1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar/IndVarSimplify.h" 28 #include "llvm/ADT/APFloat.h" 29 #include "llvm/ADT/APInt.h" 30 #include "llvm/ADT/ArrayRef.h" 31 #include "llvm/ADT/DenseMap.h" 32 #include "llvm/ADT/None.h" 33 #include "llvm/ADT/Optional.h" 34 #include "llvm/ADT/STLExtras.h" 35 #include "llvm/ADT/SmallPtrSet.h" 36 #include "llvm/ADT/SmallVector.h" 37 #include "llvm/ADT/Statistic.h" 38 #include "llvm/ADT/iterator_range.h" 39 #include "llvm/Analysis/LoopInfo.h" 40 #include "llvm/Analysis/LoopPass.h" 41 #include "llvm/Analysis/ScalarEvolution.h" 42 #include "llvm/Analysis/ScalarEvolutionExpander.h" 43 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 44 #include "llvm/Analysis/TargetLibraryInfo.h" 45 #include "llvm/Analysis/TargetTransformInfo.h" 46 #include "llvm/Transforms/Utils/Local.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/Constant.h" 49 #include "llvm/IR/ConstantRange.h" 50 #include "llvm/IR/Constants.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/DerivedTypes.h" 53 #include "llvm/IR/Dominators.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/IRBuilder.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Intrinsics.h" 61 #include "llvm/IR/Module.h" 62 #include "llvm/IR/Operator.h" 63 #include "llvm/IR/PassManager.h" 64 #include "llvm/IR/PatternMatch.h" 65 #include "llvm/IR/Type.h" 66 #include "llvm/IR/Use.h" 67 #include "llvm/IR/User.h" 68 #include "llvm/IR/Value.h" 69 #include "llvm/IR/ValueHandle.h" 70 #include "llvm/Pass.h" 71 #include "llvm/Support/Casting.h" 72 #include "llvm/Support/CommandLine.h" 73 #include "llvm/Support/Compiler.h" 74 #include "llvm/Support/Debug.h" 75 #include "llvm/Support/ErrorHandling.h" 76 #include "llvm/Support/MathExtras.h" 77 #include "llvm/Support/raw_ostream.h" 78 #include "llvm/Transforms/Scalar.h" 79 #include "llvm/Transforms/Scalar/LoopPassManager.h" 80 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 81 #include "llvm/Transforms/Utils/LoopUtils.h" 82 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 83 #include <cassert> 84 #include <cstdint> 85 #include <utility> 86 87 using namespace llvm; 88 89 #define DEBUG_TYPE "indvars" 90 91 STATISTIC(NumWidened , "Number of indvars widened"); 92 STATISTIC(NumReplaced , "Number of exit values replaced"); 93 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 94 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 95 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 96 97 // Trip count verification can be enabled by default under NDEBUG if we 98 // implement a strong expression equivalence checker in SCEV. Until then, we 99 // use the verify-indvars flag, which may assert in some cases. 100 static cl::opt<bool> VerifyIndvars( 101 "verify-indvars", cl::Hidden, 102 cl::desc("Verify the ScalarEvolution result after running indvars")); 103 104 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 105 106 static cl::opt<ReplaceExitVal> ReplaceExitValue( 107 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 108 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 109 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 110 clEnumValN(OnlyCheapRepl, "cheap", 111 "only replace exit value when the cost is cheap"), 112 clEnumValN(AlwaysRepl, "always", 113 "always replace exit value whenever possible"))); 114 115 static cl::opt<bool> UsePostIncrementRanges( 116 "indvars-post-increment-ranges", cl::Hidden, 117 cl::desc("Use post increment control-dependent ranges in IndVarSimplify"), 118 cl::init(true)); 119 120 static cl::opt<bool> 121 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false), 122 cl::desc("Disable Linear Function Test Replace optimization")); 123 124 namespace { 125 126 struct RewritePhi; 127 128 class IndVarSimplify { 129 LoopInfo *LI; 130 ScalarEvolution *SE; 131 DominatorTree *DT; 132 const DataLayout &DL; 133 TargetLibraryInfo *TLI; 134 const TargetTransformInfo *TTI; 135 136 SmallVector<WeakTrackingVH, 16> DeadInsts; 137 138 bool isValidRewrite(Value *FromVal, Value *ToVal); 139 140 bool handleFloatingPointIV(Loop *L, PHINode *PH); 141 bool rewriteNonIntegerIVs(Loop *L); 142 143 bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI); 144 145 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 146 bool rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 147 bool rewriteFirstIterationLoopExitValues(Loop *L); 148 bool hasHardUserWithinLoop(const Loop *L, const Instruction *I) const; 149 150 bool linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 151 PHINode *IndVar, SCEVExpander &Rewriter); 152 153 bool sinkUnusedInvariants(Loop *L); 154 155 public: 156 IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, 157 const DataLayout &DL, TargetLibraryInfo *TLI, 158 TargetTransformInfo *TTI) 159 : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {} 160 161 bool run(Loop *L); 162 }; 163 164 } // end anonymous namespace 165 166 /// Return true if the SCEV expansion generated by the rewriter can replace the 167 /// original value. SCEV guarantees that it produces the same value, but the way 168 /// it is produced may be illegal IR. Ideally, this function will only be 169 /// called for verification. 170 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 171 // If an SCEV expression subsumed multiple pointers, its expansion could 172 // reassociate the GEP changing the base pointer. This is illegal because the 173 // final address produced by a GEP chain must be inbounds relative to its 174 // underlying object. Otherwise basic alias analysis, among other things, 175 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 176 // producing an expression involving multiple pointers. Until then, we must 177 // bail out here. 178 // 179 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 180 // because it understands lcssa phis while SCEV does not. 181 Value *FromPtr = FromVal; 182 Value *ToPtr = ToVal; 183 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 184 FromPtr = GEP->getPointerOperand(); 185 } 186 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 187 ToPtr = GEP->getPointerOperand(); 188 } 189 if (FromPtr != FromVal || ToPtr != ToVal) { 190 // Quickly check the common case 191 if (FromPtr == ToPtr) 192 return true; 193 194 // SCEV may have rewritten an expression that produces the GEP's pointer 195 // operand. That's ok as long as the pointer operand has the same base 196 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 197 // base of a recurrence. This handles the case in which SCEV expansion 198 // converts a pointer type recurrence into a nonrecurrent pointer base 199 // indexed by an integer recurrence. 200 201 // If the GEP base pointer is a vector of pointers, abort. 202 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 203 return false; 204 205 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 206 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 207 if (FromBase == ToBase) 208 return true; 209 210 LLVM_DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " << *FromBase 211 << " != " << *ToBase << "\n"); 212 213 return false; 214 } 215 return true; 216 } 217 218 /// Determine the insertion point for this user. By default, insert immediately 219 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 220 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 221 /// common dominator for the incoming blocks. 222 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 223 DominatorTree *DT, LoopInfo *LI) { 224 PHINode *PHI = dyn_cast<PHINode>(User); 225 if (!PHI) 226 return User; 227 228 Instruction *InsertPt = nullptr; 229 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 230 if (PHI->getIncomingValue(i) != Def) 231 continue; 232 233 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 234 if (!InsertPt) { 235 InsertPt = InsertBB->getTerminator(); 236 continue; 237 } 238 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 239 InsertPt = InsertBB->getTerminator(); 240 } 241 assert(InsertPt && "Missing phi operand"); 242 243 auto *DefI = dyn_cast<Instruction>(Def); 244 if (!DefI) 245 return InsertPt; 246 247 assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses"); 248 249 auto *L = LI->getLoopFor(DefI->getParent()); 250 assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent()))); 251 252 for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom()) 253 if (LI->getLoopFor(DTN->getBlock()) == L) 254 return DTN->getBlock()->getTerminator(); 255 256 llvm_unreachable("DefI dominates InsertPt!"); 257 } 258 259 //===----------------------------------------------------------------------===// 260 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 261 //===----------------------------------------------------------------------===// 262 263 /// Convert APF to an integer, if possible. 264 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 265 bool isExact = false; 266 // See if we can convert this to an int64_t 267 uint64_t UIntVal; 268 if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true, 269 APFloat::rmTowardZero, &isExact) != APFloat::opOK || 270 !isExact) 271 return false; 272 IntVal = UIntVal; 273 return true; 274 } 275 276 /// If the loop has floating induction variable then insert corresponding 277 /// integer induction variable if possible. 278 /// For example, 279 /// for(double i = 0; i < 10000; ++i) 280 /// bar(i) 281 /// is converted into 282 /// for(int i = 0; i < 10000; ++i) 283 /// bar((double)i); 284 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 285 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 286 unsigned BackEdge = IncomingEdge^1; 287 288 // Check incoming value. 289 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 290 291 int64_t InitValue; 292 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 293 return false; 294 295 // Check IV increment. Reject this PN if increment operation is not 296 // an add or increment value can not be represented by an integer. 297 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 298 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false; 299 300 // If this is not an add of the PHI with a constantfp, or if the constant fp 301 // is not an integer, bail out. 302 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 303 int64_t IncValue; 304 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 305 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 306 return false; 307 308 // Check Incr uses. One user is PN and the other user is an exit condition 309 // used by the conditional terminator. 310 Value::user_iterator IncrUse = Incr->user_begin(); 311 Instruction *U1 = cast<Instruction>(*IncrUse++); 312 if (IncrUse == Incr->user_end()) return false; 313 Instruction *U2 = cast<Instruction>(*IncrUse++); 314 if (IncrUse != Incr->user_end()) return false; 315 316 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 317 // only used by a branch, we can't transform it. 318 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 319 if (!Compare) 320 Compare = dyn_cast<FCmpInst>(U2); 321 if (!Compare || !Compare->hasOneUse() || 322 !isa<BranchInst>(Compare->user_back())) 323 return false; 324 325 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 326 327 // We need to verify that the branch actually controls the iteration count 328 // of the loop. If not, the new IV can overflow and no one will notice. 329 // The branch block must be in the loop and one of the successors must be out 330 // of the loop. 331 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 332 if (!L->contains(TheBr->getParent()) || 333 (L->contains(TheBr->getSuccessor(0)) && 334 L->contains(TheBr->getSuccessor(1)))) 335 return false; 336 337 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 338 // transform it. 339 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 340 int64_t ExitValue; 341 if (ExitValueVal == nullptr || 342 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 343 return false; 344 345 // Find new predicate for integer comparison. 346 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 347 switch (Compare->getPredicate()) { 348 default: return false; // Unknown comparison. 349 case CmpInst::FCMP_OEQ: 350 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 351 case CmpInst::FCMP_ONE: 352 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 353 case CmpInst::FCMP_OGT: 354 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 355 case CmpInst::FCMP_OGE: 356 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 357 case CmpInst::FCMP_OLT: 358 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 359 case CmpInst::FCMP_OLE: 360 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 361 } 362 363 // We convert the floating point induction variable to a signed i32 value if 364 // we can. This is only safe if the comparison will not overflow in a way 365 // that won't be trapped by the integer equivalent operations. Check for this 366 // now. 367 // TODO: We could use i64 if it is native and the range requires it. 368 369 // The start/stride/exit values must all fit in signed i32. 370 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 371 return false; 372 373 // If not actually striding (add x, 0.0), avoid touching the code. 374 if (IncValue == 0) 375 return false; 376 377 // Positive and negative strides have different safety conditions. 378 if (IncValue > 0) { 379 // If we have a positive stride, we require the init to be less than the 380 // exit value. 381 if (InitValue >= ExitValue) 382 return false; 383 384 uint32_t Range = uint32_t(ExitValue-InitValue); 385 // Check for infinite loop, either: 386 // while (i <= Exit) or until (i > Exit) 387 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 388 if (++Range == 0) return false; // Range overflows. 389 } 390 391 unsigned Leftover = Range % uint32_t(IncValue); 392 393 // If this is an equality comparison, we require that the strided value 394 // exactly land on the exit value, otherwise the IV condition will wrap 395 // around and do things the fp IV wouldn't. 396 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 397 Leftover != 0) 398 return false; 399 400 // If the stride would wrap around the i32 before exiting, we can't 401 // transform the IV. 402 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 403 return false; 404 } else { 405 // If we have a negative stride, we require the init to be greater than the 406 // exit value. 407 if (InitValue <= ExitValue) 408 return false; 409 410 uint32_t Range = uint32_t(InitValue-ExitValue); 411 // Check for infinite loop, either: 412 // while (i >= Exit) or until (i < Exit) 413 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 414 if (++Range == 0) return false; // Range overflows. 415 } 416 417 unsigned Leftover = Range % uint32_t(-IncValue); 418 419 // If this is an equality comparison, we require that the strided value 420 // exactly land on the exit value, otherwise the IV condition will wrap 421 // around and do things the fp IV wouldn't. 422 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 423 Leftover != 0) 424 return false; 425 426 // If the stride would wrap around the i32 before exiting, we can't 427 // transform the IV. 428 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 429 return false; 430 } 431 432 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 433 434 // Insert new integer induction variable. 435 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 436 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 437 PN->getIncomingBlock(IncomingEdge)); 438 439 Value *NewAdd = 440 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 441 Incr->getName()+".int", Incr); 442 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 443 444 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 445 ConstantInt::get(Int32Ty, ExitValue), 446 Compare->getName()); 447 448 // In the following deletions, PN may become dead and may be deleted. 449 // Use a WeakTrackingVH to observe whether this happens. 450 WeakTrackingVH WeakPH = PN; 451 452 // Delete the old floating point exit comparison. The branch starts using the 453 // new comparison. 454 NewCompare->takeName(Compare); 455 Compare->replaceAllUsesWith(NewCompare); 456 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 457 458 // Delete the old floating point increment. 459 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 460 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 461 462 // If the FP induction variable still has uses, this is because something else 463 // in the loop uses its value. In order to canonicalize the induction 464 // variable, we chose to eliminate the IV and rewrite it in terms of an 465 // int->fp cast. 466 // 467 // We give preference to sitofp over uitofp because it is faster on most 468 // platforms. 469 if (WeakPH) { 470 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 471 &*PN->getParent()->getFirstInsertionPt()); 472 PN->replaceAllUsesWith(Conv); 473 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 474 } 475 return true; 476 } 477 478 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 479 // First step. Check to see if there are any floating-point recurrences. 480 // If there are, change them into integer recurrences, permitting analysis by 481 // the SCEV routines. 482 BasicBlock *Header = L->getHeader(); 483 484 SmallVector<WeakTrackingVH, 8> PHIs; 485 for (PHINode &PN : Header->phis()) 486 PHIs.push_back(&PN); 487 488 bool Changed = false; 489 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 490 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 491 Changed |= handleFloatingPointIV(L, PN); 492 493 // If the loop previously had floating-point IV, ScalarEvolution 494 // may not have been able to compute a trip count. Now that we've done some 495 // re-writing, the trip count may be computable. 496 if (Changed) 497 SE->forgetLoop(L); 498 return Changed; 499 } 500 501 namespace { 502 503 // Collect information about PHI nodes which can be transformed in 504 // rewriteLoopExitValues. 505 struct RewritePhi { 506 PHINode *PN; 507 508 // Ith incoming value. 509 unsigned Ith; 510 511 // Exit value after expansion. 512 Value *Val; 513 514 // High Cost when expansion. 515 bool HighCost; 516 517 RewritePhi(PHINode *P, unsigned I, Value *V, bool H) 518 : PN(P), Ith(I), Val(V), HighCost(H) {} 519 }; 520 521 } // end anonymous namespace 522 523 //===----------------------------------------------------------------------===// 524 // rewriteLoopExitValues - Optimize IV users outside the loop. 525 // As a side effect, reduces the amount of IV processing within the loop. 526 //===----------------------------------------------------------------------===// 527 528 bool IndVarSimplify::hasHardUserWithinLoop(const Loop *L, const Instruction *I) const { 529 SmallPtrSet<const Instruction *, 8> Visited; 530 SmallVector<const Instruction *, 8> WorkList; 531 Visited.insert(I); 532 WorkList.push_back(I); 533 while (!WorkList.empty()) { 534 const Instruction *Curr = WorkList.pop_back_val(); 535 // This use is outside the loop, nothing to do. 536 if (!L->contains(Curr)) 537 continue; 538 // Do we assume it is a "hard" use which will not be eliminated easily? 539 if (Curr->mayHaveSideEffects()) 540 return true; 541 // Otherwise, add all its users to worklist. 542 for (auto U : Curr->users()) { 543 auto *UI = cast<Instruction>(U); 544 if (Visited.insert(UI).second) 545 WorkList.push_back(UI); 546 } 547 } 548 return false; 549 } 550 551 /// Check to see if this loop has a computable loop-invariant execution count. 552 /// If so, this means that we can compute the final value of any expressions 553 /// that are recurrent in the loop, and substitute the exit values from the loop 554 /// into any instructions outside of the loop that use the final values of the 555 /// current expressions. 556 /// 557 /// This is mostly redundant with the regular IndVarSimplify activities that 558 /// happen later, except that it's more powerful in some cases, because it's 559 /// able to brute-force evaluate arbitrary instructions as long as they have 560 /// constant operands at the beginning of the loop. 561 bool IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 562 // Check a pre-condition. 563 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 564 "Indvars did not preserve LCSSA!"); 565 566 SmallVector<BasicBlock*, 8> ExitBlocks; 567 L->getUniqueExitBlocks(ExitBlocks); 568 569 SmallVector<RewritePhi, 8> RewritePhiSet; 570 // Find all values that are computed inside the loop, but used outside of it. 571 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 572 // the exit blocks of the loop to find them. 573 for (BasicBlock *ExitBB : ExitBlocks) { 574 // If there are no PHI nodes in this exit block, then no values defined 575 // inside the loop are used on this path, skip it. 576 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 577 if (!PN) continue; 578 579 unsigned NumPreds = PN->getNumIncomingValues(); 580 581 // Iterate over all of the PHI nodes. 582 BasicBlock::iterator BBI = ExitBB->begin(); 583 while ((PN = dyn_cast<PHINode>(BBI++))) { 584 if (PN->use_empty()) 585 continue; // dead use, don't replace it 586 587 if (!SE->isSCEVable(PN->getType())) 588 continue; 589 590 // It's necessary to tell ScalarEvolution about this explicitly so that 591 // it can walk the def-use list and forget all SCEVs, as it may not be 592 // watching the PHI itself. Once the new exit value is in place, there 593 // may not be a def-use connection between the loop and every instruction 594 // which got a SCEVAddRecExpr for that loop. 595 SE->forgetValue(PN); 596 597 // Iterate over all of the values in all the PHI nodes. 598 for (unsigned i = 0; i != NumPreds; ++i) { 599 // If the value being merged in is not integer or is not defined 600 // in the loop, skip it. 601 Value *InVal = PN->getIncomingValue(i); 602 if (!isa<Instruction>(InVal)) 603 continue; 604 605 // If this pred is for a subloop, not L itself, skip it. 606 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 607 continue; // The Block is in a subloop, skip it. 608 609 // Check that InVal is defined in the loop. 610 Instruction *Inst = cast<Instruction>(InVal); 611 if (!L->contains(Inst)) 612 continue; 613 614 // Okay, this instruction has a user outside of the current loop 615 // and varies predictably *inside* the loop. Evaluate the value it 616 // contains when the loop exits, if possible. 617 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 618 if (!SE->isLoopInvariant(ExitValue, L) || 619 !isSafeToExpand(ExitValue, *SE)) 620 continue; 621 622 // Computing the value outside of the loop brings no benefit if it is 623 // definitely used inside the loop in a way which can not be optimized 624 // away. 625 if (!isa<SCEVConstant>(ExitValue) && hasHardUserWithinLoop(L, Inst)) 626 continue; 627 628 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 629 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 630 631 LLVM_DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal 632 << '\n' 633 << " LoopVal = " << *Inst << "\n"); 634 635 if (!isValidRewrite(Inst, ExitVal)) { 636 DeadInsts.push_back(ExitVal); 637 continue; 638 } 639 640 #ifndef NDEBUG 641 // If we reuse an instruction from a loop which is neither L nor one of 642 // its containing loops, we end up breaking LCSSA form for this loop by 643 // creating a new use of its instruction. 644 if (auto *ExitInsn = dyn_cast<Instruction>(ExitVal)) 645 if (auto *EVL = LI->getLoopFor(ExitInsn->getParent())) 646 if (EVL != L) 647 assert(EVL->contains(L) && "LCSSA breach detected!"); 648 #endif 649 650 // Collect all the candidate PHINodes to be rewritten. 651 RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost); 652 } 653 } 654 } 655 656 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 657 658 bool Changed = false; 659 // Transformation. 660 for (const RewritePhi &Phi : RewritePhiSet) { 661 PHINode *PN = Phi.PN; 662 Value *ExitVal = Phi.Val; 663 664 // Only do the rewrite when the ExitValue can be expanded cheaply. 665 // If LoopCanBeDel is true, rewrite exit value aggressively. 666 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 667 DeadInsts.push_back(ExitVal); 668 continue; 669 } 670 671 Changed = true; 672 ++NumReplaced; 673 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 674 PN->setIncomingValue(Phi.Ith, ExitVal); 675 676 // If this instruction is dead now, delete it. Don't do it now to avoid 677 // invalidating iterators. 678 if (isInstructionTriviallyDead(Inst, TLI)) 679 DeadInsts.push_back(Inst); 680 681 // Replace PN with ExitVal if that is legal and does not break LCSSA. 682 if (PN->getNumIncomingValues() == 1 && 683 LI->replacementPreservesLCSSAForm(PN, ExitVal)) { 684 PN->replaceAllUsesWith(ExitVal); 685 PN->eraseFromParent(); 686 } 687 } 688 689 // The insertion point instruction may have been deleted; clear it out 690 // so that the rewriter doesn't trip over it later. 691 Rewriter.clearInsertPoint(); 692 return Changed; 693 } 694 695 //===---------------------------------------------------------------------===// 696 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know 697 // they will exit at the first iteration. 698 //===---------------------------------------------------------------------===// 699 700 /// Check to see if this loop has loop invariant conditions which lead to loop 701 /// exits. If so, we know that if the exit path is taken, it is at the first 702 /// loop iteration. This lets us predict exit values of PHI nodes that live in 703 /// loop header. 704 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) { 705 // Verify the input to the pass is already in LCSSA form. 706 assert(L->isLCSSAForm(*DT)); 707 708 SmallVector<BasicBlock *, 8> ExitBlocks; 709 L->getUniqueExitBlocks(ExitBlocks); 710 auto *LoopHeader = L->getHeader(); 711 assert(LoopHeader && "Invalid loop"); 712 713 bool MadeAnyChanges = false; 714 for (auto *ExitBB : ExitBlocks) { 715 // If there are no more PHI nodes in this exit block, then no more 716 // values defined inside the loop are used on this path. 717 for (PHINode &PN : ExitBB->phis()) { 718 for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues(); 719 IncomingValIdx != E; ++IncomingValIdx) { 720 auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx); 721 722 // We currently only support loop exits from loop header. If the 723 // incoming block is not loop header, we need to recursively check 724 // all conditions starting from loop header are loop invariants. 725 // Additional support might be added in the future. 726 if (IncomingBB != LoopHeader) 727 continue; 728 729 // Get condition that leads to the exit path. 730 auto *TermInst = IncomingBB->getTerminator(); 731 732 Value *Cond = nullptr; 733 if (auto *BI = dyn_cast<BranchInst>(TermInst)) { 734 // Must be a conditional branch, otherwise the block 735 // should not be in the loop. 736 Cond = BI->getCondition(); 737 } else if (auto *SI = dyn_cast<SwitchInst>(TermInst)) 738 Cond = SI->getCondition(); 739 else 740 continue; 741 742 if (!L->isLoopInvariant(Cond)) 743 continue; 744 745 auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx)); 746 747 // Only deal with PHIs. 748 if (!ExitVal) 749 continue; 750 751 // If ExitVal is a PHI on the loop header, then we know its 752 // value along this exit because the exit can only be taken 753 // on the first iteration. 754 auto *LoopPreheader = L->getLoopPreheader(); 755 assert(LoopPreheader && "Invalid loop"); 756 int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader); 757 if (PreheaderIdx != -1) { 758 assert(ExitVal->getParent() == LoopHeader && 759 "ExitVal must be in loop header"); 760 MadeAnyChanges = true; 761 PN.setIncomingValue(IncomingValIdx, 762 ExitVal->getIncomingValue(PreheaderIdx)); 763 } 764 } 765 } 766 } 767 return MadeAnyChanges; 768 } 769 770 /// Check whether it is possible to delete the loop after rewriting exit 771 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 772 /// aggressively. 773 bool IndVarSimplify::canLoopBeDeleted( 774 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 775 BasicBlock *Preheader = L->getLoopPreheader(); 776 // If there is no preheader, the loop will not be deleted. 777 if (!Preheader) 778 return false; 779 780 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 781 // We obviate multiple ExitingBlocks case for simplicity. 782 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 783 // after exit value rewriting, we can enhance the logic here. 784 SmallVector<BasicBlock *, 4> ExitingBlocks; 785 L->getExitingBlocks(ExitingBlocks); 786 SmallVector<BasicBlock *, 8> ExitBlocks; 787 L->getUniqueExitBlocks(ExitBlocks); 788 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 789 return false; 790 791 BasicBlock *ExitBlock = ExitBlocks[0]; 792 BasicBlock::iterator BI = ExitBlock->begin(); 793 while (PHINode *P = dyn_cast<PHINode>(BI)) { 794 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 795 796 // If the Incoming value of P is found in RewritePhiSet, we know it 797 // could be rewritten to use a loop invariant value in transformation 798 // phase later. Skip it in the loop invariant check below. 799 bool found = false; 800 for (const RewritePhi &Phi : RewritePhiSet) { 801 unsigned i = Phi.Ith; 802 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 803 found = true; 804 break; 805 } 806 } 807 808 Instruction *I; 809 if (!found && (I = dyn_cast<Instruction>(Incoming))) 810 if (!L->hasLoopInvariantOperands(I)) 811 return false; 812 813 ++BI; 814 } 815 816 for (auto *BB : L->blocks()) 817 if (llvm::any_of(*BB, [](Instruction &I) { 818 return I.mayHaveSideEffects(); 819 })) 820 return false; 821 822 return true; 823 } 824 825 //===----------------------------------------------------------------------===// 826 // IV Widening - Extend the width of an IV to cover its widest uses. 827 //===----------------------------------------------------------------------===// 828 829 namespace { 830 831 // Collect information about induction variables that are used by sign/zero 832 // extend operations. This information is recorded by CollectExtend and provides 833 // the input to WidenIV. 834 struct WideIVInfo { 835 PHINode *NarrowIV = nullptr; 836 837 // Widest integer type created [sz]ext 838 Type *WidestNativeType = nullptr; 839 840 // Was a sext user seen before a zext? 841 bool IsSigned = false; 842 }; 843 844 } // end anonymous namespace 845 846 /// Update information about the induction variable that is extended by this 847 /// sign or zero extend operation. This is used to determine the final width of 848 /// the IV before actually widening it. 849 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 850 const TargetTransformInfo *TTI) { 851 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 852 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 853 return; 854 855 Type *Ty = Cast->getType(); 856 uint64_t Width = SE->getTypeSizeInBits(Ty); 857 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 858 return; 859 860 // Check that `Cast` actually extends the induction variable (we rely on this 861 // later). This takes care of cases where `Cast` is extending a truncation of 862 // the narrow induction variable, and thus can end up being narrower than the 863 // "narrow" induction variable. 864 uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType()); 865 if (NarrowIVWidth >= Width) 866 return; 867 868 // Cast is either an sext or zext up to this point. 869 // We should not widen an indvar if arithmetics on the wider indvar are more 870 // expensive than those on the narrower indvar. We check only the cost of ADD 871 // because at least an ADD is required to increment the induction variable. We 872 // could compute more comprehensively the cost of all instructions on the 873 // induction variable when necessary. 874 if (TTI && 875 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 876 TTI->getArithmeticInstrCost(Instruction::Add, 877 Cast->getOperand(0)->getType())) { 878 return; 879 } 880 881 if (!WI.WidestNativeType) { 882 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 883 WI.IsSigned = IsSigned; 884 return; 885 } 886 887 // We extend the IV to satisfy the sign of its first user, arbitrarily. 888 if (WI.IsSigned != IsSigned) 889 return; 890 891 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 892 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 893 } 894 895 namespace { 896 897 /// Record a link in the Narrow IV def-use chain along with the WideIV that 898 /// computes the same value as the Narrow IV def. This avoids caching Use* 899 /// pointers. 900 struct NarrowIVDefUse { 901 Instruction *NarrowDef = nullptr; 902 Instruction *NarrowUse = nullptr; 903 Instruction *WideDef = nullptr; 904 905 // True if the narrow def is never negative. Tracking this information lets 906 // us use a sign extension instead of a zero extension or vice versa, when 907 // profitable and legal. 908 bool NeverNegative = false; 909 910 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 911 bool NeverNegative) 912 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 913 NeverNegative(NeverNegative) {} 914 }; 915 916 /// The goal of this transform is to remove sign and zero extends without 917 /// creating any new induction variables. To do this, it creates a new phi of 918 /// the wider type and redirects all users, either removing extends or inserting 919 /// truncs whenever we stop propagating the type. 920 class WidenIV { 921 // Parameters 922 PHINode *OrigPhi; 923 Type *WideType; 924 925 // Context 926 LoopInfo *LI; 927 Loop *L; 928 ScalarEvolution *SE; 929 DominatorTree *DT; 930 931 // Does the module have any calls to the llvm.experimental.guard intrinsic 932 // at all? If not we can avoid scanning instructions looking for guards. 933 bool HasGuards; 934 935 // Result 936 PHINode *WidePhi = nullptr; 937 Instruction *WideInc = nullptr; 938 const SCEV *WideIncExpr = nullptr; 939 SmallVectorImpl<WeakTrackingVH> &DeadInsts; 940 941 SmallPtrSet<Instruction *,16> Widened; 942 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 943 944 enum ExtendKind { ZeroExtended, SignExtended, Unknown }; 945 946 // A map tracking the kind of extension used to widen each narrow IV 947 // and narrow IV user. 948 // Key: pointer to a narrow IV or IV user. 949 // Value: the kind of extension used to widen this Instruction. 950 DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap; 951 952 using DefUserPair = std::pair<AssertingVH<Value>, AssertingVH<Instruction>>; 953 954 // A map with control-dependent ranges for post increment IV uses. The key is 955 // a pair of IV def and a use of this def denoting the context. The value is 956 // a ConstantRange representing possible values of the def at the given 957 // context. 958 DenseMap<DefUserPair, ConstantRange> PostIncRangeInfos; 959 960 Optional<ConstantRange> getPostIncRangeInfo(Value *Def, 961 Instruction *UseI) { 962 DefUserPair Key(Def, UseI); 963 auto It = PostIncRangeInfos.find(Key); 964 return It == PostIncRangeInfos.end() 965 ? Optional<ConstantRange>(None) 966 : Optional<ConstantRange>(It->second); 967 } 968 969 void calculatePostIncRanges(PHINode *OrigPhi); 970 void calculatePostIncRange(Instruction *NarrowDef, Instruction *NarrowUser); 971 972 void updatePostIncRangeInfo(Value *Def, Instruction *UseI, ConstantRange R) { 973 DefUserPair Key(Def, UseI); 974 auto It = PostIncRangeInfos.find(Key); 975 if (It == PostIncRangeInfos.end()) 976 PostIncRangeInfos.insert({Key, R}); 977 else 978 It->second = R.intersectWith(It->second); 979 } 980 981 public: 982 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, ScalarEvolution *SEv, 983 DominatorTree *DTree, SmallVectorImpl<WeakTrackingVH> &DI, 984 bool HasGuards) 985 : OrigPhi(WI.NarrowIV), WideType(WI.WidestNativeType), LI(LInfo), 986 L(LI->getLoopFor(OrigPhi->getParent())), SE(SEv), DT(DTree), 987 HasGuards(HasGuards), DeadInsts(DI) { 988 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 989 ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended; 990 } 991 992 PHINode *createWideIV(SCEVExpander &Rewriter); 993 994 protected: 995 Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned, 996 Instruction *Use); 997 998 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 999 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 1000 const SCEVAddRecExpr *WideAR); 1001 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 1002 1003 ExtendKind getExtendKind(Instruction *I); 1004 1005 using WidenedRecTy = std::pair<const SCEVAddRecExpr *, ExtendKind>; 1006 1007 WidenedRecTy getWideRecurrence(NarrowIVDefUse DU); 1008 1009 WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU); 1010 1011 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1012 unsigned OpCode) const; 1013 1014 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 1015 1016 bool widenLoopCompare(NarrowIVDefUse DU); 1017 bool widenWithVariantLoadUse(NarrowIVDefUse DU); 1018 void widenWithVariantLoadUseCodegen(NarrowIVDefUse DU); 1019 1020 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 1021 }; 1022 1023 } // end anonymous namespace 1024 1025 /// Perform a quick domtree based check for loop invariance assuming that V is 1026 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 1027 /// purpose. 1028 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 1029 Instruction *Inst = dyn_cast<Instruction>(V); 1030 if (!Inst) 1031 return true; 1032 1033 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1034 } 1035 1036 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType, 1037 bool IsSigned, Instruction *Use) { 1038 // Set the debug location and conservative insertion point. 1039 IRBuilder<> Builder(Use); 1040 // Hoist the insertion point into loop preheaders as far as possible. 1041 for (const Loop *L = LI->getLoopFor(Use->getParent()); 1042 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 1043 L = L->getParentLoop()) 1044 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1045 1046 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 1047 Builder.CreateZExt(NarrowOper, WideType); 1048 } 1049 1050 /// Instantiate a wide operation to replace a narrow operation. This only needs 1051 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 1052 /// 0 for any operation we decide not to clone. 1053 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 1054 const SCEVAddRecExpr *WideAR) { 1055 unsigned Opcode = DU.NarrowUse->getOpcode(); 1056 switch (Opcode) { 1057 default: 1058 return nullptr; 1059 case Instruction::Add: 1060 case Instruction::Mul: 1061 case Instruction::UDiv: 1062 case Instruction::Sub: 1063 return cloneArithmeticIVUser(DU, WideAR); 1064 1065 case Instruction::And: 1066 case Instruction::Or: 1067 case Instruction::Xor: 1068 case Instruction::Shl: 1069 case Instruction::LShr: 1070 case Instruction::AShr: 1071 return cloneBitwiseIVUser(DU); 1072 } 1073 } 1074 1075 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 1076 Instruction *NarrowUse = DU.NarrowUse; 1077 Instruction *NarrowDef = DU.NarrowDef; 1078 Instruction *WideDef = DU.WideDef; 1079 1080 LLVM_DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n"); 1081 1082 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 1083 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 1084 // invariant and will be folded or hoisted. If it actually comes from a 1085 // widened IV, it should be removed during a future call to widenIVUse. 1086 bool IsSigned = getExtendKind(NarrowDef) == SignExtended; 1087 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1088 ? WideDef 1089 : createExtendInst(NarrowUse->getOperand(0), WideType, 1090 IsSigned, NarrowUse); 1091 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1092 ? WideDef 1093 : createExtendInst(NarrowUse->getOperand(1), WideType, 1094 IsSigned, NarrowUse); 1095 1096 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1097 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1098 NarrowBO->getName()); 1099 IRBuilder<> Builder(NarrowUse); 1100 Builder.Insert(WideBO); 1101 WideBO->copyIRFlags(NarrowBO); 1102 return WideBO; 1103 } 1104 1105 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 1106 const SCEVAddRecExpr *WideAR) { 1107 Instruction *NarrowUse = DU.NarrowUse; 1108 Instruction *NarrowDef = DU.NarrowDef; 1109 Instruction *WideDef = DU.WideDef; 1110 1111 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1112 1113 unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1; 1114 1115 // We're trying to find X such that 1116 // 1117 // Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X 1118 // 1119 // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef), 1120 // and check using SCEV if any of them are correct. 1121 1122 // Returns true if extending NonIVNarrowDef according to `SignExt` is a 1123 // correct solution to X. 1124 auto GuessNonIVOperand = [&](bool SignExt) { 1125 const SCEV *WideLHS; 1126 const SCEV *WideRHS; 1127 1128 auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) { 1129 if (SignExt) 1130 return SE->getSignExtendExpr(S, Ty); 1131 return SE->getZeroExtendExpr(S, Ty); 1132 }; 1133 1134 if (IVOpIdx == 0) { 1135 WideLHS = SE->getSCEV(WideDef); 1136 const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1)); 1137 WideRHS = GetExtend(NarrowRHS, WideType); 1138 } else { 1139 const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0)); 1140 WideLHS = GetExtend(NarrowLHS, WideType); 1141 WideRHS = SE->getSCEV(WideDef); 1142 } 1143 1144 // WideUse is "WideDef `op.wide` X" as described in the comment. 1145 const SCEV *WideUse = nullptr; 1146 1147 switch (NarrowUse->getOpcode()) { 1148 default: 1149 llvm_unreachable("No other possibility!"); 1150 1151 case Instruction::Add: 1152 WideUse = SE->getAddExpr(WideLHS, WideRHS); 1153 break; 1154 1155 case Instruction::Mul: 1156 WideUse = SE->getMulExpr(WideLHS, WideRHS); 1157 break; 1158 1159 case Instruction::UDiv: 1160 WideUse = SE->getUDivExpr(WideLHS, WideRHS); 1161 break; 1162 1163 case Instruction::Sub: 1164 WideUse = SE->getMinusSCEV(WideLHS, WideRHS); 1165 break; 1166 } 1167 1168 return WideUse == WideAR; 1169 }; 1170 1171 bool SignExtend = getExtendKind(NarrowDef) == SignExtended; 1172 if (!GuessNonIVOperand(SignExtend)) { 1173 SignExtend = !SignExtend; 1174 if (!GuessNonIVOperand(SignExtend)) 1175 return nullptr; 1176 } 1177 1178 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1179 ? WideDef 1180 : createExtendInst(NarrowUse->getOperand(0), WideType, 1181 SignExtend, NarrowUse); 1182 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1183 ? WideDef 1184 : createExtendInst(NarrowUse->getOperand(1), WideType, 1185 SignExtend, NarrowUse); 1186 1187 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1188 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1189 NarrowBO->getName()); 1190 1191 IRBuilder<> Builder(NarrowUse); 1192 Builder.Insert(WideBO); 1193 WideBO->copyIRFlags(NarrowBO); 1194 return WideBO; 1195 } 1196 1197 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) { 1198 auto It = ExtendKindMap.find(I); 1199 assert(It != ExtendKindMap.end() && "Instruction not yet extended!"); 1200 return It->second; 1201 } 1202 1203 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1204 unsigned OpCode) const { 1205 if (OpCode == Instruction::Add) 1206 return SE->getAddExpr(LHS, RHS); 1207 if (OpCode == Instruction::Sub) 1208 return SE->getMinusSCEV(LHS, RHS); 1209 if (OpCode == Instruction::Mul) 1210 return SE->getMulExpr(LHS, RHS); 1211 1212 llvm_unreachable("Unsupported opcode."); 1213 } 1214 1215 /// No-wrap operations can transfer sign extension of their result to their 1216 /// operands. Generate the SCEV value for the widened operation without 1217 /// actually modifying the IR yet. If the expression after extending the 1218 /// operands is an AddRec for this loop, return the AddRec and the kind of 1219 /// extension used. 1220 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1221 // Handle the common case of add<nsw/nuw> 1222 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1223 // Only Add/Sub/Mul instructions supported yet. 1224 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1225 OpCode != Instruction::Mul) 1226 return {nullptr, Unknown}; 1227 1228 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1229 // if extending the other will lead to a recurrence. 1230 const unsigned ExtendOperIdx = 1231 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1232 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1233 1234 const SCEV *ExtendOperExpr = nullptr; 1235 const OverflowingBinaryOperator *OBO = 1236 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1237 ExtendKind ExtKind = getExtendKind(DU.NarrowDef); 1238 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1239 ExtendOperExpr = SE->getSignExtendExpr( 1240 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1241 else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1242 ExtendOperExpr = SE->getZeroExtendExpr( 1243 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1244 else 1245 return {nullptr, Unknown}; 1246 1247 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1248 // flags. This instruction may be guarded by control flow that the no-wrap 1249 // behavior depends on. Non-control-equivalent instructions can be mapped to 1250 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1251 // semantics to those operations. 1252 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1253 const SCEV *rhs = ExtendOperExpr; 1254 1255 // Let's swap operands to the initial order for the case of non-commutative 1256 // operations, like SUB. See PR21014. 1257 if (ExtendOperIdx == 0) 1258 std::swap(lhs, rhs); 1259 const SCEVAddRecExpr *AddRec = 1260 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1261 1262 if (!AddRec || AddRec->getLoop() != L) 1263 return {nullptr, Unknown}; 1264 1265 return {AddRec, ExtKind}; 1266 } 1267 1268 /// Is this instruction potentially interesting for further simplification after 1269 /// widening it's type? In other words, can the extend be safely hoisted out of 1270 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1271 /// so, return the extended recurrence and the kind of extension used. Otherwise 1272 /// return {nullptr, Unknown}. 1273 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) { 1274 if (!SE->isSCEVable(DU.NarrowUse->getType())) 1275 return {nullptr, Unknown}; 1276 1277 const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse); 1278 if (SE->getTypeSizeInBits(NarrowExpr->getType()) >= 1279 SE->getTypeSizeInBits(WideType)) { 1280 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1281 // index. So don't follow this use. 1282 return {nullptr, Unknown}; 1283 } 1284 1285 const SCEV *WideExpr; 1286 ExtendKind ExtKind; 1287 if (DU.NeverNegative) { 1288 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1289 if (isa<SCEVAddRecExpr>(WideExpr)) 1290 ExtKind = SignExtended; 1291 else { 1292 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1293 ExtKind = ZeroExtended; 1294 } 1295 } else if (getExtendKind(DU.NarrowDef) == SignExtended) { 1296 WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType); 1297 ExtKind = SignExtended; 1298 } else { 1299 WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType); 1300 ExtKind = ZeroExtended; 1301 } 1302 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1303 if (!AddRec || AddRec->getLoop() != L) 1304 return {nullptr, Unknown}; 1305 return {AddRec, ExtKind}; 1306 } 1307 1308 /// This IV user cannot be widen. Replace this use of the original narrow IV 1309 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1310 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) { 1311 LLVM_DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef << " for user " 1312 << *DU.NarrowUse << "\n"); 1313 IRBuilder<> Builder( 1314 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1315 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1316 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1317 } 1318 1319 /// If the narrow use is a compare instruction, then widen the compare 1320 // (and possibly the other operand). The extend operation is hoisted into the 1321 // loop preheader as far as possible. 1322 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1323 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1324 if (!Cmp) 1325 return false; 1326 1327 // We can legally widen the comparison in the following two cases: 1328 // 1329 // - The signedness of the IV extension and comparison match 1330 // 1331 // - The narrow IV is always positive (and thus its sign extension is equal 1332 // to its zero extension). For instance, let's say we're zero extending 1333 // %narrow for the following use 1334 // 1335 // icmp slt i32 %narrow, %val ... (A) 1336 // 1337 // and %narrow is always positive. Then 1338 // 1339 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1340 // == icmp slt i32 zext(%narrow), sext(%val) 1341 bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended; 1342 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1343 return false; 1344 1345 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1346 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1347 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1348 assert(CastWidth <= IVWidth && "Unexpected width while widening compare."); 1349 1350 // Widen the compare instruction. 1351 IRBuilder<> Builder( 1352 getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI)); 1353 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1354 1355 // Widen the other operand of the compare, if necessary. 1356 if (CastWidth < IVWidth) { 1357 Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp); 1358 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1359 } 1360 return true; 1361 } 1362 1363 /// If the narrow use is an instruction whose two operands are the defining 1364 /// instruction of DU and a load instruction, then we have the following: 1365 /// if the load is hoisted outside the loop, then we do not reach this function 1366 /// as scalar evolution analysis works fine in widenIVUse with variables 1367 /// hoisted outside the loop and efficient code is subsequently generated by 1368 /// not emitting truncate instructions. But when the load is not hoisted 1369 /// (whether due to limitation in alias analysis or due to a true legality), 1370 /// then scalar evolution can not proceed with loop variant values and 1371 /// inefficient code is generated. This function handles the non-hoisted load 1372 /// special case by making the optimization generate the same type of code for 1373 /// hoisted and non-hoisted load (widen use and eliminate sign extend 1374 /// instruction). This special case is important especially when the induction 1375 /// variables are affecting addressing mode in code generation. 1376 bool WidenIV::widenWithVariantLoadUse(NarrowIVDefUse DU) { 1377 Instruction *NarrowUse = DU.NarrowUse; 1378 Instruction *NarrowDef = DU.NarrowDef; 1379 Instruction *WideDef = DU.WideDef; 1380 1381 // Handle the common case of add<nsw/nuw> 1382 const unsigned OpCode = NarrowUse->getOpcode(); 1383 // Only Add/Sub/Mul instructions are supported. 1384 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1385 OpCode != Instruction::Mul) 1386 return false; 1387 1388 // The operand that is not defined by NarrowDef of DU. Let's call it the 1389 // other operand. 1390 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == NarrowDef ? 1 : 0; 1391 assert(DU.NarrowUse->getOperand(1 - ExtendOperIdx) == DU.NarrowDef && 1392 "bad DU"); 1393 1394 const SCEV *ExtendOperExpr = nullptr; 1395 const OverflowingBinaryOperator *OBO = 1396 cast<OverflowingBinaryOperator>(NarrowUse); 1397 ExtendKind ExtKind = getExtendKind(NarrowDef); 1398 if (ExtKind == SignExtended && OBO->hasNoSignedWrap()) 1399 ExtendOperExpr = SE->getSignExtendExpr( 1400 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1401 else if (ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap()) 1402 ExtendOperExpr = SE->getZeroExtendExpr( 1403 SE->getSCEV(NarrowUse->getOperand(ExtendOperIdx)), WideType); 1404 else 1405 return false; 1406 1407 // We are interested in the other operand being a load instruction. 1408 // But, we should look into relaxing this restriction later on. 1409 auto *I = dyn_cast<Instruction>(NarrowUse->getOperand(ExtendOperIdx)); 1410 if (I && I->getOpcode() != Instruction::Load) 1411 return false; 1412 1413 // Verifying that Defining operand is an AddRec 1414 const SCEV *Op1 = SE->getSCEV(WideDef); 1415 const SCEVAddRecExpr *AddRecOp1 = dyn_cast<SCEVAddRecExpr>(Op1); 1416 if (!AddRecOp1 || AddRecOp1->getLoop() != L) 1417 return false; 1418 // Verifying that other operand is an Extend. 1419 if (ExtKind == SignExtended) { 1420 if (!isa<SCEVSignExtendExpr>(ExtendOperExpr)) 1421 return false; 1422 } else { 1423 if (!isa<SCEVZeroExtendExpr>(ExtendOperExpr)) 1424 return false; 1425 } 1426 1427 if (ExtKind == SignExtended) { 1428 for (Use &U : NarrowUse->uses()) { 1429 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1430 if (!User || User->getType() != WideType) 1431 return false; 1432 } 1433 } else { // ExtKind == ZeroExtended 1434 for (Use &U : NarrowUse->uses()) { 1435 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1436 if (!User || User->getType() != WideType) 1437 return false; 1438 } 1439 } 1440 1441 return true; 1442 } 1443 1444 /// Special Case for widening with variant Loads (see 1445 /// WidenIV::widenWithVariantLoadUse). This is the code generation part. 1446 void WidenIV::widenWithVariantLoadUseCodegen(NarrowIVDefUse DU) { 1447 Instruction *NarrowUse = DU.NarrowUse; 1448 Instruction *NarrowDef = DU.NarrowDef; 1449 Instruction *WideDef = DU.WideDef; 1450 1451 ExtendKind ExtKind = getExtendKind(NarrowDef); 1452 1453 LLVM_DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n"); 1454 1455 // Generating a widening use instruction. 1456 Value *LHS = (NarrowUse->getOperand(0) == NarrowDef) 1457 ? WideDef 1458 : createExtendInst(NarrowUse->getOperand(0), WideType, 1459 ExtKind, NarrowUse); 1460 Value *RHS = (NarrowUse->getOperand(1) == NarrowDef) 1461 ? WideDef 1462 : createExtendInst(NarrowUse->getOperand(1), WideType, 1463 ExtKind, NarrowUse); 1464 1465 auto *NarrowBO = cast<BinaryOperator>(NarrowUse); 1466 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1467 NarrowBO->getName()); 1468 IRBuilder<> Builder(NarrowUse); 1469 Builder.Insert(WideBO); 1470 WideBO->copyIRFlags(NarrowBO); 1471 1472 if (ExtKind == SignExtended) 1473 ExtendKindMap[NarrowUse] = SignExtended; 1474 else 1475 ExtendKindMap[NarrowUse] = ZeroExtended; 1476 1477 // Update the Use. 1478 if (ExtKind == SignExtended) { 1479 for (Use &U : NarrowUse->uses()) { 1480 SExtInst *User = dyn_cast<SExtInst>(U.getUser()); 1481 if (User && User->getType() == WideType) { 1482 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1483 << *WideBO << "\n"); 1484 ++NumElimExt; 1485 User->replaceAllUsesWith(WideBO); 1486 DeadInsts.emplace_back(User); 1487 } 1488 } 1489 } else { // ExtKind == ZeroExtended 1490 for (Use &U : NarrowUse->uses()) { 1491 ZExtInst *User = dyn_cast<ZExtInst>(U.getUser()); 1492 if (User && User->getType() == WideType) { 1493 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *User << " replaced by " 1494 << *WideBO << "\n"); 1495 ++NumElimExt; 1496 User->replaceAllUsesWith(WideBO); 1497 DeadInsts.emplace_back(User); 1498 } 1499 } 1500 } 1501 } 1502 1503 /// Determine whether an individual user of the narrow IV can be widened. If so, 1504 /// return the wide clone of the user. 1505 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1506 assert(ExtendKindMap.count(DU.NarrowDef) && 1507 "Should already know the kind of extension used to widen NarrowDef"); 1508 1509 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1510 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1511 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1512 // For LCSSA phis, sink the truncate outside the loop. 1513 // After SimplifyCFG most loop exit targets have a single predecessor. 1514 // Otherwise fall back to a truncate within the loop. 1515 if (UsePhi->getNumOperands() != 1) 1516 truncateIVUse(DU, DT, LI); 1517 else { 1518 // Widening the PHI requires us to insert a trunc. The logical place 1519 // for this trunc is in the same BB as the PHI. This is not possible if 1520 // the BB is terminated by a catchswitch. 1521 if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator())) 1522 return nullptr; 1523 1524 PHINode *WidePhi = 1525 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1526 UsePhi); 1527 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1528 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1529 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1530 UsePhi->replaceAllUsesWith(Trunc); 1531 DeadInsts.emplace_back(UsePhi); 1532 LLVM_DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi << " to " 1533 << *WidePhi << "\n"); 1534 } 1535 return nullptr; 1536 } 1537 } 1538 1539 // This narrow use can be widened by a sext if it's non-negative or its narrow 1540 // def was widended by a sext. Same for zext. 1541 auto canWidenBySExt = [&]() { 1542 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended; 1543 }; 1544 auto canWidenByZExt = [&]() { 1545 return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended; 1546 }; 1547 1548 // Our raison d'etre! Eliminate sign and zero extension. 1549 if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) || 1550 (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) { 1551 Value *NewDef = DU.WideDef; 1552 if (DU.NarrowUse->getType() != WideType) { 1553 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1554 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1555 if (CastWidth < IVWidth) { 1556 // The cast isn't as wide as the IV, so insert a Trunc. 1557 IRBuilder<> Builder(DU.NarrowUse); 1558 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1559 } 1560 else { 1561 // A wider extend was hidden behind a narrower one. This may induce 1562 // another round of IV widening in which the intermediate IV becomes 1563 // dead. It should be very rare. 1564 LLVM_DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1565 << " not wide enough to subsume " << *DU.NarrowUse 1566 << "\n"); 1567 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1568 NewDef = DU.NarrowUse; 1569 } 1570 } 1571 if (NewDef != DU.NarrowUse) { 1572 LLVM_DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1573 << " replaced by " << *DU.WideDef << "\n"); 1574 ++NumElimExt; 1575 DU.NarrowUse->replaceAllUsesWith(NewDef); 1576 DeadInsts.emplace_back(DU.NarrowUse); 1577 } 1578 // Now that the extend is gone, we want to expose it's uses for potential 1579 // further simplification. We don't need to directly inform SimplifyIVUsers 1580 // of the new users, because their parent IV will be processed later as a 1581 // new loop phi. If we preserved IVUsers analysis, we would also want to 1582 // push the uses of WideDef here. 1583 1584 // No further widening is needed. The deceased [sz]ext had done it for us. 1585 return nullptr; 1586 } 1587 1588 // Does this user itself evaluate to a recurrence after widening? 1589 WidenedRecTy WideAddRec = getExtendedOperandRecurrence(DU); 1590 if (!WideAddRec.first) 1591 WideAddRec = getWideRecurrence(DU); 1592 1593 assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown)); 1594 if (!WideAddRec.first) { 1595 // If use is a loop condition, try to promote the condition instead of 1596 // truncating the IV first. 1597 if (widenLoopCompare(DU)) 1598 return nullptr; 1599 1600 // We are here about to generate a truncate instruction that may hurt 1601 // performance because the scalar evolution expression computed earlier 1602 // in WideAddRec.first does not indicate a polynomial induction expression. 1603 // In that case, look at the operands of the use instruction to determine 1604 // if we can still widen the use instead of truncating its operand. 1605 if (widenWithVariantLoadUse(DU)) { 1606 widenWithVariantLoadUseCodegen(DU); 1607 return nullptr; 1608 } 1609 1610 // This user does not evaluate to a recurrence after widening, so don't 1611 // follow it. Instead insert a Trunc to kill off the original use, 1612 // eventually isolating the original narrow IV so it can be removed. 1613 truncateIVUse(DU, DT, LI); 1614 return nullptr; 1615 } 1616 // Assume block terminators cannot evaluate to a recurrence. We can't to 1617 // insert a Trunc after a terminator if there happens to be a critical edge. 1618 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1619 "SCEV is not expected to evaluate a block terminator"); 1620 1621 // Reuse the IV increment that SCEVExpander created as long as it dominates 1622 // NarrowUse. 1623 Instruction *WideUse = nullptr; 1624 if (WideAddRec.first == WideIncExpr && 1625 Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1626 WideUse = WideInc; 1627 else { 1628 WideUse = cloneIVUser(DU, WideAddRec.first); 1629 if (!WideUse) 1630 return nullptr; 1631 } 1632 // Evaluation of WideAddRec ensured that the narrow expression could be 1633 // extended outside the loop without overflow. This suggests that the wide use 1634 // evaluates to the same expression as the extended narrow use, but doesn't 1635 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1636 // where it fails, we simply throw away the newly created wide use. 1637 if (WideAddRec.first != SE->getSCEV(WideUse)) { 1638 LLVM_DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse << ": " 1639 << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first 1640 << "\n"); 1641 DeadInsts.emplace_back(WideUse); 1642 return nullptr; 1643 } 1644 1645 ExtendKindMap[DU.NarrowUse] = WideAddRec.second; 1646 // Returning WideUse pushes it on the worklist. 1647 return WideUse; 1648 } 1649 1650 /// Add eligible users of NarrowDef to NarrowIVUsers. 1651 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1652 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1653 bool NonNegativeDef = 1654 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1655 SE->getConstant(NarrowSCEV->getType(), 0)); 1656 for (User *U : NarrowDef->users()) { 1657 Instruction *NarrowUser = cast<Instruction>(U); 1658 1659 // Handle data flow merges and bizarre phi cycles. 1660 if (!Widened.insert(NarrowUser).second) 1661 continue; 1662 1663 bool NonNegativeUse = false; 1664 if (!NonNegativeDef) { 1665 // We might have a control-dependent range information for this context. 1666 if (auto RangeInfo = getPostIncRangeInfo(NarrowDef, NarrowUser)) 1667 NonNegativeUse = RangeInfo->getSignedMin().isNonNegative(); 1668 } 1669 1670 NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, 1671 NonNegativeDef || NonNegativeUse); 1672 } 1673 } 1674 1675 /// Process a single induction variable. First use the SCEVExpander to create a 1676 /// wide induction variable that evaluates to the same recurrence as the 1677 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1678 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1679 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1680 /// 1681 /// It would be simpler to delete uses as they are processed, but we must avoid 1682 /// invalidating SCEV expressions. 1683 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1684 // Is this phi an induction variable? 1685 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1686 if (!AddRec) 1687 return nullptr; 1688 1689 // Widen the induction variable expression. 1690 const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended 1691 ? SE->getSignExtendExpr(AddRec, WideType) 1692 : SE->getZeroExtendExpr(AddRec, WideType); 1693 1694 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1695 "Expect the new IV expression to preserve its type"); 1696 1697 // Can the IV be extended outside the loop without overflow? 1698 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1699 if (!AddRec || AddRec->getLoop() != L) 1700 return nullptr; 1701 1702 // An AddRec must have loop-invariant operands. Since this AddRec is 1703 // materialized by a loop header phi, the expression cannot have any post-loop 1704 // operands, so they must dominate the loop header. 1705 assert( 1706 SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1707 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) && 1708 "Loop header phi recurrence inputs do not dominate the loop"); 1709 1710 // Iterate over IV uses (including transitive ones) looking for IV increments 1711 // of the form 'add nsw %iv, <const>'. For each increment and each use of 1712 // the increment calculate control-dependent range information basing on 1713 // dominating conditions inside of the loop (e.g. a range check inside of the 1714 // loop). Calculated ranges are stored in PostIncRangeInfos map. 1715 // 1716 // Control-dependent range information is later used to prove that a narrow 1717 // definition is not negative (see pushNarrowIVUsers). It's difficult to do 1718 // this on demand because when pushNarrowIVUsers needs this information some 1719 // of the dominating conditions might be already widened. 1720 if (UsePostIncrementRanges) 1721 calculatePostIncRanges(OrigPhi); 1722 1723 // The rewriter provides a value for the desired IV expression. This may 1724 // either find an existing phi or materialize a new one. Either way, we 1725 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1726 // of the phi-SCC dominates the loop entry. 1727 Instruction *InsertPt = &L->getHeader()->front(); 1728 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1729 1730 // Remembering the WideIV increment generated by SCEVExpander allows 1731 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1732 // employ a general reuse mechanism because the call above is the only call to 1733 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1734 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1735 WideInc = 1736 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1737 WideIncExpr = SE->getSCEV(WideInc); 1738 // Propagate the debug location associated with the original loop increment 1739 // to the new (widened) increment. 1740 auto *OrigInc = 1741 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1742 WideInc->setDebugLoc(OrigInc->getDebugLoc()); 1743 } 1744 1745 LLVM_DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1746 ++NumWidened; 1747 1748 // Traverse the def-use chain using a worklist starting at the original IV. 1749 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1750 1751 Widened.insert(OrigPhi); 1752 pushNarrowIVUsers(OrigPhi, WidePhi); 1753 1754 while (!NarrowIVUsers.empty()) { 1755 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1756 1757 // Process a def-use edge. This may replace the use, so don't hold a 1758 // use_iterator across it. 1759 Instruction *WideUse = widenIVUse(DU, Rewriter); 1760 1761 // Follow all def-use edges from the previous narrow use. 1762 if (WideUse) 1763 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1764 1765 // widenIVUse may have removed the def-use edge. 1766 if (DU.NarrowDef->use_empty()) 1767 DeadInsts.emplace_back(DU.NarrowDef); 1768 } 1769 1770 // Attach any debug information to the new PHI. Since OrigPhi and WidePHI 1771 // evaluate the same recurrence, we can just copy the debug info over. 1772 SmallVector<DbgValueInst *, 1> DbgValues; 1773 llvm::findDbgValues(DbgValues, OrigPhi); 1774 auto *MDPhi = MetadataAsValue::get(WidePhi->getContext(), 1775 ValueAsMetadata::get(WidePhi)); 1776 for (auto &DbgValue : DbgValues) 1777 DbgValue->setOperand(0, MDPhi); 1778 return WidePhi; 1779 } 1780 1781 /// Calculates control-dependent range for the given def at the given context 1782 /// by looking at dominating conditions inside of the loop 1783 void WidenIV::calculatePostIncRange(Instruction *NarrowDef, 1784 Instruction *NarrowUser) { 1785 using namespace llvm::PatternMatch; 1786 1787 Value *NarrowDefLHS; 1788 const APInt *NarrowDefRHS; 1789 if (!match(NarrowDef, m_NSWAdd(m_Value(NarrowDefLHS), 1790 m_APInt(NarrowDefRHS))) || 1791 !NarrowDefRHS->isNonNegative()) 1792 return; 1793 1794 auto UpdateRangeFromCondition = [&] (Value *Condition, 1795 bool TrueDest) { 1796 CmpInst::Predicate Pred; 1797 Value *CmpRHS; 1798 if (!match(Condition, m_ICmp(Pred, m_Specific(NarrowDefLHS), 1799 m_Value(CmpRHS)))) 1800 return; 1801 1802 CmpInst::Predicate P = 1803 TrueDest ? Pred : CmpInst::getInversePredicate(Pred); 1804 1805 auto CmpRHSRange = SE->getSignedRange(SE->getSCEV(CmpRHS)); 1806 auto CmpConstrainedLHSRange = 1807 ConstantRange::makeAllowedICmpRegion(P, CmpRHSRange); 1808 auto NarrowDefRange = 1809 CmpConstrainedLHSRange.addWithNoSignedWrap(*NarrowDefRHS); 1810 1811 updatePostIncRangeInfo(NarrowDef, NarrowUser, NarrowDefRange); 1812 }; 1813 1814 auto UpdateRangeFromGuards = [&](Instruction *Ctx) { 1815 if (!HasGuards) 1816 return; 1817 1818 for (Instruction &I : make_range(Ctx->getIterator().getReverse(), 1819 Ctx->getParent()->rend())) { 1820 Value *C = nullptr; 1821 if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(C)))) 1822 UpdateRangeFromCondition(C, /*TrueDest=*/true); 1823 } 1824 }; 1825 1826 UpdateRangeFromGuards(NarrowUser); 1827 1828 BasicBlock *NarrowUserBB = NarrowUser->getParent(); 1829 // If NarrowUserBB is statically unreachable asking dominator queries may 1830 // yield surprising results. (e.g. the block may not have a dom tree node) 1831 if (!DT->isReachableFromEntry(NarrowUserBB)) 1832 return; 1833 1834 for (auto *DTB = (*DT)[NarrowUserBB]->getIDom(); 1835 L->contains(DTB->getBlock()); 1836 DTB = DTB->getIDom()) { 1837 auto *BB = DTB->getBlock(); 1838 auto *TI = BB->getTerminator(); 1839 UpdateRangeFromGuards(TI); 1840 1841 auto *BI = dyn_cast<BranchInst>(TI); 1842 if (!BI || !BI->isConditional()) 1843 continue; 1844 1845 auto *TrueSuccessor = BI->getSuccessor(0); 1846 auto *FalseSuccessor = BI->getSuccessor(1); 1847 1848 auto DominatesNarrowUser = [this, NarrowUser] (BasicBlockEdge BBE) { 1849 return BBE.isSingleEdge() && 1850 DT->dominates(BBE, NarrowUser->getParent()); 1851 }; 1852 1853 if (DominatesNarrowUser(BasicBlockEdge(BB, TrueSuccessor))) 1854 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/true); 1855 1856 if (DominatesNarrowUser(BasicBlockEdge(BB, FalseSuccessor))) 1857 UpdateRangeFromCondition(BI->getCondition(), /*TrueDest=*/false); 1858 } 1859 } 1860 1861 /// Calculates PostIncRangeInfos map for the given IV 1862 void WidenIV::calculatePostIncRanges(PHINode *OrigPhi) { 1863 SmallPtrSet<Instruction *, 16> Visited; 1864 SmallVector<Instruction *, 6> Worklist; 1865 Worklist.push_back(OrigPhi); 1866 Visited.insert(OrigPhi); 1867 1868 while (!Worklist.empty()) { 1869 Instruction *NarrowDef = Worklist.pop_back_val(); 1870 1871 for (Use &U : NarrowDef->uses()) { 1872 auto *NarrowUser = cast<Instruction>(U.getUser()); 1873 1874 // Don't go looking outside the current loop. 1875 auto *NarrowUserLoop = (*LI)[NarrowUser->getParent()]; 1876 if (!NarrowUserLoop || !L->contains(NarrowUserLoop)) 1877 continue; 1878 1879 if (!Visited.insert(NarrowUser).second) 1880 continue; 1881 1882 Worklist.push_back(NarrowUser); 1883 1884 calculatePostIncRange(NarrowDef, NarrowUser); 1885 } 1886 } 1887 } 1888 1889 //===----------------------------------------------------------------------===// 1890 // Live IV Reduction - Minimize IVs live across the loop. 1891 //===----------------------------------------------------------------------===// 1892 1893 //===----------------------------------------------------------------------===// 1894 // Simplification of IV users based on SCEV evaluation. 1895 //===----------------------------------------------------------------------===// 1896 1897 namespace { 1898 1899 class IndVarSimplifyVisitor : public IVVisitor { 1900 ScalarEvolution *SE; 1901 const TargetTransformInfo *TTI; 1902 PHINode *IVPhi; 1903 1904 public: 1905 WideIVInfo WI; 1906 1907 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1908 const TargetTransformInfo *TTI, 1909 const DominatorTree *DTree) 1910 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1911 DT = DTree; 1912 WI.NarrowIV = IVPhi; 1913 } 1914 1915 // Implement the interface used by simplifyUsersOfIV. 1916 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1917 }; 1918 1919 } // end anonymous namespace 1920 1921 /// Iteratively perform simplification on a worklist of IV users. Each 1922 /// successive simplification may push more users which may themselves be 1923 /// candidates for simplification. 1924 /// 1925 /// Sign/Zero extend elimination is interleaved with IV simplification. 1926 bool IndVarSimplify::simplifyAndExtend(Loop *L, 1927 SCEVExpander &Rewriter, 1928 LoopInfo *LI) { 1929 SmallVector<WideIVInfo, 8> WideIVs; 1930 1931 auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction( 1932 Intrinsic::getName(Intrinsic::experimental_guard)); 1933 bool HasGuards = GuardDecl && !GuardDecl->use_empty(); 1934 1935 SmallVector<PHINode*, 8> LoopPhis; 1936 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1937 LoopPhis.push_back(cast<PHINode>(I)); 1938 } 1939 // Each round of simplification iterates through the SimplifyIVUsers worklist 1940 // for all current phis, then determines whether any IVs can be 1941 // widened. Widening adds new phis to LoopPhis, inducing another round of 1942 // simplification on the wide IVs. 1943 bool Changed = false; 1944 while (!LoopPhis.empty()) { 1945 // Evaluate as many IV expressions as possible before widening any IVs. This 1946 // forces SCEV to set no-wrap flags before evaluating sign/zero 1947 // extension. The first time SCEV attempts to normalize sign/zero extension, 1948 // the result becomes final. So for the most predictable results, we delay 1949 // evaluation of sign/zero extend evaluation until needed, and avoid running 1950 // other SCEV based analysis prior to simplifyAndExtend. 1951 do { 1952 PHINode *CurrIV = LoopPhis.pop_back_val(); 1953 1954 // Information about sign/zero extensions of CurrIV. 1955 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1956 1957 Changed |= 1958 simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, Rewriter, &Visitor); 1959 1960 if (Visitor.WI.WidestNativeType) { 1961 WideIVs.push_back(Visitor.WI); 1962 } 1963 } while(!LoopPhis.empty()); 1964 1965 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1966 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts, HasGuards); 1967 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1968 Changed = true; 1969 LoopPhis.push_back(WidePhi); 1970 } 1971 } 1972 } 1973 return Changed; 1974 } 1975 1976 //===----------------------------------------------------------------------===// 1977 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1978 //===----------------------------------------------------------------------===// 1979 1980 /// Return true if this loop's backedge taken count expression can be safely and 1981 /// cheaply expanded into an instruction sequence that can be used by 1982 /// linearFunctionTestReplace. 1983 /// 1984 /// TODO: This fails for pointer-type loop counters with greater than one byte 1985 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1986 /// we could skip this check in the case that the LFTR loop counter (chosen by 1987 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1988 /// the loop test to an inequality test by checking the target data's alignment 1989 /// of element types (given that the initial pointer value originates from or is 1990 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1991 /// However, we don't yet have a strong motivation for converting loop tests 1992 /// into inequality tests. 1993 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1994 SCEVExpander &Rewriter) { 1995 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1996 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1997 BackedgeTakenCount->isZero()) 1998 return false; 1999 2000 if (!L->getExitingBlock()) 2001 return false; 2002 2003 // Can't rewrite non-branch yet. 2004 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 2005 return false; 2006 2007 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 2008 return false; 2009 2010 return true; 2011 } 2012 2013 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 2014 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 2015 Instruction *IncI = dyn_cast<Instruction>(IncV); 2016 if (!IncI) 2017 return nullptr; 2018 2019 switch (IncI->getOpcode()) { 2020 case Instruction::Add: 2021 case Instruction::Sub: 2022 break; 2023 case Instruction::GetElementPtr: 2024 // An IV counter must preserve its type. 2025 if (IncI->getNumOperands() == 2) 2026 break; 2027 LLVM_FALLTHROUGH; 2028 default: 2029 return nullptr; 2030 } 2031 2032 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 2033 if (Phi && Phi->getParent() == L->getHeader()) { 2034 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 2035 return Phi; 2036 return nullptr; 2037 } 2038 if (IncI->getOpcode() == Instruction::GetElementPtr) 2039 return nullptr; 2040 2041 // Allow add/sub to be commuted. 2042 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 2043 if (Phi && Phi->getParent() == L->getHeader()) { 2044 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 2045 return Phi; 2046 } 2047 return nullptr; 2048 } 2049 2050 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 2051 static ICmpInst *getLoopTest(Loop *L) { 2052 assert(L->getExitingBlock() && "expected loop exit"); 2053 2054 BasicBlock *LatchBlock = L->getLoopLatch(); 2055 // Don't bother with LFTR if the loop is not properly simplified. 2056 if (!LatchBlock) 2057 return nullptr; 2058 2059 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2060 assert(BI && "expected exit branch"); 2061 2062 return dyn_cast<ICmpInst>(BI->getCondition()); 2063 } 2064 2065 /// linearFunctionTestReplace policy. Return true unless we can show that the 2066 /// current exit test is already sufficiently canonical. 2067 static bool needsLFTR(Loop *L, DominatorTree *DT) { 2068 // Do LFTR to simplify the exit condition to an ICMP. 2069 ICmpInst *Cond = getLoopTest(L); 2070 if (!Cond) 2071 return true; 2072 2073 // Do LFTR to simplify the exit ICMP to EQ/NE 2074 ICmpInst::Predicate Pred = Cond->getPredicate(); 2075 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 2076 return true; 2077 2078 // Look for a loop invariant RHS 2079 Value *LHS = Cond->getOperand(0); 2080 Value *RHS = Cond->getOperand(1); 2081 if (!isLoopInvariant(RHS, L, DT)) { 2082 if (!isLoopInvariant(LHS, L, DT)) 2083 return true; 2084 std::swap(LHS, RHS); 2085 } 2086 // Look for a simple IV counter LHS 2087 PHINode *Phi = dyn_cast<PHINode>(LHS); 2088 if (!Phi) 2089 Phi = getLoopPhiForCounter(LHS, L, DT); 2090 2091 if (!Phi) 2092 return true; 2093 2094 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 2095 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 2096 if (Idx < 0) 2097 return true; 2098 2099 // Do LFTR if the exit condition's IV is *not* a simple counter. 2100 Value *IncV = Phi->getIncomingValue(Idx); 2101 return Phi != getLoopPhiForCounter(IncV, L, DT); 2102 } 2103 2104 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 2105 /// down to checking that all operands are constant and listing instructions 2106 /// that may hide undef. 2107 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 2108 unsigned Depth) { 2109 if (isa<Constant>(V)) 2110 return !isa<UndefValue>(V); 2111 2112 if (Depth >= 6) 2113 return false; 2114 2115 // Conservatively handle non-constant non-instructions. For example, Arguments 2116 // may be undef. 2117 Instruction *I = dyn_cast<Instruction>(V); 2118 if (!I) 2119 return false; 2120 2121 // Load and return values may be undef. 2122 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 2123 return false; 2124 2125 // Optimistically handle other instructions. 2126 for (Value *Op : I->operands()) { 2127 if (!Visited.insert(Op).second) 2128 continue; 2129 if (!hasConcreteDefImpl(Op, Visited, Depth+1)) 2130 return false; 2131 } 2132 return true; 2133 } 2134 2135 /// Return true if the given value is concrete. We must prove that undef can 2136 /// never reach it. 2137 /// 2138 /// TODO: If we decide that this is a good approach to checking for undef, we 2139 /// may factor it into a common location. 2140 static bool hasConcreteDef(Value *V) { 2141 SmallPtrSet<Value*, 8> Visited; 2142 Visited.insert(V); 2143 return hasConcreteDefImpl(V, Visited, 0); 2144 } 2145 2146 /// Return true if this IV has any uses other than the (soon to be rewritten) 2147 /// loop exit test. 2148 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 2149 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2150 Value *IncV = Phi->getIncomingValue(LatchIdx); 2151 2152 for (User *U : Phi->users()) 2153 if (U != Cond && U != IncV) return false; 2154 2155 for (User *U : IncV->users()) 2156 if (U != Cond && U != Phi) return false; 2157 return true; 2158 } 2159 2160 /// Find an affine IV in canonical form. 2161 /// 2162 /// BECount may be an i8* pointer type. The pointer difference is already 2163 /// valid count without scaling the address stride, so it remains a pointer 2164 /// expression as far as SCEV is concerned. 2165 /// 2166 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 2167 /// 2168 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 2169 /// 2170 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 2171 /// This is difficult in general for SCEV because of potential overflow. But we 2172 /// could at least handle constant BECounts. 2173 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 2174 ScalarEvolution *SE, DominatorTree *DT) { 2175 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 2176 2177 Value *Cond = 2178 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 2179 2180 // Loop over all of the PHI nodes, looking for a simple counter. 2181 PHINode *BestPhi = nullptr; 2182 const SCEV *BestInit = nullptr; 2183 BasicBlock *LatchBlock = L->getLoopLatch(); 2184 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 2185 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2186 2187 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 2188 PHINode *Phi = cast<PHINode>(I); 2189 if (!SE->isSCEVable(Phi->getType())) 2190 continue; 2191 2192 // Avoid comparing an integer IV against a pointer Limit. 2193 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 2194 continue; 2195 2196 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 2197 if (!AR || AR->getLoop() != L || !AR->isAffine()) 2198 continue; 2199 2200 // AR may be a pointer type, while BECount is an integer type. 2201 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 2202 // AR may not be a narrower type, or we may never exit. 2203 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 2204 if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth)) 2205 continue; 2206 2207 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 2208 if (!Step || !Step->isOne()) 2209 continue; 2210 2211 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 2212 Value *IncV = Phi->getIncomingValue(LatchIdx); 2213 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 2214 continue; 2215 2216 // Avoid reusing a potentially undef value to compute other values that may 2217 // have originally had a concrete definition. 2218 if (!hasConcreteDef(Phi)) { 2219 // We explicitly allow unknown phis as long as they are already used by 2220 // the loop test. In this case we assume that performing LFTR could not 2221 // increase the number of undef users. 2222 if (ICmpInst *Cond = getLoopTest(L)) { 2223 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) && 2224 Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 2225 continue; 2226 } 2227 } 2228 } 2229 const SCEV *Init = AR->getStart(); 2230 2231 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 2232 // Don't force a live loop counter if another IV can be used. 2233 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 2234 continue; 2235 2236 // Prefer to count-from-zero. This is a more "canonical" counter form. It 2237 // also prefers integer to pointer IVs. 2238 if (BestInit->isZero() != Init->isZero()) { 2239 if (BestInit->isZero()) 2240 continue; 2241 } 2242 // If two IVs both count from zero or both count from nonzero then the 2243 // narrower is likely a dead phi that has been widened. Use the wider phi 2244 // to allow the other to be eliminated. 2245 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 2246 continue; 2247 } 2248 BestPhi = Phi; 2249 BestInit = Init; 2250 } 2251 return BestPhi; 2252 } 2253 2254 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 2255 /// the new loop test. 2256 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 2257 SCEVExpander &Rewriter, ScalarEvolution *SE) { 2258 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2259 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 2260 const SCEV *IVInit = AR->getStart(); 2261 2262 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 2263 // finds a valid pointer IV. Sign extend BECount in order to materialize a 2264 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 2265 // the existing GEPs whenever possible. 2266 if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) { 2267 // IVOffset will be the new GEP offset that is interpreted by GEP as a 2268 // signed value. IVCount on the other hand represents the loop trip count, 2269 // which is an unsigned value. FindLoopCounter only allows induction 2270 // variables that have a positive unit stride of one. This means we don't 2271 // have to handle the case of negative offsets (yet) and just need to zero 2272 // extend IVCount. 2273 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 2274 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 2275 2276 // Expand the code for the iteration count. 2277 assert(SE->isLoopInvariant(IVOffset, L) && 2278 "Computed iteration count is not loop invariant!"); 2279 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2280 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 2281 2282 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 2283 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 2284 // We could handle pointer IVs other than i8*, but we need to compensate for 2285 // gep index scaling. See canExpandBackedgeTakenCount comments. 2286 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 2287 cast<PointerType>(GEPBase->getType()) 2288 ->getElementType())->isOne() && 2289 "unit stride pointer IV must be i8*"); 2290 2291 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 2292 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 2293 } else { 2294 // In any other case, convert both IVInit and IVCount to integers before 2295 // comparing. This may result in SCEV expansion of pointers, but in practice 2296 // SCEV will fold the pointer arithmetic away as such: 2297 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 2298 // 2299 // Valid Cases: (1) both integers is most common; (2) both may be pointers 2300 // for simple memset-style loops. 2301 // 2302 // IVInit integer and IVCount pointer would only occur if a canonical IV 2303 // were generated on top of case #2, which is not expected. 2304 2305 const SCEV *IVLimit = nullptr; 2306 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 2307 // For non-zero Start, compute IVCount here. 2308 if (AR->getStart()->isZero()) 2309 IVLimit = IVCount; 2310 else { 2311 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 2312 const SCEV *IVInit = AR->getStart(); 2313 2314 // For integer IVs, truncate the IV before computing IVInit + BECount. 2315 if (SE->getTypeSizeInBits(IVInit->getType()) 2316 > SE->getTypeSizeInBits(IVCount->getType())) 2317 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 2318 2319 IVLimit = SE->getAddExpr(IVInit, IVCount); 2320 } 2321 // Expand the code for the iteration count. 2322 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2323 IRBuilder<> Builder(BI); 2324 assert(SE->isLoopInvariant(IVLimit, L) && 2325 "Computed iteration count is not loop invariant!"); 2326 // Ensure that we generate the same type as IndVar, or a smaller integer 2327 // type. In the presence of null pointer values, we have an integer type 2328 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 2329 Type *LimitTy = IVCount->getType()->isPointerTy() ? 2330 IndVar->getType() : IVCount->getType(); 2331 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 2332 } 2333 } 2334 2335 /// This method rewrites the exit condition of the loop to be a canonical != 2336 /// comparison against the incremented loop induction variable. This pass is 2337 /// able to rewrite the exit tests of any loop where the SCEV analysis can 2338 /// determine a loop-invariant trip count of the loop, which is actually a much 2339 /// broader range than just linear tests. 2340 bool IndVarSimplify:: 2341 linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 2342 PHINode *IndVar, SCEVExpander &Rewriter) { 2343 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 2344 2345 // Initialize CmpIndVar and IVCount to their preincremented values. 2346 Value *CmpIndVar = IndVar; 2347 const SCEV *IVCount = BackedgeTakenCount; 2348 2349 assert(L->getLoopLatch() && "Loop no longer in simplified form?"); 2350 2351 // If the exiting block is the same as the backedge block, we prefer to 2352 // compare against the post-incremented value, otherwise we must compare 2353 // against the preincremented value. 2354 if (L->getExitingBlock() == L->getLoopLatch()) { 2355 // Add one to the "backedge-taken" count to get the trip count. 2356 // This addition may overflow, which is valid as long as the comparison is 2357 // truncated to BackedgeTakenCount->getType(). 2358 IVCount = SE->getAddExpr(BackedgeTakenCount, 2359 SE->getOne(BackedgeTakenCount->getType())); 2360 // The BackedgeTaken expression contains the number of times that the 2361 // backedge branches to the loop header. This is one less than the 2362 // number of times the loop executes, so use the incremented indvar. 2363 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 2364 } 2365 2366 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 2367 assert(ExitCnt->getType()->isPointerTy() == 2368 IndVar->getType()->isPointerTy() && 2369 "genLoopLimit missed a cast"); 2370 2371 // Insert a new icmp_ne or icmp_eq instruction before the branch. 2372 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 2373 ICmpInst::Predicate P; 2374 if (L->contains(BI->getSuccessor(0))) 2375 P = ICmpInst::ICMP_NE; 2376 else 2377 P = ICmpInst::ICMP_EQ; 2378 2379 LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 2380 << " LHS:" << *CmpIndVar << '\n' 2381 << " op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==") 2382 << "\n" 2383 << " RHS:\t" << *ExitCnt << "\n" 2384 << " IVCount:\t" << *IVCount << "\n"); 2385 2386 IRBuilder<> Builder(BI); 2387 2388 // The new loop exit condition should reuse the debug location of the 2389 // original loop exit condition. 2390 if (auto *Cond = dyn_cast<Instruction>(BI->getCondition())) 2391 Builder.SetCurrentDebugLocation(Cond->getDebugLoc()); 2392 2393 // LFTR can ignore IV overflow and truncate to the width of 2394 // BECount. This avoids materializing the add(zext(add)) expression. 2395 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 2396 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 2397 if (CmpIndVarSize > ExitCntSize) { 2398 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 2399 const SCEV *ARStart = AR->getStart(); 2400 const SCEV *ARStep = AR->getStepRecurrence(*SE); 2401 // For constant IVCount, avoid truncation. 2402 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 2403 const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt(); 2404 APInt Count = cast<SCEVConstant>(IVCount)->getAPInt(); 2405 // Note that the post-inc value of BackedgeTakenCount may have overflowed 2406 // above such that IVCount is now zero. 2407 if (IVCount != BackedgeTakenCount && Count == 0) { 2408 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 2409 ++Count; 2410 } 2411 else 2412 Count = Count.zext(CmpIndVarSize); 2413 APInt NewLimit; 2414 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 2415 NewLimit = Start - Count; 2416 else 2417 NewLimit = Start + Count; 2418 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 2419 2420 LLVM_DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 2421 } else { 2422 // We try to extend trip count first. If that doesn't work we truncate IV. 2423 // Zext(trunc(IV)) == IV implies equivalence of the following two: 2424 // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If 2425 // one of the two holds, extend the trip count, otherwise we truncate IV. 2426 bool Extended = false; 2427 const SCEV *IV = SE->getSCEV(CmpIndVar); 2428 const SCEV *ZExtTrunc = 2429 SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2430 ExitCnt->getType()), 2431 CmpIndVar->getType()); 2432 2433 if (ZExtTrunc == IV) { 2434 Extended = true; 2435 ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(), 2436 "wide.trip.count"); 2437 } else { 2438 const SCEV *SExtTrunc = 2439 SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar), 2440 ExitCnt->getType()), 2441 CmpIndVar->getType()); 2442 if (SExtTrunc == IV) { 2443 Extended = true; 2444 ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(), 2445 "wide.trip.count"); 2446 } 2447 } 2448 2449 if (!Extended) 2450 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 2451 "lftr.wideiv"); 2452 } 2453 } 2454 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 2455 Value *OrigCond = BI->getCondition(); 2456 // It's tempting to use replaceAllUsesWith here to fully replace the old 2457 // comparison, but that's not immediately safe, since users of the old 2458 // comparison may not be dominated by the new comparison. Instead, just 2459 // update the branch to use the new comparison; in the common case this 2460 // will make old comparison dead. 2461 BI->setCondition(Cond); 2462 DeadInsts.push_back(OrigCond); 2463 2464 ++NumLFTR; 2465 return true; 2466 } 2467 2468 //===----------------------------------------------------------------------===// 2469 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 2470 //===----------------------------------------------------------------------===// 2471 2472 /// If there's a single exit block, sink any loop-invariant values that 2473 /// were defined in the preheader but not used inside the loop into the 2474 /// exit block to reduce register pressure in the loop. 2475 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) { 2476 BasicBlock *ExitBlock = L->getExitBlock(); 2477 if (!ExitBlock) return false; 2478 2479 BasicBlock *Preheader = L->getLoopPreheader(); 2480 if (!Preheader) return false; 2481 2482 bool MadeAnyChanges = false; 2483 BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt(); 2484 BasicBlock::iterator I(Preheader->getTerminator()); 2485 while (I != Preheader->begin()) { 2486 --I; 2487 // New instructions were inserted at the end of the preheader. 2488 if (isa<PHINode>(I)) 2489 break; 2490 2491 // Don't move instructions which might have side effects, since the side 2492 // effects need to complete before instructions inside the loop. Also don't 2493 // move instructions which might read memory, since the loop may modify 2494 // memory. Note that it's okay if the instruction might have undefined 2495 // behavior: LoopSimplify guarantees that the preheader dominates the exit 2496 // block. 2497 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 2498 continue; 2499 2500 // Skip debug info intrinsics. 2501 if (isa<DbgInfoIntrinsic>(I)) 2502 continue; 2503 2504 // Skip eh pad instructions. 2505 if (I->isEHPad()) 2506 continue; 2507 2508 // Don't sink alloca: we never want to sink static alloca's out of the 2509 // entry block, and correctly sinking dynamic alloca's requires 2510 // checks for stacksave/stackrestore intrinsics. 2511 // FIXME: Refactor this check somehow? 2512 if (isa<AllocaInst>(I)) 2513 continue; 2514 2515 // Determine if there is a use in or before the loop (direct or 2516 // otherwise). 2517 bool UsedInLoop = false; 2518 for (Use &U : I->uses()) { 2519 Instruction *User = cast<Instruction>(U.getUser()); 2520 BasicBlock *UseBB = User->getParent(); 2521 if (PHINode *P = dyn_cast<PHINode>(User)) { 2522 unsigned i = 2523 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 2524 UseBB = P->getIncomingBlock(i); 2525 } 2526 if (UseBB == Preheader || L->contains(UseBB)) { 2527 UsedInLoop = true; 2528 break; 2529 } 2530 } 2531 2532 // If there is, the def must remain in the preheader. 2533 if (UsedInLoop) 2534 continue; 2535 2536 // Otherwise, sink it to the exit block. 2537 Instruction *ToMove = &*I; 2538 bool Done = false; 2539 2540 if (I != Preheader->begin()) { 2541 // Skip debug info intrinsics. 2542 do { 2543 --I; 2544 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 2545 2546 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 2547 Done = true; 2548 } else { 2549 Done = true; 2550 } 2551 2552 MadeAnyChanges = true; 2553 ToMove->moveBefore(*ExitBlock, InsertPt); 2554 if (Done) break; 2555 InsertPt = ToMove->getIterator(); 2556 } 2557 2558 return MadeAnyChanges; 2559 } 2560 2561 //===----------------------------------------------------------------------===// 2562 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2563 //===----------------------------------------------------------------------===// 2564 2565 bool IndVarSimplify::run(Loop *L) { 2566 // We need (and expect!) the incoming loop to be in LCSSA. 2567 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2568 "LCSSA required to run indvars!"); 2569 bool Changed = false; 2570 2571 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2572 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2573 // canonicalization can be a pessimization without LSR to "clean up" 2574 // afterwards. 2575 // - We depend on having a preheader; in particular, 2576 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2577 // and we're in trouble if we can't find the induction variable even when 2578 // we've manually inserted one. 2579 // - LFTR relies on having a single backedge. 2580 if (!L->isLoopSimplifyForm()) 2581 return false; 2582 2583 // If there are any floating-point recurrences, attempt to 2584 // transform them to use integer recurrences. 2585 Changed |= rewriteNonIntegerIVs(L); 2586 2587 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2588 2589 // Create a rewriter object which we'll use to transform the code with. 2590 SCEVExpander Rewriter(*SE, DL, "indvars"); 2591 #ifndef NDEBUG 2592 Rewriter.setDebugType(DEBUG_TYPE); 2593 #endif 2594 2595 // Eliminate redundant IV users. 2596 // 2597 // Simplification works best when run before other consumers of SCEV. We 2598 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2599 // other expressions involving loop IVs have been evaluated. This helps SCEV 2600 // set no-wrap flags before normalizing sign/zero extension. 2601 Rewriter.disableCanonicalMode(); 2602 Changed |= simplifyAndExtend(L, Rewriter, LI); 2603 2604 // Check to see if this loop has a computable loop-invariant execution count. 2605 // If so, this means that we can compute the final value of any expressions 2606 // that are recurrent in the loop, and substitute the exit values from the 2607 // loop into any instructions outside of the loop that use the final values of 2608 // the current expressions. 2609 // 2610 if (ReplaceExitValue != NeverRepl && 2611 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2612 Changed |= rewriteLoopExitValues(L, Rewriter); 2613 2614 // Eliminate redundant IV cycles. 2615 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2616 2617 // If we have a trip count expression, rewrite the loop's exit condition 2618 // using it. We can currently only handle loops with a single exit. 2619 if (!DisableLFTR && canExpandBackedgeTakenCount(L, SE, Rewriter) && 2620 needsLFTR(L, DT)) { 2621 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2622 if (IndVar) { 2623 // Check preconditions for proper SCEVExpander operation. SCEV does not 2624 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2625 // pass that uses the SCEVExpander must do it. This does not work well for 2626 // loop passes because SCEVExpander makes assumptions about all loops, 2627 // while LoopPassManager only forces the current loop to be simplified. 2628 // 2629 // FIXME: SCEV expansion has no way to bail out, so the caller must 2630 // explicitly check any assumptions made by SCEV. Brittle. 2631 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2632 if (!AR || AR->getLoop()->getLoopPreheader()) 2633 Changed |= linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2634 Rewriter); 2635 } 2636 } 2637 // Clear the rewriter cache, because values that are in the rewriter's cache 2638 // can be deleted in the loop below, causing the AssertingVH in the cache to 2639 // trigger. 2640 Rewriter.clear(); 2641 2642 // Now that we're done iterating through lists, clean up any instructions 2643 // which are now dead. 2644 while (!DeadInsts.empty()) 2645 if (Instruction *Inst = 2646 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2647 Changed |= RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2648 2649 // The Rewriter may not be used from this point on. 2650 2651 // Loop-invariant instructions in the preheader that aren't used in the 2652 // loop may be sunk below the loop to reduce register pressure. 2653 Changed |= sinkUnusedInvariants(L); 2654 2655 // rewriteFirstIterationLoopExitValues does not rely on the computation of 2656 // trip count and therefore can further simplify exit values in addition to 2657 // rewriteLoopExitValues. 2658 Changed |= rewriteFirstIterationLoopExitValues(L); 2659 2660 // Clean up dead instructions. 2661 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2662 2663 // Check a post-condition. 2664 assert(L->isRecursivelyLCSSAForm(*DT, *LI) && 2665 "Indvars did not preserve LCSSA!"); 2666 2667 // Verify that LFTR, and any other change have not interfered with SCEV's 2668 // ability to compute trip count. 2669 #ifndef NDEBUG 2670 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2671 SE->forgetLoop(L); 2672 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2673 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2674 SE->getTypeSizeInBits(NewBECount->getType())) 2675 NewBECount = SE->getTruncateOrNoop(NewBECount, 2676 BackedgeTakenCount->getType()); 2677 else 2678 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2679 NewBECount->getType()); 2680 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2681 } 2682 #endif 2683 2684 return Changed; 2685 } 2686 2687 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM, 2688 LoopStandardAnalysisResults &AR, 2689 LPMUpdater &) { 2690 Function *F = L.getHeader()->getParent(); 2691 const DataLayout &DL = F->getParent()->getDataLayout(); 2692 2693 IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI); 2694 if (!IVS.run(&L)) 2695 return PreservedAnalyses::all(); 2696 2697 auto PA = getLoopPassPreservedAnalyses(); 2698 PA.preserveSet<CFGAnalyses>(); 2699 return PA; 2700 } 2701 2702 namespace { 2703 2704 struct IndVarSimplifyLegacyPass : public LoopPass { 2705 static char ID; // Pass identification, replacement for typeid 2706 2707 IndVarSimplifyLegacyPass() : LoopPass(ID) { 2708 initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry()); 2709 } 2710 2711 bool runOnLoop(Loop *L, LPPassManager &LPM) override { 2712 if (skipLoop(L)) 2713 return false; 2714 2715 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2716 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2717 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2718 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2719 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr; 2720 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2721 auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2722 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2723 2724 IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI); 2725 return IVS.run(L); 2726 } 2727 2728 void getAnalysisUsage(AnalysisUsage &AU) const override { 2729 AU.setPreservesCFG(); 2730 getLoopAnalysisUsage(AU); 2731 } 2732 }; 2733 2734 } // end anonymous namespace 2735 2736 char IndVarSimplifyLegacyPass::ID = 0; 2737 2738 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars", 2739 "Induction Variable Simplification", false, false) 2740 INITIALIZE_PASS_DEPENDENCY(LoopPass) 2741 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars", 2742 "Induction Variable Simplification", false, false) 2743 2744 Pass *llvm::createIndVarSimplifyPass() { 2745 return new IndVarSimplifyLegacyPass(); 2746 } 2747