xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 25755a0159a2a69cb84dbd2b7bcbb5db9b482a40)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This transformation analyzes and transforms the induction variables (and
10 // computations derived from them) into simpler forms suitable for subsequent
11 // analysis and transformation.
12 //
13 // If the trip count of a loop is computable, this pass also makes the following
14 // changes:
15 //   1. The exit condition for the loop is canonicalized to compare the
16 //      induction value against the exit value.  This turns loops like:
17 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
18 //   2. Any use outside of the loop of an expression derived from the indvar
19 //      is changed to compute the derived value outside of the loop, eliminating
20 //      the dependence on the exit value of the induction variable.  If the only
21 //      purpose of the loop is to compute the exit value of some derived
22 //      expression, this transformation will make the loop dead.
23 //
24 //===----------------------------------------------------------------------===//
25 
26 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
27 #include "llvm/ADT/APFloat.h"
28 #include "llvm/ADT/APInt.h"
29 #include "llvm/ADT/ArrayRef.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/None.h"
32 #include "llvm/ADT/Optional.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SmallSet.h"
36 #include "llvm/ADT/SmallVector.h"
37 #include "llvm/ADT/Statistic.h"
38 #include "llvm/ADT/iterator_range.h"
39 #include "llvm/Analysis/LoopInfo.h"
40 #include "llvm/Analysis/LoopPass.h"
41 #include "llvm/Analysis/MemorySSA.h"
42 #include "llvm/Analysis/MemorySSAUpdater.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/Constant.h"
50 #include "llvm/IR/ConstantRange.h"
51 #include "llvm/IR/Constants.h"
52 #include "llvm/IR/DataLayout.h"
53 #include "llvm/IR/DerivedTypes.h"
54 #include "llvm/IR/Dominators.h"
55 #include "llvm/IR/Function.h"
56 #include "llvm/IR/IRBuilder.h"
57 #include "llvm/IR/InstrTypes.h"
58 #include "llvm/IR/Instruction.h"
59 #include "llvm/IR/Instructions.h"
60 #include "llvm/IR/IntrinsicInst.h"
61 #include "llvm/IR/Intrinsics.h"
62 #include "llvm/IR/Module.h"
63 #include "llvm/IR/Operator.h"
64 #include "llvm/IR/PassManager.h"
65 #include "llvm/IR/PatternMatch.h"
66 #include "llvm/IR/Type.h"
67 #include "llvm/IR/Use.h"
68 #include "llvm/IR/User.h"
69 #include "llvm/IR/Value.h"
70 #include "llvm/IR/ValueHandle.h"
71 #include "llvm/InitializePasses.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/CommandLine.h"
75 #include "llvm/Support/Compiler.h"
76 #include "llvm/Support/Debug.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/MathExtras.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Transforms/Scalar.h"
81 #include "llvm/Transforms/Scalar/LoopPassManager.h"
82 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
83 #include "llvm/Transforms/Utils/Local.h"
84 #include "llvm/Transforms/Utils/LoopUtils.h"
85 #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
86 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
87 #include <cassert>
88 #include <cstdint>
89 #include <utility>
90 
91 using namespace llvm;
92 
93 #define DEBUG_TYPE "indvars"
94 
95 STATISTIC(NumWidened     , "Number of indvars widened");
96 STATISTIC(NumReplaced    , "Number of exit values replaced");
97 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
98 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
99 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
100 
101 // Trip count verification can be enabled by default under NDEBUG if we
102 // implement a strong expression equivalence checker in SCEV. Until then, we
103 // use the verify-indvars flag, which may assert in some cases.
104 static cl::opt<bool> VerifyIndvars(
105     "verify-indvars", cl::Hidden,
106     cl::desc("Verify the ScalarEvolution result after running indvars. Has no "
107              "effect in release builds. (Note: this adds additional SCEV "
108              "queries potentially changing the analysis result)"));
109 
110 static cl::opt<ReplaceExitVal> ReplaceExitValue(
111     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
112     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
113     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
114                clEnumValN(OnlyCheapRepl, "cheap",
115                           "only replace exit value when the cost is cheap"),
116                clEnumValN(NoHardUse, "noharduse",
117                           "only replace exit values when loop def likely dead"),
118                clEnumValN(AlwaysRepl, "always",
119                           "always replace exit value whenever possible")));
120 
121 static cl::opt<bool> UsePostIncrementRanges(
122   "indvars-post-increment-ranges", cl::Hidden,
123   cl::desc("Use post increment control-dependent ranges in IndVarSimplify"),
124   cl::init(true));
125 
126 static cl::opt<bool>
127 DisableLFTR("disable-lftr", cl::Hidden, cl::init(false),
128             cl::desc("Disable Linear Function Test Replace optimization"));
129 
130 static cl::opt<bool>
131 LoopPredication("indvars-predicate-loops", cl::Hidden, cl::init(true),
132                 cl::desc("Predicate conditions in read only loops"));
133 
134 static cl::opt<bool>
135 AllowIVWidening("indvars-widen-indvars", cl::Hidden, cl::init(true),
136                 cl::desc("Allow widening of indvars to eliminate s/zext"));
137 
138 namespace {
139 
140 struct RewritePhi;
141 
142 class IndVarSimplify {
143   LoopInfo *LI;
144   ScalarEvolution *SE;
145   DominatorTree *DT;
146   const DataLayout &DL;
147   TargetLibraryInfo *TLI;
148   const TargetTransformInfo *TTI;
149   std::unique_ptr<MemorySSAUpdater> MSSAU;
150 
151   SmallVector<WeakTrackingVH, 16> DeadInsts;
152   bool WidenIndVars;
153 
154   bool handleFloatingPointIV(Loop *L, PHINode *PH);
155   bool rewriteNonIntegerIVs(Loop *L);
156 
157   bool simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
158   /// Try to eliminate loop exits based on analyzeable exit counts
159   bool optimizeLoopExits(Loop *L, SCEVExpander &Rewriter);
160   /// Try to form loop invariant tests for loop exits by changing how many
161   /// iterations of the loop run when that is unobservable.
162   bool predicateLoopExits(Loop *L, SCEVExpander &Rewriter);
163 
164   bool rewriteFirstIterationLoopExitValues(Loop *L);
165 
166   bool linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
167                                  const SCEV *ExitCount,
168                                  PHINode *IndVar, SCEVExpander &Rewriter);
169 
170   bool sinkUnusedInvariants(Loop *L);
171 
172 public:
173   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
174                  const DataLayout &DL, TargetLibraryInfo *TLI,
175                  TargetTransformInfo *TTI, MemorySSA *MSSA, bool WidenIndVars)
176       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI),
177         WidenIndVars(WidenIndVars) {
178     if (MSSA)
179       MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
180   }
181 
182   bool run(Loop *L);
183 };
184 
185 } // end anonymous namespace
186 
187 //===----------------------------------------------------------------------===//
188 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
189 //===----------------------------------------------------------------------===//
190 
191 /// Convert APF to an integer, if possible.
192 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
193   bool isExact = false;
194   // See if we can convert this to an int64_t
195   uint64_t UIntVal;
196   if (APF.convertToInteger(makeMutableArrayRef(UIntVal), 64, true,
197                            APFloat::rmTowardZero, &isExact) != APFloat::opOK ||
198       !isExact)
199     return false;
200   IntVal = UIntVal;
201   return true;
202 }
203 
204 /// If the loop has floating induction variable then insert corresponding
205 /// integer induction variable if possible.
206 /// For example,
207 /// for(double i = 0; i < 10000; ++i)
208 ///   bar(i)
209 /// is converted into
210 /// for(int i = 0; i < 10000; ++i)
211 ///   bar((double)i);
212 bool IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
213   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
214   unsigned BackEdge     = IncomingEdge^1;
215 
216   // Check incoming value.
217   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
218 
219   int64_t InitValue;
220   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
221     return false;
222 
223   // Check IV increment. Reject this PN if increment operation is not
224   // an add or increment value can not be represented by an integer.
225   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
226   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return false;
227 
228   // If this is not an add of the PHI with a constantfp, or if the constant fp
229   // is not an integer, bail out.
230   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
231   int64_t IncValue;
232   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
233       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
234     return false;
235 
236   // Check Incr uses. One user is PN and the other user is an exit condition
237   // used by the conditional terminator.
238   Value::user_iterator IncrUse = Incr->user_begin();
239   Instruction *U1 = cast<Instruction>(*IncrUse++);
240   if (IncrUse == Incr->user_end()) return false;
241   Instruction *U2 = cast<Instruction>(*IncrUse++);
242   if (IncrUse != Incr->user_end()) return false;
243 
244   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
245   // only used by a branch, we can't transform it.
246   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
247   if (!Compare)
248     Compare = dyn_cast<FCmpInst>(U2);
249   if (!Compare || !Compare->hasOneUse() ||
250       !isa<BranchInst>(Compare->user_back()))
251     return false;
252 
253   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
254 
255   // We need to verify that the branch actually controls the iteration count
256   // of the loop.  If not, the new IV can overflow and no one will notice.
257   // The branch block must be in the loop and one of the successors must be out
258   // of the loop.
259   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
260   if (!L->contains(TheBr->getParent()) ||
261       (L->contains(TheBr->getSuccessor(0)) &&
262        L->contains(TheBr->getSuccessor(1))))
263     return false;
264 
265   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
266   // transform it.
267   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
268   int64_t ExitValue;
269   if (ExitValueVal == nullptr ||
270       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
271     return false;
272 
273   // Find new predicate for integer comparison.
274   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
275   switch (Compare->getPredicate()) {
276   default: return false;  // Unknown comparison.
277   case CmpInst::FCMP_OEQ:
278   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
279   case CmpInst::FCMP_ONE:
280   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
281   case CmpInst::FCMP_OGT:
282   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
283   case CmpInst::FCMP_OGE:
284   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
285   case CmpInst::FCMP_OLT:
286   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
287   case CmpInst::FCMP_OLE:
288   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
289   }
290 
291   // We convert the floating point induction variable to a signed i32 value if
292   // we can.  This is only safe if the comparison will not overflow in a way
293   // that won't be trapped by the integer equivalent operations.  Check for this
294   // now.
295   // TODO: We could use i64 if it is native and the range requires it.
296 
297   // The start/stride/exit values must all fit in signed i32.
298   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
299     return false;
300 
301   // If not actually striding (add x, 0.0), avoid touching the code.
302   if (IncValue == 0)
303     return false;
304 
305   // Positive and negative strides have different safety conditions.
306   if (IncValue > 0) {
307     // If we have a positive stride, we require the init to be less than the
308     // exit value.
309     if (InitValue >= ExitValue)
310       return false;
311 
312     uint32_t Range = uint32_t(ExitValue-InitValue);
313     // Check for infinite loop, either:
314     // while (i <= Exit) or until (i > Exit)
315     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
316       if (++Range == 0) return false;  // Range overflows.
317     }
318 
319     unsigned Leftover = Range % uint32_t(IncValue);
320 
321     // If this is an equality comparison, we require that the strided value
322     // exactly land on the exit value, otherwise the IV condition will wrap
323     // around and do things the fp IV wouldn't.
324     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
325         Leftover != 0)
326       return false;
327 
328     // If the stride would wrap around the i32 before exiting, we can't
329     // transform the IV.
330     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
331       return false;
332   } else {
333     // If we have a negative stride, we require the init to be greater than the
334     // exit value.
335     if (InitValue <= ExitValue)
336       return false;
337 
338     uint32_t Range = uint32_t(InitValue-ExitValue);
339     // Check for infinite loop, either:
340     // while (i >= Exit) or until (i < Exit)
341     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
342       if (++Range == 0) return false;  // Range overflows.
343     }
344 
345     unsigned Leftover = Range % uint32_t(-IncValue);
346 
347     // If this is an equality comparison, we require that the strided value
348     // exactly land on the exit value, otherwise the IV condition will wrap
349     // around and do things the fp IV wouldn't.
350     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
351         Leftover != 0)
352       return false;
353 
354     // If the stride would wrap around the i32 before exiting, we can't
355     // transform the IV.
356     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
357       return false;
358   }
359 
360   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
361 
362   // Insert new integer induction variable.
363   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
364   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
365                       PN->getIncomingBlock(IncomingEdge));
366 
367   Value *NewAdd =
368     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
369                               Incr->getName()+".int", Incr);
370   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
371 
372   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
373                                       ConstantInt::get(Int32Ty, ExitValue),
374                                       Compare->getName());
375 
376   // In the following deletions, PN may become dead and may be deleted.
377   // Use a WeakTrackingVH to observe whether this happens.
378   WeakTrackingVH WeakPH = PN;
379 
380   // Delete the old floating point exit comparison.  The branch starts using the
381   // new comparison.
382   NewCompare->takeName(Compare);
383   Compare->replaceAllUsesWith(NewCompare);
384   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI, MSSAU.get());
385 
386   // Delete the old floating point increment.
387   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
388   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI, MSSAU.get());
389 
390   // If the FP induction variable still has uses, this is because something else
391   // in the loop uses its value.  In order to canonicalize the induction
392   // variable, we chose to eliminate the IV and rewrite it in terms of an
393   // int->fp cast.
394   //
395   // We give preference to sitofp over uitofp because it is faster on most
396   // platforms.
397   if (WeakPH) {
398     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
399                                  &*PN->getParent()->getFirstInsertionPt());
400     PN->replaceAllUsesWith(Conv);
401     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI, MSSAU.get());
402   }
403   return true;
404 }
405 
406 bool IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
407   // First step.  Check to see if there are any floating-point recurrences.
408   // If there are, change them into integer recurrences, permitting analysis by
409   // the SCEV routines.
410   BasicBlock *Header = L->getHeader();
411 
412   SmallVector<WeakTrackingVH, 8> PHIs;
413   for (PHINode &PN : Header->phis())
414     PHIs.push_back(&PN);
415 
416   bool Changed = false;
417   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
418     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
419       Changed |= handleFloatingPointIV(L, PN);
420 
421   // If the loop previously had floating-point IV, ScalarEvolution
422   // may not have been able to compute a trip count. Now that we've done some
423   // re-writing, the trip count may be computable.
424   if (Changed)
425     SE->forgetLoop(L);
426   return Changed;
427 }
428 
429 //===---------------------------------------------------------------------===//
430 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
431 // they will exit at the first iteration.
432 //===---------------------------------------------------------------------===//
433 
434 /// Check to see if this loop has loop invariant conditions which lead to loop
435 /// exits. If so, we know that if the exit path is taken, it is at the first
436 /// loop iteration. This lets us predict exit values of PHI nodes that live in
437 /// loop header.
438 bool IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
439   // Verify the input to the pass is already in LCSSA form.
440   assert(L->isLCSSAForm(*DT));
441 
442   SmallVector<BasicBlock *, 8> ExitBlocks;
443   L->getUniqueExitBlocks(ExitBlocks);
444 
445   bool MadeAnyChanges = false;
446   for (auto *ExitBB : ExitBlocks) {
447     // If there are no more PHI nodes in this exit block, then no more
448     // values defined inside the loop are used on this path.
449     for (PHINode &PN : ExitBB->phis()) {
450       for (unsigned IncomingValIdx = 0, E = PN.getNumIncomingValues();
451            IncomingValIdx != E; ++IncomingValIdx) {
452         auto *IncomingBB = PN.getIncomingBlock(IncomingValIdx);
453 
454         // Can we prove that the exit must run on the first iteration if it
455         // runs at all?  (i.e. early exits are fine for our purposes, but
456         // traces which lead to this exit being taken on the 2nd iteration
457         // aren't.)  Note that this is about whether the exit branch is
458         // executed, not about whether it is taken.
459         if (!L->getLoopLatch() ||
460             !DT->dominates(IncomingBB, L->getLoopLatch()))
461           continue;
462 
463         // Get condition that leads to the exit path.
464         auto *TermInst = IncomingBB->getTerminator();
465 
466         Value *Cond = nullptr;
467         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
468           // Must be a conditional branch, otherwise the block
469           // should not be in the loop.
470           Cond = BI->getCondition();
471         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
472           Cond = SI->getCondition();
473         else
474           continue;
475 
476         if (!L->isLoopInvariant(Cond))
477           continue;
478 
479         auto *ExitVal = dyn_cast<PHINode>(PN.getIncomingValue(IncomingValIdx));
480 
481         // Only deal with PHIs in the loop header.
482         if (!ExitVal || ExitVal->getParent() != L->getHeader())
483           continue;
484 
485         // If ExitVal is a PHI on the loop header, then we know its
486         // value along this exit because the exit can only be taken
487         // on the first iteration.
488         auto *LoopPreheader = L->getLoopPreheader();
489         assert(LoopPreheader && "Invalid loop");
490         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
491         if (PreheaderIdx != -1) {
492           assert(ExitVal->getParent() == L->getHeader() &&
493                  "ExitVal must be in loop header");
494           MadeAnyChanges = true;
495           PN.setIncomingValue(IncomingValIdx,
496                               ExitVal->getIncomingValue(PreheaderIdx));
497         }
498       }
499     }
500   }
501   return MadeAnyChanges;
502 }
503 
504 //===----------------------------------------------------------------------===//
505 //  IV Widening - Extend the width of an IV to cover its widest uses.
506 //===----------------------------------------------------------------------===//
507 
508 /// Update information about the induction variable that is extended by this
509 /// sign or zero extend operation. This is used to determine the final width of
510 /// the IV before actually widening it.
511 static void visitIVCast(CastInst *Cast, WideIVInfo &WI,
512                         ScalarEvolution *SE,
513                         const TargetTransformInfo *TTI) {
514   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
515   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
516     return;
517 
518   Type *Ty = Cast->getType();
519   uint64_t Width = SE->getTypeSizeInBits(Ty);
520   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
521     return;
522 
523   // Check that `Cast` actually extends the induction variable (we rely on this
524   // later).  This takes care of cases where `Cast` is extending a truncation of
525   // the narrow induction variable, and thus can end up being narrower than the
526   // "narrow" induction variable.
527   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
528   if (NarrowIVWidth >= Width)
529     return;
530 
531   // Cast is either an sext or zext up to this point.
532   // We should not widen an indvar if arithmetics on the wider indvar are more
533   // expensive than those on the narrower indvar. We check only the cost of ADD
534   // because at least an ADD is required to increment the induction variable. We
535   // could compute more comprehensively the cost of all instructions on the
536   // induction variable when necessary.
537   if (TTI &&
538       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
539           TTI->getArithmeticInstrCost(Instruction::Add,
540                                       Cast->getOperand(0)->getType())) {
541     return;
542   }
543 
544   if (!WI.WidestNativeType) {
545     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
546     WI.IsSigned = IsSigned;
547     return;
548   }
549 
550   // We extend the IV to satisfy the sign of its first user, arbitrarily.
551   if (WI.IsSigned != IsSigned)
552     return;
553 
554   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
555     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
556 }
557 
558 //===----------------------------------------------------------------------===//
559 //  Live IV Reduction - Minimize IVs live across the loop.
560 //===----------------------------------------------------------------------===//
561 
562 //===----------------------------------------------------------------------===//
563 //  Simplification of IV users based on SCEV evaluation.
564 //===----------------------------------------------------------------------===//
565 
566 namespace {
567 
568 class IndVarSimplifyVisitor : public IVVisitor {
569   ScalarEvolution *SE;
570   const TargetTransformInfo *TTI;
571   PHINode *IVPhi;
572 
573 public:
574   WideIVInfo WI;
575 
576   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
577                         const TargetTransformInfo *TTI,
578                         const DominatorTree *DTree)
579     : SE(SCEV), TTI(TTI), IVPhi(IV) {
580     DT = DTree;
581     WI.NarrowIV = IVPhi;
582   }
583 
584   // Implement the interface used by simplifyUsersOfIV.
585   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
586 };
587 
588 } // end anonymous namespace
589 
590 /// Iteratively perform simplification on a worklist of IV users. Each
591 /// successive simplification may push more users which may themselves be
592 /// candidates for simplification.
593 ///
594 /// Sign/Zero extend elimination is interleaved with IV simplification.
595 bool IndVarSimplify::simplifyAndExtend(Loop *L,
596                                        SCEVExpander &Rewriter,
597                                        LoopInfo *LI) {
598   SmallVector<WideIVInfo, 8> WideIVs;
599 
600   auto *GuardDecl = L->getBlocks()[0]->getModule()->getFunction(
601           Intrinsic::getName(Intrinsic::experimental_guard));
602   bool HasGuards = GuardDecl && !GuardDecl->use_empty();
603 
604   SmallVector<PHINode*, 8> LoopPhis;
605   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
606     LoopPhis.push_back(cast<PHINode>(I));
607   }
608   // Each round of simplification iterates through the SimplifyIVUsers worklist
609   // for all current phis, then determines whether any IVs can be
610   // widened. Widening adds new phis to LoopPhis, inducing another round of
611   // simplification on the wide IVs.
612   bool Changed = false;
613   while (!LoopPhis.empty()) {
614     // Evaluate as many IV expressions as possible before widening any IVs. This
615     // forces SCEV to set no-wrap flags before evaluating sign/zero
616     // extension. The first time SCEV attempts to normalize sign/zero extension,
617     // the result becomes final. So for the most predictable results, we delay
618     // evaluation of sign/zero extend evaluation until needed, and avoid running
619     // other SCEV based analysis prior to simplifyAndExtend.
620     do {
621       PHINode *CurrIV = LoopPhis.pop_back_val();
622 
623       // Information about sign/zero extensions of CurrIV.
624       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
625 
626       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, TTI, DeadInsts, Rewriter,
627                                    &Visitor);
628 
629       if (Visitor.WI.WidestNativeType) {
630         WideIVs.push_back(Visitor.WI);
631       }
632     } while(!LoopPhis.empty());
633 
634     // Continue if we disallowed widening.
635     if (!WidenIndVars)
636       continue;
637 
638     for (; !WideIVs.empty(); WideIVs.pop_back()) {
639       unsigned ElimExt;
640       unsigned Widened;
641       if (PHINode *WidePhi = createWideIV(WideIVs.back(), LI, SE, Rewriter,
642                                           DT, DeadInsts, ElimExt, Widened,
643                                           HasGuards, UsePostIncrementRanges)) {
644         NumElimExt += ElimExt;
645         NumWidened += Widened;
646         Changed = true;
647         LoopPhis.push_back(WidePhi);
648       }
649     }
650   }
651   return Changed;
652 }
653 
654 //===----------------------------------------------------------------------===//
655 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
656 //===----------------------------------------------------------------------===//
657 
658 /// Given an Value which is hoped to be part of an add recurance in the given
659 /// loop, return the associated Phi node if so.  Otherwise, return null.  Note
660 /// that this is less general than SCEVs AddRec checking.
661 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L) {
662   Instruction *IncI = dyn_cast<Instruction>(IncV);
663   if (!IncI)
664     return nullptr;
665 
666   switch (IncI->getOpcode()) {
667   case Instruction::Add:
668   case Instruction::Sub:
669     break;
670   case Instruction::GetElementPtr:
671     // An IV counter must preserve its type.
672     if (IncI->getNumOperands() == 2)
673       break;
674     LLVM_FALLTHROUGH;
675   default:
676     return nullptr;
677   }
678 
679   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
680   if (Phi && Phi->getParent() == L->getHeader()) {
681     if (L->isLoopInvariant(IncI->getOperand(1)))
682       return Phi;
683     return nullptr;
684   }
685   if (IncI->getOpcode() == Instruction::GetElementPtr)
686     return nullptr;
687 
688   // Allow add/sub to be commuted.
689   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
690   if (Phi && Phi->getParent() == L->getHeader()) {
691     if (L->isLoopInvariant(IncI->getOperand(0)))
692       return Phi;
693   }
694   return nullptr;
695 }
696 
697 /// Whether the current loop exit test is based on this value.  Currently this
698 /// is limited to a direct use in the loop condition.
699 static bool isLoopExitTestBasedOn(Value *V, BasicBlock *ExitingBB) {
700   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
701   ICmpInst *ICmp = dyn_cast<ICmpInst>(BI->getCondition());
702   // TODO: Allow non-icmp loop test.
703   if (!ICmp)
704     return false;
705 
706   // TODO: Allow indirect use.
707   return ICmp->getOperand(0) == V || ICmp->getOperand(1) == V;
708 }
709 
710 /// linearFunctionTestReplace policy. Return true unless we can show that the
711 /// current exit test is already sufficiently canonical.
712 static bool needsLFTR(Loop *L, BasicBlock *ExitingBB) {
713   assert(L->getLoopLatch() && "Must be in simplified form");
714 
715   // Avoid converting a constant or loop invariant test back to a runtime
716   // test.  This is critical for when SCEV's cached ExitCount is less precise
717   // than the current IR (such as after we've proven a particular exit is
718   // actually dead and thus the BE count never reaches our ExitCount.)
719   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
720   if (L->isLoopInvariant(BI->getCondition()))
721     return false;
722 
723   // Do LFTR to simplify the exit condition to an ICMP.
724   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
725   if (!Cond)
726     return true;
727 
728   // Do LFTR to simplify the exit ICMP to EQ/NE
729   ICmpInst::Predicate Pred = Cond->getPredicate();
730   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
731     return true;
732 
733   // Look for a loop invariant RHS
734   Value *LHS = Cond->getOperand(0);
735   Value *RHS = Cond->getOperand(1);
736   if (!L->isLoopInvariant(RHS)) {
737     if (!L->isLoopInvariant(LHS))
738       return true;
739     std::swap(LHS, RHS);
740   }
741   // Look for a simple IV counter LHS
742   PHINode *Phi = dyn_cast<PHINode>(LHS);
743   if (!Phi)
744     Phi = getLoopPhiForCounter(LHS, L);
745 
746   if (!Phi)
747     return true;
748 
749   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
750   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
751   if (Idx < 0)
752     return true;
753 
754   // Do LFTR if the exit condition's IV is *not* a simple counter.
755   Value *IncV = Phi->getIncomingValue(Idx);
756   return Phi != getLoopPhiForCounter(IncV, L);
757 }
758 
759 /// Return true if undefined behavior would provable be executed on the path to
760 /// OnPathTo if Root produced a posion result.  Note that this doesn't say
761 /// anything about whether OnPathTo is actually executed or whether Root is
762 /// actually poison.  This can be used to assess whether a new use of Root can
763 /// be added at a location which is control equivalent with OnPathTo (such as
764 /// immediately before it) without introducing UB which didn't previously
765 /// exist.  Note that a false result conveys no information.
766 static bool mustExecuteUBIfPoisonOnPathTo(Instruction *Root,
767                                           Instruction *OnPathTo,
768                                           DominatorTree *DT) {
769   // Basic approach is to assume Root is poison, propagate poison forward
770   // through all users we can easily track, and then check whether any of those
771   // users are provable UB and must execute before out exiting block might
772   // exit.
773 
774   // The set of all recursive users we've visited (which are assumed to all be
775   // poison because of said visit)
776   SmallSet<const Value *, 16> KnownPoison;
777   SmallVector<const Instruction*, 16> Worklist;
778   Worklist.push_back(Root);
779   while (!Worklist.empty()) {
780     const Instruction *I = Worklist.pop_back_val();
781 
782     // If we know this must trigger UB on a path leading our target.
783     if (mustTriggerUB(I, KnownPoison) && DT->dominates(I, OnPathTo))
784       return true;
785 
786     // If we can't analyze propagation through this instruction, just skip it
787     // and transitive users.  Safe as false is a conservative result.
788     if (!propagatesPoison(cast<Operator>(I)) && I != Root)
789       continue;
790 
791     if (KnownPoison.insert(I).second)
792       for (const User *User : I->users())
793         Worklist.push_back(cast<Instruction>(User));
794   }
795 
796   // Might be non-UB, or might have a path we couldn't prove must execute on
797   // way to exiting bb.
798   return false;
799 }
800 
801 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
802 /// down to checking that all operands are constant and listing instructions
803 /// that may hide undef.
804 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
805                                unsigned Depth) {
806   if (isa<Constant>(V))
807     return !isa<UndefValue>(V);
808 
809   if (Depth >= 6)
810     return false;
811 
812   // Conservatively handle non-constant non-instructions. For example, Arguments
813   // may be undef.
814   Instruction *I = dyn_cast<Instruction>(V);
815   if (!I)
816     return false;
817 
818   // Load and return values may be undef.
819   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
820     return false;
821 
822   // Optimistically handle other instructions.
823   for (Value *Op : I->operands()) {
824     if (!Visited.insert(Op).second)
825       continue;
826     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
827       return false;
828   }
829   return true;
830 }
831 
832 /// Return true if the given value is concrete. We must prove that undef can
833 /// never reach it.
834 ///
835 /// TODO: If we decide that this is a good approach to checking for undef, we
836 /// may factor it into a common location.
837 static bool hasConcreteDef(Value *V) {
838   SmallPtrSet<Value*, 8> Visited;
839   Visited.insert(V);
840   return hasConcreteDefImpl(V, Visited, 0);
841 }
842 
843 /// Return true if this IV has any uses other than the (soon to be rewritten)
844 /// loop exit test.
845 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
846   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
847   Value *IncV = Phi->getIncomingValue(LatchIdx);
848 
849   for (User *U : Phi->users())
850     if (U != Cond && U != IncV) return false;
851 
852   for (User *U : IncV->users())
853     if (U != Cond && U != Phi) return false;
854   return true;
855 }
856 
857 /// Return true if the given phi is a "counter" in L.  A counter is an
858 /// add recurance (of integer or pointer type) with an arbitrary start, and a
859 /// step of 1.  Note that L must have exactly one latch.
860 static bool isLoopCounter(PHINode* Phi, Loop *L,
861                           ScalarEvolution *SE) {
862   assert(Phi->getParent() == L->getHeader());
863   assert(L->getLoopLatch());
864 
865   if (!SE->isSCEVable(Phi->getType()))
866     return false;
867 
868   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
869   if (!AR || AR->getLoop() != L || !AR->isAffine())
870     return false;
871 
872   const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
873   if (!Step || !Step->isOne())
874     return false;
875 
876   int LatchIdx = Phi->getBasicBlockIndex(L->getLoopLatch());
877   Value *IncV = Phi->getIncomingValue(LatchIdx);
878   return (getLoopPhiForCounter(IncV, L) == Phi);
879 }
880 
881 /// Search the loop header for a loop counter (anadd rec w/step of one)
882 /// suitable for use by LFTR.  If multiple counters are available, select the
883 /// "best" one based profitable heuristics.
884 ///
885 /// BECount may be an i8* pointer type. The pointer difference is already
886 /// valid count without scaling the address stride, so it remains a pointer
887 /// expression as far as SCEV is concerned.
888 static PHINode *FindLoopCounter(Loop *L, BasicBlock *ExitingBB,
889                                 const SCEV *BECount,
890                                 ScalarEvolution *SE, DominatorTree *DT) {
891   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
892 
893   Value *Cond = cast<BranchInst>(ExitingBB->getTerminator())->getCondition();
894 
895   // Loop over all of the PHI nodes, looking for a simple counter.
896   PHINode *BestPhi = nullptr;
897   const SCEV *BestInit = nullptr;
898   BasicBlock *LatchBlock = L->getLoopLatch();
899   assert(LatchBlock && "Must be in simplified form");
900   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
901 
902   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
903     PHINode *Phi = cast<PHINode>(I);
904     if (!isLoopCounter(Phi, L, SE))
905       continue;
906 
907     // Avoid comparing an integer IV against a pointer Limit.
908     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
909       continue;
910 
911     const auto *AR = cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
912 
913     // AR may be a pointer type, while BECount is an integer type.
914     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
915     // AR may not be a narrower type, or we may never exit.
916     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
917     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
918       continue;
919 
920     // Avoid reusing a potentially undef value to compute other values that may
921     // have originally had a concrete definition.
922     if (!hasConcreteDef(Phi)) {
923       // We explicitly allow unknown phis as long as they are already used by
924       // the loop exit test.  This is legal since performing LFTR could not
925       // increase the number of undef users.
926       Value *IncPhi = Phi->getIncomingValueForBlock(LatchBlock);
927       if (!isLoopExitTestBasedOn(Phi, ExitingBB) &&
928           !isLoopExitTestBasedOn(IncPhi, ExitingBB))
929         continue;
930     }
931 
932     // Avoid introducing undefined behavior due to poison which didn't exist in
933     // the original program.  (Annoyingly, the rules for poison and undef
934     // propagation are distinct, so this does NOT cover the undef case above.)
935     // We have to ensure that we don't introduce UB by introducing a use on an
936     // iteration where said IV produces poison.  Our strategy here differs for
937     // pointers and integer IVs.  For integers, we strip and reinfer as needed,
938     // see code in linearFunctionTestReplace.  For pointers, we restrict
939     // transforms as there is no good way to reinfer inbounds once lost.
940     if (!Phi->getType()->isIntegerTy() &&
941         !mustExecuteUBIfPoisonOnPathTo(Phi, ExitingBB->getTerminator(), DT))
942       continue;
943 
944     const SCEV *Init = AR->getStart();
945 
946     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
947       // Don't force a live loop counter if another IV can be used.
948       if (AlmostDeadIV(Phi, LatchBlock, Cond))
949         continue;
950 
951       // Prefer to count-from-zero. This is a more "canonical" counter form. It
952       // also prefers integer to pointer IVs.
953       if (BestInit->isZero() != Init->isZero()) {
954         if (BestInit->isZero())
955           continue;
956       }
957       // If two IVs both count from zero or both count from nonzero then the
958       // narrower is likely a dead phi that has been widened. Use the wider phi
959       // to allow the other to be eliminated.
960       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
961         continue;
962     }
963     BestPhi = Phi;
964     BestInit = Init;
965   }
966   return BestPhi;
967 }
968 
969 /// Insert an IR expression which computes the value held by the IV IndVar
970 /// (which must be an loop counter w/unit stride) after the backedge of loop L
971 /// is taken ExitCount times.
972 static Value *genLoopLimit(PHINode *IndVar, BasicBlock *ExitingBB,
973                            const SCEV *ExitCount, bool UsePostInc, Loop *L,
974                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
975   assert(isLoopCounter(IndVar, L, SE));
976   const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
977   const SCEV *IVInit = AR->getStart();
978 
979   // IVInit may be a pointer while ExitCount is an integer when FindLoopCounter
980   // finds a valid pointer IV. Sign extend ExitCount in order to materialize a
981   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
982   // the existing GEPs whenever possible.
983   if (IndVar->getType()->isPointerTy() &&
984       !ExitCount->getType()->isPointerTy()) {
985     // IVOffset will be the new GEP offset that is interpreted by GEP as a
986     // signed value. ExitCount on the other hand represents the loop trip count,
987     // which is an unsigned value. FindLoopCounter only allows induction
988     // variables that have a positive unit stride of one. This means we don't
989     // have to handle the case of negative offsets (yet) and just need to zero
990     // extend ExitCount.
991     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
992     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(ExitCount, OfsTy);
993     if (UsePostInc)
994       IVOffset = SE->getAddExpr(IVOffset, SE->getOne(OfsTy));
995 
996     // Expand the code for the iteration count.
997     assert(SE->isLoopInvariant(IVOffset, L) &&
998            "Computed iteration count is not loop invariant!");
999 
1000     // We could handle pointer IVs other than i8*, but we need to compensate for
1001     // gep index scaling.
1002     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1003                              cast<PointerType>(IndVar->getType())
1004                                  ->getElementType())->isOne() &&
1005            "unit stride pointer IV must be i8*");
1006 
1007     const SCEV *IVLimit = SE->getAddExpr(IVInit, IVOffset);
1008     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1009     return Rewriter.expandCodeFor(IVLimit, IndVar->getType(), BI);
1010   } else {
1011     // In any other case, convert both IVInit and ExitCount to integers before
1012     // comparing. This may result in SCEV expansion of pointers, but in practice
1013     // SCEV will fold the pointer arithmetic away as such:
1014     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1015     //
1016     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1017     // for simple memset-style loops.
1018     //
1019     // IVInit integer and ExitCount pointer would only occur if a canonical IV
1020     // were generated on top of case #2, which is not expected.
1021 
1022     assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1023     // For unit stride, IVCount = Start + ExitCount with 2's complement
1024     // overflow.
1025 
1026     // For integer IVs, truncate the IV before computing IVInit + BECount,
1027     // unless we know apriori that the limit must be a constant when evaluated
1028     // in the bitwidth of the IV.  We prefer (potentially) keeping a truncate
1029     // of the IV in the loop over a (potentially) expensive expansion of the
1030     // widened exit count add(zext(add)) expression.
1031     if (SE->getTypeSizeInBits(IVInit->getType())
1032         > SE->getTypeSizeInBits(ExitCount->getType())) {
1033       if (isa<SCEVConstant>(IVInit) && isa<SCEVConstant>(ExitCount))
1034         ExitCount = SE->getZeroExtendExpr(ExitCount, IVInit->getType());
1035       else
1036         IVInit = SE->getTruncateExpr(IVInit, ExitCount->getType());
1037     }
1038 
1039     const SCEV *IVLimit = SE->getAddExpr(IVInit, ExitCount);
1040 
1041     if (UsePostInc)
1042       IVLimit = SE->getAddExpr(IVLimit, SE->getOne(IVLimit->getType()));
1043 
1044     // Expand the code for the iteration count.
1045     assert(SE->isLoopInvariant(IVLimit, L) &&
1046            "Computed iteration count is not loop invariant!");
1047     // Ensure that we generate the same type as IndVar, or a smaller integer
1048     // type. In the presence of null pointer values, we have an integer type
1049     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1050     Type *LimitTy = ExitCount->getType()->isPointerTy() ?
1051       IndVar->getType() : ExitCount->getType();
1052     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1053     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1054   }
1055 }
1056 
1057 /// This method rewrites the exit condition of the loop to be a canonical !=
1058 /// comparison against the incremented loop induction variable.  This pass is
1059 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1060 /// determine a loop-invariant trip count of the loop, which is actually a much
1061 /// broader range than just linear tests.
1062 bool IndVarSimplify::
1063 linearFunctionTestReplace(Loop *L, BasicBlock *ExitingBB,
1064                           const SCEV *ExitCount,
1065                           PHINode *IndVar, SCEVExpander &Rewriter) {
1066   assert(L->getLoopLatch() && "Loop no longer in simplified form?");
1067   assert(isLoopCounter(IndVar, L, SE));
1068   Instruction * const IncVar =
1069     cast<Instruction>(IndVar->getIncomingValueForBlock(L->getLoopLatch()));
1070 
1071   // Initialize CmpIndVar to the preincremented IV.
1072   Value *CmpIndVar = IndVar;
1073   bool UsePostInc = false;
1074 
1075   // If the exiting block is the same as the backedge block, we prefer to
1076   // compare against the post-incremented value, otherwise we must compare
1077   // against the preincremented value.
1078   if (ExitingBB == L->getLoopLatch()) {
1079     // For pointer IVs, we chose to not strip inbounds which requires us not
1080     // to add a potentially UB introducing use.  We need to either a) show
1081     // the loop test we're modifying is already in post-inc form, or b) show
1082     // that adding a use must not introduce UB.
1083     bool SafeToPostInc =
1084         IndVar->getType()->isIntegerTy() ||
1085         isLoopExitTestBasedOn(IncVar, ExitingBB) ||
1086         mustExecuteUBIfPoisonOnPathTo(IncVar, ExitingBB->getTerminator(), DT);
1087     if (SafeToPostInc) {
1088       UsePostInc = true;
1089       CmpIndVar = IncVar;
1090     }
1091   }
1092 
1093   // It may be necessary to drop nowrap flags on the incrementing instruction
1094   // if either LFTR moves from a pre-inc check to a post-inc check (in which
1095   // case the increment might have previously been poison on the last iteration
1096   // only) or if LFTR switches to a different IV that was previously dynamically
1097   // dead (and as such may be arbitrarily poison). We remove any nowrap flags
1098   // that SCEV didn't infer for the post-inc addrec (even if we use a pre-inc
1099   // check), because the pre-inc addrec flags may be adopted from the original
1100   // instruction, while SCEV has to explicitly prove the post-inc nowrap flags.
1101   // TODO: This handling is inaccurate for one case: If we switch to a
1102   // dynamically dead IV that wraps on the first loop iteration only, which is
1103   // not covered by the post-inc addrec. (If the new IV was not dynamically
1104   // dead, it could not be poison on the first iteration in the first place.)
1105   if (auto *BO = dyn_cast<BinaryOperator>(IncVar)) {
1106     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IncVar));
1107     if (BO->hasNoUnsignedWrap())
1108       BO->setHasNoUnsignedWrap(AR->hasNoUnsignedWrap());
1109     if (BO->hasNoSignedWrap())
1110       BO->setHasNoSignedWrap(AR->hasNoSignedWrap());
1111   }
1112 
1113   Value *ExitCnt = genLoopLimit(
1114       IndVar, ExitingBB, ExitCount, UsePostInc, L, Rewriter, SE);
1115   assert(ExitCnt->getType()->isPointerTy() ==
1116              IndVar->getType()->isPointerTy() &&
1117          "genLoopLimit missed a cast");
1118 
1119   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1120   BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1121   ICmpInst::Predicate P;
1122   if (L->contains(BI->getSuccessor(0)))
1123     P = ICmpInst::ICMP_NE;
1124   else
1125     P = ICmpInst::ICMP_EQ;
1126 
1127   IRBuilder<> Builder(BI);
1128 
1129   // The new loop exit condition should reuse the debug location of the
1130   // original loop exit condition.
1131   if (auto *Cond = dyn_cast<Instruction>(BI->getCondition()))
1132     Builder.SetCurrentDebugLocation(Cond->getDebugLoc());
1133 
1134   // For integer IVs, if we evaluated the limit in the narrower bitwidth to
1135   // avoid the expensive expansion of the limit expression in the wider type,
1136   // emit a truncate to narrow the IV to the ExitCount type.  This is safe
1137   // since we know (from the exit count bitwidth), that we can't self-wrap in
1138   // the narrower type.
1139   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
1140   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
1141   if (CmpIndVarSize > ExitCntSize) {
1142     assert(!CmpIndVar->getType()->isPointerTy() &&
1143            !ExitCnt->getType()->isPointerTy());
1144 
1145     // Before resorting to actually inserting the truncate, use the same
1146     // reasoning as from SimplifyIndvar::eliminateTrunc to see if we can extend
1147     // the other side of the comparison instead.  We still evaluate the limit
1148     // in the narrower bitwidth, we just prefer a zext/sext outside the loop to
1149     // a truncate within in.
1150     bool Extended = false;
1151     const SCEV *IV = SE->getSCEV(CmpIndVar);
1152     const SCEV *TruncatedIV = SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
1153                                                   ExitCnt->getType());
1154     const SCEV *ZExtTrunc =
1155       SE->getZeroExtendExpr(TruncatedIV, CmpIndVar->getType());
1156 
1157     if (ZExtTrunc == IV) {
1158       Extended = true;
1159       ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
1160                                    "wide.trip.count");
1161     } else {
1162       const SCEV *SExtTrunc =
1163         SE->getSignExtendExpr(TruncatedIV, CmpIndVar->getType());
1164       if (SExtTrunc == IV) {
1165         Extended = true;
1166         ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
1167                                      "wide.trip.count");
1168       }
1169     }
1170 
1171     if (Extended) {
1172       bool Discard;
1173       L->makeLoopInvariant(ExitCnt, Discard);
1174     } else
1175       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1176                                       "lftr.wideiv");
1177   }
1178   LLVM_DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1179                     << "      LHS:" << *CmpIndVar << '\n'
1180                     << "       op:\t" << (P == ICmpInst::ICMP_NE ? "!=" : "==")
1181                     << "\n"
1182                     << "      RHS:\t" << *ExitCnt << "\n"
1183                     << "ExitCount:\t" << *ExitCount << "\n"
1184                     << "  was: " << *BI->getCondition() << "\n");
1185 
1186   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1187   Value *OrigCond = BI->getCondition();
1188   // It's tempting to use replaceAllUsesWith here to fully replace the old
1189   // comparison, but that's not immediately safe, since users of the old
1190   // comparison may not be dominated by the new comparison. Instead, just
1191   // update the branch to use the new comparison; in the common case this
1192   // will make old comparison dead.
1193   BI->setCondition(Cond);
1194   DeadInsts.emplace_back(OrigCond);
1195 
1196   ++NumLFTR;
1197   return true;
1198 }
1199 
1200 //===----------------------------------------------------------------------===//
1201 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1202 //===----------------------------------------------------------------------===//
1203 
1204 /// If there's a single exit block, sink any loop-invariant values that
1205 /// were defined in the preheader but not used inside the loop into the
1206 /// exit block to reduce register pressure in the loop.
1207 bool IndVarSimplify::sinkUnusedInvariants(Loop *L) {
1208   BasicBlock *ExitBlock = L->getExitBlock();
1209   if (!ExitBlock) return false;
1210 
1211   BasicBlock *Preheader = L->getLoopPreheader();
1212   if (!Preheader) return false;
1213 
1214   bool MadeAnyChanges = false;
1215   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
1216   BasicBlock::iterator I(Preheader->getTerminator());
1217   while (I != Preheader->begin()) {
1218     --I;
1219     // New instructions were inserted at the end of the preheader.
1220     if (isa<PHINode>(I))
1221       break;
1222 
1223     // Don't move instructions which might have side effects, since the side
1224     // effects need to complete before instructions inside the loop.  Also don't
1225     // move instructions which might read memory, since the loop may modify
1226     // memory. Note that it's okay if the instruction might have undefined
1227     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1228     // block.
1229     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1230       continue;
1231 
1232     // Skip debug info intrinsics.
1233     if (isa<DbgInfoIntrinsic>(I))
1234       continue;
1235 
1236     // Skip eh pad instructions.
1237     if (I->isEHPad())
1238       continue;
1239 
1240     // Don't sink alloca: we never want to sink static alloca's out of the
1241     // entry block, and correctly sinking dynamic alloca's requires
1242     // checks for stacksave/stackrestore intrinsics.
1243     // FIXME: Refactor this check somehow?
1244     if (isa<AllocaInst>(I))
1245       continue;
1246 
1247     // Determine if there is a use in or before the loop (direct or
1248     // otherwise).
1249     bool UsedInLoop = false;
1250     for (Use &U : I->uses()) {
1251       Instruction *User = cast<Instruction>(U.getUser());
1252       BasicBlock *UseBB = User->getParent();
1253       if (PHINode *P = dyn_cast<PHINode>(User)) {
1254         unsigned i =
1255           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
1256         UseBB = P->getIncomingBlock(i);
1257       }
1258       if (UseBB == Preheader || L->contains(UseBB)) {
1259         UsedInLoop = true;
1260         break;
1261       }
1262     }
1263 
1264     // If there is, the def must remain in the preheader.
1265     if (UsedInLoop)
1266       continue;
1267 
1268     // Otherwise, sink it to the exit block.
1269     Instruction *ToMove = &*I;
1270     bool Done = false;
1271 
1272     if (I != Preheader->begin()) {
1273       // Skip debug info intrinsics.
1274       do {
1275         --I;
1276       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1277 
1278       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1279         Done = true;
1280     } else {
1281       Done = true;
1282     }
1283 
1284     MadeAnyChanges = true;
1285     ToMove->moveBefore(*ExitBlock, InsertPt);
1286     if (Done) break;
1287     InsertPt = ToMove->getIterator();
1288   }
1289 
1290   return MadeAnyChanges;
1291 }
1292 
1293 enum ExitCondAnalysisResult {
1294   CanBeRemoved,
1295   CannotOptimize
1296 };
1297 
1298 /// If the condition of BI is trivially true during at least first MaxIter
1299 /// iterations, return CanBeRemoved.
1300 /// Otherwise, return CannotOptimize.
1301 static ExitCondAnalysisResult analyzeCond(const Loop *L, BranchInst *BI,
1302                                           ScalarEvolution *SE,
1303                                           bool ProvingLoopExit,
1304                                           const SCEV *MaxIter) {
1305   ICmpInst::Predicate Pred;
1306   Value *LHS, *RHS;
1307   using namespace PatternMatch;
1308   BasicBlock *TrueSucc, *FalseSucc;
1309   if (!match(BI, m_Br(m_ICmp(Pred, m_Value(LHS), m_Value(RHS)),
1310                       m_BasicBlock(TrueSucc), m_BasicBlock(FalseSucc))))
1311     return CannotOptimize;
1312 
1313   assert((L->contains(TrueSucc) != L->contains(FalseSucc)) &&
1314          "Not a loop exit!");
1315 
1316   // 'LHS pred RHS' should now mean that we stay in loop.
1317   if (L->contains(FalseSucc))
1318     Pred = CmpInst::getInversePredicate(Pred);
1319 
1320   // If we are proving loop exit, invert the predicate.
1321   if (ProvingLoopExit)
1322     Pred = CmpInst::getInversePredicate(Pred);
1323 
1324   const SCEV *LHSS = SE->getSCEVAtScope(LHS, L);
1325   const SCEV *RHSS = SE->getSCEVAtScope(RHS, L);
1326   // Can we prove it to be trivially true?
1327   if (SE->isKnownPredicateAt(Pred, LHSS, RHSS, BI))
1328     return CanBeRemoved;
1329 
1330   if (ProvingLoopExit)
1331     return CannotOptimize;
1332 
1333   ICmpInst::Predicate InvariantPred;
1334   const SCEV *InvariantLHS, *InvariantRHS;
1335 
1336   // Check if there is a loop-invariant predicate equivalent to our check.
1337   if (!SE->isLoopInvariantExitCondDuringFirstIterations(
1338            Pred, LHSS, RHSS, L, BI, MaxIter, InvariantPred, InvariantLHS,
1339            InvariantRHS))
1340     return CannotOptimize;
1341 
1342   // Can we prove it to be trivially true?
1343   if (SE->isKnownPredicateAt(InvariantPred, InvariantLHS, InvariantRHS, BI))
1344     return CanBeRemoved;
1345   return CannotOptimize;
1346 }
1347 
1348 bool IndVarSimplify::optimizeLoopExits(Loop *L, SCEVExpander &Rewriter) {
1349   SmallVector<BasicBlock*, 16> ExitingBlocks;
1350   L->getExitingBlocks(ExitingBlocks);
1351 
1352   // Remove all exits which aren't both rewriteable and execute on every
1353   // iteration.
1354   auto NewEnd = llvm::remove_if(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1355     // If our exitting block exits multiple loops, we can only rewrite the
1356     // innermost one.  Otherwise, we're changing how many times the innermost
1357     // loop runs before it exits.
1358     if (LI->getLoopFor(ExitingBB) != L)
1359       return true;
1360 
1361     // Can't rewrite non-branch yet.
1362     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1363     if (!BI)
1364       return true;
1365 
1366     // If already constant, nothing to do.
1367     if (isa<Constant>(BI->getCondition()))
1368       return true;
1369 
1370     // Likewise, the loop latch must be dominated by the exiting BB.
1371     if (!DT->dominates(ExitingBB, L->getLoopLatch()))
1372       return true;
1373 
1374     return false;
1375   });
1376   ExitingBlocks.erase(NewEnd, ExitingBlocks.end());
1377 
1378   if (ExitingBlocks.empty())
1379     return false;
1380 
1381   // Get a symbolic upper bound on the loop backedge taken count.
1382   const SCEV *MaxExitCount = SE->getSymbolicMaxBackedgeTakenCount(L);
1383   if (isa<SCEVCouldNotCompute>(MaxExitCount))
1384     return false;
1385 
1386   // Visit our exit blocks in order of dominance. We know from the fact that
1387   // all exits must dominate the latch, so there is a total dominance order
1388   // between them.
1389   llvm::sort(ExitingBlocks, [&](BasicBlock *A, BasicBlock *B) {
1390                // std::sort sorts in ascending order, so we want the inverse of
1391                // the normal dominance relation.
1392                if (A == B) return false;
1393                if (DT->properlyDominates(A, B))
1394                  return true;
1395                else {
1396                  assert(DT->properlyDominates(B, A) &&
1397                         "expected total dominance order!");
1398                  return false;
1399                }
1400   });
1401 #ifdef ASSERT
1402   for (unsigned i = 1; i < ExitingBlocks.size(); i++) {
1403     assert(DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]));
1404   }
1405 #endif
1406 
1407   auto ReplaceExitCond = [&](BranchInst *BI, Value *NewCond) {
1408     auto *OldCond = BI->getCondition();
1409     BI->setCondition(NewCond);
1410     if (OldCond->use_empty())
1411       DeadInsts.emplace_back(OldCond);
1412   };
1413 
1414   auto FoldExit = [&](BasicBlock *ExitingBB, bool IsTaken) {
1415     BranchInst *BI = cast<BranchInst>(ExitingBB->getTerminator());
1416     bool ExitIfTrue = !L->contains(*succ_begin(ExitingBB));
1417     auto *OldCond = BI->getCondition();
1418     auto *NewCond = ConstantInt::get(OldCond->getType(),
1419                                      IsTaken ? ExitIfTrue : !ExitIfTrue);
1420     ReplaceExitCond(BI, NewCond);
1421   };
1422 
1423   bool Changed = false;
1424   bool SkipLastIter = false;
1425   SmallSet<const SCEV*, 8> DominatingExitCounts;
1426   for (BasicBlock *ExitingBB : ExitingBlocks) {
1427     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1428     if (isa<SCEVCouldNotCompute>(ExitCount)) {
1429       // Okay, we do not know the exit count here. Can we at least prove that it
1430       // will remain the same within iteration space?
1431       auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1432       auto OptimizeCond = [this, L, BI, ExitingBB, MaxExitCount, &FoldExit](
1433           bool Inverted, bool SkipLastIter) {
1434         const SCEV *MaxIter = MaxExitCount;
1435         if (SkipLastIter) {
1436           const SCEV *One = SE->getOne(MaxIter->getType());
1437           MaxIter = SE->getMinusSCEV(MaxIter, One);
1438         }
1439         switch (analyzeCond(L, BI, SE, Inverted, MaxIter)) {
1440         case CanBeRemoved:
1441           FoldExit(ExitingBB, Inverted);
1442           return true;
1443         case CannotOptimize:
1444           return false;
1445         }
1446         llvm_unreachable("Unknown case!");
1447       };
1448 
1449       // TODO: We might have proved that we can skip the last iteration for
1450       // this check. In this case, we only want to check the condition on the
1451       // pre-last iteration (MaxExitCount - 1). However, there is a nasty
1452       // corner case:
1453       //
1454       //   for (i = len; i != 0; i--) { ... check (i ult X) ... }
1455       //
1456       // If we could not prove that len != 0, then we also could not prove that
1457       // (len - 1) is not a UINT_MAX. If we simply query (len - 1), then
1458       // OptimizeCond will likely not prove anything for it, even if it could
1459       // prove the same fact for len.
1460       //
1461       // As a temporary solution, we query both last and pre-last iterations in
1462       // hope that we will be able to prove triviality for at least one of
1463       // them. We can stop querying MaxExitCount for this case once SCEV
1464       // understands that (MaxExitCount - 1) will not overflow here.
1465       if (OptimizeCond(false, false) || OptimizeCond(true, false))
1466         Changed = true;
1467       else if (SkipLastIter)
1468         if (OptimizeCond(false, true) || OptimizeCond(true, true))
1469           Changed = true;
1470       continue;
1471     }
1472 
1473     if (MaxExitCount == ExitCount)
1474       // If the loop has more than 1 iteration, all further checks will be
1475       // executed 1 iteration less.
1476       SkipLastIter = true;
1477 
1478     // If we know we'd exit on the first iteration, rewrite the exit to
1479     // reflect this.  This does not imply the loop must exit through this
1480     // exit; there may be an earlier one taken on the first iteration.
1481     // TODO: Given we know the backedge can't be taken, we should go ahead
1482     // and break it.  Or at least, kill all the header phis and simplify.
1483     if (ExitCount->isZero()) {
1484       FoldExit(ExitingBB, true);
1485       Changed = true;
1486       continue;
1487     }
1488 
1489     // If we end up with a pointer exit count, bail.  Note that we can end up
1490     // with a pointer exit count for one exiting block, and not for another in
1491     // the same loop.
1492     if (!ExitCount->getType()->isIntegerTy() ||
1493         !MaxExitCount->getType()->isIntegerTy())
1494       continue;
1495 
1496     Type *WiderType =
1497       SE->getWiderType(MaxExitCount->getType(), ExitCount->getType());
1498     ExitCount = SE->getNoopOrZeroExtend(ExitCount, WiderType);
1499     MaxExitCount = SE->getNoopOrZeroExtend(MaxExitCount, WiderType);
1500     assert(MaxExitCount->getType() == ExitCount->getType());
1501 
1502     // Can we prove that some other exit must be taken strictly before this
1503     // one?
1504     if (SE->isLoopEntryGuardedByCond(L, CmpInst::ICMP_ULT,
1505                                      MaxExitCount, ExitCount)) {
1506       FoldExit(ExitingBB, false);
1507       Changed = true;
1508       continue;
1509     }
1510 
1511     // As we run, keep track of which exit counts we've encountered.  If we
1512     // find a duplicate, we've found an exit which would have exited on the
1513     // exiting iteration, but (from the visit order) strictly follows another
1514     // which does the same and is thus dead.
1515     if (!DominatingExitCounts.insert(ExitCount).second) {
1516       FoldExit(ExitingBB, false);
1517       Changed = true;
1518       continue;
1519     }
1520 
1521     // TODO: There might be another oppurtunity to leverage SCEV's reasoning
1522     // here.  If we kept track of the min of dominanting exits so far, we could
1523     // discharge exits with EC >= MDEC. This is less powerful than the existing
1524     // transform (since later exits aren't considered), but potentially more
1525     // powerful for any case where SCEV can prove a >=u b, but neither a == b
1526     // or a >u b.  Such a case is not currently known.
1527   }
1528   return Changed;
1529 }
1530 
1531 bool IndVarSimplify::predicateLoopExits(Loop *L, SCEVExpander &Rewriter) {
1532   SmallVector<BasicBlock*, 16> ExitingBlocks;
1533   L->getExitingBlocks(ExitingBlocks);
1534 
1535   // Finally, see if we can rewrite our exit conditions into a loop invariant
1536   // form. If we have a read-only loop, and we can tell that we must exit down
1537   // a path which does not need any of the values computed within the loop, we
1538   // can rewrite the loop to exit on the first iteration.  Note that this
1539   // doesn't either a) tell us the loop exits on the first iteration (unless
1540   // *all* exits are predicateable) or b) tell us *which* exit might be taken.
1541   // This transformation looks a lot like a restricted form of dead loop
1542   // elimination, but restricted to read-only loops and without neccesssarily
1543   // needing to kill the loop entirely.
1544   if (!LoopPredication)
1545     return false;
1546 
1547   if (!SE->hasLoopInvariantBackedgeTakenCount(L))
1548     return false;
1549 
1550   // Note: ExactBTC is the exact backedge taken count *iff* the loop exits
1551   // through *explicit* control flow.  We have to eliminate the possibility of
1552   // implicit exits (see below) before we know it's truly exact.
1553   const SCEV *ExactBTC = SE->getBackedgeTakenCount(L);
1554   if (isa<SCEVCouldNotCompute>(ExactBTC) ||
1555       !SE->isLoopInvariant(ExactBTC, L) ||
1556       !isSafeToExpand(ExactBTC, *SE))
1557     return false;
1558 
1559   // If we end up with a pointer exit count, bail.  It may be unsized.
1560   if (!ExactBTC->getType()->isIntegerTy())
1561     return false;
1562 
1563   auto BadExit = [&](BasicBlock *ExitingBB) {
1564     // If our exiting block exits multiple loops, we can only rewrite the
1565     // innermost one.  Otherwise, we're changing how many times the innermost
1566     // loop runs before it exits.
1567     if (LI->getLoopFor(ExitingBB) != L)
1568       return true;
1569 
1570     // Can't rewrite non-branch yet.
1571     BranchInst *BI = dyn_cast<BranchInst>(ExitingBB->getTerminator());
1572     if (!BI)
1573       return true;
1574 
1575     // If already constant, nothing to do.
1576     if (isa<Constant>(BI->getCondition()))
1577       return true;
1578 
1579     // If the exit block has phis, we need to be able to compute the values
1580     // within the loop which contains them.  This assumes trivially lcssa phis
1581     // have already been removed; TODO: generalize
1582     BasicBlock *ExitBlock =
1583     BI->getSuccessor(L->contains(BI->getSuccessor(0)) ? 1 : 0);
1584     if (!ExitBlock->phis().empty())
1585       return true;
1586 
1587     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1588     assert(!isa<SCEVCouldNotCompute>(ExactBTC) && "implied by having exact trip count");
1589     if (!SE->isLoopInvariant(ExitCount, L) ||
1590         !isSafeToExpand(ExitCount, *SE))
1591       return true;
1592 
1593     // If we end up with a pointer exit count, bail.  It may be unsized.
1594     if (!ExitCount->getType()->isIntegerTy())
1595       return true;
1596 
1597     return false;
1598   };
1599 
1600   // If we have any exits which can't be predicated themselves, than we can't
1601   // predicate any exit which isn't guaranteed to execute before it.  Consider
1602   // two exits (a) and (b) which would both exit on the same iteration.  If we
1603   // can predicate (b), but not (a), and (a) preceeds (b) along some path, then
1604   // we could convert a loop from exiting through (a) to one exiting through
1605   // (b).  Note that this problem exists only for exits with the same exit
1606   // count, and we could be more aggressive when exit counts are known inequal.
1607   llvm::sort(ExitingBlocks,
1608             [&](BasicBlock *A, BasicBlock *B) {
1609               // std::sort sorts in ascending order, so we want the inverse of
1610               // the normal dominance relation, plus a tie breaker for blocks
1611               // unordered by dominance.
1612               if (DT->properlyDominates(A, B)) return true;
1613               if (DT->properlyDominates(B, A)) return false;
1614               return A->getName() < B->getName();
1615             });
1616   // Check to see if our exit blocks are a total order (i.e. a linear chain of
1617   // exits before the backedge).  If they aren't, reasoning about reachability
1618   // is complicated and we choose not to for now.
1619   for (unsigned i = 1; i < ExitingBlocks.size(); i++)
1620     if (!DT->dominates(ExitingBlocks[i-1], ExitingBlocks[i]))
1621       return false;
1622 
1623   // Given our sorted total order, we know that exit[j] must be evaluated
1624   // after all exit[i] such j > i.
1625   for (unsigned i = 0, e = ExitingBlocks.size(); i < e; i++)
1626     if (BadExit(ExitingBlocks[i])) {
1627       ExitingBlocks.resize(i);
1628       break;
1629     }
1630 
1631   if (ExitingBlocks.empty())
1632     return false;
1633 
1634   // We rely on not being able to reach an exiting block on a later iteration
1635   // then it's statically compute exit count.  The implementaton of
1636   // getExitCount currently has this invariant, but assert it here so that
1637   // breakage is obvious if this ever changes..
1638   assert(llvm::all_of(ExitingBlocks, [&](BasicBlock *ExitingBB) {
1639         return DT->dominates(ExitingBB, L->getLoopLatch());
1640       }));
1641 
1642   // At this point, ExitingBlocks consists of only those blocks which are
1643   // predicatable.  Given that, we know we have at least one exit we can
1644   // predicate if the loop is doesn't have side effects and doesn't have any
1645   // implicit exits (because then our exact BTC isn't actually exact).
1646   // @Reviewers - As structured, this is O(I^2) for loop nests.  Any
1647   // suggestions on how to improve this?  I can obviously bail out for outer
1648   // loops, but that seems less than ideal.  MemorySSA can find memory writes,
1649   // is that enough for *all* side effects?
1650   for (BasicBlock *BB : L->blocks())
1651     for (auto &I : *BB)
1652       // TODO:isGuaranteedToTransfer
1653       if (I.mayHaveSideEffects() || I.mayThrow())
1654         return false;
1655 
1656   bool Changed = false;
1657   // Finally, do the actual predication for all predicatable blocks.  A couple
1658   // of notes here:
1659   // 1) We don't bother to constant fold dominated exits with identical exit
1660   //    counts; that's simply a form of CSE/equality propagation and we leave
1661   //    it for dedicated passes.
1662   // 2) We insert the comparison at the branch.  Hoisting introduces additional
1663   //    legality constraints and we leave that to dedicated logic.  We want to
1664   //    predicate even if we can't insert a loop invariant expression as
1665   //    peeling or unrolling will likely reduce the cost of the otherwise loop
1666   //    varying check.
1667   Rewriter.setInsertPoint(L->getLoopPreheader()->getTerminator());
1668   IRBuilder<> B(L->getLoopPreheader()->getTerminator());
1669   Value *ExactBTCV = nullptr; // Lazily generated if needed.
1670   for (BasicBlock *ExitingBB : ExitingBlocks) {
1671     const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1672 
1673     auto *BI = cast<BranchInst>(ExitingBB->getTerminator());
1674     Value *NewCond;
1675     if (ExitCount == ExactBTC) {
1676       NewCond = L->contains(BI->getSuccessor(0)) ?
1677         B.getFalse() : B.getTrue();
1678     } else {
1679       Value *ECV = Rewriter.expandCodeFor(ExitCount);
1680       if (!ExactBTCV)
1681         ExactBTCV = Rewriter.expandCodeFor(ExactBTC);
1682       Value *RHS = ExactBTCV;
1683       if (ECV->getType() != RHS->getType()) {
1684         Type *WiderTy = SE->getWiderType(ECV->getType(), RHS->getType());
1685         ECV = B.CreateZExt(ECV, WiderTy);
1686         RHS = B.CreateZExt(RHS, WiderTy);
1687       }
1688       auto Pred = L->contains(BI->getSuccessor(0)) ?
1689         ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ;
1690       NewCond = B.CreateICmp(Pred, ECV, RHS);
1691     }
1692     Value *OldCond = BI->getCondition();
1693     BI->setCondition(NewCond);
1694     if (OldCond->use_empty())
1695       DeadInsts.emplace_back(OldCond);
1696     Changed = true;
1697   }
1698 
1699   return Changed;
1700 }
1701 
1702 //===----------------------------------------------------------------------===//
1703 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1704 //===----------------------------------------------------------------------===//
1705 
1706 bool IndVarSimplify::run(Loop *L) {
1707   // We need (and expect!) the incoming loop to be in LCSSA.
1708   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1709          "LCSSA required to run indvars!");
1710 
1711   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1712   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1713   //    canonicalization can be a pessimization without LSR to "clean up"
1714   //    afterwards.
1715   //  - We depend on having a preheader; in particular,
1716   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1717   //    and we're in trouble if we can't find the induction variable even when
1718   //    we've manually inserted one.
1719   //  - LFTR relies on having a single backedge.
1720   if (!L->isLoopSimplifyForm())
1721     return false;
1722 
1723 #ifndef NDEBUG
1724   // Used below for a consistency check only
1725   // Note: Since the result returned by ScalarEvolution may depend on the order
1726   // in which previous results are added to its cache, the call to
1727   // getBackedgeTakenCount() may change following SCEV queries.
1728   const SCEV *BackedgeTakenCount;
1729   if (VerifyIndvars)
1730     BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1731 #endif
1732 
1733   bool Changed = false;
1734   // If there are any floating-point recurrences, attempt to
1735   // transform them to use integer recurrences.
1736   Changed |= rewriteNonIntegerIVs(L);
1737 
1738   // Create a rewriter object which we'll use to transform the code with.
1739   SCEVExpander Rewriter(*SE, DL, "indvars");
1740 #ifndef NDEBUG
1741   Rewriter.setDebugType(DEBUG_TYPE);
1742 #endif
1743 
1744   // Eliminate redundant IV users.
1745   //
1746   // Simplification works best when run before other consumers of SCEV. We
1747   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1748   // other expressions involving loop IVs have been evaluated. This helps SCEV
1749   // set no-wrap flags before normalizing sign/zero extension.
1750   Rewriter.disableCanonicalMode();
1751   Changed |= simplifyAndExtend(L, Rewriter, LI);
1752 
1753   // Check to see if we can compute the final value of any expressions
1754   // that are recurrent in the loop, and substitute the exit values from the
1755   // loop into any instructions outside of the loop that use the final values
1756   // of the current expressions.
1757   if (ReplaceExitValue != NeverRepl) {
1758     if (int Rewrites = rewriteLoopExitValues(L, LI, TLI, SE, TTI, Rewriter, DT,
1759                                              ReplaceExitValue, DeadInsts)) {
1760       NumReplaced += Rewrites;
1761       Changed = true;
1762     }
1763   }
1764 
1765   // Eliminate redundant IV cycles.
1766   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1767 
1768   // Try to eliminate loop exits based on analyzeable exit counts
1769   if (optimizeLoopExits(L, Rewriter))  {
1770     Changed = true;
1771     // Given we've changed exit counts, notify SCEV
1772     SE->forgetLoop(L);
1773   }
1774 
1775   // Try to form loop invariant tests for loop exits by changing how many
1776   // iterations of the loop run when that is unobservable.
1777   if (predicateLoopExits(L, Rewriter)) {
1778     Changed = true;
1779     // Given we've changed exit counts, notify SCEV
1780     SE->forgetLoop(L);
1781   }
1782 
1783   // If we have a trip count expression, rewrite the loop's exit condition
1784   // using it.
1785   if (!DisableLFTR) {
1786     BasicBlock *PreHeader = L->getLoopPreheader();
1787     BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
1788 
1789     SmallVector<BasicBlock*, 16> ExitingBlocks;
1790     L->getExitingBlocks(ExitingBlocks);
1791     for (BasicBlock *ExitingBB : ExitingBlocks) {
1792       // Can't rewrite non-branch yet.
1793       if (!isa<BranchInst>(ExitingBB->getTerminator()))
1794         continue;
1795 
1796       // If our exitting block exits multiple loops, we can only rewrite the
1797       // innermost one.  Otherwise, we're changing how many times the innermost
1798       // loop runs before it exits.
1799       if (LI->getLoopFor(ExitingBB) != L)
1800         continue;
1801 
1802       if (!needsLFTR(L, ExitingBB))
1803         continue;
1804 
1805       const SCEV *ExitCount = SE->getExitCount(L, ExitingBB);
1806       if (isa<SCEVCouldNotCompute>(ExitCount))
1807         continue;
1808 
1809       // This was handled above, but as we form SCEVs, we can sometimes refine
1810       // existing ones; this allows exit counts to be folded to zero which
1811       // weren't when optimizeLoopExits saw them.  Arguably, we should iterate
1812       // until stable to handle cases like this better.
1813       if (ExitCount->isZero())
1814         continue;
1815 
1816       PHINode *IndVar = FindLoopCounter(L, ExitingBB, ExitCount, SE, DT);
1817       if (!IndVar)
1818         continue;
1819 
1820       // Avoid high cost expansions.  Note: This heuristic is questionable in
1821       // that our definition of "high cost" is not exactly principled.
1822       if (Rewriter.isHighCostExpansion(ExitCount, L, SCEVCheapExpansionBudget,
1823                                        TTI, PreHeaderBR))
1824         continue;
1825 
1826       // Check preconditions for proper SCEVExpander operation. SCEV does not
1827       // express SCEVExpander's dependencies, such as LoopSimplify. Instead
1828       // any pass that uses the SCEVExpander must do it. This does not work
1829       // well for loop passes because SCEVExpander makes assumptions about
1830       // all loops, while LoopPassManager only forces the current loop to be
1831       // simplified.
1832       //
1833       // FIXME: SCEV expansion has no way to bail out, so the caller must
1834       // explicitly check any assumptions made by SCEV. Brittle.
1835       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ExitCount);
1836       if (!AR || AR->getLoop()->getLoopPreheader())
1837         Changed |= linearFunctionTestReplace(L, ExitingBB,
1838                                              ExitCount, IndVar,
1839                                              Rewriter);
1840     }
1841   }
1842   // Clear the rewriter cache, because values that are in the rewriter's cache
1843   // can be deleted in the loop below, causing the AssertingVH in the cache to
1844   // trigger.
1845   Rewriter.clear();
1846 
1847   // Now that we're done iterating through lists, clean up any instructions
1848   // which are now dead.
1849   while (!DeadInsts.empty())
1850     if (Instruction *Inst =
1851             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
1852       Changed |=
1853           RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI, MSSAU.get());
1854 
1855   // The Rewriter may not be used from this point on.
1856 
1857   // Loop-invariant instructions in the preheader that aren't used in the
1858   // loop may be sunk below the loop to reduce register pressure.
1859   Changed |= sinkUnusedInvariants(L);
1860 
1861   // rewriteFirstIterationLoopExitValues does not rely on the computation of
1862   // trip count and therefore can further simplify exit values in addition to
1863   // rewriteLoopExitValues.
1864   Changed |= rewriteFirstIterationLoopExitValues(L);
1865 
1866   // Clean up dead instructions.
1867   Changed |= DeleteDeadPHIs(L->getHeader(), TLI, MSSAU.get());
1868 
1869   // Check a post-condition.
1870   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
1871          "Indvars did not preserve LCSSA!");
1872 
1873   // Verify that LFTR, and any other change have not interfered with SCEV's
1874   // ability to compute trip count.  We may have *changed* the exit count, but
1875   // only by reducing it.
1876 #ifndef NDEBUG
1877   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1878     SE->forgetLoop(L);
1879     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1880     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1881         SE->getTypeSizeInBits(NewBECount->getType()))
1882       NewBECount = SE->getTruncateOrNoop(NewBECount,
1883                                          BackedgeTakenCount->getType());
1884     else
1885       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1886                                                  NewBECount->getType());
1887     assert(!SE->isKnownPredicate(ICmpInst::ICMP_ULT, BackedgeTakenCount,
1888                                  NewBECount) && "indvars must preserve SCEV");
1889   }
1890   if (VerifyMemorySSA && MSSAU)
1891     MSSAU->getMemorySSA()->verifyMemorySSA();
1892 #endif
1893 
1894   return Changed;
1895 }
1896 
1897 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM,
1898                                           LoopStandardAnalysisResults &AR,
1899                                           LPMUpdater &) {
1900   Function *F = L.getHeader()->getParent();
1901   const DataLayout &DL = F->getParent()->getDataLayout();
1902 
1903   IndVarSimplify IVS(&AR.LI, &AR.SE, &AR.DT, DL, &AR.TLI, &AR.TTI, AR.MSSA,
1904                      WidenIndVars && AllowIVWidening);
1905   if (!IVS.run(&L))
1906     return PreservedAnalyses::all();
1907 
1908   auto PA = getLoopPassPreservedAnalyses();
1909   PA.preserveSet<CFGAnalyses>();
1910   if (AR.MSSA)
1911     PA.preserve<MemorySSAAnalysis>();
1912   return PA;
1913 }
1914 
1915 namespace {
1916 
1917 struct IndVarSimplifyLegacyPass : public LoopPass {
1918   static char ID; // Pass identification, replacement for typeid
1919 
1920   IndVarSimplifyLegacyPass() : LoopPass(ID) {
1921     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
1922   }
1923 
1924   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
1925     if (skipLoop(L))
1926       return false;
1927 
1928     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1929     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
1930     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1931     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
1932     auto *TLI = TLIP ? &TLIP->getTLI(*L->getHeader()->getParent()) : nullptr;
1933     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
1934     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
1935     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1936     auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>();
1937     MemorySSA *MSSA = nullptr;
1938     if (MSSAAnalysis)
1939       MSSA = &MSSAAnalysis->getMSSA();
1940 
1941     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI, MSSA, AllowIVWidening);
1942     return IVS.run(L);
1943   }
1944 
1945   void getAnalysisUsage(AnalysisUsage &AU) const override {
1946     AU.setPreservesCFG();
1947     AU.addPreserved<MemorySSAWrapperPass>();
1948     getLoopAnalysisUsage(AU);
1949   }
1950 };
1951 
1952 } // end anonymous namespace
1953 
1954 char IndVarSimplifyLegacyPass::ID = 0;
1955 
1956 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
1957                       "Induction Variable Simplification", false, false)
1958 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1959 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
1960                     "Induction Variable Simplification", false, false)
1961 
1962 Pass *llvm::createIndVarSimplifyPass() {
1963   return new IndVarSimplifyLegacyPass();
1964 }
1965