally widen the comparison in the following two cases:
1328   //
1329   //  - The signedness of the IV extension and comparison match
1330   //
1331   //  - The narrow IV is always positive (and thus its sign extension is equal
1332   //    to its zero extension).  For instance, let's say we're zero extending
1333   //    %narrow for the following use
1334   //
1335   //      icmp slt i32 %narrow, %val   ... (A)
1336   //
1337   //    and %narrow is always positive.  Then
1338   //
1339   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1340   //          == icmp slt i32 zext(%narrow), sext(%val)
1341   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1342   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1343     return false;
1344 
1345   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1346   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1347   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1348   assert(CastWidth <= IVWidth && "Unexpected width while widening compare.");
1349 
1350   // Widen the compare instruction.
1351   IRBuilder<> Builder(
1352       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1353   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1354 
1355   // Widen the other operand of the compare, if necessary.
1356   if (CastWidth < IVWidth) {
1357     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1358     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1359   }
1360   return true;
1361 }
1362 
1363 /// If the narrow use is an instruction whose two operands are the defining
1364 /// instruction of DU and a load instruction, then we have the following:
1365 /// if the load is hoisted outside the loop, then we do not reach this function
1366 /// as scalar evolution analysis works fine in widenIVUse with variables
1367 /// hoisted outside the loop and efficient code is subsequently generated by
1368 /// not emitting truncate instructions. But when the load is not hoisted
1369 /// (whether due to limitation in alias analysis or due to a true legality),
1370 /// then scalar evolution can not proceed with loop variant values and
1371 /// inefficient code is generated. This function handles the non-hoisted load
1372 /// special case by making the optimization generate the same type of code for
1373 /// hoisted and non-hoisted load (widen use and eliminate sign extend
1374 /// instruction). This special case is important especially when the induction
1375 /// variables are affecting addressing mode in code generation.
1376 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) {
1377   Instruction *NarrowUse = DU.NarrowUse;
1378   Instruction *NarrowDef = DU.NarrowDef;
1379   Instruction *WideDef = DU.WideDef;
1380 
1381   // Handle the common case of add<nsw/nuw>
1382   const unsigned OpCode = NarrowUse->getOpcode();
1383   // Only Add/Sub/Mul instructions are supported.
1384   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1385       OpCode != Instruction::Mul)
1386     return false;
1387 
1388   // The operand that is not defined by NarrowDef of DU. Let's call it the
1389   // other operand.
1390   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0;
1391   assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef &&
1392          "bad DU");
1393 
1394   const SCEV *ExtendOperExpr = nullptr;
1395   const OverflowingBinaryOperator *OBO =
1396     cast<OverflowingBinaryOperator>(NarrowUse);
1397   ExtendKind ExtKind = getExtendKind(NarrowDef);
1398   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1399     ExtendOperExpr = SE->getSignExtendExpr(
1400       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1401   else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1402     ExtendOperExpr = SE->getZeroExtendExpr(
1403       SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType);
1404   else
1405     return false;
1406 
1407   // We are interested in the other operand being a load instruction.
1408   // But, we should look into relaxing this restriction later on.
1409   auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx));
1410   if (I && I->getOpcode() != Instruction::Load)
1411     return false;
1412 
1413   // Verifying that Defining operand is an AddRec
1414   const SCEV *Op1 = SE->getSCEV(WideDef);
1415   const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1);
1416   if (!AddRecOp1 || AddRecOp1->getLoop() != L)
1417     return false;
1418   // Verifying that other operand is an Extend.
1419   if (ExtKind == SignExtended) {
1420     if (!isa<SCEVSignExtendExpr>(ExtendOperExpr))
1421       return false;
1422   } else {
1423     if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr))
1424       return false;
1425   }
1426 
1427   if (ExtKind == SignExtended) {
1428     for (Use &U : NarrowUse->uses()) {
1429       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1430       if (!User || User->getType() != WideType)
1431         return false;
1432     }
1433   } else { // ExtKind == ZeroExtended
1434     for (Use &U : NarrowUse->uses()) {
1435       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1436       if (!User || User->getType() != WideType)
1437         return false;
1438     }
1439   }
1440 
1441   return true;
1442 }
1443 
1444 /// Special Case for widening with variant Loads (see
1445 /// WidenIV::widenWithVariantLoadUse). This is the code generation part.
1446 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) {
1447   Instruction *NarrowUse = DU.NarrowUse;
1448   Instruction *NarrowDef = DU.NarrowDef;
1449   Instruction *WideDef = DU.WideDef;
1450 
1451   ExtendKind ExtKind = getExtendKind(NarrowDef);
1452 
1453   LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1454 
1455   // Generating a widening use instruction.
1456   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1457                    ? WideDef
1458                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1459                                       ExtKind, NarrowUse);
1460   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1461                    ? WideDef
1462                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1463                                       ExtKind, NarrowUse);
1464 
1465   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1466   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1467                                         NarrowBO->getName());
1468   IRBuilder<> Builder(NarrowUse);
1469   Builder.Insert(WideBO);
1470   WideBO->copyIRFlags(NarrowBO);
1471 
1472   if (ExtKind == SignExtended)
1473     ExtendKindMap[NarrowUse] = SignExtended;
1474   else
1475     ExtendKindMap[NarrowUse] = ZeroExtended;
1476 
1477   // Update the Use.
1478   if (ExtKind == SignExtended) {
1479     for (Use &U : NarrowUse->uses()) {
1480       SExtInst *User = dyn_cast<SExtInst>(U.getUser());
1481       if (User && User->getType() == WideType) {
1482         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1483                           << *WideBO << "\n");
1484         ++NumElimExt;
1485         User->replaceAllUsesWith(WideBO);
1486         DeadInsts.emplace_back(User);
1487       }
1488     }
1489   } else { // ExtKind == ZeroExtended
1490     for (Use &U : NarrowUse->uses()) {
1491       ZExtInst *User = dyn_cast<ZExtInst>(U.getUser());
1492       if (User && User->getType() == WideType) {
1493         LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by "
1494                           << *WideBO << "\n");
1495         ++NumElimExt;
1496         User->replaceAllUsesWith(WideBO);
1497         DeadInsts.emplace_back(User);
1498       }
1499     }
1500   }
1501 }
1502 
1503 /// Determine whether an individual user of the narrow IV can be widened. If so,
1504 /// return the wide clone of the user.
1505 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1506   assert(ExtendKindMap.count(DU.NarrowDef) &&
1507          "Should already know the kind of extension used to widen NarrowDef");
1508 
1509   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1510   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1511     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1512       // For LCSSA phis, sink the truncate outside the loop.
1513       // After SimplifyCFG most loop exit targets have a single predecessor.
1514       // Otherwise fall back to a truncate within the loop.
1515       if (UsePhi->getNumOperands() != 1)
1516         truncateIVUse(DU, DT, LI);
1517       else {
1518         // Widening the PHI requires us to insert a trunc.  The logical place
1519         // for this trunc is in the same BB as the PHI.  This is not possible if
1520         // the BB is terminated by a catchswitch.
1521         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1522           return nullptr;
1523 
1524         PHINode *WidePhi =
1525           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1526                           UsePhi);
1527         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1528         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1529         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1530         UsePhi->replaceAllUsesWith(Trunc);
1531         DeadInsts.emplace_back(UsePhi);
1532         LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to "
1533                           << *WidePhi << "\n");
1534       }
1535       return nullptr;
1536     }
1537   }
1538 
1539   // This narrow use can be widened by a sext if it's non-negative or its narrow
1540   // def was widended by a sext. Same for zext.
1541   auto canWidenBySExt = [&]() {
1542     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1543   };
1544   auto canWidenByZExt = [&]() {
1545     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1546   };
1547 
1548   // Our raison d'etre! Eliminate sign and zero extension.
1549   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1550       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1551     Value *NewDef = DU.WideDef;
1552     if (DU.NarrowUse->getType() != WideType) {
1553       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1554       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1555       if (CastWidth < IVWidth) {
1556         // The cast isn't as wide as the IV, so insert a Trunc.
1557         IRBuilder<> Builder(DU.NarrowUse);
1558         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1559       }
1560       else {
1561         // A wider extend was hidden behind a narrower one. This may induce
1562         // another round of IV widening in which the intermediate IV becomes
1563         // dead. It should be very rare.
1564         LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1565                           << " not wide enough to subsume " << *DU.NarrowUse
1566                           << "\n");
1567         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1568         NewDef = DU.NarrowUse;
1569       }
1570     }
1571     if (NewDef != DU.NarrowUse) {
1572       LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1573                         << " replaced by " << *DU.WideDef << "\n");
1574       ++NumElimExt;
1575       DU.NarrowUse->replaceAllUsesWith(NewDef);
1576       DeadInsts.emplace_back(DU.NarrowUse);
1577     }
1578     // Now that the extend is gone, we want to expose it's uses for potential
1579     // further simplification. We don't need to directly inform SimplifyIVUsers
1580     // of the new users, because their parent IV will be processed later as a
1581     // new loop phi. If we preserved IVUsers analysis, we would also want to
1582     // push the uses of WideDef here.
1583 
1584     // No further widening is needed. The deceased [sz]ext had done it for us.
1585     return nullptr;
1586   }
1587 
1588   // Does this user itself evaluate to a recurrence after widening?
1589   WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU);
1590   if (!WideAddRec.first)
1591     WideAddRec = getWideRecurrence(DU);
1592 
1593   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1594   if (!WideAddRec.first) {
1595     // If use is a loop condition, try to promote the condition instead of
1596     // truncating the IV first.
1597     if (widenLoopCompare(DU))
1598       return nullptr;
1599 
1600     // We are here about to generate a truncate instruction that may hurt
1601     // performance because the scalar evolution expression computed earlier
1602     // in WideAddRec.first does not indicate a polynomial induction expression.
1603     // In that case, look at the operands of the use instruction to determine
1604     // if we can still widen the use instead of truncating its operand.
1605     if (widenWithVariantLoadUse(DU)) {
1606       widenWithVariantLoadUseCodegen(DU);
1607       return nullptr;
1608     }
1609 
1610     // This user does not evaluate to a recurrence after widening, so don't
1611     // follow it. Instead insert a Trunc to kill off the original use,
1612     // eventually isolating the original narrow IV so it can be removed.
1613     truncateIVUse(DU, DT, LI);
1614     return nullptr;
1615   }
1616   // Assume block terminators cannot evaluate to a recurrence. We can't to
1617   // insert a Trunc after a terminator if there happens to be a critical edge.
1618   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1619          "SCEV is not expected to evaluate a block terminator");
1620 
1621   // Reuse the IV increment that SCEVExpander created as long as it dominates
1622   // NarrowUse.
1623   Instruction *WideUse = nullptr;
1624   if (WideAddRec.first == WideIncExpr &&
1625       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1626     WideUse = WideInc;
1627   else {
1628     WideUse = cloneIVUser(DU, WideAddRec.first);
1629     if (!WideUse)
1630       return nullptr;
1631   }
1632   // Evaluation of WideAddRec ensured that the narrow expression could be
1633   // extended outside the loop without overflow. This suggests that the wide use
1634   // evaluates to the same expression as the extended narrow use, but doesn't
1635   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1636   // where it fails, we simply throw away the newly created wide use.
1637   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1638     LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": "
1639                       << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first
1640                       << "\n");
1641     DeadInsts.emplace_back(WideUse);
1642     return nullptr;
1643   }
1644 
1645   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1646   // Returning WideUse pushes it on the worklist.
1647   return WideUse;
1648 }
1649 
1650 /// Add eligible users of NarrowDef to NarrowIVUsers.
1651 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1652   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1653   bool NonNegativeDef =
1654       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1655                            SE->getConstant(NarrowSCEV->getType(), 0));
1656   for (User *U : NarrowDef->users()) {
1657     Instruction *NarrowUser = cast<Instruction>(U);
1658 
1659     // Handle data flow merges and bizarre phi cycles.
1660     if (!Widened.insert(NarrowUser).second)
1661       continue;
1662 
1663     bool NonNegativeUse = false;
1664     if (!NonNegativeDef) {
1665       // We might have a control-dependent range information for this context.
1666       if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser))
1667         NonNegativeUse = RangeInfo->getSignedMin().isNonNegative();
1668     }
1669 
1670     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef,
1671                                NonNegativeDef || NonNegativeUse);
1672   }
1673 }
1674 
1675 /// Process a single induction variable. First use the SCEVExpander to create a
1676 /// wide induction variable that evaluates to the same recurrence as the
1677 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1678 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1679 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1680 ///
1681 /// It would be simpler to delete uses as they are processed, but we must avoid
1682 /// invalidating SCEV expressions.
1683 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1684   // Is this phi an induction variable?
1685   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1686   if (!AddRec)
1687     return nullptr;
1688 
1689   // Widen the induction variable expression.
1690   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1691                                ? SE->getSignExtendExpr(AddRec, WideType)
1692                                : SE->getZeroExtendExpr(AddRec, WideType);
1693 
1694   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1695          "Expect the new IV expression to preserve its type");
1696 
1697   // Can the IV be extended outside the loop without overflow?
1698   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1699   if (!AddRec || AddRec->getLoop() != L)
1700     return nullptr;
1701 
1702   // An AddRec must have loop-invariant operands. Since this AddRec is
1703   // materialized by a loop header phi, the expression cannot have any post-loop
1704   // operands, so they must dominate the loop header.
1705   assert(
1706       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1707       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1708       "Loop header phi recurrence inputs do not dominate the loop");
1709 
1710   // Iterate over IV uses (including transitive ones) looking for IV increments
1711   // of the form 'add nsw %iv, <const>'. For each increment and each use of
1712   // the increment calculate control-dependent range information basing on
1713   // dominating conditions inside of the loop (e.g. a range check inside of the
1714   // loop). Calculated ranges are stored in PostIncRangeInfos map.
1715   //
1716   // Control-dependent range information is later used to prove that a narrow
1717   // definition is not negative (see pushNarrowIVUsers). It's difficult to do
1718   // this on demand because when pushNarrowIVUsers needs this information some
1719   // of the dominating conditions might be already widened.
1720   if (UsePostIncrementRanges)
1721     calculatePostIncRanges(OrigPhi);
1722 
1723   // The rewriter provides a value for the desired IV expression. This may
1724   // either find an existing phi or materialize a new one. Either way, we
1725   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1726   // of the phi-SCC dominates the loop entry.
1727   Instruction *InsertPt = &L->getHeader()->front();
1728   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1729 
1730   // Remembering the WideIV increment generated by SCEVExpander allows
1731   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1732   // employ a general reuse mechanism because the call above is the only call to
1733   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1734   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1735     WideInc =
1736       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1737     WideIncExpr = SE->getSCEV(WideInc);
1738     // Propagate the debug location associated with the original loop increment
1739     // to the new (widened) increment.
1740     auto *OrigInc =
1741       cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1742     WideInc->setDebugLoc(OrigInc->getDebugLoc());
1743   }
1744 
1745   LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1746   ++NumWidened;
1747 
1748   // Traverse the def-use chain using a worklist starting at the original IV.
1749   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1750 
1751   Widened.insert(OrigPhi);
1752   pushNarrowIVUsers(OrigPhi, WidePhi);
1753 
1754   while (!NarrowIVUsers.empty()) {
1755     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1756 
1757     // Process a def-use edge. This may replace the use, so don't hold a
1758     // use_iterator across it.
1759     Instruction *WideUse = widenIVUse(DU, Rewriter);
1760 
1761     // Follow all def-use edges from the previous narrow use.
1762     if (WideUse)
1763       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1764 
1765     // widenIVUse may have removed the def-use edge.
1766     if (DU.NarrowDef->use_empty())
1767       DeadInsts.emplace_back(DU.NarrowDef);
1768   }
1769 
1770   // Attach any debug information to the new PHI. Since OrigPhi and WidePHI
1771   // evaluate the same recurrence, we can just copy the debug info over.
1772   SmallVector<DbgValueInst *, 1> DbgValues;
1773   llvm::findDbgValues(DbgValues, OrigPhi);
1774   auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(),
1775                                      ValueAsMetadata::get(WidePhi));
1776   for (auto &DbgValue : DbgValues)
1777     DbgValue->setOperand(0, MDPhi);
1778   return WidePhi;
1779 }
1780 
1781 /// Calculates control-dependent range for the given def at the given context
1782 /// by looking at dominating conditions inside of the loop
1783 void WidenIV::calculatePostIncRange(Instruction *NarrowDef,
1784                                     Instruction *NarrowUser) {
1785   using namespace llvm::PatternMatch;
1786 
1787   Value *NarrowDefLHS;
1788   const APInt *NarrowDefRHS;
1789   if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS),
1790                                  m_APInt(NarrowDefRHS))) ||
1791       !NarrowDefRHS->isNonNegative())
1792     return;
1793 
1794   auto UpdateRangeFromCondition = [&] (Value *Condition,
1795                                        bool TrueDest) {
1796     CmpInst::Predicate Pred;
1797     Value *CmpRHS;
1798     if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS),
1799                                  m_Value(CmpRHS))))
1800       return;
1801 
1802     CmpInst::Predicate P =
1803             TrueDest ? Pred : CmpInst::getInversePredicate(Pred);
1804 
1805     auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS));
1806     auto CmpConstrainedLHSRange =
1807             ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange);
1808     auto NarrowDefRange =
1809             CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS);
1810 
1811     updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange);
1812   };
1813 
1814   auto UpdateRangeFromGuards = [&](Instruction *Ctx) {
1815     if (!HasGuards)
1816       return;
1817 
1818     for (Instruction &I : make_range(Ctx->getIterator().getReverse(),
1819                                      Ctx->getParent()->rend())) {
1820       Value *C = nullptr;
1821       if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C))))
1822         UpdateRangeFromCondition(C, /*TrueDest=*/true);
1823     }
1824   };
1825 
1826   UpdateRangeFromGuards(NarrowUser);
1827 
1828   BasicBlock *NarrowUserBB = NarrowUser->getParent();
1829   // If NarrowUserBB is statically unreachable asking dominator queries may
1830   // yield surprising results. (e.g. the block may not have a dom tree node)
1831   if (!DT->isReachableFromEntry(NarrowUserBB))
1832     return;
1833 
1834   for (auto *DTB = (*DT)[NarrowUserBB]->getIDom();
1835        L->contains(DTB->getBlock());
1836        DTB = DTB->getIDom()) {
1837     auto *BB = DTB->getBlock();
1838     auto *TI = BB->getTerminator();
1839     UpdateRangeFromGuards(TI);
1840 
1841     auto *BI = dyn_cast<BranchInst>(TI);
1842     if (!BI || !BI->isConditional())
1843       continue;
1844 
1845     auto *TrueSuccessor = BI->getSuccessor(0);
1846     auto *FalseSuccessor = BI->getSuccessor(1);
1847 
1848     auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) {
1849       return BBE.isSingleEdge() &&
1850              DT->dominates(BBE, NarrowUser->getParent());
1851     };
1852 
1853     if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor)))
1854       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true);
1855 
1856     if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor)))
1857       UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false);
1858   }
1859 }
1860 
1861 /// Calculates PostIncRangeInfos map for the given IV
1862 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) {
1863   SmallPtrSet<Instruction *, 16> Visited;
1864   SmallVector<Instruction *, 6> Worklist;
1865   Worklist.push_back(OrigPhi);
1866   Visited.insert(OrigPhi);
1867 
1868   while (!Worklist.empty()) {
1869     Instruction *NarrowDef = Worklist.pop_back_val();
1870 
1871     for (Use &U : NarrowDef->uses()) {
1872       auto *NarrowUser = cast<Instruction>(U.getUser());
1873 
1874       // Don't go looking outside the current loop.
1875       auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()];
1876       if (!NarrowUserLoop || !L->contains(NarrowUserLoop))
1877         continue;
1878 
1879       if (!Visited.insert(NarrowUser).second)
1880         continue;
1881 
1882       Worklist.push_back(NarrowUser);
1883 
1884       calculatePostIncRange(NarrowDef, NarrowUser);
1885     }
1886   }
1887 }
1888 
1889 //===----------------------------------------------------------------------===//
1890 //  Live IV Reduction - Minimize IVs live across the loop.
1891 //===----------------------------------------------------------------------===//
1892 
1893 //===----------------------------------------------------------------------===//
1894 //  Simplification of IV users based on SCEV evaluation.
1895 //===----------------------------------------------------------------------===//
1896 
1897 namespace {
1898 
1899 class IndVarSimplifyVisitor : public IVVisitor {
1900   ScalarEvolution *SE;
1901   const TargetTransformInfo *TTI;
1902   PHINode *IVPhi;
1903 
1904 public:
1905   WideIVInfo WI;
1906 
1907   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1908                         const TargetTransformInfo *TTI,
1909                         const DominatorTree *DTree)
1910     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1911     DT = DTree;
1912     WI.NarrowIV = IVPhi;
1913   }
1914 
1915   // Implement the interface used by simplifyUsersOfIV.
1916   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1917 };
1918 
1919 } // end anonymous namespace
1920 
1921 /// Iteratively perform simplification on a worklist of IV users. Each
1922 /// successive simplification may push more users which may themselves be
1923 /// candidates for simplification.
1924 ///
1925 /// Sign/Zero extend elimination is interleaved with IV simplification.
1926 bool IndVarSimplify::simplifyAndExtend(Loop *L,
1927                                        SCEVExpander &Rewriter,
1928                                        LoopInfo *LI) {
1929   SmallVector<WideIVInfo, 8> WideIVs;
1930 
1931   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
1932           Intrinsic::getName(Intrinsic::experimental_guard));
1933   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
1934 
1935   SmallVector<PHINode*, 8> LoopPhis;
1936   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1937     LoopPhis.push_back(cast<PHINode>(I));
1938   }
1939   // Each round of simplification iterates through the SimplifyIVUsers worklist
1940   // for all current phis, then determines whether any IVs can be
1941   // widened. Widening adds new phis to LoopPhis, inducing another round of
1942   // simplification on the wide IVs.
1943   bool Changed = false;
1944   while (!LoopPhis.empty()) {
1945     // Evaluate as many IV expressions as possible before widening any IVs. This
1946     // forces SCEV to set no-wrap flags before evaluating sign/zero
1947     // extension. The first time SCEV attempts to normalize sign/zero extension,
1948     // the result becomes final. So for the most predictable results, we delay
1949     // evaluation of sign/zero extend evaluation until needed, and avoid running
1950     // other SCEV based analysis prior to simplifyAndExtend.
1951     do {
1952       PHINode *CurrIV = LoopPhis.pop_back_val();
1953 
1954       // Information about sign/zero extensions of CurrIV.
1955       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1956 
1957       Changed |=
1958           simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor);
1959 
1960       if (Visitor.WI.WidestNativeType) {
1961         WideIVs.push_back(Visitor.WI);
1962       }
1963     } while(!LoopPhis.empty());
1964 
1965     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1966       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards);
1967       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1968         Changed = true;
1969         LoopPhis.push_back(WidePhi);
1970       }
1971     }
1972   }
1973   return Changed;
1974 }
1975 
1976 //===----------------------------------------------------------------------===//
1977 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1978 //===----------------------------------------------------------------------===//
1979 
1980 /// Return true if this loop's backedge taken count expression can be safely and
1981 /// cheaply expanded into an instruction sequence that can be used by
1982 /// linearFunctionTestReplace.
1983 ///
1984 /// TODO: This fails for pointer-type loop counters with greater than one byte
1985 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1986 /// we could skip this check in the case that the LFTR loop counter (chosen by
1987 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1988 /// the loop test to an inequality test by checking the target data's alignment
1989 /// of element types (given that the initial pointer value originates from or is
1990 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1991 /// However, we don't yet have a strong motivation for converting loop tests
1992 /// into inequality tests.
1993 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1994                                         SCEVExpander &Rewriter) {
1995   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1996   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1997       BackedgeTakenCount->isZero())
1998     return false;
1999 
2000   if (!L->getExitingBlock())
2001     return false;
2002 
2003   // Can't rewrite non-branch yet.
2004   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
2005     return false;
2006 
2007   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
2008     return false;
2009 
2010   return true;
2011 }
2012 
2013 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
2014 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
2015   Instruction *IncI = dyn_cast<Instruction>(IncV);
2016   if (!IncI)
2017     return nullptr;
2018 
2019   switch (IncI->getOpcode()) {
2020   case Instruction::Add:
2021   case Instruction::Sub:
2022     break;
2023   case Instruction::GetElementPtr:
2024     // An IV counter must preserve its type.
2025     if (IncI->getNumOperands() == 2)
2026       break;
2027     LLVM_FALLTHROUGH;
2028   default:
2029     return nullptr;
2030   }
2031 
2032   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
2033   if (Phi && Phi->getParent() == L->getHeader()) {
2034     if (isLoopInvariant(IncI->getOperand(1), L, DT))
2035       return Phi;
2036     return nullptr;
2037   }
2038   if (IncI->getOpcode() == Instruction::GetElementPtr)
2039     return nullptr;
2040 
2041   // Allow add/sub to be commuted.
2042   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
2043   if (Phi && Phi->getParent() == L->getHeader()) {
2044     if (isLoopInvariant(IncI->getOperand(0), L, DT))
2045       return Phi;
2046   }
2047   return nullptr;
2048 }
2049 
2050 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
2051 static ICmpInst *getLoopTest(Loop *L) {
2052   assert(L->getExitingBlock() && "expected loop exit");
2053 
2054   BasicBlock *LatchBlock = L->getLoopLatch();
2055   // Don't bother with LFTR if the loop is not properly simplified.
2056   if (!LatchBlock)
2057     return nullptr;
2058 
2059   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
2060   assert(BI && "expected exit branch");
2061 
2062   return dyn_cast<ICmpInst>(BI->getCondition());
2063 }
2064 
2065 /// linearFunctionTestReplace policy. Return true unless we can show that the
2066 /// current exit test is already sufficiently canonical.
2067 static bool needsLFTR(Loop *L, DominatorTree *DT) {
2068   // Do LFTR to simplify the exit condition to an ICMP.
2069   ICmpInst *Cond = getLoopTest(L);
2070   if (!Cond)
2071     return true;
2072 
2073   // Do LFTR to simplify the exit ICMP to EQ/NE
2074   ICmpInst::Predicate Pred = Cond->getPredicate();
2075   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
2076     return true;
2077 
2078   // Look for a loop invariant RHS
2079   Value *LHS = Cond->getOperand(0);
2080   Value *RHS = Cond->getOperand(1);
2081   if (!isLoopInvariant(RHS, L, DT)) {
2082     if (!isLoopInvariant(LHS, L, DT))
2083       return true;
2084     std::swap(LHS, RHS);
2085   }
2086   // Look for a simple IV counter LHS
2087   PHINode *Phi = dyn_cast<PHINode>(LHS);
2088   if (!Phi)
2089     Phi = getLoopPhiForCounter(LHS, L, DT);
2090 
2091   if (!Phi)
2092     return true;
2093 
2094   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
2095   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
2096   if (Idx < 0)
2097     return true;
2098 
2099   // Do LFTR if the exit condition's IV is *not* a simple counter.
2100   Value *IncV = Phi->getIncomingValue(Idx);
2101   return Phi != getLoopPhiForCounter(IncV, L, DT);
2102 }
2103 
2104 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
2105 /// down to checking that all operands are constant and listing instructions
2106 /// that may hide undef.
2107 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
2108                                unsigned Depth) {
2109   if (isa<Constant>(V))
2110     return !isa<UndefValue>(V);
2111 
2112   if (Depth >= 6)
2113     return false;
2114 
2115   // Conservatively handle non-constant non-instructions. For example, Arguments
2116   // may be undef.
2117   Instruction *I = dyn_cast<Instruction>(V);
2118   if (!I)
2119     return false;
2120 
2121   // Load and return values may be undef.
2122   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
2123     return false;
2124 
2125   // Optimistically handle other instructions.
2126   for (Value *Op : I->operands()) {
2127     if (!Visited.insert(Op).second)
2128       continue;
2129     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
2130       return false;
2131   }
2132   return true;
2133 }
2134 
2135 /// Return true if the given value is concrete. We must prove that undef can
2136 /// never reach it.
2137 ///
2138 /// TODO: If we decide that this is a good approach to checking for undef, we
2139 /// may factor it into a common location.
2140 static bool hasConcreteDef(Value *V) {
2141   SmallPtrSet<Value*, 8> Visited;
2142   Visited.insert(V);
2143   return hasConcreteDefImpl(V, Visited, 0);
2144 }
2145 
2146 /// Return true if this IV has any uses other than the (soon to be rewritten)
2147 /// loop exit test.
2148 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
2149   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2150   Value *IncV = Phi->getIncomingValue(LatchIdx);
2151 
2152   for (User *U : Phi->users())
2153     if (U != Cond && U != IncV) return false;
2154 
2155   for (User *U : IncV->users())
2156     if (U != Cond && U != Phi) return false;
2157   return true;
2158 }
2159 
2160 /// Find an affine IV in canonical form.
2161 ///
2162 /// BECount may be an i8* pointer type. The pointer difference is already
2163 /// valid count without scaling the address stride, so it remains a pointer
2164 /// expression as far as SCEV is concerned.
2165 ///
2166 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
2167 ///
2168 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
2169 ///
2170 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
2171 /// This is difficult in general for SCEV because of potential overflow. But we
2172 /// could at least handle constant BECounts.
2173 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
2174                                 ScalarEvolution *SE, DominatorTree *DT) {
2175   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
2176 
2177   Value *Cond =
2178     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
2179 
2180   // Loop over all of the PHI nodes, looking for a simple counter.
2181   PHINode *BestPhi = nullptr;
2182   const SCEV *BestInit = nullptr;
2183   BasicBlock *LatchBlock = L->getLoopLatch();
2184   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
2185   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2186 
2187   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
2188     PHINode *Phi = cast<PHINode>(I);
2189     if (!SE->isSCEVable(Phi->getType()))
2190       continue;
2191 
2192     // Avoid comparing an integer IV against a pointer Limit.
2193     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
2194       continue;
2195 
2196     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
2197     if (!AR || AR->getLoop() != L || !AR->isAffine())
2198       continue;
2199 
2200     // AR may be a pointer type, while BECount is an integer type.
2201     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
2202     // AR may not be a narrower type, or we may never exit.
2203     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
2204     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
2205       continue;
2206 
2207     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
2208     if (!Step || !Step->isOne())
2209       continue;
2210 
2211     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
2212     Value *IncV = Phi->getIncomingValue(LatchIdx);
2213     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
2214       continue;
2215 
2216     // Avoid reusing a potentially undef value to compute other values that may
2217     // have originally had a concrete definition.
2218     if (!hasConcreteDef(Phi)) {
2219       // We explicitly allow unknown phis as long as they are already used by
2220       // the loop test. In this case we assume that performing LFTR could not
2221       // increase the number of undef users.
2222       if (ICmpInst *Cond = getLoopTest(L)) {
2223         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) &&
2224             Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
2225           continue;
2226         }
2227       }
2228     }
2229     const SCEV *Init = AR->getStart();
2230 
2231     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
2232       // Don't force a live loop counter if another IV can be used.
2233       if (AlmostDeadIV(Phi, LatchBlock, Cond))
2234         continue;
2235 
2236       // Prefer to count-from-zero. This is a more "canonical" counter form. It
2237       // also prefers integer to pointer IVs.
2238       if (BestInit->isZero() != Init->isZero()) {
2239         if (BestInit->isZero())
2240           continue;
2241       }
2242       // If two IVs both count from zero or both count from nonzero then the
2243       // narrower is likely a dead phi that has been widened. Use the wider phi
2244       // to allow the other to be eliminated.
2245       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
2246         continue;
2247     }
2248     BestPhi = Phi;
2249     BestInit = Init;
2250   }
2251   return BestPhi;
2252 }
2253 
2254 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
2255 /// the new loop test.
2256 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
2257                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
2258   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2259   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
2260   const SCEV *IVInit = AR->getStart();
2261 
2262   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
2263   // finds a valid pointer IV. Sign extend BECount in order to materialize a
2264   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
2265   // the existing GEPs whenever possible.
2266   if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
2267     // IVOffset will be the new GEP offset that is interpreted by GEP as a
2268     // signed value. IVCount on the other hand represents the loop trip count,
2269     // which is an unsigned value. FindLoopCounter only allows induction
2270     // variables that have a positive unit stride of one. This means we don't
2271     // have to handle the case of negative offsets (yet) and just need to zero
2272     // extend IVCount.
2273     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
2274     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
2275 
2276     // Expand the code for the iteration count.
2277     assert(SE->isLoopInvariant(IVOffset, L) &&
2278            "Computed iteration count is not loop invariant!");
2279     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2280     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
2281 
2282     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
2283     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
2284     // We could handle pointer IVs other than i8*, but we need to compensate for
2285     // gep index scaling. See canExpandBackedgeTakenCount comments.
2286     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
2287                              cast<PointerType>(GEPBase->getType())
2288                                  ->getElementType())->isOne() &&
2289            "unit stride pointer IV must be i8*");
2290 
2291     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
2292     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
2293   } else {
2294     // In any other case, convert both IVInit and IVCount to integers before
2295     // comparing. This may result in SCEV expansion of pointers, but in practice
2296     // SCEV will fold the pointer arithmetic away as such:
2297     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
2298     //
2299     // Valid Cases: (1) both integers is most common; (2) both may be pointers
2300     // for simple memset-style loops.
2301     //
2302     // IVInit integer and IVCount pointer would only occur if a canonical IV
2303     // were generated on top of case #2, which is not expected.
2304 
2305     const SCEV *IVLimit = nullptr;
2306     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
2307     // For non-zero Start, compute IVCount here.
2308     if (AR->getStart()->isZero())
2309       IVLimit = IVCount;
2310     else {
2311       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
2312       const SCEV *IVInit = AR->getStart();
2313 
2314       // For integer IVs, truncate the IV before computing IVInit + BECount.
2315       if (SE->getTypeSizeInBits(IVInit->getType())
2316           > SE->getTypeSizeInBits(IVCount->getType()))
2317         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
2318 
2319       IVLimit = SE->getAddExpr(IVInit, IVCount);
2320     }
2321     // Expand the code for the iteration count.
2322     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2323     IRBuilder<> Builder(BI);
2324     assert(SE->isLoopInvariant(IVLimit, L) &&
2325            "Computed iteration count is not loop invariant!");
2326     // Ensure that we generate the same type as IndVar, or a smaller integer
2327     // type. In the presence of null pointer values, we have an integer type
2328     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
2329     Type *LimitTy = IVCount->getType()->isPointerTy() ?
2330       IndVar->getType() : IVCount->getType();
2331     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
2332   }
2333 }
2334 
2335 /// This method rewrites the exit condition of the loop to be a canonical !=
2336 /// comparison against the incremented loop induction variable.  This pass is
2337 /// able to rewrite the exit tests of any loop where the SCEV analysis can
2338 /// determine a loop-invariant trip count of the loop, which is actually a much
2339 /// broader range than just linear tests.
2340 bool IndVarSimplify::
2341 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
2342                           PHINode *IndVar, SCEVExpander &Rewriter) {
2343   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
2344 
2345   // Initialize CmpIndVar and IVCount to their preincremented values.
2346   Value *CmpIndVar = IndVar;
2347   const SCEV *IVCount = BackedgeTakenCount;
2348 
2349   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
2350 
2351   // If the exiting block is the same as the backedge block, we prefer to
2352   // compare against the post-incremented value, otherwise we must compare
2353   // against the preincremented value.
2354   if (L->getExitingBlock() == L->getLoopLatch()) {
2355     // Add one to the "backedge-taken" count to get the trip count.
2356     // This addition may overflow, which is valid as long as the comparison is
2357     // truncated to BackedgeTakenCount->getType().
2358     IVCount = SE->getAddExpr(BackedgeTakenCount,
2359                              SE->getOne(BackedgeTakenCount->getType()));
2360     // The BackedgeTaken expression contains the number of times that the
2361     // backedge branches to the loop header.  This is one less than the
2362     // number of times the loop executes, so use the incremented indvar.
2363     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
2364   }
2365 
2366   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
2367   assert(ExitCnt->getType()->isPointerTy() ==
2368              IndVar->getType()->isPointerTy() &&
2369          "genLoopLimit missed a cast");
2370 
2371   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2372   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2373   ICmpInst::Predicate P;
2374   if (L->contains(BI->getSuccessor(0)))
2375     P = ICmpInst::ICMP_NE;
2376   else
2377     P = ICmpInst::ICMP_EQ;
2378 
2379   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2380                     << "      LHS:" << *CmpIndVar << '\n'
2381                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
2382                     << "\n"
2383                     << "      RHS:\t" << *ExitCnt << "\n"
2384                     << "  IVCount:\t" << *IVCount << "\n");
2385 
2386   IRBuilder<> Builder(BI);
2387 
2388   // The new loop exit condition should reuse the debug location of the
2389   // original loop exit condition.
2390   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
2391     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
2392 
2393   // LFTR can ignore IV overflow and truncate to the width of
2394   // BECount. This avoids materializing the add(zext(add)) expression.
2395   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2396   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2397   if (CmpIndVarSize > ExitCntSize) {
2398     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2399     const SCEV *ARStart = AR->getStart();
2400     const SCEV *ARStep = AR->getStepRecurrence(*SE);
2401     // For constant IVCount, avoid truncation.
2402     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2403       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2404       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2405       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2406       // above such that IVCount is now zero.
2407       if (IVCount != BackedgeTakenCount && Count == 0) {
2408         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2409         ++Count;
2410       }
2411       else
2412         Count = Count.zext(CmpIndVarSize);
2413       APInt NewLimit;
2414       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2415         NewLimit = Start - Count;
2416       else
2417         NewLimit = Start + Count;
2418       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2419 
2420       LLVM_DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2421     } else {
2422       // We try to extend trip count first. If that doesn't work we truncate IV.
2423       // Zext(trunc(IV)) == IV implies equivalence of the following two:
2424       // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2425       // one of the two holds, extend the trip count, otherwise we truncate IV.
2426       bool Extended = false;
2427       const SCEV *IV = SE->getSCEV(CmpIndVar);
2428       const SCEV *ZExtTrunc =
2429            SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2430                                                      ExitCnt->getType()),
2431                                  CmpIndVar->getType());
2432 
2433       if (ZExtTrunc == IV) {
2434         Extended = true;
2435         ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2436                                      "wide.trip.count");
2437       } else {
2438         const SCEV *SExtTrunc =
2439           SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2440                                                     ExitCnt->getType()),
2441                                 CmpIndVar->getType());
2442         if (SExtTrunc == IV) {
2443           Extended = true;
2444           ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2445                                        "wide.trip.count");
2446         }
2447       }
2448 
2449       if (!Extended)
2450         CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2451                                         "lftr.wideiv");
2452     }
2453   }
2454   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2455   Value *OrigCond = BI->getCondition();
2456   // It's tempting to use replaceAllUsesWith here to fully replace the old
2457   // comparison, but that's not immediately safe, since users of the old
2458   // comparison may not be dominated by the new comparison. Instead, just
2459   // update the branch to use the new comparison; in the common case this
2460   // will make old comparison dead.
2461   BI->setCondition(Cond);
2462   DeadInsts.push_back(OrigCond);
2463 
2464   ++NumLFTR;
2465   return true;
2466 }
2467 
2468 //===----------------------------------------------------------------------===//
2469 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2470 //===----------------------------------------------------------------------===//
2471 
2472 /// If there's a single exit block, sink any loop-invariant values that
2473 /// were defined in the preheader but not used inside the loop into the
2474 /// exit block to reduce register pressure in the loop.
2475 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2476   BasicBlock *ExitBlock = L->getExitBlock();
2477   if (!ExitBlock) return false;
2478 
2479   BasicBlock *Preheader = L->getLoopPreheader();
2480   if (!Preheader) return false;
2481 
2482   bool MadeAnyChanges = false;
2483   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2484   BasicBlock::iterator I(Preheader->getTerminator());
2485   while (I != Preheader->begin()) {
2486     --I;
2487     // New instructions were inserted at the end of the preheader.
2488     if (isa<PHINode>(I))
2489       break;
2490 
2491     // Don't move instructions which might have side effects, since the side
2492     // effects need to complete before instructions inside the loop.  Also don't
2493     // move instructions which might read memory, since the loop may modify
2494     // memory. Note that it's okay if the instruction might have undefined
2495     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2496     // block.
2497     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2498       continue;
2499 
2500     // Skip debug info intrinsics.
2501     if (isa<DbgInfoIntrinsic>(I))
2502       continue;
2503 
2504     // Skip eh pad instructions.
2505     if (I->isEHPad())
2506       continue;
2507 
2508     // Don't sink alloca: we never want to sink static alloca's out of the
2509     // entry block, and correctly sinking dynamic alloca's requires
2510     // checks for stacksave/stackrestore intrinsics.
2511     // FIXME: Refactor this check somehow?
2512     if (isa<AllocaInst>(I))
2513       continue;
2514 
2515     // Determine if there is a use in or before the loop (direct or
2516     // otherwise).
2517     bool UsedInLoop = false;
2518     for (Use &U : I->uses()) {
2519       Instruction *User = cast<Instruction>(U.getUser());
2520       BasicBlock *UseBB = User->getParent();
2521       if (PHINode *P = dyn_cast<PHINode>(User)) {
2522         unsigned i =
2523           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2524         UseBB = P->getIncomingBlock(i);
2525       }
2526       if (UseBB == Preheader || L->contains(UseBB)) {
2527         UsedInLoop = true;
2528         break;
2529       }
2530     }
2531 
2532     // If there is, the def must remain in the preheader.
2533     if (UsedInLoop)
2534       continue;
2535 
2536     // Otherwise, sink it to the exit block.
2537     Instruction *ToMove = &*I;
2538     bool Done = false;
2539 
2540     if (I != Preheader->begin()) {
2541       // Skip debug info intrinsics.
2542       do {
2543         --I;
2544       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2545 
2546       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2547         Done = true;
2548     } else {
2549       Done = true;
2550     }
2551 
2552     MadeAnyChanges = true;
2553     ToMove->moveBefore(*ExitBlock, InsertPt);
2554     if (Done) break;
2555     InsertPt = ToMove->getIterator();
2556   }
2557 
2558   return MadeAnyChanges;
2559 }
2560 
2561 //===----------------------------------------------------------------------===//
2562 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2563 //===----------------------------------------------------------------------===//
2564 
2565 bool IndVarSimplify::run(Loop *L) {
2566   // We need (and expect!) the incoming loop to be in LCSSA.
2567   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2568          "LCSSA required to run indvars!");
2569   bool Changed = false;
2570 
2571   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2572   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2573   //    canonicalization can be a pessimization without LSR to "clean up"
2574   //    afterwards.
2575   //  - We depend on having a preheader; in particular,
2576   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2577   //    and we're in trouble if we can't find the induction variable even when
2578   //    we've manually inserted one.
2579   //  - LFTR relies on having a single backedge.
2580   if (!L->isLoopSimplifyForm())
2581     return false;
2582 
2583   // If there are any floating-point recurrences, attempt to
2584   // transform them to use integer recurrences.
2585   Changed |= rewriteNonIntegerIVs(L);
2586 
2587   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2588 
2589   // Create a rewriter object which we'll use to transform the code with.
2590   SCEVExpander Rewriter(*SE, DL, "indvars");
2591 #ifndef NDEBUG
2592   Rewriter.setDebugType(DEBUG_TYPE);
2593 #endif
2594 
2595   // Eliminate redundant IV users.
2596   //
2597   // Simplification works best when run before other consumers of SCEV. We
2598   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2599   // other expressions involving loop IVs have been evaluated. This helps SCEV
2600   // set no-wrap flags before normalizing sign/zero extension.
2601   Rewriter.disableCanonicalMode();
2602   Changed |= simplifyAndExtend(L, Rewriter, LI);
2603 
2604   // Check to see if this loop has a computable loop-invariant execution count.
2605   // If so, this means that we can compute the final value of any expressions
2606   // that are recurrent in the loop, and substitute the exit values from the
2607   // loop into any instructions outside of the loop that use the final values of
2608   // the current expressions.
2609   //
2610   if (ReplaceExitValue != NeverRepl &&
2611       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2612     Changed |= rewriteLoopExitValues(L, Rewriter);
2613 
2614   // Eliminate redundant IV cycles.
2615   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2616 
2617   // If we have a trip count expression, rewrite the loop's exit condition
2618   // using it.  We can currently only handle loops with a single exit.
2619   if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) &&
2620       needsLFTR(L, DT)) {
2621     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2622     if (IndVar) {
2623       // Check preconditions for proper SCEVExpander operation. SCEV does not
2624       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2625       // pass that uses the SCEVExpander must do it. This does not work well for
2626       // loop passes because SCEVExpander makes assumptions about all loops,
2627       // while LoopPassManager only forces the current loop to be simplified.
2628       //
2629       // FIXME: SCEV expansion has no way to bail out, so the caller must
2630       // explicitly check any assumptions made by SCEV. Brittle.
2631       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2632       if (!AR || AR->getLoop()->getLoopPreheader())
2633         Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2634                                              Rewriter);
2635     }
2636   }
2637   // Clear the rewriter cache, because values that are in the rewriter's cache
2638   // can be deleted in the loop below, causing the AssertingVH in the cache to
2639   // trigger.
2640   Rewriter.clear();
2641 
2642   // Now that we're done iterating through lists, clean up any instructions
2643   // which are now dead.
2644   while (!DeadInsts.empty())
2645     if (Instruction *Inst =
2646             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2647       Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2648 
2649   // The Rewriter may not be used from this point on.
2650 
2651   // Loop-invariant instructions in the preheader that aren't used in the
2652   // loop may be sunk below the loop to reduce register pressure.
2653   Changed |= sinkUnusedInvariants(L);
2654 
2655   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2656   // trip count and therefore can further simplify exit values in addition to
2657   // rewriteLoopExitValues.
2658   Changed |= rewriteFirstIterationLoopExitValues(L);
2659 
2660   // Clean up dead instructions.
2661   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2662 
2663   // Check a post-condition.
2664   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2665          "Indvars did not preserve LCSSA!");
2666 
2667   // Verify that LFTR, and any other change have not interfered with SCEV's
2668   // ability to compute trip count.
2669 #ifndef NDEBUG
2670   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2671     SE->forgetLoop(L);
2672     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2673     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2674         SE->getTypeSizeInBits(NewBECount->getType()))
2675       NewBECount = SE->getTruncateOrNoop(NewBECount,
2676                                          BackedgeTakenCount->getType());
2677     else
2678       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2679                                                  NewBECount->getType());
2680     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2681   }
2682 #endif
2683 
2684   return Changed;
2685 }
2686 
2687 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
2688                                           LoopStandardAnalysisResults &AR,
2689                                           LPMUpdater &) {
2690   Function *F = L.getHeader()->getParent();
2691   const DataLayout &DL = F->getParent()->getDataLayout();
2692 
2693   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI);
2694   if (!IVS.run(&L))
2695     return PreservedAnalyses::all();
2696 
2697   auto PA = getLoopPassPreservedAnalyses();
2698   PA.preserveSet<CFGAnalyses>();
2699   return PA;
2700 }
2701 
2702 namespace {
2703 
2704 struct IndVarSimplifyLegacyPass : public LoopPass {
2705   static char ID; // Pass identification, replacement for typeid
2706 
2707   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2708     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2709   }
2710 
2711   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2712     if (skipLoop(L))
2713       return false;
2714 
2715     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2716     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2717     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2718     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2719     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2720     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2721     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2722     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2723 
2724     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2725     return IVS.run(L);
2726   }
2727 
2728   void getAnalysisUsage(AnalysisUsage &AU) const override {
2729     AU.setPreservesCFG();
2730     getLoopAnalysisUsage(AU);
2731   }
2732 };
2733 
2734 } // end anonymous namespace
2735 
2736 char IndVarSimplifyLegacyPass::ID = 0;
2737 
2738 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2739                       "Induction Variable Simplification", false, false)
2740 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2741 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2742                     "Induction Variable Simplification", false, false)
2743 
2744 Pass *llvm::createIndVarSimplifyPass() {
2745   return new IndVarSimplifyLegacyPass();
2746 }
2747