1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // This transformation makes the following changes to each loop with an 15 // identifiable induction variable: 16 // 1. All loops are transformed to have a SINGLE canonical induction variable 17 // which starts at zero and steps by one. 18 // 2. The canonical induction variable is guaranteed to be the first PHI node 19 // in the loop header block. 20 // 3. The canonical induction variable is guaranteed to be in a wide enough 21 // type so that IV expressions need not be (directly) zero-extended or 22 // sign-extended. 23 // 4. Any pointer arithmetic recurrences are raised to use array subscripts. 24 // 25 // If the trip count of a loop is computable, this pass also makes the following 26 // changes: 27 // 1. The exit condition for the loop is canonicalized to compare the 28 // induction value against the exit value. This turns loops like: 29 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 30 // 2. Any use outside of the loop of an expression derived from the indvar 31 // is changed to compute the derived value outside of the loop, eliminating 32 // the dependence on the exit value of the induction variable. If the only 33 // purpose of the loop is to compute the exit value of some derived 34 // expression, this transformation will make the loop dead. 35 // 36 // This transformation should be followed by strength reduction after all of the 37 // desired loop transformations have been performed. 38 // 39 //===----------------------------------------------------------------------===// 40 41 #define DEBUG_TYPE "indvars" 42 #include "llvm/Transforms/Scalar.h" 43 #include "llvm/BasicBlock.h" 44 #include "llvm/Constants.h" 45 #include "llvm/Instructions.h" 46 #include "llvm/IntrinsicInst.h" 47 #include "llvm/LLVMContext.h" 48 #include "llvm/Type.h" 49 #include "llvm/Analysis/Dominators.h" 50 #include "llvm/Analysis/IVUsers.h" 51 #include "llvm/Analysis/ScalarEvolutionExpander.h" 52 #include "llvm/Analysis/LoopInfo.h" 53 #include "llvm/Analysis/LoopPass.h" 54 #include "llvm/Support/CFG.h" 55 #include "llvm/Support/CommandLine.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Transforms/Utils/Local.h" 59 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 60 #include "llvm/Target/TargetData.h" 61 #include "llvm/ADT/DenseMap.h" 62 #include "llvm/ADT/SmallVector.h" 63 #include "llvm/ADT/Statistic.h" 64 #include "llvm/ADT/STLExtras.h" 65 using namespace llvm; 66 67 STATISTIC(NumRemoved , "Number of aux indvars removed"); 68 STATISTIC(NumWidened , "Number of indvars widened"); 69 STATISTIC(NumInserted , "Number of canonical indvars added"); 70 STATISTIC(NumReplaced , "Number of exit values replaced"); 71 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 72 STATISTIC(NumElimIdentity, "Number of IV identities eliminated"); 73 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 74 STATISTIC(NumElimRem , "Number of IV remainder operations eliminated"); 75 STATISTIC(NumElimCmp , "Number of IV comparisons eliminated"); 76 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 77 78 static cl::opt<bool> DisableIVRewrite( 79 "disable-iv-rewrite", cl::Hidden, 80 cl::desc("Disable canonical induction variable rewriting")); 81 82 // Temporary flag for use with -disable-iv-rewrite to force a canonical IV for 83 // LFTR purposes. 84 static cl::opt<bool> ForceLFTR( 85 "force-lftr", cl::Hidden, 86 cl::desc("Enable forced linear function test replacement")); 87 88 namespace { 89 class IndVarSimplify : public LoopPass { 90 IVUsers *IU; 91 LoopInfo *LI; 92 ScalarEvolution *SE; 93 DominatorTree *DT; 94 TargetData *TD; 95 96 SmallVector<WeakVH, 16> DeadInsts; 97 bool Changed; 98 public: 99 100 static char ID; // Pass identification, replacement for typeid 101 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0), 102 Changed(false) { 103 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 104 } 105 106 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 107 108 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 109 AU.addRequired<DominatorTree>(); 110 AU.addRequired<LoopInfo>(); 111 AU.addRequired<ScalarEvolution>(); 112 AU.addRequiredID(LoopSimplifyID); 113 AU.addRequiredID(LCSSAID); 114 if (!DisableIVRewrite) 115 AU.addRequired<IVUsers>(); 116 AU.addPreserved<ScalarEvolution>(); 117 AU.addPreservedID(LoopSimplifyID); 118 AU.addPreservedID(LCSSAID); 119 if (!DisableIVRewrite) 120 AU.addPreserved<IVUsers>(); 121 AU.setPreservesCFG(); 122 } 123 124 private: 125 virtual void releaseMemory() { 126 DeadInsts.clear(); 127 } 128 129 bool isValidRewrite(Value *FromVal, Value *ToVal); 130 131 void HandleFloatingPointIV(Loop *L, PHINode *PH); 132 void RewriteNonIntegerIVs(Loop *L); 133 134 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 135 136 void SimplifyIVUsers(SCEVExpander &Rewriter); 137 void SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter); 138 139 bool EliminateIVUser(Instruction *UseInst, Instruction *IVOperand); 140 void EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand); 141 void EliminateIVRemainder(BinaryOperator *Rem, 142 Value *IVOperand, 143 bool IsSigned); 144 145 void SimplifyCongruentIVs(Loop *L); 146 147 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter); 148 149 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 150 PHINode *IndVar, SCEVExpander &Rewriter); 151 152 void SinkUnusedInvariants(Loop *L); 153 }; 154 } 155 156 char IndVarSimplify::ID = 0; 157 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 158 "Induction Variable Simplification", false, false) 159 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 160 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 161 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 162 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 163 INITIALIZE_PASS_DEPENDENCY(LCSSA) 164 INITIALIZE_PASS_DEPENDENCY(IVUsers) 165 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 166 "Induction Variable Simplification", false, false) 167 168 Pass *llvm::createIndVarSimplifyPass() { 169 return new IndVarSimplify(); 170 } 171 172 /// isValidRewrite - Return true if the SCEV expansion generated by the 173 /// rewriter can replace the original value. SCEV guarantees that it 174 /// produces the same value, but the way it is produced may be illegal IR. 175 /// Ideally, this function will only be called for verification. 176 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 177 // If an SCEV expression subsumed multiple pointers, its expansion could 178 // reassociate the GEP changing the base pointer. This is illegal because the 179 // final address produced by a GEP chain must be inbounds relative to its 180 // underlying object. Otherwise basic alias analysis, among other things, 181 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 182 // producing an expression involving multiple pointers. Until then, we must 183 // bail out here. 184 // 185 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 186 // because it understands lcssa phis while SCEV does not. 187 Value *FromPtr = FromVal; 188 Value *ToPtr = ToVal; 189 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 190 FromPtr = GEP->getPointerOperand(); 191 } 192 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 193 ToPtr = GEP->getPointerOperand(); 194 } 195 if (FromPtr != FromVal || ToPtr != ToVal) { 196 // Quickly check the common case 197 if (FromPtr == ToPtr) 198 return true; 199 200 // SCEV may have rewritten an expression that produces the GEP's pointer 201 // operand. That's ok as long as the pointer operand has the same base 202 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 203 // base of a recurrence. This handles the case in which SCEV expansion 204 // converts a pointer type recurrence into a nonrecurrent pointer base 205 // indexed by an integer recurrence. 206 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 207 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 208 if (FromBase == ToBase) 209 return true; 210 211 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 212 << *FromBase << " != " << *ToBase << "\n"); 213 214 return false; 215 } 216 return true; 217 } 218 219 //===----------------------------------------------------------------------===// 220 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 221 //===----------------------------------------------------------------------===// 222 223 /// ConvertToSInt - Convert APF to an integer, if possible. 224 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 225 bool isExact = false; 226 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) 227 return false; 228 // See if we can convert this to an int64_t 229 uint64_t UIntVal; 230 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 231 &isExact) != APFloat::opOK || !isExact) 232 return false; 233 IntVal = UIntVal; 234 return true; 235 } 236 237 /// HandleFloatingPointIV - If the loop has floating induction variable 238 /// then insert corresponding integer induction variable if possible. 239 /// For example, 240 /// for(double i = 0; i < 10000; ++i) 241 /// bar(i) 242 /// is converted into 243 /// for(int i = 0; i < 10000; ++i) 244 /// bar((double)i); 245 /// 246 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 247 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 248 unsigned BackEdge = IncomingEdge^1; 249 250 // Check incoming value. 251 ConstantFP *InitValueVal = 252 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 253 254 int64_t InitValue; 255 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 256 return; 257 258 // Check IV increment. Reject this PN if increment operation is not 259 // an add or increment value can not be represented by an integer. 260 BinaryOperator *Incr = 261 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 262 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; 263 264 // If this is not an add of the PHI with a constantfp, or if the constant fp 265 // is not an integer, bail out. 266 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 267 int64_t IncValue; 268 if (IncValueVal == 0 || Incr->getOperand(0) != PN || 269 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 270 return; 271 272 // Check Incr uses. One user is PN and the other user is an exit condition 273 // used by the conditional terminator. 274 Value::use_iterator IncrUse = Incr->use_begin(); 275 Instruction *U1 = cast<Instruction>(*IncrUse++); 276 if (IncrUse == Incr->use_end()) return; 277 Instruction *U2 = cast<Instruction>(*IncrUse++); 278 if (IncrUse != Incr->use_end()) return; 279 280 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 281 // only used by a branch, we can't transform it. 282 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 283 if (!Compare) 284 Compare = dyn_cast<FCmpInst>(U2); 285 if (Compare == 0 || !Compare->hasOneUse() || 286 !isa<BranchInst>(Compare->use_back())) 287 return; 288 289 BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); 290 291 // We need to verify that the branch actually controls the iteration count 292 // of the loop. If not, the new IV can overflow and no one will notice. 293 // The branch block must be in the loop and one of the successors must be out 294 // of the loop. 295 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 296 if (!L->contains(TheBr->getParent()) || 297 (L->contains(TheBr->getSuccessor(0)) && 298 L->contains(TheBr->getSuccessor(1)))) 299 return; 300 301 302 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 303 // transform it. 304 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 305 int64_t ExitValue; 306 if (ExitValueVal == 0 || 307 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 308 return; 309 310 // Find new predicate for integer comparison. 311 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 312 switch (Compare->getPredicate()) { 313 default: return; // Unknown comparison. 314 case CmpInst::FCMP_OEQ: 315 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 316 case CmpInst::FCMP_ONE: 317 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 318 case CmpInst::FCMP_OGT: 319 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 320 case CmpInst::FCMP_OGE: 321 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 322 case CmpInst::FCMP_OLT: 323 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 324 case CmpInst::FCMP_OLE: 325 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 326 } 327 328 // We convert the floating point induction variable to a signed i32 value if 329 // we can. This is only safe if the comparison will not overflow in a way 330 // that won't be trapped by the integer equivalent operations. Check for this 331 // now. 332 // TODO: We could use i64 if it is native and the range requires it. 333 334 // The start/stride/exit values must all fit in signed i32. 335 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 336 return; 337 338 // If not actually striding (add x, 0.0), avoid touching the code. 339 if (IncValue == 0) 340 return; 341 342 // Positive and negative strides have different safety conditions. 343 if (IncValue > 0) { 344 // If we have a positive stride, we require the init to be less than the 345 // exit value and an equality or less than comparison. 346 if (InitValue >= ExitValue || 347 NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE) 348 return; 349 350 uint32_t Range = uint32_t(ExitValue-InitValue); 351 if (NewPred == CmpInst::ICMP_SLE) { 352 // Normalize SLE -> SLT, check for infinite loop. 353 if (++Range == 0) return; // Range overflows. 354 } 355 356 unsigned Leftover = Range % uint32_t(IncValue); 357 358 // If this is an equality comparison, we require that the strided value 359 // exactly land on the exit value, otherwise the IV condition will wrap 360 // around and do things the fp IV wouldn't. 361 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 362 Leftover != 0) 363 return; 364 365 // If the stride would wrap around the i32 before exiting, we can't 366 // transform the IV. 367 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 368 return; 369 370 } else { 371 // If we have a negative stride, we require the init to be greater than the 372 // exit value and an equality or greater than comparison. 373 if (InitValue >= ExitValue || 374 NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE) 375 return; 376 377 uint32_t Range = uint32_t(InitValue-ExitValue); 378 if (NewPred == CmpInst::ICMP_SGE) { 379 // Normalize SGE -> SGT, check for infinite loop. 380 if (++Range == 0) return; // Range overflows. 381 } 382 383 unsigned Leftover = Range % uint32_t(-IncValue); 384 385 // If this is an equality comparison, we require that the strided value 386 // exactly land on the exit value, otherwise the IV condition will wrap 387 // around and do things the fp IV wouldn't. 388 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 389 Leftover != 0) 390 return; 391 392 // If the stride would wrap around the i32 before exiting, we can't 393 // transform the IV. 394 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 395 return; 396 } 397 398 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 399 400 // Insert new integer induction variable. 401 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 402 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 403 PN->getIncomingBlock(IncomingEdge)); 404 405 Value *NewAdd = 406 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 407 Incr->getName()+".int", Incr); 408 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 409 410 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 411 ConstantInt::get(Int32Ty, ExitValue), 412 Compare->getName()); 413 414 // In the following deletions, PN may become dead and may be deleted. 415 // Use a WeakVH to observe whether this happens. 416 WeakVH WeakPH = PN; 417 418 // Delete the old floating point exit comparison. The branch starts using the 419 // new comparison. 420 NewCompare->takeName(Compare); 421 Compare->replaceAllUsesWith(NewCompare); 422 RecursivelyDeleteTriviallyDeadInstructions(Compare); 423 424 // Delete the old floating point increment. 425 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 426 RecursivelyDeleteTriviallyDeadInstructions(Incr); 427 428 // If the FP induction variable still has uses, this is because something else 429 // in the loop uses its value. In order to canonicalize the induction 430 // variable, we chose to eliminate the IV and rewrite it in terms of an 431 // int->fp cast. 432 // 433 // We give preference to sitofp over uitofp because it is faster on most 434 // platforms. 435 if (WeakPH) { 436 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 437 PN->getParent()->getFirstNonPHI()); 438 PN->replaceAllUsesWith(Conv); 439 RecursivelyDeleteTriviallyDeadInstructions(PN); 440 } 441 442 // Add a new IVUsers entry for the newly-created integer PHI. 443 if (IU) 444 IU->AddUsersIfInteresting(NewPHI); 445 } 446 447 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 448 // First step. Check to see if there are any floating-point recurrences. 449 // If there are, change them into integer recurrences, permitting analysis by 450 // the SCEV routines. 451 // 452 BasicBlock *Header = L->getHeader(); 453 454 SmallVector<WeakVH, 8> PHIs; 455 for (BasicBlock::iterator I = Header->begin(); 456 PHINode *PN = dyn_cast<PHINode>(I); ++I) 457 PHIs.push_back(PN); 458 459 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 460 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 461 HandleFloatingPointIV(L, PN); 462 463 // If the loop previously had floating-point IV, ScalarEvolution 464 // may not have been able to compute a trip count. Now that we've done some 465 // re-writing, the trip count may be computable. 466 if (Changed) 467 SE->forgetLoop(L); 468 } 469 470 //===----------------------------------------------------------------------===// 471 // RewriteLoopExitValues - Optimize IV users outside the loop. 472 // As a side effect, reduces the amount of IV processing within the loop. 473 //===----------------------------------------------------------------------===// 474 475 /// RewriteLoopExitValues - Check to see if this loop has a computable 476 /// loop-invariant execution count. If so, this means that we can compute the 477 /// final value of any expressions that are recurrent in the loop, and 478 /// substitute the exit values from the loop into any instructions outside of 479 /// the loop that use the final values of the current expressions. 480 /// 481 /// This is mostly redundant with the regular IndVarSimplify activities that 482 /// happen later, except that it's more powerful in some cases, because it's 483 /// able to brute-force evaluate arbitrary instructions as long as they have 484 /// constant operands at the beginning of the loop. 485 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 486 // Verify the input to the pass in already in LCSSA form. 487 assert(L->isLCSSAForm(*DT)); 488 489 SmallVector<BasicBlock*, 8> ExitBlocks; 490 L->getUniqueExitBlocks(ExitBlocks); 491 492 // Find all values that are computed inside the loop, but used outside of it. 493 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 494 // the exit blocks of the loop to find them. 495 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 496 BasicBlock *ExitBB = ExitBlocks[i]; 497 498 // If there are no PHI nodes in this exit block, then no values defined 499 // inside the loop are used on this path, skip it. 500 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 501 if (!PN) continue; 502 503 unsigned NumPreds = PN->getNumIncomingValues(); 504 505 // Iterate over all of the PHI nodes. 506 BasicBlock::iterator BBI = ExitBB->begin(); 507 while ((PN = dyn_cast<PHINode>(BBI++))) { 508 if (PN->use_empty()) 509 continue; // dead use, don't replace it 510 511 // SCEV only supports integer expressions for now. 512 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 513 continue; 514 515 // It's necessary to tell ScalarEvolution about this explicitly so that 516 // it can walk the def-use list and forget all SCEVs, as it may not be 517 // watching the PHI itself. Once the new exit value is in place, there 518 // may not be a def-use connection between the loop and every instruction 519 // which got a SCEVAddRecExpr for that loop. 520 SE->forgetValue(PN); 521 522 // Iterate over all of the values in all the PHI nodes. 523 for (unsigned i = 0; i != NumPreds; ++i) { 524 // If the value being merged in is not integer or is not defined 525 // in the loop, skip it. 526 Value *InVal = PN->getIncomingValue(i); 527 if (!isa<Instruction>(InVal)) 528 continue; 529 530 // If this pred is for a subloop, not L itself, skip it. 531 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 532 continue; // The Block is in a subloop, skip it. 533 534 // Check that InVal is defined in the loop. 535 Instruction *Inst = cast<Instruction>(InVal); 536 if (!L->contains(Inst)) 537 continue; 538 539 // Okay, this instruction has a user outside of the current loop 540 // and varies predictably *inside* the loop. Evaluate the value it 541 // contains when the loop exits, if possible. 542 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 543 if (!SE->isLoopInvariant(ExitValue, L)) 544 continue; 545 546 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 547 548 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 549 << " LoopVal = " << *Inst << "\n"); 550 551 if (!isValidRewrite(Inst, ExitVal)) { 552 DeadInsts.push_back(ExitVal); 553 continue; 554 } 555 Changed = true; 556 ++NumReplaced; 557 558 PN->setIncomingValue(i, ExitVal); 559 560 // If this instruction is dead now, delete it. 561 RecursivelyDeleteTriviallyDeadInstructions(Inst); 562 563 if (NumPreds == 1) { 564 // Completely replace a single-pred PHI. This is safe, because the 565 // NewVal won't be variant in the loop, so we don't need an LCSSA phi 566 // node anymore. 567 PN->replaceAllUsesWith(ExitVal); 568 RecursivelyDeleteTriviallyDeadInstructions(PN); 569 } 570 } 571 if (NumPreds != 1) { 572 // Clone the PHI and delete the original one. This lets IVUsers and 573 // any other maps purge the original user from their records. 574 PHINode *NewPN = cast<PHINode>(PN->clone()); 575 NewPN->takeName(PN); 576 NewPN->insertBefore(PN); 577 PN->replaceAllUsesWith(NewPN); 578 PN->eraseFromParent(); 579 } 580 } 581 } 582 583 // The insertion point instruction may have been deleted; clear it out 584 // so that the rewriter doesn't trip over it later. 585 Rewriter.clearInsertPoint(); 586 } 587 588 //===----------------------------------------------------------------------===// 589 // Rewrite IV users based on a canonical IV. 590 // To be replaced by -disable-iv-rewrite. 591 //===----------------------------------------------------------------------===// 592 593 /// SimplifyIVUsers - Iteratively perform simplification on IVUsers within this 594 /// loop. IVUsers is treated as a worklist. Each successive simplification may 595 /// push more users which may themselves be candidates for simplification. 596 /// 597 /// This is the old approach to IV simplification to be replaced by 598 /// SimplifyIVUsersNoRewrite. 599 /// 600 void IndVarSimplify::SimplifyIVUsers(SCEVExpander &Rewriter) { 601 // Each round of simplification involves a round of eliminating operations 602 // followed by a round of widening IVs. A single IVUsers worklist is used 603 // across all rounds. The inner loop advances the user. If widening exposes 604 // more uses, then another pass through the outer loop is triggered. 605 for (IVUsers::iterator I = IU->begin(); I != IU->end(); ++I) { 606 Instruction *UseInst = I->getUser(); 607 Value *IVOperand = I->getOperandValToReplace(); 608 609 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 610 EliminateIVComparison(ICmp, IVOperand); 611 continue; 612 } 613 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 614 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 615 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 616 EliminateIVRemainder(Rem, IVOperand, IsSigned); 617 continue; 618 } 619 } 620 } 621 } 622 623 // FIXME: It is an extremely bad idea to indvar substitute anything more 624 // complex than affine induction variables. Doing so will put expensive 625 // polynomial evaluations inside of the loop, and the str reduction pass 626 // currently can only reduce affine polynomials. For now just disable 627 // indvar subst on anything more complex than an affine addrec, unless 628 // it can be expanded to a trivial value. 629 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) { 630 // Loop-invariant values are safe. 631 if (SE->isLoopInvariant(S, L)) return true; 632 633 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how 634 // to transform them into efficient code. 635 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 636 return AR->isAffine(); 637 638 // An add is safe it all its operands are safe. 639 if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) { 640 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(), 641 E = Commutative->op_end(); I != E; ++I) 642 if (!isSafe(*I, L, SE)) return false; 643 return true; 644 } 645 646 // A cast is safe if its operand is. 647 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 648 return isSafe(C->getOperand(), L, SE); 649 650 // A udiv is safe if its operands are. 651 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S)) 652 return isSafe(UD->getLHS(), L, SE) && 653 isSafe(UD->getRHS(), L, SE); 654 655 // SCEVUnknown is always safe. 656 if (isa<SCEVUnknown>(S)) 657 return true; 658 659 // Nothing else is safe. 660 return false; 661 } 662 663 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) { 664 // Rewrite all induction variable expressions in terms of the canonical 665 // induction variable. 666 // 667 // If there were induction variables of other sizes or offsets, manually 668 // add the offsets to the primary induction variable and cast, avoiding 669 // the need for the code evaluation methods to insert induction variables 670 // of different sizes. 671 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) { 672 Value *Op = UI->getOperandValToReplace(); 673 Type *UseTy = Op->getType(); 674 Instruction *User = UI->getUser(); 675 676 // Compute the final addrec to expand into code. 677 const SCEV *AR = IU->getReplacementExpr(*UI); 678 679 // Evaluate the expression out of the loop, if possible. 680 if (!L->contains(UI->getUser())) { 681 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop()); 682 if (SE->isLoopInvariant(ExitVal, L)) 683 AR = ExitVal; 684 } 685 686 // FIXME: It is an extremely bad idea to indvar substitute anything more 687 // complex than affine induction variables. Doing so will put expensive 688 // polynomial evaluations inside of the loop, and the str reduction pass 689 // currently can only reduce affine polynomials. For now just disable 690 // indvar subst on anything more complex than an affine addrec, unless 691 // it can be expanded to a trivial value. 692 if (!isSafe(AR, L, SE)) 693 continue; 694 695 // Determine the insertion point for this user. By default, insert 696 // immediately before the user. The SCEVExpander class will automatically 697 // hoist loop invariants out of the loop. For PHI nodes, there may be 698 // multiple uses, so compute the nearest common dominator for the 699 // incoming blocks. 700 Instruction *InsertPt = User; 701 if (PHINode *PHI = dyn_cast<PHINode>(InsertPt)) 702 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) 703 if (PHI->getIncomingValue(i) == Op) { 704 if (InsertPt == User) 705 InsertPt = PHI->getIncomingBlock(i)->getTerminator(); 706 else 707 InsertPt = 708 DT->findNearestCommonDominator(InsertPt->getParent(), 709 PHI->getIncomingBlock(i)) 710 ->getTerminator(); 711 } 712 713 // Now expand it into actual Instructions and patch it into place. 714 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt); 715 716 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n' 717 << " into = " << *NewVal << "\n"); 718 719 if (!isValidRewrite(Op, NewVal)) { 720 DeadInsts.push_back(NewVal); 721 continue; 722 } 723 // Inform ScalarEvolution that this value is changing. The change doesn't 724 // affect its value, but it does potentially affect which use lists the 725 // value will be on after the replacement, which affects ScalarEvolution's 726 // ability to walk use lists and drop dangling pointers when a value is 727 // deleted. 728 SE->forgetValue(User); 729 730 // Patch the new value into place. 731 if (Op->hasName()) 732 NewVal->takeName(Op); 733 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal)) 734 NewValI->setDebugLoc(User->getDebugLoc()); 735 User->replaceUsesOfWith(Op, NewVal); 736 UI->setOperandValToReplace(NewVal); 737 738 ++NumRemoved; 739 Changed = true; 740 741 // The old value may be dead now. 742 DeadInsts.push_back(Op); 743 } 744 } 745 746 //===----------------------------------------------------------------------===// 747 // IV Widening - Extend the width of an IV to cover its widest uses. 748 //===----------------------------------------------------------------------===// 749 750 namespace { 751 // Collect information about induction variables that are used by sign/zero 752 // extend operations. This information is recorded by CollectExtend and 753 // provides the input to WidenIV. 754 struct WideIVInfo { 755 Type *WidestNativeType; // Widest integer type created [sz]ext 756 bool IsSigned; // Was an sext user seen before a zext? 757 758 WideIVInfo() : WidestNativeType(0), IsSigned(false) {} 759 }; 760 } 761 762 /// CollectExtend - Update information about the induction variable that is 763 /// extended by this sign or zero extend operation. This is used to determine 764 /// the final width of the IV before actually widening it. 765 static void CollectExtend(CastInst *Cast, bool IsSigned, WideIVInfo &WI, 766 ScalarEvolution *SE, const TargetData *TD) { 767 Type *Ty = Cast->getType(); 768 uint64_t Width = SE->getTypeSizeInBits(Ty); 769 if (TD && !TD->isLegalInteger(Width)) 770 return; 771 772 if (!WI.WidestNativeType) { 773 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 774 WI.IsSigned = IsSigned; 775 return; 776 } 777 778 // We extend the IV to satisfy the sign of its first user, arbitrarily. 779 if (WI.IsSigned != IsSigned) 780 return; 781 782 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 783 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 784 } 785 786 namespace { 787 788 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 789 /// WideIV that computes the same value as the Narrow IV def. This avoids 790 /// caching Use* pointers. 791 struct NarrowIVDefUse { 792 Instruction *NarrowDef; 793 Instruction *NarrowUse; 794 Instruction *WideDef; 795 796 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {} 797 798 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 799 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 800 }; 801 802 /// WidenIV - The goal of this transform is to remove sign and zero extends 803 /// without creating any new induction variables. To do this, it creates a new 804 /// phi of the wider type and redirects all users, either removing extends or 805 /// inserting truncs whenever we stop propagating the type. 806 /// 807 class WidenIV { 808 // Parameters 809 PHINode *OrigPhi; 810 Type *WideType; 811 bool IsSigned; 812 813 // Context 814 LoopInfo *LI; 815 Loop *L; 816 ScalarEvolution *SE; 817 DominatorTree *DT; 818 819 // Result 820 PHINode *WidePhi; 821 Instruction *WideInc; 822 const SCEV *WideIncExpr; 823 SmallVectorImpl<WeakVH> &DeadInsts; 824 825 SmallPtrSet<Instruction*,16> Widened; 826 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 827 828 public: 829 WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo, 830 ScalarEvolution *SEv, DominatorTree *DTree, 831 SmallVectorImpl<WeakVH> &DI) : 832 OrigPhi(PN), 833 WideType(WI.WidestNativeType), 834 IsSigned(WI.IsSigned), 835 LI(LInfo), 836 L(LI->getLoopFor(OrigPhi->getParent())), 837 SE(SEv), 838 DT(DTree), 839 WidePhi(0), 840 WideInc(0), 841 WideIncExpr(0), 842 DeadInsts(DI) { 843 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 844 } 845 846 PHINode *CreateWideIV(SCEVExpander &Rewriter); 847 848 protected: 849 Instruction *CloneIVUser(NarrowIVDefUse DU); 850 851 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 852 853 Instruction *WidenIVUse(NarrowIVDefUse DU); 854 855 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 856 }; 857 } // anonymous namespace 858 859 static Value *getExtend( Value *NarrowOper, Type *WideType, 860 bool IsSigned, IRBuilder<> &Builder) { 861 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 862 Builder.CreateZExt(NarrowOper, WideType); 863 } 864 865 /// CloneIVUser - Instantiate a wide operation to replace a narrow 866 /// operation. This only needs to handle operations that can evaluation to 867 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 868 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 869 unsigned Opcode = DU.NarrowUse->getOpcode(); 870 switch (Opcode) { 871 default: 872 return 0; 873 case Instruction::Add: 874 case Instruction::Mul: 875 case Instruction::UDiv: 876 case Instruction::Sub: 877 case Instruction::And: 878 case Instruction::Or: 879 case Instruction::Xor: 880 case Instruction::Shl: 881 case Instruction::LShr: 882 case Instruction::AShr: 883 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 884 885 IRBuilder<> Builder(DU.NarrowUse); 886 887 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 888 // anything about the narrow operand yet so must insert a [sz]ext. It is 889 // probably loop invariant and will be folded or hoisted. If it actually 890 // comes from a widened IV, it should be removed during a future call to 891 // WidenIVUse. 892 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 893 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, Builder); 894 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 895 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, Builder); 896 897 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 898 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 899 LHS, RHS, 900 NarrowBO->getName()); 901 Builder.Insert(WideBO); 902 if (const OverflowingBinaryOperator *OBO = 903 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 904 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 905 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 906 } 907 return WideBO; 908 } 909 llvm_unreachable(0); 910 } 911 912 /// HoistStep - Attempt to hoist an IV increment above a potential use. 913 /// 914 /// To successfully hoist, two criteria must be met: 915 /// - IncV operands dominate InsertPos and 916 /// - InsertPos dominates IncV 917 /// 918 /// Meeting the second condition means that we don't need to check all of IncV's 919 /// existing uses (it's moving up in the domtree). 920 /// 921 /// This does not yet recursively hoist the operands, although that would 922 /// not be difficult. 923 static bool HoistStep(Instruction *IncV, Instruction *InsertPos, 924 const DominatorTree *DT) 925 { 926 if (DT->dominates(IncV, InsertPos)) 927 return true; 928 929 if (!DT->dominates(InsertPos->getParent(), IncV->getParent())) 930 return false; 931 932 if (IncV->mayHaveSideEffects()) 933 return false; 934 935 // Attempt to hoist IncV 936 for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end(); 937 OI != OE; ++OI) { 938 Instruction *OInst = dyn_cast<Instruction>(OI); 939 if (OInst && !DT->dominates(OInst, InsertPos)) 940 return false; 941 } 942 IncV->moveBefore(InsertPos); 943 return true; 944 } 945 946 // GetWideRecurrence - Is this instruction potentially interesting from IVUsers' 947 // perspective after widening it's type? In other words, can the extend be 948 // safely hoisted out of the loop with SCEV reducing the value to a recurrence 949 // on the same loop. If so, return the sign or zero extended 950 // recurrence. Otherwise return NULL. 951 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 952 if (!SE->isSCEVable(NarrowUse->getType())) 953 return 0; 954 955 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 956 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 957 >= SE->getTypeSizeInBits(WideType)) { 958 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 959 // index. So don't follow this use. 960 return 0; 961 } 962 963 const SCEV *WideExpr = IsSigned ? 964 SE->getSignExtendExpr(NarrowExpr, WideType) : 965 SE->getZeroExtendExpr(NarrowExpr, WideType); 966 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 967 if (!AddRec || AddRec->getLoop() != L) 968 return 0; 969 970 return AddRec; 971 } 972 973 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 974 /// widened. If so, return the wide clone of the user. 975 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) { 976 977 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 978 if (isa<PHINode>(DU.NarrowUse) && 979 LI->getLoopFor(DU.NarrowUse->getParent()) != L) 980 return 0; 981 982 // Our raison d'etre! Eliminate sign and zero extension. 983 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 984 Value *NewDef = DU.WideDef; 985 if (DU.NarrowUse->getType() != WideType) { 986 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 987 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 988 if (CastWidth < IVWidth) { 989 // The cast isn't as wide as the IV, so insert a Trunc. 990 IRBuilder<> Builder(DU.NarrowUse); 991 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 992 } 993 else { 994 // A wider extend was hidden behind a narrower one. This may induce 995 // another round of IV widening in which the intermediate IV becomes 996 // dead. It should be very rare. 997 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 998 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 999 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1000 NewDef = DU.NarrowUse; 1001 } 1002 } 1003 if (NewDef != DU.NarrowUse) { 1004 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1005 << " replaced by " << *DU.WideDef << "\n"); 1006 ++NumElimExt; 1007 DU.NarrowUse->replaceAllUsesWith(NewDef); 1008 DeadInsts.push_back(DU.NarrowUse); 1009 } 1010 // Now that the extend is gone, we want to expose it's uses for potential 1011 // further simplification. We don't need to directly inform SimplifyIVUsers 1012 // of the new users, because their parent IV will be processed later as a 1013 // new loop phi. If we preserved IVUsers analysis, we would also want to 1014 // push the uses of WideDef here. 1015 1016 // No further widening is needed. The deceased [sz]ext had done it for us. 1017 return 0; 1018 } 1019 1020 // Does this user itself evaluate to a recurrence after widening? 1021 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 1022 if (!WideAddRec) { 1023 // This user does not evaluate to a recurence after widening, so don't 1024 // follow it. Instead insert a Trunc to kill off the original use, 1025 // eventually isolating the original narrow IV so it can be removed. 1026 Use *U = std::find(DU.NarrowUse->op_begin(), DU.NarrowUse->op_end(), 1027 DU.NarrowDef); 1028 IRBuilder<> Builder(*U); 1029 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1030 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1031 return 0; 1032 } 1033 // Assume block terminators cannot evaluate to a recurrence. We can't to 1034 // insert a Trunc after a terminator if there happens to be a critical edge. 1035 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1036 "SCEV is not expected to evaluate a block terminator"); 1037 1038 // Reuse the IV increment that SCEVExpander created as long as it dominates 1039 // NarrowUse. 1040 Instruction *WideUse = 0; 1041 if (WideAddRec == WideIncExpr && HoistStep(WideInc, DU.NarrowUse, DT)) { 1042 WideUse = WideInc; 1043 } 1044 else { 1045 WideUse = CloneIVUser(DU); 1046 if (!WideUse) 1047 return 0; 1048 } 1049 // Evaluation of WideAddRec ensured that the narrow expression could be 1050 // extended outside the loop without overflow. This suggests that the wide use 1051 // evaluates to the same expression as the extended narrow use, but doesn't 1052 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1053 // where it fails, we simply throw away the newly created wide use. 1054 if (WideAddRec != SE->getSCEV(WideUse)) { 1055 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1056 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1057 DeadInsts.push_back(WideUse); 1058 return 0; 1059 } 1060 1061 // Returning WideUse pushes it on the worklist. 1062 return WideUse; 1063 } 1064 1065 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1066 /// 1067 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1068 for (Value::use_iterator UI = NarrowDef->use_begin(), 1069 UE = NarrowDef->use_end(); UI != UE; ++UI) { 1070 Instruction *NarrowUse = cast<Instruction>(*UI); 1071 1072 // Handle data flow merges and bizarre phi cycles. 1073 if (!Widened.insert(NarrowUse)) 1074 continue; 1075 1076 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef)); 1077 } 1078 } 1079 1080 /// CreateWideIV - Process a single induction variable. First use the 1081 /// SCEVExpander to create a wide induction variable that evaluates to the same 1082 /// recurrence as the original narrow IV. Then use a worklist to forward 1083 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1084 /// interesting IV users, the narrow IV will be isolated for removal by 1085 /// DeleteDeadPHIs. 1086 /// 1087 /// It would be simpler to delete uses as they are processed, but we must avoid 1088 /// invalidating SCEV expressions. 1089 /// 1090 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1091 // Is this phi an induction variable? 1092 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1093 if (!AddRec) 1094 return NULL; 1095 1096 // Widen the induction variable expression. 1097 const SCEV *WideIVExpr = IsSigned ? 1098 SE->getSignExtendExpr(AddRec, WideType) : 1099 SE->getZeroExtendExpr(AddRec, WideType); 1100 1101 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1102 "Expect the new IV expression to preserve its type"); 1103 1104 // Can the IV be extended outside the loop without overflow? 1105 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1106 if (!AddRec || AddRec->getLoop() != L) 1107 return NULL; 1108 1109 // An AddRec must have loop-invariant operands. Since this AddRec is 1110 // materialized by a loop header phi, the expression cannot have any post-loop 1111 // operands, so they must dominate the loop header. 1112 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1113 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1114 && "Loop header phi recurrence inputs do not dominate the loop"); 1115 1116 // The rewriter provides a value for the desired IV expression. This may 1117 // either find an existing phi or materialize a new one. Either way, we 1118 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1119 // of the phi-SCC dominates the loop entry. 1120 Instruction *InsertPt = L->getHeader()->begin(); 1121 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1122 1123 // Remembering the WideIV increment generated by SCEVExpander allows 1124 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1125 // employ a general reuse mechanism because the call above is the only call to 1126 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1127 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1128 WideInc = 1129 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1130 WideIncExpr = SE->getSCEV(WideInc); 1131 } 1132 1133 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1134 ++NumWidened; 1135 1136 // Traverse the def-use chain using a worklist starting at the original IV. 1137 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1138 1139 Widened.insert(OrigPhi); 1140 pushNarrowIVUsers(OrigPhi, WidePhi); 1141 1142 while (!NarrowIVUsers.empty()) { 1143 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1144 1145 // Process a def-use edge. This may replace the use, so don't hold a 1146 // use_iterator across it. 1147 Instruction *WideUse = WidenIVUse(DU); 1148 1149 // Follow all def-use edges from the previous narrow use. 1150 if (WideUse) 1151 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1152 1153 // WidenIVUse may have removed the def-use edge. 1154 if (DU.NarrowDef->use_empty()) 1155 DeadInsts.push_back(DU.NarrowDef); 1156 } 1157 return WidePhi; 1158 } 1159 1160 //===----------------------------------------------------------------------===// 1161 // Simplification of IV users based on SCEV evaluation. 1162 //===----------------------------------------------------------------------===// 1163 1164 void IndVarSimplify::EliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) { 1165 unsigned IVOperIdx = 0; 1166 ICmpInst::Predicate Pred = ICmp->getPredicate(); 1167 if (IVOperand != ICmp->getOperand(0)) { 1168 // Swapped 1169 assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand"); 1170 IVOperIdx = 1; 1171 Pred = ICmpInst::getSwappedPredicate(Pred); 1172 } 1173 1174 // Get the SCEVs for the ICmp operands. 1175 const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx)); 1176 const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx)); 1177 1178 // Simplify unnecessary loops away. 1179 const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent()); 1180 S = SE->getSCEVAtScope(S, ICmpLoop); 1181 X = SE->getSCEVAtScope(X, ICmpLoop); 1182 1183 // If the condition is always true or always false, replace it with 1184 // a constant value. 1185 if (SE->isKnownPredicate(Pred, S, X)) 1186 ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext())); 1187 else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) 1188 ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext())); 1189 else 1190 return; 1191 1192 DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n'); 1193 ++NumElimCmp; 1194 Changed = true; 1195 DeadInsts.push_back(ICmp); 1196 } 1197 1198 void IndVarSimplify::EliminateIVRemainder(BinaryOperator *Rem, 1199 Value *IVOperand, 1200 bool IsSigned) { 1201 // We're only interested in the case where we know something about 1202 // the numerator. 1203 if (IVOperand != Rem->getOperand(0)) 1204 return; 1205 1206 // Get the SCEVs for the ICmp operands. 1207 const SCEV *S = SE->getSCEV(Rem->getOperand(0)); 1208 const SCEV *X = SE->getSCEV(Rem->getOperand(1)); 1209 1210 // Simplify unnecessary loops away. 1211 const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent()); 1212 S = SE->getSCEVAtScope(S, ICmpLoop); 1213 X = SE->getSCEVAtScope(X, ICmpLoop); 1214 1215 // i % n --> i if i is in [0,n). 1216 if ((!IsSigned || SE->isKnownNonNegative(S)) && 1217 SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 1218 S, X)) 1219 Rem->replaceAllUsesWith(Rem->getOperand(0)); 1220 else { 1221 // (i+1) % n --> (i+1)==n?0:(i+1) if i is in [0,n). 1222 const SCEV *LessOne = 1223 SE->getMinusSCEV(S, SE->getConstant(S->getType(), 1)); 1224 if (IsSigned && !SE->isKnownNonNegative(LessOne)) 1225 return; 1226 1227 if (!SE->isKnownPredicate(IsSigned ? 1228 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, 1229 LessOne, X)) 1230 return; 1231 1232 ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ, 1233 Rem->getOperand(0), Rem->getOperand(1), 1234 "tmp"); 1235 SelectInst *Sel = 1236 SelectInst::Create(ICmp, 1237 ConstantInt::get(Rem->getType(), 0), 1238 Rem->getOperand(0), "tmp", Rem); 1239 Rem->replaceAllUsesWith(Sel); 1240 } 1241 1242 // Inform IVUsers about the new users. 1243 if (IU) { 1244 if (Instruction *I = dyn_cast<Instruction>(Rem->getOperand(0))) 1245 IU->AddUsersIfInteresting(I); 1246 } 1247 DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n'); 1248 ++NumElimRem; 1249 Changed = true; 1250 DeadInsts.push_back(Rem); 1251 } 1252 1253 /// EliminateIVUser - Eliminate an operation that consumes a simple IV and has 1254 /// no observable side-effect given the range of IV values. 1255 bool IndVarSimplify::EliminateIVUser(Instruction *UseInst, 1256 Instruction *IVOperand) { 1257 if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) { 1258 EliminateIVComparison(ICmp, IVOperand); 1259 return true; 1260 } 1261 if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) { 1262 bool IsSigned = Rem->getOpcode() == Instruction::SRem; 1263 if (IsSigned || Rem->getOpcode() == Instruction::URem) { 1264 EliminateIVRemainder(Rem, IVOperand, IsSigned); 1265 return true; 1266 } 1267 } 1268 1269 // Eliminate any operation that SCEV can prove is an identity function. 1270 if (!SE->isSCEVable(UseInst->getType()) || 1271 (UseInst->getType() != IVOperand->getType()) || 1272 (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand))) 1273 return false; 1274 1275 DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n'); 1276 1277 UseInst->replaceAllUsesWith(IVOperand); 1278 ++NumElimIdentity; 1279 Changed = true; 1280 DeadInsts.push_back(UseInst); 1281 return true; 1282 } 1283 1284 /// pushIVUsers - Add all uses of Def to the current IV's worklist. 1285 /// 1286 static void pushIVUsers( 1287 Instruction *Def, 1288 SmallPtrSet<Instruction*,16> &Simplified, 1289 SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) { 1290 1291 for (Value::use_iterator UI = Def->use_begin(), E = Def->use_end(); 1292 UI != E; ++UI) { 1293 Instruction *User = cast<Instruction>(*UI); 1294 1295 // Avoid infinite or exponential worklist processing. 1296 // Also ensure unique worklist users. 1297 // If Def is a LoopPhi, it may not be in the Simplified set, so check for 1298 // self edges first. 1299 if (User != Def && Simplified.insert(User)) 1300 SimpleIVUsers.push_back(std::make_pair(User, Def)); 1301 } 1302 } 1303 1304 /// isSimpleIVUser - Return true if this instruction generates a simple SCEV 1305 /// expression in terms of that IV. 1306 /// 1307 /// This is similar to IVUsers' isInsteresting() but processes each instruction 1308 /// non-recursively when the operand is already known to be a simpleIVUser. 1309 /// 1310 static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) { 1311 if (!SE->isSCEVable(I->getType())) 1312 return false; 1313 1314 // Get the symbolic expression for this instruction. 1315 const SCEV *S = SE->getSCEV(I); 1316 1317 // Only consider affine recurrences. 1318 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S); 1319 if (AR && AR->getLoop() == L) 1320 return true; 1321 1322 return false; 1323 } 1324 1325 /// SimplifyIVUsersNoRewrite - Iteratively perform simplification on a worklist 1326 /// of IV users. Each successive simplification may push more users which may 1327 /// themselves be candidates for simplification. 1328 /// 1329 /// The "NoRewrite" algorithm does not require IVUsers analysis. Instead, it 1330 /// simplifies instructions in-place during analysis. Rather than rewriting 1331 /// induction variables bottom-up from their users, it transforms a chain of 1332 /// IVUsers top-down, updating the IR only when it encouters a clear 1333 /// optimization opportunitiy. A SCEVExpander "Rewriter" instance is still 1334 /// needed, but only used to generate a new IV (phi) of wider type for sign/zero 1335 /// extend elimination. 1336 /// 1337 /// Once DisableIVRewrite is default, LSR will be the only client of IVUsers. 1338 /// 1339 void IndVarSimplify::SimplifyIVUsersNoRewrite(Loop *L, SCEVExpander &Rewriter) { 1340 std::map<PHINode *, WideIVInfo> WideIVMap; 1341 1342 SmallVector<PHINode*, 8> LoopPhis; 1343 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1344 LoopPhis.push_back(cast<PHINode>(I)); 1345 } 1346 // Each round of simplification iterates through the SimplifyIVUsers worklist 1347 // for all current phis, then determines whether any IVs can be 1348 // widened. Widening adds new phis to LoopPhis, inducing another round of 1349 // simplification on the wide IVs. 1350 while (!LoopPhis.empty()) { 1351 // Evaluate as many IV expressions as possible before widening any IVs. This 1352 // forces SCEV to set no-wrap flags before evaluating sign/zero 1353 // extension. The first time SCEV attempts to normalize sign/zero extension, 1354 // the result becomes final. So for the most predictable results, we delay 1355 // evaluation of sign/zero extend evaluation until needed, and avoid running 1356 // other SCEV based analysis prior to SimplifyIVUsersNoRewrite. 1357 do { 1358 PHINode *CurrIV = LoopPhis.pop_back_val(); 1359 1360 // Information about sign/zero extensions of CurrIV. 1361 WideIVInfo WI; 1362 1363 // Instructions processed by SimplifyIVUsers for CurrIV. 1364 SmallPtrSet<Instruction*,16> Simplified; 1365 1366 // Use-def pairs if IV users waiting to be processed for CurrIV. 1367 SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers; 1368 1369 // Push users of the current LoopPhi. In rare cases, pushIVUsers may be 1370 // called multiple times for the same LoopPhi. This is the proper thing to 1371 // do for loop header phis that use each other. 1372 pushIVUsers(CurrIV, Simplified, SimpleIVUsers); 1373 1374 while (!SimpleIVUsers.empty()) { 1375 Instruction *UseInst, *Operand; 1376 tie(UseInst, Operand) = SimpleIVUsers.pop_back_val(); 1377 // Bypass back edges to avoid extra work. 1378 if (UseInst == CurrIV) continue; 1379 1380 if (EliminateIVUser(UseInst, Operand)) { 1381 pushIVUsers(Operand, Simplified, SimpleIVUsers); 1382 continue; 1383 } 1384 if (CastInst *Cast = dyn_cast<CastInst>(UseInst)) { 1385 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 1386 if (IsSigned || Cast->getOpcode() == Instruction::ZExt) { 1387 CollectExtend(Cast, IsSigned, WI, SE, TD); 1388 } 1389 continue; 1390 } 1391 if (isSimpleIVUser(UseInst, L, SE)) { 1392 pushIVUsers(UseInst, Simplified, SimpleIVUsers); 1393 } 1394 } 1395 if (WI.WidestNativeType) { 1396 WideIVMap[CurrIV] = WI; 1397 } 1398 } while(!LoopPhis.empty()); 1399 1400 for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(), 1401 E = WideIVMap.end(); I != E; ++I) { 1402 WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts); 1403 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1404 Changed = true; 1405 LoopPhis.push_back(WidePhi); 1406 } 1407 } 1408 WideIVMap.clear(); 1409 } 1410 } 1411 1412 /// SimplifyCongruentIVs - Check for congruent phis in this loop header and 1413 /// populate ExprToIVMap for use later. 1414 /// 1415 void IndVarSimplify::SimplifyCongruentIVs(Loop *L) { 1416 DenseMap<const SCEV *, PHINode *> ExprToIVMap; 1417 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1418 PHINode *Phi = cast<PHINode>(I); 1419 if (!SE->isSCEVable(Phi->getType())) 1420 continue; 1421 1422 const SCEV *S = SE->getSCEV(Phi); 1423 DenseMap<const SCEV *, PHINode *>::const_iterator Pos; 1424 bool Inserted; 1425 tie(Pos, Inserted) = ExprToIVMap.insert(std::make_pair(S, Phi)); 1426 if (Inserted) 1427 continue; 1428 PHINode *OrigPhi = Pos->second; 1429 1430 // If one phi derives from the other via GEPs, types may differ. 1431 if (OrigPhi->getType() != Phi->getType()) 1432 continue; 1433 1434 // Replacing the congruent phi is sufficient because acyclic redundancy 1435 // elimination, CSE/GVN, should handle the rest. However, once SCEV proves 1436 // that a phi is congruent, it's almost certain to be the head of an IV 1437 // user cycle that is isomorphic with the original phi. So it's worth 1438 // eagerly cleaning up the common case of a single IV increment. 1439 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1440 Instruction *OrigInc = 1441 cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock)); 1442 Instruction *IsomorphicInc = 1443 cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock)); 1444 if (OrigInc != IsomorphicInc && 1445 OrigInc->getType() == IsomorphicInc->getType() && 1446 SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) && 1447 HoistStep(OrigInc, IsomorphicInc, DT)) { 1448 DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: " 1449 << *IsomorphicInc << '\n'); 1450 IsomorphicInc->replaceAllUsesWith(OrigInc); 1451 DeadInsts.push_back(IsomorphicInc); 1452 } 1453 } 1454 DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n'); 1455 ++NumElimIV; 1456 Phi->replaceAllUsesWith(OrigPhi); 1457 DeadInsts.push_back(Phi); 1458 } 1459 } 1460 1461 //===----------------------------------------------------------------------===// 1462 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1463 //===----------------------------------------------------------------------===// 1464 1465 // Check for expressions that ScalarEvolution generates to compute 1466 // BackedgeTakenInfo. If these expressions have not been reduced, then expanding 1467 // them may incur additional cost (albeit in the loop preheader). 1468 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, 1469 ScalarEvolution *SE) { 1470 // If the backedge-taken count is a UDiv, it's very likely a UDiv that 1471 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a 1472 // precise expression, rather than a UDiv from the user's code. If we can't 1473 // find a UDiv in the code with some simple searching, assume the former and 1474 // forego rewriting the loop. 1475 if (isa<SCEVUDivExpr>(S)) { 1476 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 1477 if (!OrigCond) return true; 1478 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 1479 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 1480 if (R != S) { 1481 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 1482 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 1483 if (L != S) 1484 return true; 1485 } 1486 } 1487 1488 if (!DisableIVRewrite || ForceLFTR) 1489 return false; 1490 1491 // Recurse past add expressions, which commonly occur in the 1492 // BackedgeTakenCount. They may already exist in program code, and if not, 1493 // they are not too expensive rematerialize. 1494 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1495 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1496 I != E; ++I) { 1497 if (isHighCostExpansion(*I, BI, SE)) 1498 return true; 1499 } 1500 return false; 1501 } 1502 1503 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1504 // the exit condition. 1505 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1506 return true; 1507 1508 // If we haven't recognized an expensive SCEV patter, assume its an expression 1509 // produced by program code. 1510 return false; 1511 } 1512 1513 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1514 /// count expression can be safely and cheaply expanded into an instruction 1515 /// sequence that can be used by LinearFunctionTestReplace. 1516 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { 1517 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1518 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1519 BackedgeTakenCount->isZero()) 1520 return false; 1521 1522 if (!L->getExitingBlock()) 1523 return false; 1524 1525 // Can't rewrite non-branch yet. 1526 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1527 if (!BI) 1528 return false; 1529 1530 if (isHighCostExpansion(BackedgeTakenCount, BI, SE)) 1531 return false; 1532 1533 return true; 1534 } 1535 1536 /// getBackedgeIVType - Get the widest type used by the loop test after peeking 1537 /// through Truncs. 1538 /// 1539 /// TODO: Unnecessary when ForceLFTR is removed. 1540 static Type *getBackedgeIVType(Loop *L) { 1541 if (!L->getExitingBlock()) 1542 return 0; 1543 1544 // Can't rewrite non-branch yet. 1545 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1546 if (!BI) 1547 return 0; 1548 1549 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1550 if (!Cond) 1551 return 0; 1552 1553 Type *Ty = 0; 1554 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end(); 1555 OI != OE; ++OI) { 1556 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types"); 1557 TruncInst *Trunc = dyn_cast<TruncInst>(*OI); 1558 if (!Trunc) 1559 continue; 1560 1561 return Trunc->getSrcTy(); 1562 } 1563 return Ty; 1564 } 1565 1566 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 1567 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 1568 /// gratuitous for this purpose. 1569 static bool isLoopInvariant(Value *V, Loop *L, DominatorTree *DT) { 1570 Instruction *Inst = dyn_cast<Instruction>(V); 1571 if (!Inst) 1572 return true; 1573 1574 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 1575 } 1576 1577 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1578 /// invariant value to the phi. 1579 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1580 Instruction *IncI = dyn_cast<Instruction>(IncV); 1581 if (!IncI) 1582 return 0; 1583 1584 switch (IncI->getOpcode()) { 1585 case Instruction::Add: 1586 case Instruction::Sub: 1587 break; 1588 case Instruction::GetElementPtr: 1589 // An IV counter must preserve its type. 1590 if (IncI->getNumOperands() == 2) 1591 break; 1592 default: 1593 return 0; 1594 } 1595 1596 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1597 if (Phi && Phi->getParent() == L->getHeader()) { 1598 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1599 return Phi; 1600 return 0; 1601 } 1602 if (IncI->getOpcode() == Instruction::GetElementPtr) 1603 return 0; 1604 1605 // Allow add/sub to be commuted. 1606 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1607 if (Phi && Phi->getParent() == L->getHeader()) { 1608 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1609 return Phi; 1610 } 1611 return 0; 1612 } 1613 1614 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1615 /// that the current exit test is already sufficiently canonical. 1616 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1617 assert(L->getExitingBlock() && "expected loop exit"); 1618 1619 BasicBlock *LatchBlock = L->getLoopLatch(); 1620 // Don't bother with LFTR if the loop is not properly simplified. 1621 if (!LatchBlock) 1622 return false; 1623 1624 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1625 assert(BI && "expected exit branch"); 1626 1627 // Do LFTR to simplify the exit condition to an ICMP. 1628 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1629 if (!Cond) 1630 return true; 1631 1632 // Do LFTR to simplify the exit ICMP to EQ/NE 1633 ICmpInst::Predicate Pred = Cond->getPredicate(); 1634 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1635 return true; 1636 1637 // Look for a loop invariant RHS 1638 Value *LHS = Cond->getOperand(0); 1639 Value *RHS = Cond->getOperand(1); 1640 if (!isLoopInvariant(RHS, L, DT)) { 1641 if (!isLoopInvariant(LHS, L, DT)) 1642 return true; 1643 std::swap(LHS, RHS); 1644 } 1645 // Look for a simple IV counter LHS 1646 PHINode *Phi = dyn_cast<PHINode>(LHS); 1647 if (!Phi) 1648 Phi = getLoopPhiForCounter(LHS, L, DT); 1649 1650 if (!Phi) 1651 return true; 1652 1653 // Do LFTR if the exit condition's IV is *not* a simple counter. 1654 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch()); 1655 return Phi != getLoopPhiForCounter(IncV, L, DT); 1656 } 1657 1658 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1659 /// be rewritten) loop exit test. 1660 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1661 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1662 Value *IncV = Phi->getIncomingValue(LatchIdx); 1663 1664 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end(); 1665 UI != UE; ++UI) { 1666 if (*UI != Cond && *UI != IncV) return false; 1667 } 1668 1669 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end(); 1670 UI != UE; ++UI) { 1671 if (*UI != Cond && *UI != Phi) return false; 1672 } 1673 return true; 1674 } 1675 1676 /// FindLoopCounter - Find an affine IV in canonical form. 1677 /// 1678 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1679 /// 1680 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1681 /// This is difficult in general for SCEV because of potential overflow. But we 1682 /// could at least handle constant BECounts. 1683 static PHINode * 1684 FindLoopCounter(Loop *L, const SCEV *BECount, 1685 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) { 1686 // I'm not sure how BECount could be a pointer type, but we definitely don't 1687 // want to LFTR that. 1688 if (BECount->getType()->isPointerTy()) 1689 return 0; 1690 1691 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1692 1693 Value *Cond = 1694 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1695 1696 // Loop over all of the PHI nodes, looking for a simple counter. 1697 PHINode *BestPhi = 0; 1698 const SCEV *BestInit = 0; 1699 BasicBlock *LatchBlock = L->getLoopLatch(); 1700 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1701 1702 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1703 PHINode *Phi = cast<PHINode>(I); 1704 if (!SE->isSCEVable(Phi->getType())) 1705 continue; 1706 1707 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1708 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1709 continue; 1710 1711 // AR may be a pointer type, while BECount is an integer type. 1712 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1713 // AR may not be a narrower type, or we may never exit. 1714 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1715 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth))) 1716 continue; 1717 1718 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1719 if (!Step || !Step->isOne()) 1720 continue; 1721 1722 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1723 Value *IncV = Phi->getIncomingValue(LatchIdx); 1724 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1725 continue; 1726 1727 const SCEV *Init = AR->getStart(); 1728 1729 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1730 // Don't force a live loop counter if another IV can be used. 1731 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1732 continue; 1733 1734 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1735 // also prefers integer to pointer IVs. 1736 if (BestInit->isZero() != Init->isZero()) { 1737 if (BestInit->isZero()) 1738 continue; 1739 } 1740 // If two IVs both count from zero or both count from nonzero then the 1741 // narrower is likely a dead phi that has been widened. Use the wider phi 1742 // to allow the other to be eliminated. 1743 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1744 continue; 1745 } 1746 BestPhi = Phi; 1747 BestInit = Init; 1748 } 1749 return BestPhi; 1750 } 1751 1752 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1753 /// loop to be a canonical != comparison against the incremented loop induction 1754 /// variable. This pass is able to rewrite the exit tests of any loop where the 1755 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1756 /// is actually a much broader range than just linear tests. 1757 Value *IndVarSimplify:: 1758 LinearFunctionTestReplace(Loop *L, 1759 const SCEV *BackedgeTakenCount, 1760 PHINode *IndVar, 1761 SCEVExpander &Rewriter) { 1762 assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); 1763 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1764 1765 // In DisableIVRewrite mode, IndVar is not necessarily a canonical IV. In this 1766 // mode, LFTR can ignore IV overflow and truncate to the width of 1767 // BECount. This avoids materializing the add(zext(add)) expression. 1768 Type *CntTy = DisableIVRewrite ? 1769 BackedgeTakenCount->getType() : IndVar->getType(); 1770 1771 const SCEV *IVLimit = BackedgeTakenCount; 1772 1773 // If the exiting block is not the same as the backedge block, we must compare 1774 // against the preincremented value, otherwise we prefer to compare against 1775 // the post-incremented value. 1776 Value *CmpIndVar; 1777 if (L->getExitingBlock() == L->getLoopLatch()) { 1778 // Add one to the "backedge-taken" count to get the trip count. 1779 // If this addition may overflow, we have to be more pessimistic and 1780 // cast the induction variable before doing the add. 1781 const SCEV *N = 1782 SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1)); 1783 if (CntTy == IVLimit->getType()) 1784 IVLimit = N; 1785 else { 1786 const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0); 1787 if ((isa<SCEVConstant>(N) && !N->isZero()) || 1788 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { 1789 // No overflow. Cast the sum. 1790 IVLimit = SE->getTruncateOrZeroExtend(N, CntTy); 1791 } else { 1792 // Potential overflow. Cast before doing the add. 1793 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy); 1794 IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1)); 1795 } 1796 } 1797 // The BackedgeTaken expression contains the number of times that the 1798 // backedge branches to the loop header. This is one less than the 1799 // number of times the loop executes, so use the incremented indvar. 1800 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1801 } else { 1802 // We have to use the preincremented value... 1803 IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy); 1804 CmpIndVar = IndVar; 1805 } 1806 1807 // For unit stride, IVLimit = Start + BECount with 2's complement overflow. 1808 // So for, non-zero start compute the IVLimit here. 1809 bool isPtrIV = false; 1810 Type *CmpTy = CntTy; 1811 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1812 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1813 if (!AR->getStart()->isZero()) { 1814 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1815 const SCEV *IVInit = AR->getStart(); 1816 1817 // For pointer types, sign extend BECount in order to materialize a GEP. 1818 // Note that for DisableIVRewrite, we never run SCEVExpander on a 1819 // pointer type, because we must preserve the existing GEPs. Instead we 1820 // directly generate a GEP later. 1821 if (IVInit->getType()->isPointerTy()) { 1822 isPtrIV = true; 1823 CmpTy = SE->getEffectiveSCEVType(IVInit->getType()); 1824 IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy); 1825 } 1826 // For integer types, truncate the IV before computing IVInit + BECount. 1827 else { 1828 if (SE->getTypeSizeInBits(IVInit->getType()) 1829 > SE->getTypeSizeInBits(CmpTy)) 1830 IVInit = SE->getTruncateExpr(IVInit, CmpTy); 1831 1832 IVLimit = SE->getAddExpr(IVInit, IVLimit); 1833 } 1834 } 1835 // Expand the code for the iteration count. 1836 IRBuilder<> Builder(BI); 1837 1838 assert(SE->isLoopInvariant(IVLimit, L) && 1839 "Computed iteration count is not loop invariant!"); 1840 Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI); 1841 1842 // Create a gep for IVInit + IVLimit from on an existing pointer base. 1843 assert(isPtrIV == IndVar->getType()->isPointerTy() && 1844 "IndVar type must match IVInit type"); 1845 if (isPtrIV) { 1846 Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1847 assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter"); 1848 assert(SE->getSizeOfExpr( 1849 cast<PointerType>(IVStart->getType())->getElementType())->isOne() 1850 && "unit stride pointer IV must be i8*"); 1851 1852 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 1853 ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit"); 1854 Builder.SetInsertPoint(BI); 1855 } 1856 1857 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1858 ICmpInst::Predicate P; 1859 if (L->contains(BI->getSuccessor(0))) 1860 P = ICmpInst::ICMP_NE; 1861 else 1862 P = ICmpInst::ICMP_EQ; 1863 1864 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1865 << " LHS:" << *CmpIndVar << '\n' 1866 << " op:\t" 1867 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1868 << " RHS:\t" << *ExitCnt << "\n" 1869 << " Expr:\t" << *IVLimit << "\n"); 1870 1871 if (SE->getTypeSizeInBits(CmpIndVar->getType()) 1872 > SE->getTypeSizeInBits(CmpTy)) { 1873 CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv"); 1874 } 1875 1876 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1877 Value *OrigCond = BI->getCondition(); 1878 // It's tempting to use replaceAllUsesWith here to fully replace the old 1879 // comparison, but that's not immediately safe, since users of the old 1880 // comparison may not be dominated by the new comparison. Instead, just 1881 // update the branch to use the new comparison; in the common case this 1882 // will make old comparison dead. 1883 BI->setCondition(Cond); 1884 DeadInsts.push_back(OrigCond); 1885 1886 ++NumLFTR; 1887 Changed = true; 1888 return Cond; 1889 } 1890 1891 //===----------------------------------------------------------------------===// 1892 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1893 //===----------------------------------------------------------------------===// 1894 1895 /// If there's a single exit block, sink any loop-invariant values that 1896 /// were defined in the preheader but not used inside the loop into the 1897 /// exit block to reduce register pressure in the loop. 1898 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1899 BasicBlock *ExitBlock = L->getExitBlock(); 1900 if (!ExitBlock) return; 1901 1902 BasicBlock *Preheader = L->getLoopPreheader(); 1903 if (!Preheader) return; 1904 1905 Instruction *InsertPt = ExitBlock->getFirstNonPHI(); 1906 BasicBlock::iterator I = Preheader->getTerminator(); 1907 while (I != Preheader->begin()) { 1908 --I; 1909 // New instructions were inserted at the end of the preheader. 1910 if (isa<PHINode>(I)) 1911 break; 1912 1913 // Don't move instructions which might have side effects, since the side 1914 // effects need to complete before instructions inside the loop. Also don't 1915 // move instructions which might read memory, since the loop may modify 1916 // memory. Note that it's okay if the instruction might have undefined 1917 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1918 // block. 1919 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1920 continue; 1921 1922 // Skip debug info intrinsics. 1923 if (isa<DbgInfoIntrinsic>(I)) 1924 continue; 1925 1926 // Don't sink static AllocaInsts out of the entry block, which would 1927 // turn them into dynamic allocas! 1928 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) 1929 if (AI->isStaticAlloca()) 1930 continue; 1931 1932 // Determine if there is a use in or before the loop (direct or 1933 // otherwise). 1934 bool UsedInLoop = false; 1935 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 1936 UI != UE; ++UI) { 1937 User *U = *UI; 1938 BasicBlock *UseBB = cast<Instruction>(U)->getParent(); 1939 if (PHINode *P = dyn_cast<PHINode>(U)) { 1940 unsigned i = 1941 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); 1942 UseBB = P->getIncomingBlock(i); 1943 } 1944 if (UseBB == Preheader || L->contains(UseBB)) { 1945 UsedInLoop = true; 1946 break; 1947 } 1948 } 1949 1950 // If there is, the def must remain in the preheader. 1951 if (UsedInLoop) 1952 continue; 1953 1954 // Otherwise, sink it to the exit block. 1955 Instruction *ToMove = I; 1956 bool Done = false; 1957 1958 if (I != Preheader->begin()) { 1959 // Skip debug info intrinsics. 1960 do { 1961 --I; 1962 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1963 1964 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1965 Done = true; 1966 } else { 1967 Done = true; 1968 } 1969 1970 ToMove->moveBefore(InsertPt); 1971 if (Done) break; 1972 InsertPt = ToMove; 1973 } 1974 } 1975 1976 //===----------------------------------------------------------------------===// 1977 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1978 //===----------------------------------------------------------------------===// 1979 1980 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1981 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1982 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1983 // canonicalization can be a pessimization without LSR to "clean up" 1984 // afterwards. 1985 // - We depend on having a preheader; in particular, 1986 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1987 // and we're in trouble if we can't find the induction variable even when 1988 // we've manually inserted one. 1989 if (!L->isLoopSimplifyForm()) 1990 return false; 1991 1992 if (!DisableIVRewrite) 1993 IU = &getAnalysis<IVUsers>(); 1994 LI = &getAnalysis<LoopInfo>(); 1995 SE = &getAnalysis<ScalarEvolution>(); 1996 DT = &getAnalysis<DominatorTree>(); 1997 TD = getAnalysisIfAvailable<TargetData>(); 1998 1999 DeadInsts.clear(); 2000 Changed = false; 2001 2002 // If there are any floating-point recurrences, attempt to 2003 // transform them to use integer recurrences. 2004 RewriteNonIntegerIVs(L); 2005 2006 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2007 2008 // Create a rewriter object which we'll use to transform the code with. 2009 SCEVExpander Rewriter(*SE, "indvars"); 2010 2011 // Eliminate redundant IV users. 2012 // 2013 // Simplification works best when run before other consumers of SCEV. We 2014 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2015 // other expressions involving loop IVs have been evaluated. This helps SCEV 2016 // set no-wrap flags before normalizing sign/zero extension. 2017 if (DisableIVRewrite) { 2018 Rewriter.disableCanonicalMode(); 2019 SimplifyIVUsersNoRewrite(L, Rewriter); 2020 } 2021 2022 // Check to see if this loop has a computable loop-invariant execution count. 2023 // If so, this means that we can compute the final value of any expressions 2024 // that are recurrent in the loop, and substitute the exit values from the 2025 // loop into any instructions outside of the loop that use the final values of 2026 // the current expressions. 2027 // 2028 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2029 RewriteLoopExitValues(L, Rewriter); 2030 2031 // Eliminate redundant IV users. 2032 if (!DisableIVRewrite) 2033 SimplifyIVUsers(Rewriter); 2034 2035 // Eliminate redundant IV cycles. 2036 if (DisableIVRewrite) 2037 SimplifyCongruentIVs(L); 2038 2039 // Compute the type of the largest recurrence expression, and decide whether 2040 // a canonical induction variable should be inserted. 2041 Type *LargestType = 0; 2042 bool NeedCannIV = false; 2043 bool ReuseIVForExit = DisableIVRewrite && !ForceLFTR; 2044 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE); 2045 if (ExpandBECount && !ReuseIVForExit) { 2046 // If we have a known trip count and a single exit block, we'll be 2047 // rewriting the loop exit test condition below, which requires a 2048 // canonical induction variable. 2049 NeedCannIV = true; 2050 Type *Ty = BackedgeTakenCount->getType(); 2051 if (DisableIVRewrite) { 2052 // In this mode, SimplifyIVUsers may have already widened the IV used by 2053 // the backedge test and inserted a Trunc on the compare's operand. Get 2054 // the wider type to avoid creating a redundant narrow IV only used by the 2055 // loop test. 2056 LargestType = getBackedgeIVType(L); 2057 } 2058 if (!LargestType || 2059 SE->getTypeSizeInBits(Ty) > 2060 SE->getTypeSizeInBits(LargestType)) 2061 LargestType = SE->getEffectiveSCEVType(Ty); 2062 } 2063 if (!DisableIVRewrite) { 2064 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) { 2065 NeedCannIV = true; 2066 Type *Ty = 2067 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType()); 2068 if (!LargestType || 2069 SE->getTypeSizeInBits(Ty) > 2070 SE->getTypeSizeInBits(LargestType)) 2071 LargestType = Ty; 2072 } 2073 } 2074 2075 // Now that we know the largest of the induction variable expressions 2076 // in this loop, insert a canonical induction variable of the largest size. 2077 PHINode *IndVar = 0; 2078 if (NeedCannIV) { 2079 // Check to see if the loop already has any canonical-looking induction 2080 // variables. If any are present and wider than the planned canonical 2081 // induction variable, temporarily remove them, so that the Rewriter 2082 // doesn't attempt to reuse them. 2083 SmallVector<PHINode *, 2> OldCannIVs; 2084 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) { 2085 if (SE->getTypeSizeInBits(OldCannIV->getType()) > 2086 SE->getTypeSizeInBits(LargestType)) 2087 OldCannIV->removeFromParent(); 2088 else 2089 break; 2090 OldCannIVs.push_back(OldCannIV); 2091 } 2092 2093 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType); 2094 2095 ++NumInserted; 2096 Changed = true; 2097 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n'); 2098 2099 // Now that the official induction variable is established, reinsert 2100 // any old canonical-looking variables after it so that the IR remains 2101 // consistent. They will be deleted as part of the dead-PHI deletion at 2102 // the end of the pass. 2103 while (!OldCannIVs.empty()) { 2104 PHINode *OldCannIV = OldCannIVs.pop_back_val(); 2105 OldCannIV->insertBefore(L->getHeader()->getFirstNonPHI()); 2106 } 2107 } 2108 else if (ExpandBECount && ReuseIVForExit && needsLFTR(L, DT)) { 2109 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); 2110 } 2111 // If we have a trip count expression, rewrite the loop's exit condition 2112 // using it. We can currently only handle loops with a single exit. 2113 Value *NewICmp = 0; 2114 if (ExpandBECount && IndVar) { 2115 // Check preconditions for proper SCEVExpander operation. SCEV does not 2116 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2117 // pass that uses the SCEVExpander must do it. This does not work well for 2118 // loop passes because SCEVExpander makes assumptions about all loops, while 2119 // LoopPassManager only forces the current loop to be simplified. 2120 // 2121 // FIXME: SCEV expansion has no way to bail out, so the caller must 2122 // explicitly check any assumptions made by SCEV. Brittle. 2123 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2124 if (!AR || AR->getLoop()->getLoopPreheader()) 2125 NewICmp = 2126 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter); 2127 } 2128 // Rewrite IV-derived expressions. 2129 if (!DisableIVRewrite) 2130 RewriteIVExpressions(L, Rewriter); 2131 2132 // Clear the rewriter cache, because values that are in the rewriter's cache 2133 // can be deleted in the loop below, causing the AssertingVH in the cache to 2134 // trigger. 2135 Rewriter.clear(); 2136 2137 // Now that we're done iterating through lists, clean up any instructions 2138 // which are now dead. 2139 while (!DeadInsts.empty()) 2140 if (Instruction *Inst = 2141 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 2142 RecursivelyDeleteTriviallyDeadInstructions(Inst); 2143 2144 // The Rewriter may not be used from this point on. 2145 2146 // Loop-invariant instructions in the preheader that aren't used in the 2147 // loop may be sunk below the loop to reduce register pressure. 2148 SinkUnusedInvariants(L); 2149 2150 // For completeness, inform IVUsers of the IV use in the newly-created 2151 // loop exit test instruction. 2152 if (IU && NewICmp) { 2153 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp); 2154 if (NewICmpInst) 2155 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0))); 2156 } 2157 // Clean up dead instructions. 2158 Changed |= DeleteDeadPHIs(L->getHeader()); 2159 // Check a post-condition. 2160 assert(L->isLCSSAForm(*DT) && 2161 "Indvars did not leave the loop in lcssa form!"); 2162 2163 // Verify that LFTR, and any other change have not interfered with SCEV's 2164 // ability to compute trip count. 2165 #ifndef NDEBUG 2166 if (DisableIVRewrite && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2167 SE->forgetLoop(L); 2168 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2169 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2170 SE->getTypeSizeInBits(NewBECount->getType())) 2171 NewBECount = SE->getTruncateOrNoop(NewBECount, 2172 BackedgeTakenCount->getType()); 2173 else 2174 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2175 NewBECount->getType()); 2176 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2177 } 2178 #endif 2179 2180 return Changed; 2181 } 2182