1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/ADT/DenseMap.h" 29 #include "llvm/ADT/SmallVector.h" 30 #include "llvm/ADT/Statistic.h" 31 #include "llvm/Analysis/GlobalsModRef.h" 32 #include "llvm/Analysis/LoopInfo.h" 33 #include "llvm/Analysis/LoopPass.h" 34 #include "llvm/Analysis/ScalarEvolutionExpander.h" 35 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/TargetTransformInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/CFG.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/Dominators.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/LLVMContext.h" 46 #include "llvm/IR/PatternMatch.h" 47 #include "llvm/IR/Type.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/raw_ostream.h" 51 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 52 #include "llvm/Transforms/Utils/Local.h" 53 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 54 using namespace llvm; 55 56 #define DEBUG_TYPE "indvars" 57 58 STATISTIC(NumWidened , "Number of indvars widened"); 59 STATISTIC(NumReplaced , "Number of exit values replaced"); 60 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 61 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 62 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 63 64 // Trip count verification can be enabled by default under NDEBUG if we 65 // implement a strong expression equivalence checker in SCEV. Until then, we 66 // use the verify-indvars flag, which may assert in some cases. 67 static cl::opt<bool> VerifyIndvars( 68 "verify-indvars", cl::Hidden, 69 cl::desc("Verify the ScalarEvolution result after running indvars")); 70 71 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden, 72 cl::desc("Reduce live induction variables.")); 73 74 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl }; 75 76 static cl::opt<ReplaceExitVal> ReplaceExitValue( 77 "replexitval", cl::Hidden, cl::init(OnlyCheapRepl), 78 cl::desc("Choose the strategy to replace exit value in IndVarSimplify"), 79 cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"), 80 clEnumValN(OnlyCheapRepl, "cheap", 81 "only replace exit value when the cost is cheap"), 82 clEnumValN(AlwaysRepl, "always", 83 "always replace exit value whenever possible"), 84 clEnumValEnd)); 85 86 namespace { 87 struct RewritePhi; 88 89 class IndVarSimplify : public LoopPass { 90 LoopInfo *LI; 91 ScalarEvolution *SE; 92 DominatorTree *DT; 93 TargetLibraryInfo *TLI; 94 const TargetTransformInfo *TTI; 95 96 SmallVector<WeakVH, 16> DeadInsts; 97 bool Changed; 98 public: 99 100 static char ID; // Pass identification, replacement for typeid 101 IndVarSimplify() 102 : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) { 103 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 104 } 105 106 bool runOnLoop(Loop *L, LPPassManager &LPM) override; 107 108 void getAnalysisUsage(AnalysisUsage &AU) const override { 109 AU.addRequired<DominatorTreeWrapperPass>(); 110 AU.addRequired<LoopInfoWrapperPass>(); 111 AU.addRequired<ScalarEvolutionWrapperPass>(); 112 AU.addRequiredID(LoopSimplifyID); 113 AU.addRequiredID(LCSSAID); 114 AU.addPreserved<GlobalsAAWrapperPass>(); 115 AU.addPreserved<ScalarEvolutionWrapperPass>(); 116 AU.addPreservedID(LoopSimplifyID); 117 AU.addPreservedID(LCSSAID); 118 AU.setPreservesCFG(); 119 } 120 121 private: 122 void releaseMemory() override { 123 DeadInsts.clear(); 124 } 125 126 bool isValidRewrite(Value *FromVal, Value *ToVal); 127 128 void handleFloatingPointIV(Loop *L, PHINode *PH); 129 void rewriteNonIntegerIVs(Loop *L); 130 131 void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 132 133 bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet); 134 void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 135 136 Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 137 PHINode *IndVar, SCEVExpander &Rewriter); 138 139 void sinkUnusedInvariants(Loop *L); 140 141 Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L, 142 Instruction *InsertPt, Type *Ty); 143 }; 144 } 145 146 char IndVarSimplify::ID = 0; 147 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 148 "Induction Variable Simplification", false, false) 149 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 150 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 151 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) 152 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 153 INITIALIZE_PASS_DEPENDENCY(LCSSA) 154 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 155 "Induction Variable Simplification", false, false) 156 157 Pass *llvm::createIndVarSimplifyPass() { 158 return new IndVarSimplify(); 159 } 160 161 /// Return true if the SCEV expansion generated by the rewriter can replace the 162 /// original value. SCEV guarantees that it produces the same value, but the way 163 /// it is produced may be illegal IR. Ideally, this function will only be 164 /// called for verification. 165 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 166 // If an SCEV expression subsumed multiple pointers, its expansion could 167 // reassociate the GEP changing the base pointer. This is illegal because the 168 // final address produced by a GEP chain must be inbounds relative to its 169 // underlying object. Otherwise basic alias analysis, among other things, 170 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 171 // producing an expression involving multiple pointers. Until then, we must 172 // bail out here. 173 // 174 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 175 // because it understands lcssa phis while SCEV does not. 176 Value *FromPtr = FromVal; 177 Value *ToPtr = ToVal; 178 if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) { 179 FromPtr = GEP->getPointerOperand(); 180 } 181 if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) { 182 ToPtr = GEP->getPointerOperand(); 183 } 184 if (FromPtr != FromVal || ToPtr != ToVal) { 185 // Quickly check the common case 186 if (FromPtr == ToPtr) 187 return true; 188 189 // SCEV may have rewritten an expression that produces the GEP's pointer 190 // operand. That's ok as long as the pointer operand has the same base 191 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 192 // base of a recurrence. This handles the case in which SCEV expansion 193 // converts a pointer type recurrence into a nonrecurrent pointer base 194 // indexed by an integer recurrence. 195 196 // If the GEP base pointer is a vector of pointers, abort. 197 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 198 return false; 199 200 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 201 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 202 if (FromBase == ToBase) 203 return true; 204 205 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 206 << *FromBase << " != " << *ToBase << "\n"); 207 208 return false; 209 } 210 return true; 211 } 212 213 /// Determine the insertion point for this user. By default, insert immediately 214 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 215 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 216 /// common dominator for the incoming blocks. 217 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 218 DominatorTree *DT) { 219 PHINode *PHI = dyn_cast<PHINode>(User); 220 if (!PHI) 221 return User; 222 223 Instruction *InsertPt = nullptr; 224 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 225 if (PHI->getIncomingValue(i) != Def) 226 continue; 227 228 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 229 if (!InsertPt) { 230 InsertPt = InsertBB->getTerminator(); 231 continue; 232 } 233 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 234 InsertPt = InsertBB->getTerminator(); 235 } 236 assert(InsertPt && "Missing phi operand"); 237 assert((!isa<Instruction>(Def) || 238 DT->dominates(cast<Instruction>(Def), InsertPt)) && 239 "def does not dominate all uses"); 240 return InsertPt; 241 } 242 243 //===----------------------------------------------------------------------===// 244 // rewriteNonIntegerIVs and helpers. Prefer integer IVs. 245 //===----------------------------------------------------------------------===// 246 247 /// Convert APF to an integer, if possible. 248 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 249 bool isExact = false; 250 // See if we can convert this to an int64_t 251 uint64_t UIntVal; 252 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 253 &isExact) != APFloat::opOK || !isExact) 254 return false; 255 IntVal = UIntVal; 256 return true; 257 } 258 259 /// If the loop has floating induction variable then insert corresponding 260 /// integer induction variable if possible. 261 /// For example, 262 /// for(double i = 0; i < 10000; ++i) 263 /// bar(i) 264 /// is converted into 265 /// for(int i = 0; i < 10000; ++i) 266 /// bar((double)i); 267 /// 268 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) { 269 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 270 unsigned BackEdge = IncomingEdge^1; 271 272 // Check incoming value. 273 auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 274 275 int64_t InitValue; 276 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 277 return; 278 279 // Check IV increment. Reject this PN if increment operation is not 280 // an add or increment value can not be represented by an integer. 281 auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 282 if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return; 283 284 // If this is not an add of the PHI with a constantfp, or if the constant fp 285 // is not an integer, bail out. 286 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 287 int64_t IncValue; 288 if (IncValueVal == nullptr || Incr->getOperand(0) != PN || 289 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 290 return; 291 292 // Check Incr uses. One user is PN and the other user is an exit condition 293 // used by the conditional terminator. 294 Value::user_iterator IncrUse = Incr->user_begin(); 295 Instruction *U1 = cast<Instruction>(*IncrUse++); 296 if (IncrUse == Incr->user_end()) return; 297 Instruction *U2 = cast<Instruction>(*IncrUse++); 298 if (IncrUse != Incr->user_end()) return; 299 300 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 301 // only used by a branch, we can't transform it. 302 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 303 if (!Compare) 304 Compare = dyn_cast<FCmpInst>(U2); 305 if (!Compare || !Compare->hasOneUse() || 306 !isa<BranchInst>(Compare->user_back())) 307 return; 308 309 BranchInst *TheBr = cast<BranchInst>(Compare->user_back()); 310 311 // We need to verify that the branch actually controls the iteration count 312 // of the loop. If not, the new IV can overflow and no one will notice. 313 // The branch block must be in the loop and one of the successors must be out 314 // of the loop. 315 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 316 if (!L->contains(TheBr->getParent()) || 317 (L->contains(TheBr->getSuccessor(0)) && 318 L->contains(TheBr->getSuccessor(1)))) 319 return; 320 321 322 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 323 // transform it. 324 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 325 int64_t ExitValue; 326 if (ExitValueVal == nullptr || 327 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 328 return; 329 330 // Find new predicate for integer comparison. 331 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 332 switch (Compare->getPredicate()) { 333 default: return; // Unknown comparison. 334 case CmpInst::FCMP_OEQ: 335 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 336 case CmpInst::FCMP_ONE: 337 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 338 case CmpInst::FCMP_OGT: 339 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 340 case CmpInst::FCMP_OGE: 341 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 342 case CmpInst::FCMP_OLT: 343 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 344 case CmpInst::FCMP_OLE: 345 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 346 } 347 348 // We convert the floating point induction variable to a signed i32 value if 349 // we can. This is only safe if the comparison will not overflow in a way 350 // that won't be trapped by the integer equivalent operations. Check for this 351 // now. 352 // TODO: We could use i64 if it is native and the range requires it. 353 354 // The start/stride/exit values must all fit in signed i32. 355 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 356 return; 357 358 // If not actually striding (add x, 0.0), avoid touching the code. 359 if (IncValue == 0) 360 return; 361 362 // Positive and negative strides have different safety conditions. 363 if (IncValue > 0) { 364 // If we have a positive stride, we require the init to be less than the 365 // exit value. 366 if (InitValue >= ExitValue) 367 return; 368 369 uint32_t Range = uint32_t(ExitValue-InitValue); 370 // Check for infinite loop, either: 371 // while (i <= Exit) or until (i > Exit) 372 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 373 if (++Range == 0) return; // Range overflows. 374 } 375 376 unsigned Leftover = Range % uint32_t(IncValue); 377 378 // If this is an equality comparison, we require that the strided value 379 // exactly land on the exit value, otherwise the IV condition will wrap 380 // around and do things the fp IV wouldn't. 381 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 382 Leftover != 0) 383 return; 384 385 // If the stride would wrap around the i32 before exiting, we can't 386 // transform the IV. 387 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 388 return; 389 390 } else { 391 // If we have a negative stride, we require the init to be greater than the 392 // exit value. 393 if (InitValue <= ExitValue) 394 return; 395 396 uint32_t Range = uint32_t(InitValue-ExitValue); 397 // Check for infinite loop, either: 398 // while (i >= Exit) or until (i < Exit) 399 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 400 if (++Range == 0) return; // Range overflows. 401 } 402 403 unsigned Leftover = Range % uint32_t(-IncValue); 404 405 // If this is an equality comparison, we require that the strided value 406 // exactly land on the exit value, otherwise the IV condition will wrap 407 // around and do things the fp IV wouldn't. 408 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 409 Leftover != 0) 410 return; 411 412 // If the stride would wrap around the i32 before exiting, we can't 413 // transform the IV. 414 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 415 return; 416 } 417 418 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 419 420 // Insert new integer induction variable. 421 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 422 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 423 PN->getIncomingBlock(IncomingEdge)); 424 425 Value *NewAdd = 426 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 427 Incr->getName()+".int", Incr); 428 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 429 430 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 431 ConstantInt::get(Int32Ty, ExitValue), 432 Compare->getName()); 433 434 // In the following deletions, PN may become dead and may be deleted. 435 // Use a WeakVH to observe whether this happens. 436 WeakVH WeakPH = PN; 437 438 // Delete the old floating point exit comparison. The branch starts using the 439 // new comparison. 440 NewCompare->takeName(Compare); 441 Compare->replaceAllUsesWith(NewCompare); 442 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 443 444 // Delete the old floating point increment. 445 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 446 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 447 448 // If the FP induction variable still has uses, this is because something else 449 // in the loop uses its value. In order to canonicalize the induction 450 // variable, we chose to eliminate the IV and rewrite it in terms of an 451 // int->fp cast. 452 // 453 // We give preference to sitofp over uitofp because it is faster on most 454 // platforms. 455 if (WeakPH) { 456 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 457 &*PN->getParent()->getFirstInsertionPt()); 458 PN->replaceAllUsesWith(Conv); 459 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 460 } 461 Changed = true; 462 } 463 464 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) { 465 // First step. Check to see if there are any floating-point recurrences. 466 // If there are, change them into integer recurrences, permitting analysis by 467 // the SCEV routines. 468 // 469 BasicBlock *Header = L->getHeader(); 470 471 SmallVector<WeakVH, 8> PHIs; 472 for (BasicBlock::iterator I = Header->begin(); 473 PHINode *PN = dyn_cast<PHINode>(I); ++I) 474 PHIs.push_back(PN); 475 476 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 477 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 478 handleFloatingPointIV(L, PN); 479 480 // If the loop previously had floating-point IV, ScalarEvolution 481 // may not have been able to compute a trip count. Now that we've done some 482 // re-writing, the trip count may be computable. 483 if (Changed) 484 SE->forgetLoop(L); 485 } 486 487 namespace { 488 // Collect information about PHI nodes which can be transformed in 489 // rewriteLoopExitValues. 490 struct RewritePhi { 491 PHINode *PN; 492 unsigned Ith; // Ith incoming value. 493 Value *Val; // Exit value after expansion. 494 bool HighCost; // High Cost when expansion. 495 bool SafePhi; // LCSSASafePhiForRAUW. 496 497 RewritePhi(PHINode *P, unsigned I, Value *V, bool H, bool S) 498 : PN(P), Ith(I), Val(V), HighCost(H), SafePhi(S) {} 499 }; 500 } 501 502 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, 503 Loop *L, Instruction *InsertPt, 504 Type *ResultTy) { 505 // Before expanding S into an expensive LLVM expression, see if we can use an 506 // already existing value as the expansion for S. 507 if (Value *ExistingValue = Rewriter.findExistingExpansion(S, InsertPt, L)) 508 if (ExistingValue->getType() == ResultTy) 509 return ExistingValue; 510 511 // We didn't find anything, fall back to using SCEVExpander. 512 return Rewriter.expandCodeFor(S, ResultTy, InsertPt); 513 } 514 515 //===----------------------------------------------------------------------===// 516 // rewriteLoopExitValues - Optimize IV users outside the loop. 517 // As a side effect, reduces the amount of IV processing within the loop. 518 //===----------------------------------------------------------------------===// 519 520 /// Check to see if this loop has a computable loop-invariant execution count. 521 /// If so, this means that we can compute the final value of any expressions 522 /// that are recurrent in the loop, and substitute the exit values from the loop 523 /// into any instructions outside of the loop that use the final values of the 524 /// current expressions. 525 /// 526 /// This is mostly redundant with the regular IndVarSimplify activities that 527 /// happen later, except that it's more powerful in some cases, because it's 528 /// able to brute-force evaluate arbitrary instructions as long as they have 529 /// constant operands at the beginning of the loop. 530 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 531 // Verify the input to the pass in already in LCSSA form. 532 assert(L->isLCSSAForm(*DT)); 533 534 SmallVector<BasicBlock*, 8> ExitBlocks; 535 L->getUniqueExitBlocks(ExitBlocks); 536 537 SmallVector<RewritePhi, 8> RewritePhiSet; 538 // Find all values that are computed inside the loop, but used outside of it. 539 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 540 // the exit blocks of the loop to find them. 541 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 542 BasicBlock *ExitBB = ExitBlocks[i]; 543 544 // If there are no PHI nodes in this exit block, then no values defined 545 // inside the loop are used on this path, skip it. 546 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 547 if (!PN) continue; 548 549 unsigned NumPreds = PN->getNumIncomingValues(); 550 551 // We would like to be able to RAUW single-incoming value PHI nodes. We 552 // have to be certain this is safe even when this is an LCSSA PHI node. 553 // While the computed exit value is no longer varying in *this* loop, the 554 // exit block may be an exit block for an outer containing loop as well, 555 // the exit value may be varying in the outer loop, and thus it may still 556 // require an LCSSA PHI node. The safe case is when this is 557 // single-predecessor PHI node (LCSSA) and the exit block containing it is 558 // part of the enclosing loop, or this is the outer most loop of the nest. 559 // In either case the exit value could (at most) be varying in the same 560 // loop body as the phi node itself. Thus if it is in turn used outside of 561 // an enclosing loop it will only be via a separate LCSSA node. 562 bool LCSSASafePhiForRAUW = 563 NumPreds == 1 && 564 (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB)); 565 566 // Iterate over all of the PHI nodes. 567 BasicBlock::iterator BBI = ExitBB->begin(); 568 while ((PN = dyn_cast<PHINode>(BBI++))) { 569 if (PN->use_empty()) 570 continue; // dead use, don't replace it 571 572 // SCEV only supports integer expressions for now. 573 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 574 continue; 575 576 // It's necessary to tell ScalarEvolution about this explicitly so that 577 // it can walk the def-use list and forget all SCEVs, as it may not be 578 // watching the PHI itself. Once the new exit value is in place, there 579 // may not be a def-use connection between the loop and every instruction 580 // which got a SCEVAddRecExpr for that loop. 581 SE->forgetValue(PN); 582 583 // Iterate over all of the values in all the PHI nodes. 584 for (unsigned i = 0; i != NumPreds; ++i) { 585 // If the value being merged in is not integer or is not defined 586 // in the loop, skip it. 587 Value *InVal = PN->getIncomingValue(i); 588 if (!isa<Instruction>(InVal)) 589 continue; 590 591 // If this pred is for a subloop, not L itself, skip it. 592 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 593 continue; // The Block is in a subloop, skip it. 594 595 // Check that InVal is defined in the loop. 596 Instruction *Inst = cast<Instruction>(InVal); 597 if (!L->contains(Inst)) 598 continue; 599 600 // Okay, this instruction has a user outside of the current loop 601 // and varies predictably *inside* the loop. Evaluate the value it 602 // contains when the loop exits, if possible. 603 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 604 if (!SE->isLoopInvariant(ExitValue, L) || 605 !isSafeToExpand(ExitValue, *SE)) 606 continue; 607 608 // Computing the value outside of the loop brings no benefit if : 609 // - it is definitely used inside the loop in a way which can not be 610 // optimized away. 611 // - no use outside of the loop can take advantage of hoisting the 612 // computation out of the loop 613 if (ExitValue->getSCEVType()>=scMulExpr) { 614 unsigned NumHardInternalUses = 0; 615 unsigned NumSoftExternalUses = 0; 616 unsigned NumUses = 0; 617 for (auto IB = Inst->user_begin(), IE = Inst->user_end(); 618 IB != IE && NumUses <= 6; ++IB) { 619 Instruction *UseInstr = cast<Instruction>(*IB); 620 unsigned Opc = UseInstr->getOpcode(); 621 NumUses++; 622 if (L->contains(UseInstr)) { 623 if (Opc == Instruction::Call || Opc == Instruction::Ret) 624 NumHardInternalUses++; 625 } else { 626 if (Opc == Instruction::PHI) { 627 // Do not count the Phi as a use. LCSSA may have inserted 628 // plenty of trivial ones. 629 NumUses--; 630 for (auto PB = UseInstr->user_begin(), 631 PE = UseInstr->user_end(); 632 PB != PE && NumUses <= 6; ++PB, ++NumUses) { 633 unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode(); 634 if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret) 635 NumSoftExternalUses++; 636 } 637 continue; 638 } 639 if (Opc != Instruction::Call && Opc != Instruction::Ret) 640 NumSoftExternalUses++; 641 } 642 } 643 if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses) 644 continue; 645 } 646 647 bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst); 648 Value *ExitVal = 649 expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType()); 650 651 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 652 << " LoopVal = " << *Inst << "\n"); 653 654 if (!isValidRewrite(Inst, ExitVal)) { 655 DeadInsts.push_back(ExitVal); 656 continue; 657 } 658 659 // Collect all the candidate PHINodes to be rewritten. 660 RewritePhiSet.push_back( 661 RewritePhi(PN, i, ExitVal, HighCost, LCSSASafePhiForRAUW)); 662 } 663 } 664 } 665 666 bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet); 667 668 // Transformation. 669 for (const RewritePhi &Phi : RewritePhiSet) { 670 PHINode *PN = Phi.PN; 671 Value *ExitVal = Phi.Val; 672 673 // Only do the rewrite when the ExitValue can be expanded cheaply. 674 // If LoopCanBeDel is true, rewrite exit value aggressively. 675 if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) { 676 DeadInsts.push_back(ExitVal); 677 continue; 678 } 679 680 Changed = true; 681 ++NumReplaced; 682 Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith)); 683 PN->setIncomingValue(Phi.Ith, ExitVal); 684 685 // If this instruction is dead now, delete it. Don't do it now to avoid 686 // invalidating iterators. 687 if (isInstructionTriviallyDead(Inst, TLI)) 688 DeadInsts.push_back(Inst); 689 690 // If we determined that this PHI is safe to replace even if an LCSSA 691 // PHI, do so. 692 if (Phi.SafePhi) { 693 PN->replaceAllUsesWith(ExitVal); 694 PN->eraseFromParent(); 695 } 696 } 697 698 // The insertion point instruction may have been deleted; clear it out 699 // so that the rewriter doesn't trip over it later. 700 Rewriter.clearInsertPoint(); 701 } 702 703 /// Check whether it is possible to delete the loop after rewriting exit 704 /// value. If it is possible, ignore ReplaceExitValue and do rewriting 705 /// aggressively. 706 bool IndVarSimplify::canLoopBeDeleted( 707 Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) { 708 709 BasicBlock *Preheader = L->getLoopPreheader(); 710 // If there is no preheader, the loop will not be deleted. 711 if (!Preheader) 712 return false; 713 714 // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1. 715 // We obviate multiple ExitingBlocks case for simplicity. 716 // TODO: If we see testcase with multiple ExitingBlocks can be deleted 717 // after exit value rewriting, we can enhance the logic here. 718 SmallVector<BasicBlock *, 4> ExitingBlocks; 719 L->getExitingBlocks(ExitingBlocks); 720 SmallVector<BasicBlock *, 8> ExitBlocks; 721 L->getUniqueExitBlocks(ExitBlocks); 722 if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1) 723 return false; 724 725 BasicBlock *ExitBlock = ExitBlocks[0]; 726 BasicBlock::iterator BI = ExitBlock->begin(); 727 while (PHINode *P = dyn_cast<PHINode>(BI)) { 728 Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]); 729 730 // If the Incoming value of P is found in RewritePhiSet, we know it 731 // could be rewritten to use a loop invariant value in transformation 732 // phase later. Skip it in the loop invariant check below. 733 bool found = false; 734 for (const RewritePhi &Phi : RewritePhiSet) { 735 unsigned i = Phi.Ith; 736 if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) { 737 found = true; 738 break; 739 } 740 } 741 742 Instruction *I; 743 if (!found && (I = dyn_cast<Instruction>(Incoming))) 744 if (!L->hasLoopInvariantOperands(I)) 745 return false; 746 747 ++BI; 748 } 749 750 for (Loop::block_iterator LI = L->block_begin(), LE = L->block_end(); 751 LI != LE; ++LI) { 752 for (BasicBlock::iterator BI = (*LI)->begin(), BE = (*LI)->end(); BI != BE; 753 ++BI) { 754 if (BI->mayHaveSideEffects()) 755 return false; 756 } 757 } 758 759 return true; 760 } 761 762 //===----------------------------------------------------------------------===// 763 // IV Widening - Extend the width of an IV to cover its widest uses. 764 //===----------------------------------------------------------------------===// 765 766 namespace { 767 // Collect information about induction variables that are used by sign/zero 768 // extend operations. This information is recorded by CollectExtend and provides 769 // the input to WidenIV. 770 struct WideIVInfo { 771 PHINode *NarrowIV = nullptr; 772 Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext 773 bool IsSigned = false; // Was a sext user seen before a zext? 774 }; 775 } 776 777 /// Update information about the induction variable that is extended by this 778 /// sign or zero extend operation. This is used to determine the final width of 779 /// the IV before actually widening it. 780 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE, 781 const TargetTransformInfo *TTI) { 782 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 783 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 784 return; 785 786 Type *Ty = Cast->getType(); 787 uint64_t Width = SE->getTypeSizeInBits(Ty); 788 if (!Cast->getModule()->getDataLayout().isLegalInteger(Width)) 789 return; 790 791 // Cast is either an sext or zext up to this point. 792 // We should not widen an indvar if arithmetics on the wider indvar are more 793 // expensive than those on the narrower indvar. We check only the cost of ADD 794 // because at least an ADD is required to increment the induction variable. We 795 // could compute more comprehensively the cost of all instructions on the 796 // induction variable when necessary. 797 if (TTI && 798 TTI->getArithmeticInstrCost(Instruction::Add, Ty) > 799 TTI->getArithmeticInstrCost(Instruction::Add, 800 Cast->getOperand(0)->getType())) { 801 return; 802 } 803 804 if (!WI.WidestNativeType) { 805 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 806 WI.IsSigned = IsSigned; 807 return; 808 } 809 810 // We extend the IV to satisfy the sign of its first user, arbitrarily. 811 if (WI.IsSigned != IsSigned) 812 return; 813 814 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 815 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 816 } 817 818 namespace { 819 820 /// Record a link in the Narrow IV def-use chain along with the WideIV that 821 /// computes the same value as the Narrow IV def. This avoids caching Use* 822 /// pointers. 823 struct NarrowIVDefUse { 824 Instruction *NarrowDef = nullptr; 825 Instruction *NarrowUse = nullptr; 826 Instruction *WideDef = nullptr; 827 828 // True if the narrow def is never negative. Tracking this information lets 829 // us use a sign extension instead of a zero extension or vice versa, when 830 // profitable and legal. 831 bool NeverNegative = false; 832 833 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD, 834 bool NeverNegative) 835 : NarrowDef(ND), NarrowUse(NU), WideDef(WD), 836 NeverNegative(NeverNegative) {} 837 }; 838 839 /// The goal of this transform is to remove sign and zero extends without 840 /// creating any new induction variables. To do this, it creates a new phi of 841 /// the wider type and redirects all users, either removing extends or inserting 842 /// truncs whenever we stop propagating the type. 843 /// 844 class WidenIV { 845 // Parameters 846 PHINode *OrigPhi; 847 Type *WideType; 848 bool IsSigned; 849 850 // Context 851 LoopInfo *LI; 852 Loop *L; 853 ScalarEvolution *SE; 854 DominatorTree *DT; 855 856 // Result 857 PHINode *WidePhi; 858 Instruction *WideInc; 859 const SCEV *WideIncExpr; 860 SmallVectorImpl<WeakVH> &DeadInsts; 861 862 SmallPtrSet<Instruction*,16> Widened; 863 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 864 865 public: 866 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 867 ScalarEvolution *SEv, DominatorTree *DTree, 868 SmallVectorImpl<WeakVH> &DI) : 869 OrigPhi(WI.NarrowIV), 870 WideType(WI.WidestNativeType), 871 IsSigned(WI.IsSigned), 872 LI(LInfo), 873 L(LI->getLoopFor(OrigPhi->getParent())), 874 SE(SEv), 875 DT(DTree), 876 WidePhi(nullptr), 877 WideInc(nullptr), 878 WideIncExpr(nullptr), 879 DeadInsts(DI) { 880 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 881 } 882 883 PHINode *createWideIV(SCEVExpander &Rewriter); 884 885 protected: 886 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 887 Instruction *Use); 888 889 Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR); 890 Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU, 891 const SCEVAddRecExpr *WideAR); 892 Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU); 893 894 const SCEVAddRecExpr *getWideRecurrence(Instruction *NarrowUse); 895 896 const SCEVAddRecExpr* getExtendedOperandRecurrence(NarrowIVDefUse DU); 897 898 const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 899 unsigned OpCode) const; 900 901 Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 902 903 bool widenLoopCompare(NarrowIVDefUse DU); 904 905 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 906 }; 907 } // anonymous namespace 908 909 /// Perform a quick domtree based check for loop invariance assuming that V is 910 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this 911 /// purpose. 912 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 913 Instruction *Inst = dyn_cast<Instruction>(V); 914 if (!Inst) 915 return true; 916 917 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 918 } 919 920 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 921 Instruction *Use) { 922 // Set the debug location and conservative insertion point. 923 IRBuilder<> Builder(Use); 924 // Hoist the insertion point into loop preheaders as far as possible. 925 for (const Loop *L = LI->getLoopFor(Use->getParent()); 926 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 927 L = L->getParentLoop()) 928 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 929 930 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 931 Builder.CreateZExt(NarrowOper, WideType); 932 } 933 934 /// Instantiate a wide operation to replace a narrow operation. This only needs 935 /// to handle operations that can evaluation to SCEVAddRec. It can safely return 936 /// 0 for any operation we decide not to clone. 937 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU, 938 const SCEVAddRecExpr *WideAR) { 939 unsigned Opcode = DU.NarrowUse->getOpcode(); 940 switch (Opcode) { 941 default: 942 return nullptr; 943 case Instruction::Add: 944 case Instruction::Mul: 945 case Instruction::UDiv: 946 case Instruction::Sub: 947 return cloneArithmeticIVUser(DU, WideAR); 948 949 case Instruction::And: 950 case Instruction::Or: 951 case Instruction::Xor: 952 case Instruction::Shl: 953 case Instruction::LShr: 954 case Instruction::AShr: 955 return cloneBitwiseIVUser(DU); 956 } 957 } 958 959 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) { 960 DEBUG(dbgs() << "Cloning bitwise IVUser: " << *DU.NarrowUse << "\n"); 961 962 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 963 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 964 // invariant and will be folded or hoisted. If it actually comes from a 965 // widened IV, it should be removed during a future call to widenIVUse. 966 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) 967 ? DU.WideDef 968 : getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, 969 DU.NarrowUse); 970 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) 971 ? DU.WideDef 972 : getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, 973 DU.NarrowUse); 974 975 auto *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 976 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 977 NarrowBO->getName()); 978 IRBuilder<> Builder(DU.NarrowUse); 979 Builder.Insert(WideBO); 980 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 981 if (OBO->hasNoUnsignedWrap()) 982 WideBO->setHasNoUnsignedWrap(); 983 if (OBO->hasNoSignedWrap()) 984 WideBO->setHasNoSignedWrap(); 985 } 986 return WideBO; 987 } 988 989 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU, 990 const SCEVAddRecExpr *WideAR) { 991 DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *DU.NarrowUse << "\n"); 992 993 // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything 994 // about the narrow operand yet so must insert a [sz]ext. It is probably loop 995 // invariant and will be folded or hoisted. If it actually comes from a 996 // widened IV, it should be removed during a future call to widenIVUse. 997 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) 998 ? DU.WideDef 999 : getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, 1000 DU.NarrowUse); 1001 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) 1002 ? DU.WideDef 1003 : getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, 1004 DU.NarrowUse); 1005 1006 auto *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 1007 auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS, 1008 NarrowBO->getName()); 1009 IRBuilder<> Builder(DU.NarrowUse); 1010 Builder.Insert(WideBO); 1011 if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 1012 if (OBO->hasNoUnsignedWrap()) 1013 WideBO->setHasNoUnsignedWrap(); 1014 if (OBO->hasNoSignedWrap()) 1015 WideBO->setHasNoSignedWrap(); 1016 } 1017 return WideBO; 1018 } 1019 1020 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS, 1021 unsigned OpCode) const { 1022 if (OpCode == Instruction::Add) 1023 return SE->getAddExpr(LHS, RHS); 1024 if (OpCode == Instruction::Sub) 1025 return SE->getMinusSCEV(LHS, RHS); 1026 if (OpCode == Instruction::Mul) 1027 return SE->getMulExpr(LHS, RHS); 1028 1029 llvm_unreachable("Unsupported opcode."); 1030 } 1031 1032 /// No-wrap operations can transfer sign extension of their result to their 1033 /// operands. Generate the SCEV value for the widened operation without 1034 /// actually modifying the IR yet. If the expression after extending the 1035 /// operands is an AddRec for this loop, return it. 1036 const SCEVAddRecExpr* WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) { 1037 1038 // Handle the common case of add<nsw/nuw> 1039 const unsigned OpCode = DU.NarrowUse->getOpcode(); 1040 // Only Add/Sub/Mul instructions supported yet. 1041 if (OpCode != Instruction::Add && OpCode != Instruction::Sub && 1042 OpCode != Instruction::Mul) 1043 return nullptr; 1044 1045 // One operand (NarrowDef) has already been extended to WideDef. Now determine 1046 // if extending the other will lead to a recurrence. 1047 const unsigned ExtendOperIdx = 1048 DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 1049 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 1050 1051 const SCEV *ExtendOperExpr = nullptr; 1052 const OverflowingBinaryOperator *OBO = 1053 cast<OverflowingBinaryOperator>(DU.NarrowUse); 1054 if (IsSigned && OBO->hasNoSignedWrap()) 1055 ExtendOperExpr = SE->getSignExtendExpr( 1056 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1057 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 1058 ExtendOperExpr = SE->getZeroExtendExpr( 1059 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 1060 else 1061 return nullptr; 1062 1063 // When creating this SCEV expr, don't apply the current operations NSW or NUW 1064 // flags. This instruction may be guarded by control flow that the no-wrap 1065 // behavior depends on. Non-control-equivalent instructions can be mapped to 1066 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 1067 // semantics to those operations. 1068 const SCEV *lhs = SE->getSCEV(DU.WideDef); 1069 const SCEV *rhs = ExtendOperExpr; 1070 1071 // Let's swap operands to the initial order for the case of non-commutative 1072 // operations, like SUB. See PR21014. 1073 if (ExtendOperIdx == 0) 1074 std::swap(lhs, rhs); 1075 const SCEVAddRecExpr *AddRec = 1076 dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode)); 1077 1078 if (!AddRec || AddRec->getLoop() != L) 1079 return nullptr; 1080 return AddRec; 1081 } 1082 1083 /// Is this instruction potentially interesting for further simplification after 1084 /// widening it's type? In other words, can the extend be safely hoisted out of 1085 /// the loop with SCEV reducing the value to a recurrence on the same loop. If 1086 /// so, return the sign or zero extended recurrence. Otherwise return NULL. 1087 const SCEVAddRecExpr *WidenIV::getWideRecurrence(Instruction *NarrowUse) { 1088 if (!SE->isSCEVable(NarrowUse->getType())) 1089 return nullptr; 1090 1091 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 1092 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 1093 >= SE->getTypeSizeInBits(WideType)) { 1094 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 1095 // index. So don't follow this use. 1096 return nullptr; 1097 } 1098 1099 const SCEV *WideExpr = IsSigned ? 1100 SE->getSignExtendExpr(NarrowExpr, WideType) : 1101 SE->getZeroExtendExpr(NarrowExpr, WideType); 1102 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 1103 if (!AddRec || AddRec->getLoop() != L) 1104 return nullptr; 1105 return AddRec; 1106 } 1107 1108 /// This IV user cannot be widen. Replace this use of the original narrow IV 1109 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV. 1110 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) { 1111 DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef 1112 << " for user " << *DU.NarrowUse << "\n"); 1113 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1114 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1115 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1116 } 1117 1118 /// If the narrow use is a compare instruction, then widen the compare 1119 // (and possibly the other operand). The extend operation is hoisted into the 1120 // loop preheader as far as possible. 1121 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) { 1122 ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse); 1123 if (!Cmp) 1124 return false; 1125 1126 // We can legally widen the comparison in the following two cases: 1127 // 1128 // - The signedness of the IV extension and comparison match 1129 // 1130 // - The narrow IV is always positive (and thus its sign extension is equal 1131 // to its zero extension). For instance, let's say we're zero extending 1132 // %narrow for the following use 1133 // 1134 // icmp slt i32 %narrow, %val ... (A) 1135 // 1136 // and %narrow is always positive. Then 1137 // 1138 // (A) == icmp slt i32 sext(%narrow), sext(%val) 1139 // == icmp slt i32 zext(%narrow), sext(%val) 1140 1141 if (!(DU.NeverNegative || IsSigned == Cmp->isSigned())) 1142 return false; 1143 1144 Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0); 1145 unsigned CastWidth = SE->getTypeSizeInBits(Op->getType()); 1146 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1147 assert (CastWidth <= IVWidth && "Unexpected width while widening compare."); 1148 1149 // Widen the compare instruction. 1150 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1151 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1152 1153 // Widen the other operand of the compare, if necessary. 1154 if (CastWidth < IVWidth) { 1155 Value *ExtOp = getExtend(Op, WideType, Cmp->isSigned(), Cmp); 1156 DU.NarrowUse->replaceUsesOfWith(Op, ExtOp); 1157 } 1158 return true; 1159 } 1160 1161 /// Determine whether an individual user of the narrow IV can be widened. If so, 1162 /// return the wide clone of the user. 1163 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 1164 1165 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 1166 if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) { 1167 if (LI->getLoopFor(UsePhi->getParent()) != L) { 1168 // For LCSSA phis, sink the truncate outside the loop. 1169 // After SimplifyCFG most loop exit targets have a single predecessor. 1170 // Otherwise fall back to a truncate within the loop. 1171 if (UsePhi->getNumOperands() != 1) 1172 truncateIVUse(DU, DT); 1173 else { 1174 PHINode *WidePhi = 1175 PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide", 1176 UsePhi); 1177 WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0)); 1178 IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt()); 1179 Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType()); 1180 UsePhi->replaceAllUsesWith(Trunc); 1181 DeadInsts.emplace_back(UsePhi); 1182 DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi 1183 << " to " << *WidePhi << "\n"); 1184 } 1185 return nullptr; 1186 } 1187 } 1188 // Our raison d'etre! Eliminate sign and zero extension. 1189 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1190 Value *NewDef = DU.WideDef; 1191 if (DU.NarrowUse->getType() != WideType) { 1192 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1193 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1194 if (CastWidth < IVWidth) { 1195 // The cast isn't as wide as the IV, so insert a Trunc. 1196 IRBuilder<> Builder(DU.NarrowUse); 1197 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1198 } 1199 else { 1200 // A wider extend was hidden behind a narrower one. This may induce 1201 // another round of IV widening in which the intermediate IV becomes 1202 // dead. It should be very rare. 1203 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1204 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1205 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1206 NewDef = DU.NarrowUse; 1207 } 1208 } 1209 if (NewDef != DU.NarrowUse) { 1210 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1211 << " replaced by " << *DU.WideDef << "\n"); 1212 ++NumElimExt; 1213 DU.NarrowUse->replaceAllUsesWith(NewDef); 1214 DeadInsts.emplace_back(DU.NarrowUse); 1215 } 1216 // Now that the extend is gone, we want to expose it's uses for potential 1217 // further simplification. We don't need to directly inform SimplifyIVUsers 1218 // of the new users, because their parent IV will be processed later as a 1219 // new loop phi. If we preserved IVUsers analysis, we would also want to 1220 // push the uses of WideDef here. 1221 1222 // No further widening is needed. The deceased [sz]ext had done it for us. 1223 return nullptr; 1224 } 1225 1226 // Does this user itself evaluate to a recurrence after widening? 1227 const SCEVAddRecExpr *WideAddRec = getWideRecurrence(DU.NarrowUse); 1228 if (!WideAddRec) 1229 WideAddRec = getExtendedOperandRecurrence(DU); 1230 1231 if (!WideAddRec) { 1232 // If use is a loop condition, try to promote the condition instead of 1233 // truncating the IV first. 1234 if (widenLoopCompare(DU)) 1235 return nullptr; 1236 1237 // This user does not evaluate to a recurence after widening, so don't 1238 // follow it. Instead insert a Trunc to kill off the original use, 1239 // eventually isolating the original narrow IV so it can be removed. 1240 truncateIVUse(DU, DT); 1241 return nullptr; 1242 } 1243 // Assume block terminators cannot evaluate to a recurrence. We can't to 1244 // insert a Trunc after a terminator if there happens to be a critical edge. 1245 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1246 "SCEV is not expected to evaluate a block terminator"); 1247 1248 // Reuse the IV increment that SCEVExpander created as long as it dominates 1249 // NarrowUse. 1250 Instruction *WideUse = nullptr; 1251 if (WideAddRec == WideIncExpr 1252 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1253 WideUse = WideInc; 1254 else { 1255 WideUse = cloneIVUser(DU, WideAddRec); 1256 if (!WideUse) 1257 return nullptr; 1258 } 1259 // Evaluation of WideAddRec ensured that the narrow expression could be 1260 // extended outside the loop without overflow. This suggests that the wide use 1261 // evaluates to the same expression as the extended narrow use, but doesn't 1262 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1263 // where it fails, we simply throw away the newly created wide use. 1264 if (WideAddRec != SE->getSCEV(WideUse)) { 1265 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1266 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1267 DeadInsts.emplace_back(WideUse); 1268 return nullptr; 1269 } 1270 1271 // Returning WideUse pushes it on the worklist. 1272 return WideUse; 1273 } 1274 1275 /// Add eligible users of NarrowDef to NarrowIVUsers. 1276 /// 1277 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1278 const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef); 1279 bool NeverNegative = 1280 SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV, 1281 SE->getConstant(NarrowSCEV->getType(), 0)); 1282 for (User *U : NarrowDef->users()) { 1283 Instruction *NarrowUser = cast<Instruction>(U); 1284 1285 // Handle data flow merges and bizarre phi cycles. 1286 if (!Widened.insert(NarrowUser).second) 1287 continue; 1288 1289 NarrowIVUsers.push_back( 1290 NarrowIVDefUse(NarrowDef, NarrowUser, WideDef, NeverNegative)); 1291 } 1292 } 1293 1294 /// Process a single induction variable. First use the SCEVExpander to create a 1295 /// wide induction variable that evaluates to the same recurrence as the 1296 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's 1297 /// def-use chain. After widenIVUse has processed all interesting IV users, the 1298 /// narrow IV will be isolated for removal by DeleteDeadPHIs. 1299 /// 1300 /// It would be simpler to delete uses as they are processed, but we must avoid 1301 /// invalidating SCEV expressions. 1302 /// 1303 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) { 1304 // Is this phi an induction variable? 1305 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1306 if (!AddRec) 1307 return nullptr; 1308 1309 // Widen the induction variable expression. 1310 const SCEV *WideIVExpr = IsSigned ? 1311 SE->getSignExtendExpr(AddRec, WideType) : 1312 SE->getZeroExtendExpr(AddRec, WideType); 1313 1314 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1315 "Expect the new IV expression to preserve its type"); 1316 1317 // Can the IV be extended outside the loop without overflow? 1318 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1319 if (!AddRec || AddRec->getLoop() != L) 1320 return nullptr; 1321 1322 // An AddRec must have loop-invariant operands. Since this AddRec is 1323 // materialized by a loop header phi, the expression cannot have any post-loop 1324 // operands, so they must dominate the loop header. 1325 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1326 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1327 && "Loop header phi recurrence inputs do not dominate the loop"); 1328 1329 // The rewriter provides a value for the desired IV expression. This may 1330 // either find an existing phi or materialize a new one. Either way, we 1331 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1332 // of the phi-SCC dominates the loop entry. 1333 Instruction *InsertPt = &L->getHeader()->front(); 1334 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1335 1336 // Remembering the WideIV increment generated by SCEVExpander allows 1337 // widenIVUse to reuse it when widening the narrow IV's increment. We don't 1338 // employ a general reuse mechanism because the call above is the only call to 1339 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1340 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1341 WideInc = 1342 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1343 WideIncExpr = SE->getSCEV(WideInc); 1344 } 1345 1346 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1347 ++NumWidened; 1348 1349 // Traverse the def-use chain using a worklist starting at the original IV. 1350 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1351 1352 Widened.insert(OrigPhi); 1353 pushNarrowIVUsers(OrigPhi, WidePhi); 1354 1355 while (!NarrowIVUsers.empty()) { 1356 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1357 1358 // Process a def-use edge. This may replace the use, so don't hold a 1359 // use_iterator across it. 1360 Instruction *WideUse = widenIVUse(DU, Rewriter); 1361 1362 // Follow all def-use edges from the previous narrow use. 1363 if (WideUse) 1364 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1365 1366 // widenIVUse may have removed the def-use edge. 1367 if (DU.NarrowDef->use_empty()) 1368 DeadInsts.emplace_back(DU.NarrowDef); 1369 } 1370 return WidePhi; 1371 } 1372 1373 //===----------------------------------------------------------------------===// 1374 // Live IV Reduction - Minimize IVs live across the loop. 1375 //===----------------------------------------------------------------------===// 1376 1377 1378 //===----------------------------------------------------------------------===// 1379 // Simplification of IV users based on SCEV evaluation. 1380 //===----------------------------------------------------------------------===// 1381 1382 namespace { 1383 class IndVarSimplifyVisitor : public IVVisitor { 1384 ScalarEvolution *SE; 1385 const TargetTransformInfo *TTI; 1386 PHINode *IVPhi; 1387 1388 public: 1389 WideIVInfo WI; 1390 1391 IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV, 1392 const TargetTransformInfo *TTI, 1393 const DominatorTree *DTree) 1394 : SE(SCEV), TTI(TTI), IVPhi(IV) { 1395 DT = DTree; 1396 WI.NarrowIV = IVPhi; 1397 if (ReduceLiveIVs) 1398 setSplitOverflowIntrinsics(); 1399 } 1400 1401 // Implement the interface used by simplifyUsersOfIV. 1402 void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); } 1403 }; 1404 } 1405 1406 /// Iteratively perform simplification on a worklist of IV users. Each 1407 /// successive simplification may push more users which may themselves be 1408 /// candidates for simplification. 1409 /// 1410 /// Sign/Zero extend elimination is interleaved with IV simplification. 1411 /// 1412 void IndVarSimplify::simplifyAndExtend(Loop *L, 1413 SCEVExpander &Rewriter, 1414 LPPassManager &LPM) { 1415 SmallVector<WideIVInfo, 8> WideIVs; 1416 1417 SmallVector<PHINode*, 8> LoopPhis; 1418 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1419 LoopPhis.push_back(cast<PHINode>(I)); 1420 } 1421 // Each round of simplification iterates through the SimplifyIVUsers worklist 1422 // for all current phis, then determines whether any IVs can be 1423 // widened. Widening adds new phis to LoopPhis, inducing another round of 1424 // simplification on the wide IVs. 1425 while (!LoopPhis.empty()) { 1426 // Evaluate as many IV expressions as possible before widening any IVs. This 1427 // forces SCEV to set no-wrap flags before evaluating sign/zero 1428 // extension. The first time SCEV attempts to normalize sign/zero extension, 1429 // the result becomes final. So for the most predictable results, we delay 1430 // evaluation of sign/zero extend evaluation until needed, and avoid running 1431 // other SCEV based analysis prior to simplifyAndExtend. 1432 do { 1433 PHINode *CurrIV = LoopPhis.pop_back_val(); 1434 1435 // Information about sign/zero extensions of CurrIV. 1436 IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT); 1437 1438 Changed |= simplifyUsersOfIV(CurrIV, SE, DT, &LPM, DeadInsts, &Visitor); 1439 1440 if (Visitor.WI.WidestNativeType) { 1441 WideIVs.push_back(Visitor.WI); 1442 } 1443 } while(!LoopPhis.empty()); 1444 1445 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1446 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1447 if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) { 1448 Changed = true; 1449 LoopPhis.push_back(WidePhi); 1450 } 1451 } 1452 } 1453 } 1454 1455 //===----------------------------------------------------------------------===// 1456 // linearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1457 //===----------------------------------------------------------------------===// 1458 1459 /// Return true if this loop's backedge taken count expression can be safely and 1460 /// cheaply expanded into an instruction sequence that can be used by 1461 /// linearFunctionTestReplace. 1462 /// 1463 /// TODO: This fails for pointer-type loop counters with greater than one byte 1464 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1465 /// we could skip this check in the case that the LFTR loop counter (chosen by 1466 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1467 /// the loop test to an inequality test by checking the target data's alignment 1468 /// of element types (given that the initial pointer value originates from or is 1469 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1470 /// However, we don't yet have a strong motivation for converting loop tests 1471 /// into inequality tests. 1472 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE, 1473 SCEVExpander &Rewriter) { 1474 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1475 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1476 BackedgeTakenCount->isZero()) 1477 return false; 1478 1479 if (!L->getExitingBlock()) 1480 return false; 1481 1482 // Can't rewrite non-branch yet. 1483 if (!isa<BranchInst>(L->getExitingBlock()->getTerminator())) 1484 return false; 1485 1486 if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L)) 1487 return false; 1488 1489 return true; 1490 } 1491 1492 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi. 1493 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1494 Instruction *IncI = dyn_cast<Instruction>(IncV); 1495 if (!IncI) 1496 return nullptr; 1497 1498 switch (IncI->getOpcode()) { 1499 case Instruction::Add: 1500 case Instruction::Sub: 1501 break; 1502 case Instruction::GetElementPtr: 1503 // An IV counter must preserve its type. 1504 if (IncI->getNumOperands() == 2) 1505 break; 1506 default: 1507 return nullptr; 1508 } 1509 1510 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1511 if (Phi && Phi->getParent() == L->getHeader()) { 1512 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1513 return Phi; 1514 return nullptr; 1515 } 1516 if (IncI->getOpcode() == Instruction::GetElementPtr) 1517 return nullptr; 1518 1519 // Allow add/sub to be commuted. 1520 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1521 if (Phi && Phi->getParent() == L->getHeader()) { 1522 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1523 return Phi; 1524 } 1525 return nullptr; 1526 } 1527 1528 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1529 static ICmpInst *getLoopTest(Loop *L) { 1530 assert(L->getExitingBlock() && "expected loop exit"); 1531 1532 BasicBlock *LatchBlock = L->getLoopLatch(); 1533 // Don't bother with LFTR if the loop is not properly simplified. 1534 if (!LatchBlock) 1535 return nullptr; 1536 1537 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1538 assert(BI && "expected exit branch"); 1539 1540 return dyn_cast<ICmpInst>(BI->getCondition()); 1541 } 1542 1543 /// linearFunctionTestReplace policy. Return true unless we can show that the 1544 /// current exit test is already sufficiently canonical. 1545 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1546 // Do LFTR to simplify the exit condition to an ICMP. 1547 ICmpInst *Cond = getLoopTest(L); 1548 if (!Cond) 1549 return true; 1550 1551 // Do LFTR to simplify the exit ICMP to EQ/NE 1552 ICmpInst::Predicate Pred = Cond->getPredicate(); 1553 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1554 return true; 1555 1556 // Look for a loop invariant RHS 1557 Value *LHS = Cond->getOperand(0); 1558 Value *RHS = Cond->getOperand(1); 1559 if (!isLoopInvariant(RHS, L, DT)) { 1560 if (!isLoopInvariant(LHS, L, DT)) 1561 return true; 1562 std::swap(LHS, RHS); 1563 } 1564 // Look for a simple IV counter LHS 1565 PHINode *Phi = dyn_cast<PHINode>(LHS); 1566 if (!Phi) 1567 Phi = getLoopPhiForCounter(LHS, L, DT); 1568 1569 if (!Phi) 1570 return true; 1571 1572 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1573 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1574 if (Idx < 0) 1575 return true; 1576 1577 // Do LFTR if the exit condition's IV is *not* a simple counter. 1578 Value *IncV = Phi->getIncomingValue(Idx); 1579 return Phi != getLoopPhiForCounter(IncV, L, DT); 1580 } 1581 1582 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1583 /// down to checking that all operands are constant and listing instructions 1584 /// that may hide undef. 1585 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited, 1586 unsigned Depth) { 1587 if (isa<Constant>(V)) 1588 return !isa<UndefValue>(V); 1589 1590 if (Depth >= 6) 1591 return false; 1592 1593 // Conservatively handle non-constant non-instructions. For example, Arguments 1594 // may be undef. 1595 Instruction *I = dyn_cast<Instruction>(V); 1596 if (!I) 1597 return false; 1598 1599 // Load and return values may be undef. 1600 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1601 return false; 1602 1603 // Optimistically handle other instructions. 1604 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1605 if (!Visited.insert(*OI).second) 1606 continue; 1607 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1608 return false; 1609 } 1610 return true; 1611 } 1612 1613 /// Return true if the given value is concrete. We must prove that undef can 1614 /// never reach it. 1615 /// 1616 /// TODO: If we decide that this is a good approach to checking for undef, we 1617 /// may factor it into a common location. 1618 static bool hasConcreteDef(Value *V) { 1619 SmallPtrSet<Value*, 8> Visited; 1620 Visited.insert(V); 1621 return hasConcreteDefImpl(V, Visited, 0); 1622 } 1623 1624 /// Return true if this IV has any uses other than the (soon to be rewritten) 1625 /// loop exit test. 1626 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1627 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1628 Value *IncV = Phi->getIncomingValue(LatchIdx); 1629 1630 for (User *U : Phi->users()) 1631 if (U != Cond && U != IncV) return false; 1632 1633 for (User *U : IncV->users()) 1634 if (U != Cond && U != Phi) return false; 1635 return true; 1636 } 1637 1638 /// Find an affine IV in canonical form. 1639 /// 1640 /// BECount may be an i8* pointer type. The pointer difference is already 1641 /// valid count without scaling the address stride, so it remains a pointer 1642 /// expression as far as SCEV is concerned. 1643 /// 1644 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1645 /// 1646 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1647 /// 1648 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1649 /// This is difficult in general for SCEV because of potential overflow. But we 1650 /// could at least handle constant BECounts. 1651 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount, 1652 ScalarEvolution *SE, DominatorTree *DT) { 1653 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1654 1655 Value *Cond = 1656 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1657 1658 // Loop over all of the PHI nodes, looking for a simple counter. 1659 PHINode *BestPhi = nullptr; 1660 const SCEV *BestInit = nullptr; 1661 BasicBlock *LatchBlock = L->getLoopLatch(); 1662 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1663 1664 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1665 PHINode *Phi = cast<PHINode>(I); 1666 if (!SE->isSCEVable(Phi->getType())) 1667 continue; 1668 1669 // Avoid comparing an integer IV against a pointer Limit. 1670 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1671 continue; 1672 1673 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1674 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1675 continue; 1676 1677 // AR may be a pointer type, while BECount is an integer type. 1678 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1679 // AR may not be a narrower type, or we may never exit. 1680 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1681 if (PhiWidth < BCWidth || 1682 !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth)) 1683 continue; 1684 1685 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1686 if (!Step || !Step->isOne()) 1687 continue; 1688 1689 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1690 Value *IncV = Phi->getIncomingValue(LatchIdx); 1691 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1692 continue; 1693 1694 // Avoid reusing a potentially undef value to compute other values that may 1695 // have originally had a concrete definition. 1696 if (!hasConcreteDef(Phi)) { 1697 // We explicitly allow unknown phis as long as they are already used by 1698 // the loop test. In this case we assume that performing LFTR could not 1699 // increase the number of undef users. 1700 if (ICmpInst *Cond = getLoopTest(L)) { 1701 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1702 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1703 continue; 1704 } 1705 } 1706 } 1707 const SCEV *Init = AR->getStart(); 1708 1709 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1710 // Don't force a live loop counter if another IV can be used. 1711 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1712 continue; 1713 1714 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1715 // also prefers integer to pointer IVs. 1716 if (BestInit->isZero() != Init->isZero()) { 1717 if (BestInit->isZero()) 1718 continue; 1719 } 1720 // If two IVs both count from zero or both count from nonzero then the 1721 // narrower is likely a dead phi that has been widened. Use the wider phi 1722 // to allow the other to be eliminated. 1723 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1724 continue; 1725 } 1726 BestPhi = Phi; 1727 BestInit = Init; 1728 } 1729 return BestPhi; 1730 } 1731 1732 /// Help linearFunctionTestReplace by generating a value that holds the RHS of 1733 /// the new loop test. 1734 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1735 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1736 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1737 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1738 const SCEV *IVInit = AR->getStart(); 1739 1740 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1741 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1742 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1743 // the existing GEPs whenever possible. 1744 if (IndVar->getType()->isPointerTy() 1745 && !IVCount->getType()->isPointerTy()) { 1746 1747 // IVOffset will be the new GEP offset that is interpreted by GEP as a 1748 // signed value. IVCount on the other hand represents the loop trip count, 1749 // which is an unsigned value. FindLoopCounter only allows induction 1750 // variables that have a positive unit stride of one. This means we don't 1751 // have to handle the case of negative offsets (yet) and just need to zero 1752 // extend IVCount. 1753 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1754 const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy); 1755 1756 // Expand the code for the iteration count. 1757 assert(SE->isLoopInvariant(IVOffset, L) && 1758 "Computed iteration count is not loop invariant!"); 1759 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1760 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1761 1762 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1763 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1764 // We could handle pointer IVs other than i8*, but we need to compensate for 1765 // gep index scaling. See canExpandBackedgeTakenCount comments. 1766 assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()), 1767 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1768 && "unit stride pointer IV must be i8*"); 1769 1770 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1771 return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit"); 1772 } 1773 else { 1774 // In any other case, convert both IVInit and IVCount to integers before 1775 // comparing. This may result in SCEV expension of pointers, but in practice 1776 // SCEV will fold the pointer arithmetic away as such: 1777 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1778 // 1779 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1780 // for simple memset-style loops. 1781 // 1782 // IVInit integer and IVCount pointer would only occur if a canonical IV 1783 // were generated on top of case #2, which is not expected. 1784 1785 const SCEV *IVLimit = nullptr; 1786 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1787 // For non-zero Start, compute IVCount here. 1788 if (AR->getStart()->isZero()) 1789 IVLimit = IVCount; 1790 else { 1791 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1792 const SCEV *IVInit = AR->getStart(); 1793 1794 // For integer IVs, truncate the IV before computing IVInit + BECount. 1795 if (SE->getTypeSizeInBits(IVInit->getType()) 1796 > SE->getTypeSizeInBits(IVCount->getType())) 1797 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1798 1799 IVLimit = SE->getAddExpr(IVInit, IVCount); 1800 } 1801 // Expand the code for the iteration count. 1802 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1803 IRBuilder<> Builder(BI); 1804 assert(SE->isLoopInvariant(IVLimit, L) && 1805 "Computed iteration count is not loop invariant!"); 1806 // Ensure that we generate the same type as IndVar, or a smaller integer 1807 // type. In the presence of null pointer values, we have an integer type 1808 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1809 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1810 IndVar->getType() : IVCount->getType(); 1811 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1812 } 1813 } 1814 1815 /// This method rewrites the exit condition of the loop to be a canonical != 1816 /// comparison against the incremented loop induction variable. This pass is 1817 /// able to rewrite the exit tests of any loop where the SCEV analysis can 1818 /// determine a loop-invariant trip count of the loop, which is actually a much 1819 /// broader range than just linear tests. 1820 Value *IndVarSimplify:: 1821 linearFunctionTestReplace(Loop *L, 1822 const SCEV *BackedgeTakenCount, 1823 PHINode *IndVar, 1824 SCEVExpander &Rewriter) { 1825 assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition"); 1826 1827 // Initialize CmpIndVar and IVCount to their preincremented values. 1828 Value *CmpIndVar = IndVar; 1829 const SCEV *IVCount = BackedgeTakenCount; 1830 1831 // If the exiting block is the same as the backedge block, we prefer to 1832 // compare against the post-incremented value, otherwise we must compare 1833 // against the preincremented value. 1834 if (L->getExitingBlock() == L->getLoopLatch()) { 1835 // Add one to the "backedge-taken" count to get the trip count. 1836 // This addition may overflow, which is valid as long as the comparison is 1837 // truncated to BackedgeTakenCount->getType(). 1838 IVCount = SE->getAddExpr(BackedgeTakenCount, 1839 SE->getOne(BackedgeTakenCount->getType())); 1840 // The BackedgeTaken expression contains the number of times that the 1841 // backedge branches to the loop header. This is one less than the 1842 // number of times the loop executes, so use the incremented indvar. 1843 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1844 } 1845 1846 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1847 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1848 && "genLoopLimit missed a cast"); 1849 1850 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1851 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1852 ICmpInst::Predicate P; 1853 if (L->contains(BI->getSuccessor(0))) 1854 P = ICmpInst::ICMP_NE; 1855 else 1856 P = ICmpInst::ICMP_EQ; 1857 1858 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1859 << " LHS:" << *CmpIndVar << '\n' 1860 << " op:\t" 1861 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1862 << " RHS:\t" << *ExitCnt << "\n" 1863 << " IVCount:\t" << *IVCount << "\n"); 1864 1865 IRBuilder<> Builder(BI); 1866 1867 // LFTR can ignore IV overflow and truncate to the width of 1868 // BECount. This avoids materializing the add(zext(add)) expression. 1869 unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType()); 1870 unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType()); 1871 if (CmpIndVarSize > ExitCntSize) { 1872 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1873 const SCEV *ARStart = AR->getStart(); 1874 const SCEV *ARStep = AR->getStepRecurrence(*SE); 1875 // For constant IVCount, avoid truncation. 1876 if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) { 1877 const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue(); 1878 APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue(); 1879 // Note that the post-inc value of BackedgeTakenCount may have overflowed 1880 // above such that IVCount is now zero. 1881 if (IVCount != BackedgeTakenCount && Count == 0) { 1882 Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize); 1883 ++Count; 1884 } 1885 else 1886 Count = Count.zext(CmpIndVarSize); 1887 APInt NewLimit; 1888 if (cast<SCEVConstant>(ARStep)->getValue()->isNegative()) 1889 NewLimit = Start - Count; 1890 else 1891 NewLimit = Start + Count; 1892 ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit); 1893 1894 DEBUG(dbgs() << " Widen RHS:\t" << *ExitCnt << "\n"); 1895 } else { 1896 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1897 "lftr.wideiv"); 1898 } 1899 } 1900 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1901 Value *OrigCond = BI->getCondition(); 1902 // It's tempting to use replaceAllUsesWith here to fully replace the old 1903 // comparison, but that's not immediately safe, since users of the old 1904 // comparison may not be dominated by the new comparison. Instead, just 1905 // update the branch to use the new comparison; in the common case this 1906 // will make old comparison dead. 1907 BI->setCondition(Cond); 1908 DeadInsts.push_back(OrigCond); 1909 1910 ++NumLFTR; 1911 Changed = true; 1912 return Cond; 1913 } 1914 1915 //===----------------------------------------------------------------------===// 1916 // sinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1917 //===----------------------------------------------------------------------===// 1918 1919 /// If there's a single exit block, sink any loop-invariant values that 1920 /// were defined in the preheader but not used inside the loop into the 1921 /// exit block to reduce register pressure in the loop. 1922 void IndVarSimplify::sinkUnusedInvariants(Loop *L) { 1923 BasicBlock *ExitBlock = L->getExitBlock(); 1924 if (!ExitBlock) return; 1925 1926 BasicBlock *Preheader = L->getLoopPreheader(); 1927 if (!Preheader) return; 1928 1929 Instruction *InsertPt = &*ExitBlock->getFirstInsertionPt(); 1930 BasicBlock::iterator I(Preheader->getTerminator()); 1931 while (I != Preheader->begin()) { 1932 --I; 1933 // New instructions were inserted at the end of the preheader. 1934 if (isa<PHINode>(I)) 1935 break; 1936 1937 // Don't move instructions which might have side effects, since the side 1938 // effects need to complete before instructions inside the loop. Also don't 1939 // move instructions which might read memory, since the loop may modify 1940 // memory. Note that it's okay if the instruction might have undefined 1941 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1942 // block. 1943 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1944 continue; 1945 1946 // Skip debug info intrinsics. 1947 if (isa<DbgInfoIntrinsic>(I)) 1948 continue; 1949 1950 // Skip eh pad instructions. 1951 if (I->isEHPad()) 1952 continue; 1953 1954 // Don't sink alloca: we never want to sink static alloca's out of the 1955 // entry block, and correctly sinking dynamic alloca's requires 1956 // checks for stacksave/stackrestore intrinsics. 1957 // FIXME: Refactor this check somehow? 1958 if (isa<AllocaInst>(I)) 1959 continue; 1960 1961 // Determine if there is a use in or before the loop (direct or 1962 // otherwise). 1963 bool UsedInLoop = false; 1964 for (Use &U : I->uses()) { 1965 Instruction *User = cast<Instruction>(U.getUser()); 1966 BasicBlock *UseBB = User->getParent(); 1967 if (PHINode *P = dyn_cast<PHINode>(User)) { 1968 unsigned i = 1969 PHINode::getIncomingValueNumForOperand(U.getOperandNo()); 1970 UseBB = P->getIncomingBlock(i); 1971 } 1972 if (UseBB == Preheader || L->contains(UseBB)) { 1973 UsedInLoop = true; 1974 break; 1975 } 1976 } 1977 1978 // If there is, the def must remain in the preheader. 1979 if (UsedInLoop) 1980 continue; 1981 1982 // Otherwise, sink it to the exit block. 1983 Instruction *ToMove = &*I; 1984 bool Done = false; 1985 1986 if (I != Preheader->begin()) { 1987 // Skip debug info intrinsics. 1988 do { 1989 --I; 1990 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1991 1992 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1993 Done = true; 1994 } else { 1995 Done = true; 1996 } 1997 1998 ToMove->moveBefore(InsertPt); 1999 if (Done) break; 2000 InsertPt = ToMove; 2001 } 2002 } 2003 2004 //===----------------------------------------------------------------------===// 2005 // IndVarSimplify driver. Manage several subpasses of IV simplification. 2006 //===----------------------------------------------------------------------===// 2007 2008 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 2009 if (skipOptnoneFunction(L)) 2010 return false; 2011 2012 // If LoopSimplify form is not available, stay out of trouble. Some notes: 2013 // - LSR currently only supports LoopSimplify-form loops. Indvars' 2014 // canonicalization can be a pessimization without LSR to "clean up" 2015 // afterwards. 2016 // - We depend on having a preheader; in particular, 2017 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 2018 // and we're in trouble if we can't find the induction variable even when 2019 // we've manually inserted one. 2020 if (!L->isLoopSimplifyForm()) 2021 return false; 2022 2023 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); 2024 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); 2025 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 2026 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>(); 2027 TLI = TLIP ? &TLIP->getTLI() : nullptr; 2028 auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>(); 2029 TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr; 2030 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); 2031 2032 DeadInsts.clear(); 2033 Changed = false; 2034 2035 // If there are any floating-point recurrences, attempt to 2036 // transform them to use integer recurrences. 2037 rewriteNonIntegerIVs(L); 2038 2039 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 2040 2041 // Create a rewriter object which we'll use to transform the code with. 2042 SCEVExpander Rewriter(*SE, DL, "indvars"); 2043 #ifndef NDEBUG 2044 Rewriter.setDebugType(DEBUG_TYPE); 2045 #endif 2046 2047 // Eliminate redundant IV users. 2048 // 2049 // Simplification works best when run before other consumers of SCEV. We 2050 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 2051 // other expressions involving loop IVs have been evaluated. This helps SCEV 2052 // set no-wrap flags before normalizing sign/zero extension. 2053 Rewriter.disableCanonicalMode(); 2054 simplifyAndExtend(L, Rewriter, LPM); 2055 2056 // Check to see if this loop has a computable loop-invariant execution count. 2057 // If so, this means that we can compute the final value of any expressions 2058 // that are recurrent in the loop, and substitute the exit values from the 2059 // loop into any instructions outside of the loop that use the final values of 2060 // the current expressions. 2061 // 2062 if (ReplaceExitValue != NeverRepl && 2063 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 2064 rewriteLoopExitValues(L, Rewriter); 2065 2066 // Eliminate redundant IV cycles. 2067 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 2068 2069 // If we have a trip count expression, rewrite the loop's exit condition 2070 // using it. We can currently only handle loops with a single exit. 2071 if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) { 2072 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT); 2073 if (IndVar) { 2074 // Check preconditions for proper SCEVExpander operation. SCEV does not 2075 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 2076 // pass that uses the SCEVExpander must do it. This does not work well for 2077 // loop passes because SCEVExpander makes assumptions about all loops, 2078 // while LoopPassManager only forces the current loop to be simplified. 2079 // 2080 // FIXME: SCEV expansion has no way to bail out, so the caller must 2081 // explicitly check any assumptions made by SCEV. Brittle. 2082 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 2083 if (!AR || AR->getLoop()->getLoopPreheader()) 2084 (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 2085 Rewriter); 2086 } 2087 } 2088 // Clear the rewriter cache, because values that are in the rewriter's cache 2089 // can be deleted in the loop below, causing the AssertingVH in the cache to 2090 // trigger. 2091 Rewriter.clear(); 2092 2093 // Now that we're done iterating through lists, clean up any instructions 2094 // which are now dead. 2095 while (!DeadInsts.empty()) 2096 if (Instruction *Inst = 2097 dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val())) 2098 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 2099 2100 // The Rewriter may not be used from this point on. 2101 2102 // Loop-invariant instructions in the preheader that aren't used in the 2103 // loop may be sunk below the loop to reduce register pressure. 2104 sinkUnusedInvariants(L); 2105 2106 // Clean up dead instructions. 2107 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 2108 // Check a post-condition. 2109 assert(L->isLCSSAForm(*DT) && 2110 "Indvars did not leave the loop in lcssa form!"); 2111 2112 // Verify that LFTR, and any other change have not interfered with SCEV's 2113 // ability to compute trip count. 2114 #ifndef NDEBUG 2115 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 2116 SE->forgetLoop(L); 2117 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 2118 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 2119 SE->getTypeSizeInBits(NewBECount->getType())) 2120 NewBECount = SE->getTruncateOrNoop(NewBECount, 2121 BackedgeTakenCount->getType()); 2122 else 2123 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 2124 NewBECount->getType()); 2125 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 2126 } 2127 #endif 2128 2129 return Changed; 2130 } 2131