xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 1eee7f1242387ef037e0d6872b68cb072a80697b)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // Additionally, unless -disable-iv-rewrite is on, this transformation makes the
15 // following changes to each loop with an identifiable induction variable:
16 //   1. All loops are transformed to have a SINGLE canonical induction variable
17 //      which starts at zero and steps by one.
18 //   2. The canonical induction variable is guaranteed to be the first PHI node
19 //      in the loop header block.
20 //   3. The canonical induction variable is guaranteed to be in a wide enough
21 //      type so that IV expressions need not be (directly) zero-extended or
22 //      sign-extended.
23 //   4. Any pointer arithmetic recurrences are raised to use array subscripts.
24 //
25 // If the trip count of a loop is computable, this pass also makes the following
26 // changes:
27 //   1. The exit condition for the loop is canonicalized to compare the
28 //      induction value against the exit value.  This turns loops like:
29 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
30 //   2. Any use outside of the loop of an expression derived from the indvar
31 //      is changed to compute the derived value outside of the loop, eliminating
32 //      the dependence on the exit value of the induction variable.  If the only
33 //      purpose of the loop is to compute the exit value of some derived
34 //      expression, this transformation will make the loop dead.
35 //
36 // This transformation should be followed by strength reduction after all of the
37 // desired loop transformations have been performed.
38 //
39 //===----------------------------------------------------------------------===//
40 
41 #define DEBUG_TYPE "indvars"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/BasicBlock.h"
44 #include "llvm/Constants.h"
45 #include "llvm/Instructions.h"
46 #include "llvm/IntrinsicInst.h"
47 #include "llvm/LLVMContext.h"
48 #include "llvm/Type.h"
49 #include "llvm/Analysis/Dominators.h"
50 #include "llvm/Analysis/IVUsers.h"
51 #include "llvm/Analysis/ScalarEvolutionExpander.h"
52 #include "llvm/Analysis/LoopInfo.h"
53 #include "llvm/Analysis/LoopPass.h"
54 #include "llvm/Support/CFG.h"
55 #include "llvm/Support/CommandLine.h"
56 #include "llvm/Support/Debug.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/Utils/Local.h"
59 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
60 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
61 #include "llvm/Target/TargetData.h"
62 #include "llvm/ADT/DenseMap.h"
63 #include "llvm/ADT/SmallVector.h"
64 #include "llvm/ADT/Statistic.h"
65 using namespace llvm;
66 
67 STATISTIC(NumRemoved     , "Number of aux indvars removed");
68 STATISTIC(NumWidened     , "Number of indvars widened");
69 STATISTIC(NumInserted    , "Number of canonical indvars added");
70 STATISTIC(NumReplaced    , "Number of exit values replaced");
71 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
72 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
73 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
74 
75 namespace llvm {
76   cl::opt<bool> DisableIVRewrite(
77     "disable-iv-rewrite", cl::Hidden,
78     cl::desc("Disable canonical induction variable rewriting"));
79 
80   // Trip count verification can be enabled by default under NDEBUG if we
81   // implement a strong expression equivalence checker in SCEV. Until then, we
82   // use the verify-indvars flag, which may assert in some cases.
83   cl::opt<bool> VerifyIndvars(
84     "verify-indvars", cl::Hidden,
85     cl::desc("Verify the ScalarEvolution result after running indvars"));
86 }
87 
88 // Temporary flag for use with -disable-iv-rewrite to force a canonical IV for
89 // LFTR purposes.
90 static cl::opt<bool> ForceLFTR(
91   "force-lftr", cl::Hidden,
92   cl::desc("Enable forced linear function test replacement"));
93 
94 namespace {
95   class IndVarSimplify : public LoopPass {
96     IVUsers         *IU;
97     LoopInfo        *LI;
98     ScalarEvolution *SE;
99     DominatorTree   *DT;
100     TargetData      *TD;
101 
102     SmallVector<WeakVH, 16> DeadInsts;
103     bool Changed;
104   public:
105 
106     static char ID; // Pass identification, replacement for typeid
107     IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0),
108                        Changed(false) {
109       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
110     }
111 
112     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
113 
114     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
115       AU.addRequired<DominatorTree>();
116       AU.addRequired<LoopInfo>();
117       AU.addRequired<ScalarEvolution>();
118       AU.addRequiredID(LoopSimplifyID);
119       AU.addRequiredID(LCSSAID);
120       if (!DisableIVRewrite)
121         AU.addRequired<IVUsers>();
122       AU.addPreserved<ScalarEvolution>();
123       AU.addPreservedID(LoopSimplifyID);
124       AU.addPreservedID(LCSSAID);
125       if (!DisableIVRewrite)
126         AU.addPreserved<IVUsers>();
127       AU.setPreservesCFG();
128     }
129 
130   private:
131     virtual void releaseMemory() {
132       DeadInsts.clear();
133     }
134 
135     bool isValidRewrite(Value *FromVal, Value *ToVal);
136 
137     void HandleFloatingPointIV(Loop *L, PHINode *PH);
138     void RewriteNonIntegerIVs(Loop *L);
139 
140     void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
141 
142     void SimplifyCongruentIVs(Loop *L);
143 
144     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
145 
146     void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter);
147 
148     Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
149                                      PHINode *IndVar, SCEVExpander &Rewriter);
150 
151     void SinkUnusedInvariants(Loop *L);
152   };
153 }
154 
155 char IndVarSimplify::ID = 0;
156 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
157                 "Induction Variable Simplification", false, false)
158 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
159 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
160 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
161 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
162 INITIALIZE_PASS_DEPENDENCY(LCSSA)
163 INITIALIZE_PASS_DEPENDENCY(IVUsers)
164 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
165                 "Induction Variable Simplification", false, false)
166 
167 Pass *llvm::createIndVarSimplifyPass() {
168   return new IndVarSimplify();
169 }
170 
171 /// isValidRewrite - Return true if the SCEV expansion generated by the
172 /// rewriter can replace the original value. SCEV guarantees that it
173 /// produces the same value, but the way it is produced may be illegal IR.
174 /// Ideally, this function will only be called for verification.
175 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
176   // If an SCEV expression subsumed multiple pointers, its expansion could
177   // reassociate the GEP changing the base pointer. This is illegal because the
178   // final address produced by a GEP chain must be inbounds relative to its
179   // underlying object. Otherwise basic alias analysis, among other things,
180   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
181   // producing an expression involving multiple pointers. Until then, we must
182   // bail out here.
183   //
184   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
185   // because it understands lcssa phis while SCEV does not.
186   Value *FromPtr = FromVal;
187   Value *ToPtr = ToVal;
188   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
189     FromPtr = GEP->getPointerOperand();
190   }
191   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
192     ToPtr = GEP->getPointerOperand();
193   }
194   if (FromPtr != FromVal || ToPtr != ToVal) {
195     // Quickly check the common case
196     if (FromPtr == ToPtr)
197       return true;
198 
199     // SCEV may have rewritten an expression that produces the GEP's pointer
200     // operand. That's ok as long as the pointer operand has the same base
201     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
202     // base of a recurrence. This handles the case in which SCEV expansion
203     // converts a pointer type recurrence into a nonrecurrent pointer base
204     // indexed by an integer recurrence.
205     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
206     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
207     if (FromBase == ToBase)
208       return true;
209 
210     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
211           << *FromBase << " != " << *ToBase << "\n");
212 
213     return false;
214   }
215   return true;
216 }
217 
218 /// Determine the insertion point for this user. By default, insert immediately
219 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
220 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
221 /// common dominator for the incoming blocks.
222 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
223                                           DominatorTree *DT) {
224   PHINode *PHI = dyn_cast<PHINode>(User);
225   if (!PHI)
226     return User;
227 
228   Instruction *InsertPt = 0;
229   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
230     if (PHI->getIncomingValue(i) != Def)
231       continue;
232 
233     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
234     if (!InsertPt) {
235       InsertPt = InsertBB->getTerminator();
236       continue;
237     }
238     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
239     InsertPt = InsertBB->getTerminator();
240   }
241   assert(InsertPt && "Missing phi operand");
242   assert((!isa<Instruction>(Def) ||
243           DT->dominates(cast<Instruction>(Def), InsertPt)) &&
244          "def does not dominate all uses");
245   return InsertPt;
246 }
247 
248 //===----------------------------------------------------------------------===//
249 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
250 //===----------------------------------------------------------------------===//
251 
252 /// ConvertToSInt - Convert APF to an integer, if possible.
253 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
254   bool isExact = false;
255   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
256     return false;
257   // See if we can convert this to an int64_t
258   uint64_t UIntVal;
259   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
260                            &isExact) != APFloat::opOK || !isExact)
261     return false;
262   IntVal = UIntVal;
263   return true;
264 }
265 
266 /// HandleFloatingPointIV - If the loop has floating induction variable
267 /// then insert corresponding integer induction variable if possible.
268 /// For example,
269 /// for(double i = 0; i < 10000; ++i)
270 ///   bar(i)
271 /// is converted into
272 /// for(int i = 0; i < 10000; ++i)
273 ///   bar((double)i);
274 ///
275 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
276   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
277   unsigned BackEdge     = IncomingEdge^1;
278 
279   // Check incoming value.
280   ConstantFP *InitValueVal =
281     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
282 
283   int64_t InitValue;
284   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
285     return;
286 
287   // Check IV increment. Reject this PN if increment operation is not
288   // an add or increment value can not be represented by an integer.
289   BinaryOperator *Incr =
290     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
291   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
292 
293   // If this is not an add of the PHI with a constantfp, or if the constant fp
294   // is not an integer, bail out.
295   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
296   int64_t IncValue;
297   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
298       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
299     return;
300 
301   // Check Incr uses. One user is PN and the other user is an exit condition
302   // used by the conditional terminator.
303   Value::use_iterator IncrUse = Incr->use_begin();
304   Instruction *U1 = cast<Instruction>(*IncrUse++);
305   if (IncrUse == Incr->use_end()) return;
306   Instruction *U2 = cast<Instruction>(*IncrUse++);
307   if (IncrUse != Incr->use_end()) return;
308 
309   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
310   // only used by a branch, we can't transform it.
311   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
312   if (!Compare)
313     Compare = dyn_cast<FCmpInst>(U2);
314   if (Compare == 0 || !Compare->hasOneUse() ||
315       !isa<BranchInst>(Compare->use_back()))
316     return;
317 
318   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
319 
320   // We need to verify that the branch actually controls the iteration count
321   // of the loop.  If not, the new IV can overflow and no one will notice.
322   // The branch block must be in the loop and one of the successors must be out
323   // of the loop.
324   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
325   if (!L->contains(TheBr->getParent()) ||
326       (L->contains(TheBr->getSuccessor(0)) &&
327        L->contains(TheBr->getSuccessor(1))))
328     return;
329 
330 
331   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
332   // transform it.
333   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
334   int64_t ExitValue;
335   if (ExitValueVal == 0 ||
336       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
337     return;
338 
339   // Find new predicate for integer comparison.
340   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
341   switch (Compare->getPredicate()) {
342   default: return;  // Unknown comparison.
343   case CmpInst::FCMP_OEQ:
344   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
345   case CmpInst::FCMP_ONE:
346   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
347   case CmpInst::FCMP_OGT:
348   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
349   case CmpInst::FCMP_OGE:
350   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
351   case CmpInst::FCMP_OLT:
352   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
353   case CmpInst::FCMP_OLE:
354   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
355   }
356 
357   // We convert the floating point induction variable to a signed i32 value if
358   // we can.  This is only safe if the comparison will not overflow in a way
359   // that won't be trapped by the integer equivalent operations.  Check for this
360   // now.
361   // TODO: We could use i64 if it is native and the range requires it.
362 
363   // The start/stride/exit values must all fit in signed i32.
364   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
365     return;
366 
367   // If not actually striding (add x, 0.0), avoid touching the code.
368   if (IncValue == 0)
369     return;
370 
371   // Positive and negative strides have different safety conditions.
372   if (IncValue > 0) {
373     // If we have a positive stride, we require the init to be less than the
374     // exit value and an equality or less than comparison.
375     if (InitValue >= ExitValue ||
376         NewPred == CmpInst::ICMP_SGT || NewPred == CmpInst::ICMP_SGE)
377       return;
378 
379     uint32_t Range = uint32_t(ExitValue-InitValue);
380     if (NewPred == CmpInst::ICMP_SLE) {
381       // Normalize SLE -> SLT, check for infinite loop.
382       if (++Range == 0) return;  // Range overflows.
383     }
384 
385     unsigned Leftover = Range % uint32_t(IncValue);
386 
387     // If this is an equality comparison, we require that the strided value
388     // exactly land on the exit value, otherwise the IV condition will wrap
389     // around and do things the fp IV wouldn't.
390     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
391         Leftover != 0)
392       return;
393 
394     // If the stride would wrap around the i32 before exiting, we can't
395     // transform the IV.
396     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
397       return;
398 
399   } else {
400     // If we have a negative stride, we require the init to be greater than the
401     // exit value and an equality or greater than comparison.
402     if (InitValue >= ExitValue ||
403         NewPred == CmpInst::ICMP_SLT || NewPred == CmpInst::ICMP_SLE)
404       return;
405 
406     uint32_t Range = uint32_t(InitValue-ExitValue);
407     if (NewPred == CmpInst::ICMP_SGE) {
408       // Normalize SGE -> SGT, check for infinite loop.
409       if (++Range == 0) return;  // Range overflows.
410     }
411 
412     unsigned Leftover = Range % uint32_t(-IncValue);
413 
414     // If this is an equality comparison, we require that the strided value
415     // exactly land on the exit value, otherwise the IV condition will wrap
416     // around and do things the fp IV wouldn't.
417     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
418         Leftover != 0)
419       return;
420 
421     // If the stride would wrap around the i32 before exiting, we can't
422     // transform the IV.
423     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
424       return;
425   }
426 
427   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
428 
429   // Insert new integer induction variable.
430   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
431   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
432                       PN->getIncomingBlock(IncomingEdge));
433 
434   Value *NewAdd =
435     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
436                               Incr->getName()+".int", Incr);
437   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
438 
439   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
440                                       ConstantInt::get(Int32Ty, ExitValue),
441                                       Compare->getName());
442 
443   // In the following deletions, PN may become dead and may be deleted.
444   // Use a WeakVH to observe whether this happens.
445   WeakVH WeakPH = PN;
446 
447   // Delete the old floating point exit comparison.  The branch starts using the
448   // new comparison.
449   NewCompare->takeName(Compare);
450   Compare->replaceAllUsesWith(NewCompare);
451   RecursivelyDeleteTriviallyDeadInstructions(Compare);
452 
453   // Delete the old floating point increment.
454   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
455   RecursivelyDeleteTriviallyDeadInstructions(Incr);
456 
457   // If the FP induction variable still has uses, this is because something else
458   // in the loop uses its value.  In order to canonicalize the induction
459   // variable, we chose to eliminate the IV and rewrite it in terms of an
460   // int->fp cast.
461   //
462   // We give preference to sitofp over uitofp because it is faster on most
463   // platforms.
464   if (WeakPH) {
465     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
466                                  PN->getParent()->getFirstInsertionPt());
467     PN->replaceAllUsesWith(Conv);
468     RecursivelyDeleteTriviallyDeadInstructions(PN);
469   }
470 
471   // Add a new IVUsers entry for the newly-created integer PHI.
472   if (IU)
473     IU->AddUsersIfInteresting(NewPHI);
474 
475   Changed = true;
476 }
477 
478 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
479   // First step.  Check to see if there are any floating-point recurrences.
480   // If there are, change them into integer recurrences, permitting analysis by
481   // the SCEV routines.
482   //
483   BasicBlock *Header = L->getHeader();
484 
485   SmallVector<WeakVH, 8> PHIs;
486   for (BasicBlock::iterator I = Header->begin();
487        PHINode *PN = dyn_cast<PHINode>(I); ++I)
488     PHIs.push_back(PN);
489 
490   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
491     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
492       HandleFloatingPointIV(L, PN);
493 
494   // If the loop previously had floating-point IV, ScalarEvolution
495   // may not have been able to compute a trip count. Now that we've done some
496   // re-writing, the trip count may be computable.
497   if (Changed)
498     SE->forgetLoop(L);
499 }
500 
501 //===----------------------------------------------------------------------===//
502 // RewriteLoopExitValues - Optimize IV users outside the loop.
503 // As a side effect, reduces the amount of IV processing within the loop.
504 //===----------------------------------------------------------------------===//
505 
506 /// RewriteLoopExitValues - Check to see if this loop has a computable
507 /// loop-invariant execution count.  If so, this means that we can compute the
508 /// final value of any expressions that are recurrent in the loop, and
509 /// substitute the exit values from the loop into any instructions outside of
510 /// the loop that use the final values of the current expressions.
511 ///
512 /// This is mostly redundant with the regular IndVarSimplify activities that
513 /// happen later, except that it's more powerful in some cases, because it's
514 /// able to brute-force evaluate arbitrary instructions as long as they have
515 /// constant operands at the beginning of the loop.
516 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
517   // Verify the input to the pass in already in LCSSA form.
518   assert(L->isLCSSAForm(*DT));
519 
520   SmallVector<BasicBlock*, 8> ExitBlocks;
521   L->getUniqueExitBlocks(ExitBlocks);
522 
523   // Find all values that are computed inside the loop, but used outside of it.
524   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
525   // the exit blocks of the loop to find them.
526   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
527     BasicBlock *ExitBB = ExitBlocks[i];
528 
529     // If there are no PHI nodes in this exit block, then no values defined
530     // inside the loop are used on this path, skip it.
531     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
532     if (!PN) continue;
533 
534     unsigned NumPreds = PN->getNumIncomingValues();
535 
536     // Iterate over all of the PHI nodes.
537     BasicBlock::iterator BBI = ExitBB->begin();
538     while ((PN = dyn_cast<PHINode>(BBI++))) {
539       if (PN->use_empty())
540         continue; // dead use, don't replace it
541 
542       // SCEV only supports integer expressions for now.
543       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
544         continue;
545 
546       // It's necessary to tell ScalarEvolution about this explicitly so that
547       // it can walk the def-use list and forget all SCEVs, as it may not be
548       // watching the PHI itself. Once the new exit value is in place, there
549       // may not be a def-use connection between the loop and every instruction
550       // which got a SCEVAddRecExpr for that loop.
551       SE->forgetValue(PN);
552 
553       // Iterate over all of the values in all the PHI nodes.
554       for (unsigned i = 0; i != NumPreds; ++i) {
555         // If the value being merged in is not integer or is not defined
556         // in the loop, skip it.
557         Value *InVal = PN->getIncomingValue(i);
558         if (!isa<Instruction>(InVal))
559           continue;
560 
561         // If this pred is for a subloop, not L itself, skip it.
562         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
563           continue; // The Block is in a subloop, skip it.
564 
565         // Check that InVal is defined in the loop.
566         Instruction *Inst = cast<Instruction>(InVal);
567         if (!L->contains(Inst))
568           continue;
569 
570         // Okay, this instruction has a user outside of the current loop
571         // and varies predictably *inside* the loop.  Evaluate the value it
572         // contains when the loop exits, if possible.
573         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
574         if (!SE->isLoopInvariant(ExitValue, L))
575           continue;
576 
577         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
578 
579         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
580                      << "  LoopVal = " << *Inst << "\n");
581 
582         if (!isValidRewrite(Inst, ExitVal)) {
583           DeadInsts.push_back(ExitVal);
584           continue;
585         }
586         Changed = true;
587         ++NumReplaced;
588 
589         PN->setIncomingValue(i, ExitVal);
590 
591         // If this instruction is dead now, delete it.
592         RecursivelyDeleteTriviallyDeadInstructions(Inst);
593 
594         if (NumPreds == 1) {
595           // Completely replace a single-pred PHI. This is safe, because the
596           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
597           // node anymore.
598           PN->replaceAllUsesWith(ExitVal);
599           RecursivelyDeleteTriviallyDeadInstructions(PN);
600         }
601       }
602       if (NumPreds != 1) {
603         // Clone the PHI and delete the original one. This lets IVUsers and
604         // any other maps purge the original user from their records.
605         PHINode *NewPN = cast<PHINode>(PN->clone());
606         NewPN->takeName(PN);
607         NewPN->insertBefore(PN);
608         PN->replaceAllUsesWith(NewPN);
609         PN->eraseFromParent();
610       }
611     }
612   }
613 
614   // The insertion point instruction may have been deleted; clear it out
615   // so that the rewriter doesn't trip over it later.
616   Rewriter.clearInsertPoint();
617 }
618 
619 //===----------------------------------------------------------------------===//
620 //  Rewrite IV users based on a canonical IV.
621 //  To be replaced by -disable-iv-rewrite.
622 //===----------------------------------------------------------------------===//
623 
624 // FIXME: It is an extremely bad idea to indvar substitute anything more
625 // complex than affine induction variables.  Doing so will put expensive
626 // polynomial evaluations inside of the loop, and the str reduction pass
627 // currently can only reduce affine polynomials.  For now just disable
628 // indvar subst on anything more complex than an affine addrec, unless
629 // it can be expanded to a trivial value.
630 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) {
631   // Loop-invariant values are safe.
632   if (SE->isLoopInvariant(S, L)) return true;
633 
634   // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how
635   // to transform them into efficient code.
636   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
637     return AR->isAffine();
638 
639   // An add is safe it all its operands are safe.
640   if (const SCEVCommutativeExpr *Commutative = dyn_cast<SCEVCommutativeExpr>(S)) {
641     for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(),
642          E = Commutative->op_end(); I != E; ++I)
643       if (!isSafe(*I, L, SE)) return false;
644     return true;
645   }
646 
647   // A cast is safe if its operand is.
648   if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
649     return isSafe(C->getOperand(), L, SE);
650 
651   // A udiv is safe if its operands are.
652   if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S))
653     return isSafe(UD->getLHS(), L, SE) &&
654            isSafe(UD->getRHS(), L, SE);
655 
656   // SCEVUnknown is always safe.
657   if (isa<SCEVUnknown>(S))
658     return true;
659 
660   // Nothing else is safe.
661   return false;
662 }
663 
664 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) {
665   // Rewrite all induction variable expressions in terms of the canonical
666   // induction variable.
667   //
668   // If there were induction variables of other sizes or offsets, manually
669   // add the offsets to the primary induction variable and cast, avoiding
670   // the need for the code evaluation methods to insert induction variables
671   // of different sizes.
672   for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) {
673     Value *Op = UI->getOperandValToReplace();
674     Type *UseTy = Op->getType();
675     Instruction *User = UI->getUser();
676 
677     // Compute the final addrec to expand into code.
678     const SCEV *AR = IU->getReplacementExpr(*UI);
679 
680     // Evaluate the expression out of the loop, if possible.
681     if (!L->contains(UI->getUser())) {
682       const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop());
683       if (SE->isLoopInvariant(ExitVal, L))
684         AR = ExitVal;
685     }
686 
687     // FIXME: It is an extremely bad idea to indvar substitute anything more
688     // complex than affine induction variables.  Doing so will put expensive
689     // polynomial evaluations inside of the loop, and the str reduction pass
690     // currently can only reduce affine polynomials.  For now just disable
691     // indvar subst on anything more complex than an affine addrec, unless
692     // it can be expanded to a trivial value.
693     if (!isSafe(AR, L, SE))
694       continue;
695 
696     // Determine the insertion point for this user. By default, insert
697     // immediately before the user. The SCEVExpander class will automatically
698     // hoist loop invariants out of the loop. For PHI nodes, there may be
699     // multiple uses, so compute the nearest common dominator for the
700     // incoming blocks.
701     Instruction *InsertPt = getInsertPointForUses(User, Op, DT);
702 
703     // Now expand it into actual Instructions and patch it into place.
704     Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
705 
706     DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
707                  << "   into = " << *NewVal << "\n");
708 
709     if (!isValidRewrite(Op, NewVal)) {
710       DeadInsts.push_back(NewVal);
711       continue;
712     }
713     // Inform ScalarEvolution that this value is changing. The change doesn't
714     // affect its value, but it does potentially affect which use lists the
715     // value will be on after the replacement, which affects ScalarEvolution's
716     // ability to walk use lists and drop dangling pointers when a value is
717     // deleted.
718     SE->forgetValue(User);
719 
720     // Patch the new value into place.
721     if (Op->hasName())
722       NewVal->takeName(Op);
723     if (Instruction *NewValI = dyn_cast<Instruction>(NewVal))
724       NewValI->setDebugLoc(User->getDebugLoc());
725     User->replaceUsesOfWith(Op, NewVal);
726     UI->setOperandValToReplace(NewVal);
727 
728     ++NumRemoved;
729     Changed = true;
730 
731     // The old value may be dead now.
732     DeadInsts.push_back(Op);
733   }
734 }
735 
736 //===----------------------------------------------------------------------===//
737 //  IV Widening - Extend the width of an IV to cover its widest uses.
738 //===----------------------------------------------------------------------===//
739 
740 namespace {
741   // Collect information about induction variables that are used by sign/zero
742   // extend operations. This information is recorded by CollectExtend and
743   // provides the input to WidenIV.
744   struct WideIVInfo {
745     Type *WidestNativeType; // Widest integer type created [sz]ext
746     bool IsSigned;          // Was an sext user seen before a zext?
747 
748     WideIVInfo() : WidestNativeType(0), IsSigned(false) {}
749   };
750 
751   class WideIVVisitor : public IVVisitor {
752     ScalarEvolution *SE;
753     const TargetData *TD;
754 
755   public:
756     WideIVInfo WI;
757 
758     WideIVVisitor(ScalarEvolution *SCEV, const TargetData *TData) :
759       SE(SCEV), TD(TData) {}
760 
761     // Implement the interface used by simplifyUsersOfIV.
762     virtual void visitCast(CastInst *Cast);
763   };
764 }
765 
766 /// visitCast - Update information about the induction variable that is
767 /// extended by this sign or zero extend operation. This is used to determine
768 /// the final width of the IV before actually widening it.
769 void WideIVVisitor::visitCast(CastInst *Cast) {
770   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
771   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
772     return;
773 
774   Type *Ty = Cast->getType();
775   uint64_t Width = SE->getTypeSizeInBits(Ty);
776   if (TD && !TD->isLegalInteger(Width))
777     return;
778 
779   if (!WI.WidestNativeType) {
780     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
781     WI.IsSigned = IsSigned;
782     return;
783   }
784 
785   // We extend the IV to satisfy the sign of its first user, arbitrarily.
786   if (WI.IsSigned != IsSigned)
787     return;
788 
789   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
790     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
791 }
792 
793 namespace {
794 
795 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
796 /// WideIV that computes the same value as the Narrow IV def.  This avoids
797 /// caching Use* pointers.
798 struct NarrowIVDefUse {
799   Instruction *NarrowDef;
800   Instruction *NarrowUse;
801   Instruction *WideDef;
802 
803   NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
804 
805   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
806     NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
807 };
808 
809 /// WidenIV - The goal of this transform is to remove sign and zero extends
810 /// without creating any new induction variables. To do this, it creates a new
811 /// phi of the wider type and redirects all users, either removing extends or
812 /// inserting truncs whenever we stop propagating the type.
813 ///
814 class WidenIV {
815   // Parameters
816   PHINode *OrigPhi;
817   Type *WideType;
818   bool IsSigned;
819 
820   // Context
821   LoopInfo        *LI;
822   Loop            *L;
823   ScalarEvolution *SE;
824   DominatorTree   *DT;
825 
826   // Result
827   PHINode *WidePhi;
828   Instruction *WideInc;
829   const SCEV *WideIncExpr;
830   SmallVectorImpl<WeakVH> &DeadInsts;
831 
832   SmallPtrSet<Instruction*,16> Widened;
833   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
834 
835 public:
836   WidenIV(PHINode *PN, const WideIVInfo &WI, LoopInfo *LInfo,
837           ScalarEvolution *SEv, DominatorTree *DTree,
838           SmallVectorImpl<WeakVH> &DI) :
839     OrigPhi(PN),
840     WideType(WI.WidestNativeType),
841     IsSigned(WI.IsSigned),
842     LI(LInfo),
843     L(LI->getLoopFor(OrigPhi->getParent())),
844     SE(SEv),
845     DT(DTree),
846     WidePhi(0),
847     WideInc(0),
848     WideIncExpr(0),
849     DeadInsts(DI) {
850     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
851   }
852 
853   PHINode *CreateWideIV(SCEVExpander &Rewriter);
854 
855 protected:
856   Instruction *CloneIVUser(NarrowIVDefUse DU);
857 
858   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
859 
860   Instruction *WidenIVUse(NarrowIVDefUse DU);
861 
862   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
863 };
864 } // anonymous namespace
865 
866 static Value *getExtend( Value *NarrowOper, Type *WideType,
867                                bool IsSigned, IRBuilder<> &Builder) {
868   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
869                     Builder.CreateZExt(NarrowOper, WideType);
870 }
871 
872 /// CloneIVUser - Instantiate a wide operation to replace a narrow
873 /// operation. This only needs to handle operations that can evaluation to
874 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
875 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
876   unsigned Opcode = DU.NarrowUse->getOpcode();
877   switch (Opcode) {
878   default:
879     return 0;
880   case Instruction::Add:
881   case Instruction::Mul:
882   case Instruction::UDiv:
883   case Instruction::Sub:
884   case Instruction::And:
885   case Instruction::Or:
886   case Instruction::Xor:
887   case Instruction::Shl:
888   case Instruction::LShr:
889   case Instruction::AShr:
890     DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
891 
892     IRBuilder<> Builder(DU.NarrowUse);
893 
894     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
895     // anything about the narrow operand yet so must insert a [sz]ext. It is
896     // probably loop invariant and will be folded or hoisted. If it actually
897     // comes from a widened IV, it should be removed during a future call to
898     // WidenIVUse.
899     Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
900       getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, Builder);
901     Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
902       getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, Builder);
903 
904     BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
905     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
906                                                     LHS, RHS,
907                                                     NarrowBO->getName());
908     Builder.Insert(WideBO);
909     if (const OverflowingBinaryOperator *OBO =
910         dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
911       if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
912       if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
913     }
914     return WideBO;
915   }
916   llvm_unreachable(0);
917 }
918 
919 /// HoistStep - Attempt to hoist an IV increment above a potential use.
920 ///
921 /// To successfully hoist, two criteria must be met:
922 /// - IncV operands dominate InsertPos and
923 /// - InsertPos dominates IncV
924 ///
925 /// Meeting the second condition means that we don't need to check all of IncV's
926 /// existing uses (it's moving up in the domtree).
927 ///
928 /// This does not yet recursively hoist the operands, although that would
929 /// not be difficult.
930 static bool HoistStep(Instruction *IncV, Instruction *InsertPos,
931                       const DominatorTree *DT)
932 {
933   if (DT->dominates(IncV, InsertPos))
934     return true;
935 
936   if (!DT->dominates(InsertPos->getParent(), IncV->getParent()))
937     return false;
938 
939   if (IncV->mayHaveSideEffects())
940     return false;
941 
942   // Attempt to hoist IncV
943   for (User::op_iterator OI = IncV->op_begin(), OE = IncV->op_end();
944        OI != OE; ++OI) {
945     Instruction *OInst = dyn_cast<Instruction>(OI);
946     if (OInst && !DT->dominates(OInst, InsertPos))
947       return false;
948   }
949   IncV->moveBefore(InsertPos);
950   return true;
951 }
952 
953 // GetWideRecurrence - Is this instruction potentially interesting from IVUsers'
954 // perspective after widening it's type? In other words, can the extend be
955 // safely hoisted out of the loop with SCEV reducing the value to a recurrence
956 // on the same loop. If so, return the sign or zero extended
957 // recurrence. Otherwise return NULL.
958 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
959   if (!SE->isSCEVable(NarrowUse->getType()))
960     return 0;
961 
962   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
963   if (SE->getTypeSizeInBits(NarrowExpr->getType())
964       >= SE->getTypeSizeInBits(WideType)) {
965     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
966     // index. So don't follow this use.
967     return 0;
968   }
969 
970   const SCEV *WideExpr = IsSigned ?
971     SE->getSignExtendExpr(NarrowExpr, WideType) :
972     SE->getZeroExtendExpr(NarrowExpr, WideType);
973   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
974   if (!AddRec || AddRec->getLoop() != L)
975     return 0;
976 
977   return AddRec;
978 }
979 
980 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
981 /// widened. If so, return the wide clone of the user.
982 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU) {
983 
984   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
985   if (isa<PHINode>(DU.NarrowUse) &&
986       LI->getLoopFor(DU.NarrowUse->getParent()) != L)
987     return 0;
988 
989   // Our raison d'etre! Eliminate sign and zero extension.
990   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
991     Value *NewDef = DU.WideDef;
992     if (DU.NarrowUse->getType() != WideType) {
993       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
994       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
995       if (CastWidth < IVWidth) {
996         // The cast isn't as wide as the IV, so insert a Trunc.
997         IRBuilder<> Builder(DU.NarrowUse);
998         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
999       }
1000       else {
1001         // A wider extend was hidden behind a narrower one. This may induce
1002         // another round of IV widening in which the intermediate IV becomes
1003         // dead. It should be very rare.
1004         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1005               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1006         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1007         NewDef = DU.NarrowUse;
1008       }
1009     }
1010     if (NewDef != DU.NarrowUse) {
1011       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1012             << " replaced by " << *DU.WideDef << "\n");
1013       ++NumElimExt;
1014       DU.NarrowUse->replaceAllUsesWith(NewDef);
1015       DeadInsts.push_back(DU.NarrowUse);
1016     }
1017     // Now that the extend is gone, we want to expose it's uses for potential
1018     // further simplification. We don't need to directly inform SimplifyIVUsers
1019     // of the new users, because their parent IV will be processed later as a
1020     // new loop phi. If we preserved IVUsers analysis, we would also want to
1021     // push the uses of WideDef here.
1022 
1023     // No further widening is needed. The deceased [sz]ext had done it for us.
1024     return 0;
1025   }
1026 
1027   // Does this user itself evaluate to a recurrence after widening?
1028   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
1029   if (!WideAddRec) {
1030     // This user does not evaluate to a recurence after widening, so don't
1031     // follow it. Instead insert a Trunc to kill off the original use,
1032     // eventually isolating the original narrow IV so it can be removed.
1033     IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
1034     Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1035     DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1036     return 0;
1037   }
1038   // Assume block terminators cannot evaluate to a recurrence. We can't to
1039   // insert a Trunc after a terminator if there happens to be a critical edge.
1040   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1041          "SCEV is not expected to evaluate a block terminator");
1042 
1043   // Reuse the IV increment that SCEVExpander created as long as it dominates
1044   // NarrowUse.
1045   Instruction *WideUse = 0;
1046   if (WideAddRec == WideIncExpr && HoistStep(WideInc, DU.NarrowUse, DT)) {
1047     WideUse = WideInc;
1048   }
1049   else {
1050     WideUse = CloneIVUser(DU);
1051     if (!WideUse)
1052       return 0;
1053   }
1054   // Evaluation of WideAddRec ensured that the narrow expression could be
1055   // extended outside the loop without overflow. This suggests that the wide use
1056   // evaluates to the same expression as the extended narrow use, but doesn't
1057   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1058   // where it fails, we simply throw away the newly created wide use.
1059   if (WideAddRec != SE->getSCEV(WideUse)) {
1060     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1061           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
1062     DeadInsts.push_back(WideUse);
1063     return 0;
1064   }
1065 
1066   // Returning WideUse pushes it on the worklist.
1067   return WideUse;
1068 }
1069 
1070 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
1071 ///
1072 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1073   for (Value::use_iterator UI = NarrowDef->use_begin(),
1074          UE = NarrowDef->use_end(); UI != UE; ++UI) {
1075     Instruction *NarrowUse = cast<Instruction>(*UI);
1076 
1077     // Handle data flow merges and bizarre phi cycles.
1078     if (!Widened.insert(NarrowUse))
1079       continue;
1080 
1081     NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
1082   }
1083 }
1084 
1085 /// CreateWideIV - Process a single induction variable. First use the
1086 /// SCEVExpander to create a wide induction variable that evaluates to the same
1087 /// recurrence as the original narrow IV. Then use a worklist to forward
1088 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
1089 /// interesting IV users, the narrow IV will be isolated for removal by
1090 /// DeleteDeadPHIs.
1091 ///
1092 /// It would be simpler to delete uses as they are processed, but we must avoid
1093 /// invalidating SCEV expressions.
1094 ///
1095 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
1096   // Is this phi an induction variable?
1097   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1098   if (!AddRec)
1099     return NULL;
1100 
1101   // Widen the induction variable expression.
1102   const SCEV *WideIVExpr = IsSigned ?
1103     SE->getSignExtendExpr(AddRec, WideType) :
1104     SE->getZeroExtendExpr(AddRec, WideType);
1105 
1106   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1107          "Expect the new IV expression to preserve its type");
1108 
1109   // Can the IV be extended outside the loop without overflow?
1110   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1111   if (!AddRec || AddRec->getLoop() != L)
1112     return NULL;
1113 
1114   // An AddRec must have loop-invariant operands. Since this AddRec is
1115   // materialized by a loop header phi, the expression cannot have any post-loop
1116   // operands, so they must dominate the loop header.
1117   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1118          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
1119          && "Loop header phi recurrence inputs do not dominate the loop");
1120 
1121   // The rewriter provides a value for the desired IV expression. This may
1122   // either find an existing phi or materialize a new one. Either way, we
1123   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1124   // of the phi-SCC dominates the loop entry.
1125   Instruction *InsertPt = L->getHeader()->begin();
1126   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1127 
1128   // Remembering the WideIV increment generated by SCEVExpander allows
1129   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1130   // employ a general reuse mechanism because the call above is the only call to
1131   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1132   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1133     WideInc =
1134       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1135     WideIncExpr = SE->getSCEV(WideInc);
1136   }
1137 
1138   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1139   ++NumWidened;
1140 
1141   // Traverse the def-use chain using a worklist starting at the original IV.
1142   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1143 
1144   Widened.insert(OrigPhi);
1145   pushNarrowIVUsers(OrigPhi, WidePhi);
1146 
1147   while (!NarrowIVUsers.empty()) {
1148     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1149 
1150     // Process a def-use edge. This may replace the use, so don't hold a
1151     // use_iterator across it.
1152     Instruction *WideUse = WidenIVUse(DU);
1153 
1154     // Follow all def-use edges from the previous narrow use.
1155     if (WideUse)
1156       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1157 
1158     // WidenIVUse may have removed the def-use edge.
1159     if (DU.NarrowDef->use_empty())
1160       DeadInsts.push_back(DU.NarrowDef);
1161   }
1162   return WidePhi;
1163 }
1164 
1165 //===----------------------------------------------------------------------===//
1166 //  Simplification of IV users based on SCEV evaluation.
1167 //===----------------------------------------------------------------------===//
1168 
1169 
1170 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1171 /// users. Each successive simplification may push more users which may
1172 /// themselves be candidates for simplification.
1173 ///
1174 /// Sign/Zero extend elimination is interleaved with IV simplification.
1175 ///
1176 void IndVarSimplify::SimplifyAndExtend(Loop *L,
1177                                        SCEVExpander &Rewriter,
1178                                        LPPassManager &LPM) {
1179   std::map<PHINode *, WideIVInfo> WideIVMap;
1180 
1181   SmallVector<PHINode*, 8> LoopPhis;
1182   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1183     LoopPhis.push_back(cast<PHINode>(I));
1184   }
1185   // Each round of simplification iterates through the SimplifyIVUsers worklist
1186   // for all current phis, then determines whether any IVs can be
1187   // widened. Widening adds new phis to LoopPhis, inducing another round of
1188   // simplification on the wide IVs.
1189   while (!LoopPhis.empty()) {
1190     // Evaluate as many IV expressions as possible before widening any IVs. This
1191     // forces SCEV to set no-wrap flags before evaluating sign/zero
1192     // extension. The first time SCEV attempts to normalize sign/zero extension,
1193     // the result becomes final. So for the most predictable results, we delay
1194     // evaluation of sign/zero extend evaluation until needed, and avoid running
1195     // other SCEV based analysis prior to SimplifyAndExtend.
1196     do {
1197       PHINode *CurrIV = LoopPhis.pop_back_val();
1198 
1199       // Information about sign/zero extensions of CurrIV.
1200       WideIVVisitor WIV(SE, TD);
1201 
1202       Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
1203 
1204       if (WIV.WI.WidestNativeType) {
1205         WideIVMap[CurrIV] = WIV.WI;
1206       }
1207     } while(!LoopPhis.empty());
1208 
1209     for (std::map<PHINode *, WideIVInfo>::const_iterator I = WideIVMap.begin(),
1210            E = WideIVMap.end(); I != E; ++I) {
1211       WidenIV Widener(I->first, I->second, LI, SE, DT, DeadInsts);
1212       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1213         Changed = true;
1214         LoopPhis.push_back(WidePhi);
1215       }
1216     }
1217     WideIVMap.clear();
1218   }
1219 }
1220 
1221 /// SimplifyCongruentIVs - Check for congruent phis in this loop header and
1222 /// replace them with their chosen representative.
1223 ///
1224 void IndVarSimplify::SimplifyCongruentIVs(Loop *L) {
1225   DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1226   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1227     PHINode *Phi = cast<PHINode>(I);
1228     if (!SE->isSCEVable(Phi->getType()))
1229       continue;
1230 
1231     const SCEV *S = SE->getSCEV(Phi);
1232     std::pair<DenseMap<const SCEV *, PHINode *>::const_iterator, bool> Tmp =
1233       ExprToIVMap.insert(std::make_pair(S, Phi));
1234     if (Tmp.second)
1235       continue;
1236     PHINode *OrigPhi = Tmp.first->second;
1237 
1238     // If one phi derives from the other via GEPs, types may differ.
1239     if (OrigPhi->getType() != Phi->getType())
1240       continue;
1241 
1242     // Replacing the congruent phi is sufficient because acyclic redundancy
1243     // elimination, CSE/GVN, should handle the rest. However, once SCEV proves
1244     // that a phi is congruent, it's almost certain to be the head of an IV
1245     // user cycle that is isomorphic with the original phi. So it's worth
1246     // eagerly cleaning up the common case of a single IV increment.
1247     if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1248       Instruction *OrigInc =
1249         cast<Instruction>(OrigPhi->getIncomingValueForBlock(LatchBlock));
1250       Instruction *IsomorphicInc =
1251         cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
1252       if (OrigInc != IsomorphicInc &&
1253           OrigInc->getType() == IsomorphicInc->getType() &&
1254           SE->getSCEV(OrigInc) == SE->getSCEV(IsomorphicInc) &&
1255           HoistStep(OrigInc, IsomorphicInc, DT)) {
1256         DEBUG(dbgs() << "INDVARS: Eliminated congruent iv.inc: "
1257               << *IsomorphicInc << '\n');
1258         IsomorphicInc->replaceAllUsesWith(OrigInc);
1259         DeadInsts.push_back(IsomorphicInc);
1260       }
1261     }
1262     DEBUG(dbgs() << "INDVARS: Eliminated congruent iv: " << *Phi << '\n');
1263     ++NumElimIV;
1264     Phi->replaceAllUsesWith(OrigPhi);
1265     DeadInsts.push_back(Phi);
1266   }
1267 }
1268 
1269 //===----------------------------------------------------------------------===//
1270 //  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1271 //===----------------------------------------------------------------------===//
1272 
1273 // Check for expressions that ScalarEvolution generates to compute
1274 // BackedgeTakenInfo. If these expressions have not been reduced, then expanding
1275 // them may incur additional cost (albeit in the loop preheader).
1276 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1277                                 ScalarEvolution *SE) {
1278   // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1279   // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1280   // precise expression, rather than a UDiv from the user's code. If we can't
1281   // find a UDiv in the code with some simple searching, assume the former and
1282   // forego rewriting the loop.
1283   if (isa<SCEVUDivExpr>(S)) {
1284     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1285     if (!OrigCond) return true;
1286     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1287     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1288     if (R != S) {
1289       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1290       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1291       if (L != S)
1292         return true;
1293     }
1294   }
1295 
1296   if (!DisableIVRewrite || ForceLFTR)
1297     return false;
1298 
1299   // Recurse past add expressions, which commonly occur in the
1300   // BackedgeTakenCount. They may already exist in program code, and if not,
1301   // they are not too expensive rematerialize.
1302   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1303     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1304          I != E; ++I) {
1305       if (isHighCostExpansion(*I, BI, SE))
1306         return true;
1307     }
1308     return false;
1309   }
1310 
1311   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1312   // the exit condition.
1313   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1314     return true;
1315 
1316   // If we haven't recognized an expensive SCEV patter, assume its an expression
1317   // produced by program code.
1318   return false;
1319 }
1320 
1321 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1322 /// count expression can be safely and cheaply expanded into an instruction
1323 /// sequence that can be used by LinearFunctionTestReplace.
1324 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1325   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1326   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1327       BackedgeTakenCount->isZero())
1328     return false;
1329 
1330   if (!L->getExitingBlock())
1331     return false;
1332 
1333   // Can't rewrite non-branch yet.
1334   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1335   if (!BI)
1336     return false;
1337 
1338   if (isHighCostExpansion(BackedgeTakenCount, BI, SE))
1339     return false;
1340 
1341   return true;
1342 }
1343 
1344 /// getBackedgeIVType - Get the widest type used by the loop test after peeking
1345 /// through Truncs.
1346 ///
1347 /// TODO: Unnecessary when ForceLFTR is removed.
1348 static Type *getBackedgeIVType(Loop *L) {
1349   if (!L->getExitingBlock())
1350     return 0;
1351 
1352   // Can't rewrite non-branch yet.
1353   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1354   if (!BI)
1355     return 0;
1356 
1357   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1358   if (!Cond)
1359     return 0;
1360 
1361   Type *Ty = 0;
1362   for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end();
1363       OI != OE; ++OI) {
1364     assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types");
1365     TruncInst *Trunc = dyn_cast<TruncInst>(*OI);
1366     if (!Trunc)
1367       continue;
1368 
1369     return Trunc->getSrcTy();
1370   }
1371   return Ty;
1372 }
1373 
1374 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
1375 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
1376 /// gratuitous for this purpose.
1377 static bool isLoopInvariant(Value *V, Loop *L, DominatorTree *DT) {
1378   Instruction *Inst = dyn_cast<Instruction>(V);
1379   if (!Inst)
1380     return true;
1381 
1382   return DT->properlyDominates(Inst->getParent(), L->getHeader());
1383 }
1384 
1385 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1386 /// invariant value to the phi.
1387 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1388   Instruction *IncI = dyn_cast<Instruction>(IncV);
1389   if (!IncI)
1390     return 0;
1391 
1392   switch (IncI->getOpcode()) {
1393   case Instruction::Add:
1394   case Instruction::Sub:
1395     break;
1396   case Instruction::GetElementPtr:
1397     // An IV counter must preserve its type.
1398     if (IncI->getNumOperands() == 2)
1399       break;
1400   default:
1401     return 0;
1402   }
1403 
1404   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1405   if (Phi && Phi->getParent() == L->getHeader()) {
1406     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1407       return Phi;
1408     return 0;
1409   }
1410   if (IncI->getOpcode() == Instruction::GetElementPtr)
1411     return 0;
1412 
1413   // Allow add/sub to be commuted.
1414   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1415   if (Phi && Phi->getParent() == L->getHeader()) {
1416     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1417       return Phi;
1418   }
1419   return 0;
1420 }
1421 
1422 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1423 /// that the current exit test is already sufficiently canonical.
1424 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1425   assert(L->getExitingBlock() && "expected loop exit");
1426 
1427   BasicBlock *LatchBlock = L->getLoopLatch();
1428   // Don't bother with LFTR if the loop is not properly simplified.
1429   if (!LatchBlock)
1430     return false;
1431 
1432   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1433   assert(BI && "expected exit branch");
1434 
1435   // Do LFTR to simplify the exit condition to an ICMP.
1436   ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
1437   if (!Cond)
1438     return true;
1439 
1440   // Do LFTR to simplify the exit ICMP to EQ/NE
1441   ICmpInst::Predicate Pred = Cond->getPredicate();
1442   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1443     return true;
1444 
1445   // Look for a loop invariant RHS
1446   Value *LHS = Cond->getOperand(0);
1447   Value *RHS = Cond->getOperand(1);
1448   if (!isLoopInvariant(RHS, L, DT)) {
1449     if (!isLoopInvariant(LHS, L, DT))
1450       return true;
1451     std::swap(LHS, RHS);
1452   }
1453   // Look for a simple IV counter LHS
1454   PHINode *Phi = dyn_cast<PHINode>(LHS);
1455   if (!Phi)
1456     Phi = getLoopPhiForCounter(LHS, L, DT);
1457 
1458   if (!Phi)
1459     return true;
1460 
1461   // Do LFTR if the exit condition's IV is *not* a simple counter.
1462   Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch());
1463   return Phi != getLoopPhiForCounter(IncV, L, DT);
1464 }
1465 
1466 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1467 /// be rewritten) loop exit test.
1468 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1469   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1470   Value *IncV = Phi->getIncomingValue(LatchIdx);
1471 
1472   for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1473        UI != UE; ++UI) {
1474     if (*UI != Cond && *UI != IncV) return false;
1475   }
1476 
1477   for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1478        UI != UE; ++UI) {
1479     if (*UI != Cond && *UI != Phi) return false;
1480   }
1481   return true;
1482 }
1483 
1484 /// FindLoopCounter - Find an affine IV in canonical form.
1485 ///
1486 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1487 ///
1488 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1489 /// This is difficult in general for SCEV because of potential overflow. But we
1490 /// could at least handle constant BECounts.
1491 static PHINode *
1492 FindLoopCounter(Loop *L, const SCEV *BECount,
1493                 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) {
1494   // I'm not sure how BECount could be a pointer type, but we definitely don't
1495   // want to LFTR that.
1496   if (BECount->getType()->isPointerTy())
1497     return 0;
1498 
1499   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1500 
1501   Value *Cond =
1502     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1503 
1504   // Loop over all of the PHI nodes, looking for a simple counter.
1505   PHINode *BestPhi = 0;
1506   const SCEV *BestInit = 0;
1507   BasicBlock *LatchBlock = L->getLoopLatch();
1508   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1509 
1510   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1511     PHINode *Phi = cast<PHINode>(I);
1512     if (!SE->isSCEVable(Phi->getType()))
1513       continue;
1514 
1515     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1516     if (!AR || AR->getLoop() != L || !AR->isAffine())
1517       continue;
1518 
1519     // AR may be a pointer type, while BECount is an integer type.
1520     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1521     // AR may not be a narrower type, or we may never exit.
1522     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1523     if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1524       continue;
1525 
1526     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1527     if (!Step || !Step->isOne())
1528       continue;
1529 
1530     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1531     Value *IncV = Phi->getIncomingValue(LatchIdx);
1532     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1533       continue;
1534 
1535     const SCEV *Init = AR->getStart();
1536 
1537     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1538       // Don't force a live loop counter if another IV can be used.
1539       if (AlmostDeadIV(Phi, LatchBlock, Cond))
1540         continue;
1541 
1542       // Prefer to count-from-zero. This is a more "canonical" counter form. It
1543       // also prefers integer to pointer IVs.
1544       if (BestInit->isZero() != Init->isZero()) {
1545         if (BestInit->isZero())
1546           continue;
1547       }
1548       // If two IVs both count from zero or both count from nonzero then the
1549       // narrower is likely a dead phi that has been widened. Use the wider phi
1550       // to allow the other to be eliminated.
1551       if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1552         continue;
1553     }
1554     BestPhi = Phi;
1555     BestInit = Init;
1556   }
1557   return BestPhi;
1558 }
1559 
1560 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
1561 /// loop to be a canonical != comparison against the incremented loop induction
1562 /// variable.  This pass is able to rewrite the exit tests of any loop where the
1563 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
1564 /// is actually a much broader range than just linear tests.
1565 Value *IndVarSimplify::
1566 LinearFunctionTestReplace(Loop *L,
1567                           const SCEV *BackedgeTakenCount,
1568                           PHINode *IndVar,
1569                           SCEVExpander &Rewriter) {
1570   assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1571   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1572 
1573   // In DisableIVRewrite mode, IndVar is not necessarily a canonical IV. In this
1574   // mode, LFTR can ignore IV overflow and truncate to the width of
1575   // BECount. This avoids materializing the add(zext(add)) expression.
1576   Type *CntTy = DisableIVRewrite ?
1577     BackedgeTakenCount->getType() : IndVar->getType();
1578 
1579   const SCEV *IVLimit = BackedgeTakenCount;
1580 
1581   // If the exiting block is not the same as the backedge block, we must compare
1582   // against the preincremented value, otherwise we prefer to compare against
1583   // the post-incremented value.
1584   Value *CmpIndVar;
1585   if (L->getExitingBlock() == L->getLoopLatch()) {
1586     // Add one to the "backedge-taken" count to get the trip count.
1587     // If this addition may overflow, we have to be more pessimistic and
1588     // cast the induction variable before doing the add.
1589     const SCEV *N =
1590       SE->getAddExpr(IVLimit, SE->getConstant(IVLimit->getType(), 1));
1591     if (CntTy == IVLimit->getType())
1592       IVLimit = N;
1593     else {
1594       const SCEV *Zero = SE->getConstant(IVLimit->getType(), 0);
1595       if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1596           SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1597         // No overflow. Cast the sum.
1598         IVLimit = SE->getTruncateOrZeroExtend(N, CntTy);
1599       } else {
1600         // Potential overflow. Cast before doing the add.
1601         IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1602         IVLimit = SE->getAddExpr(IVLimit, SE->getConstant(CntTy, 1));
1603       }
1604     }
1605     // The BackedgeTaken expression contains the number of times that the
1606     // backedge branches to the loop header.  This is one less than the
1607     // number of times the loop executes, so use the incremented indvar.
1608     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1609   } else {
1610     // We have to use the preincremented value...
1611     IVLimit = SE->getTruncateOrZeroExtend(IVLimit, CntTy);
1612     CmpIndVar = IndVar;
1613   }
1614 
1615   // For unit stride, IVLimit = Start + BECount with 2's complement overflow.
1616   // So for, non-zero start compute the IVLimit here.
1617   bool isPtrIV = false;
1618   Type *CmpTy = CntTy;
1619   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1620   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1621   if (!AR->getStart()->isZero()) {
1622     assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1623     const SCEV *IVInit = AR->getStart();
1624 
1625     // For pointer types, sign extend BECount in order to materialize a GEP.
1626     // Note that for DisableIVRewrite, we never run SCEVExpander on a
1627     // pointer type, because we must preserve the existing GEPs. Instead we
1628     // directly generate a GEP later.
1629     if (IVInit->getType()->isPointerTy()) {
1630       isPtrIV = true;
1631       CmpTy = SE->getEffectiveSCEVType(IVInit->getType());
1632       IVLimit = SE->getTruncateOrSignExtend(IVLimit, CmpTy);
1633     }
1634     // For integer types, truncate the IV before computing IVInit + BECount.
1635     else {
1636       if (SE->getTypeSizeInBits(IVInit->getType())
1637           > SE->getTypeSizeInBits(CmpTy))
1638         IVInit = SE->getTruncateExpr(IVInit, CmpTy);
1639 
1640       IVLimit = SE->getAddExpr(IVInit, IVLimit);
1641     }
1642   }
1643   // Expand the code for the iteration count.
1644   IRBuilder<> Builder(BI);
1645 
1646   assert(SE->isLoopInvariant(IVLimit, L) &&
1647          "Computed iteration count is not loop invariant!");
1648   Value *ExitCnt = Rewriter.expandCodeFor(IVLimit, CmpTy, BI);
1649 
1650   // Create a gep for IVInit + IVLimit from on an existing pointer base.
1651   assert(isPtrIV == IndVar->getType()->isPointerTy() &&
1652          "IndVar type must match IVInit type");
1653   if (isPtrIV) {
1654       Value *IVStart = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1655       assert(AR->getStart() == SE->getSCEV(IVStart) && "bad loop counter");
1656       assert(SE->getSizeOfExpr(
1657                cast<PointerType>(IVStart->getType())->getElementType())->isOne()
1658              && "unit stride pointer IV must be i8*");
1659 
1660       Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
1661       ExitCnt = Builder.CreateGEP(IVStart, ExitCnt, "lftr.limit");
1662       Builder.SetInsertPoint(BI);
1663   }
1664 
1665   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1666   ICmpInst::Predicate P;
1667   if (L->contains(BI->getSuccessor(0)))
1668     P = ICmpInst::ICMP_NE;
1669   else
1670     P = ICmpInst::ICMP_EQ;
1671 
1672   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1673                << "      LHS:" << *CmpIndVar << '\n'
1674                << "       op:\t"
1675                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1676                << "      RHS:\t" << *ExitCnt << "\n"
1677                << "     Expr:\t" << *IVLimit << "\n");
1678 
1679   if (SE->getTypeSizeInBits(CmpIndVar->getType())
1680       > SE->getTypeSizeInBits(CmpTy)) {
1681     CmpIndVar = Builder.CreateTrunc(CmpIndVar, CmpTy, "lftr.wideiv");
1682   }
1683 
1684   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1685   Value *OrigCond = BI->getCondition();
1686   // It's tempting to use replaceAllUsesWith here to fully replace the old
1687   // comparison, but that's not immediately safe, since users of the old
1688   // comparison may not be dominated by the new comparison. Instead, just
1689   // update the branch to use the new comparison; in the common case this
1690   // will make old comparison dead.
1691   BI->setCondition(Cond);
1692   DeadInsts.push_back(OrigCond);
1693 
1694   ++NumLFTR;
1695   Changed = true;
1696   return Cond;
1697 }
1698 
1699 //===----------------------------------------------------------------------===//
1700 //  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1701 //===----------------------------------------------------------------------===//
1702 
1703 /// If there's a single exit block, sink any loop-invariant values that
1704 /// were defined in the preheader but not used inside the loop into the
1705 /// exit block to reduce register pressure in the loop.
1706 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1707   BasicBlock *ExitBlock = L->getExitBlock();
1708   if (!ExitBlock) return;
1709 
1710   BasicBlock *Preheader = L->getLoopPreheader();
1711   if (!Preheader) return;
1712 
1713   Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1714   BasicBlock::iterator I = Preheader->getTerminator();
1715   while (I != Preheader->begin()) {
1716     --I;
1717     // New instructions were inserted at the end of the preheader.
1718     if (isa<PHINode>(I))
1719       break;
1720 
1721     // Don't move instructions which might have side effects, since the side
1722     // effects need to complete before instructions inside the loop.  Also don't
1723     // move instructions which might read memory, since the loop may modify
1724     // memory. Note that it's okay if the instruction might have undefined
1725     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1726     // block.
1727     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1728       continue;
1729 
1730     // Skip debug info intrinsics.
1731     if (isa<DbgInfoIntrinsic>(I))
1732       continue;
1733 
1734     // Skip landingpad instructions.
1735     if (isa<LandingPadInst>(I))
1736       continue;
1737 
1738     // Don't sink static AllocaInsts out of the entry block, which would
1739     // turn them into dynamic allocas!
1740     if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
1741       if (AI->isStaticAlloca())
1742         continue;
1743 
1744     // Determine if there is a use in or before the loop (direct or
1745     // otherwise).
1746     bool UsedInLoop = false;
1747     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1748          UI != UE; ++UI) {
1749       User *U = *UI;
1750       BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1751       if (PHINode *P = dyn_cast<PHINode>(U)) {
1752         unsigned i =
1753           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1754         UseBB = P->getIncomingBlock(i);
1755       }
1756       if (UseBB == Preheader || L->contains(UseBB)) {
1757         UsedInLoop = true;
1758         break;
1759       }
1760     }
1761 
1762     // If there is, the def must remain in the preheader.
1763     if (UsedInLoop)
1764       continue;
1765 
1766     // Otherwise, sink it to the exit block.
1767     Instruction *ToMove = I;
1768     bool Done = false;
1769 
1770     if (I != Preheader->begin()) {
1771       // Skip debug info intrinsics.
1772       do {
1773         --I;
1774       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1775 
1776       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1777         Done = true;
1778     } else {
1779       Done = true;
1780     }
1781 
1782     ToMove->moveBefore(InsertPt);
1783     if (Done) break;
1784     InsertPt = ToMove;
1785   }
1786 }
1787 
1788 //===----------------------------------------------------------------------===//
1789 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1790 //===----------------------------------------------------------------------===//
1791 
1792 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1793   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1794   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1795   //    canonicalization can be a pessimization without LSR to "clean up"
1796   //    afterwards.
1797   //  - We depend on having a preheader; in particular,
1798   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1799   //    and we're in trouble if we can't find the induction variable even when
1800   //    we've manually inserted one.
1801   if (!L->isLoopSimplifyForm())
1802     return false;
1803 
1804   if (!DisableIVRewrite)
1805     IU = &getAnalysis<IVUsers>();
1806   LI = &getAnalysis<LoopInfo>();
1807   SE = &getAnalysis<ScalarEvolution>();
1808   DT = &getAnalysis<DominatorTree>();
1809   TD = getAnalysisIfAvailable<TargetData>();
1810 
1811   DeadInsts.clear();
1812   Changed = false;
1813 
1814   // If there are any floating-point recurrences, attempt to
1815   // transform them to use integer recurrences.
1816   RewriteNonIntegerIVs(L);
1817 
1818   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1819 
1820   // Create a rewriter object which we'll use to transform the code with.
1821   SCEVExpander Rewriter(*SE, "indvars");
1822 
1823   // Eliminate redundant IV users.
1824   //
1825   // Simplification works best when run before other consumers of SCEV. We
1826   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1827   // other expressions involving loop IVs have been evaluated. This helps SCEV
1828   // set no-wrap flags before normalizing sign/zero extension.
1829   if (DisableIVRewrite) {
1830     Rewriter.disableCanonicalMode();
1831     SimplifyAndExtend(L, Rewriter, LPM);
1832   }
1833 
1834   // Check to see if this loop has a computable loop-invariant execution count.
1835   // If so, this means that we can compute the final value of any expressions
1836   // that are recurrent in the loop, and substitute the exit values from the
1837   // loop into any instructions outside of the loop that use the final values of
1838   // the current expressions.
1839   //
1840   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1841     RewriteLoopExitValues(L, Rewriter);
1842 
1843   // Eliminate redundant IV users.
1844   if (!DisableIVRewrite)
1845     Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts);
1846 
1847   // Eliminate redundant IV cycles.
1848   if (DisableIVRewrite)
1849     SimplifyCongruentIVs(L);
1850 
1851   // Compute the type of the largest recurrence expression, and decide whether
1852   // a canonical induction variable should be inserted.
1853   Type *LargestType = 0;
1854   bool NeedCannIV = false;
1855   bool ReuseIVForExit = DisableIVRewrite && !ForceLFTR;
1856   bool ExpandBECount = canExpandBackedgeTakenCount(L, SE);
1857   if (ExpandBECount && !ReuseIVForExit) {
1858     // If we have a known trip count and a single exit block, we'll be
1859     // rewriting the loop exit test condition below, which requires a
1860     // canonical induction variable.
1861     NeedCannIV = true;
1862     Type *Ty = BackedgeTakenCount->getType();
1863     if (DisableIVRewrite) {
1864       // In this mode, SimplifyIVUsers may have already widened the IV used by
1865       // the backedge test and inserted a Trunc on the compare's operand. Get
1866       // the wider type to avoid creating a redundant narrow IV only used by the
1867       // loop test.
1868       LargestType = getBackedgeIVType(L);
1869     }
1870     if (!LargestType ||
1871         SE->getTypeSizeInBits(Ty) >
1872         SE->getTypeSizeInBits(LargestType))
1873       LargestType = SE->getEffectiveSCEVType(Ty);
1874   }
1875   if (!DisableIVRewrite) {
1876     for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) {
1877       NeedCannIV = true;
1878       Type *Ty =
1879         SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType());
1880       if (!LargestType ||
1881           SE->getTypeSizeInBits(Ty) >
1882           SE->getTypeSizeInBits(LargestType))
1883         LargestType = Ty;
1884     }
1885   }
1886 
1887   // Now that we know the largest of the induction variable expressions
1888   // in this loop, insert a canonical induction variable of the largest size.
1889   PHINode *IndVar = 0;
1890   if (NeedCannIV) {
1891     // Check to see if the loop already has any canonical-looking induction
1892     // variables. If any are present and wider than the planned canonical
1893     // induction variable, temporarily remove them, so that the Rewriter
1894     // doesn't attempt to reuse them.
1895     SmallVector<PHINode *, 2> OldCannIVs;
1896     while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) {
1897       if (SE->getTypeSizeInBits(OldCannIV->getType()) >
1898           SE->getTypeSizeInBits(LargestType))
1899         OldCannIV->removeFromParent();
1900       else
1901         break;
1902       OldCannIVs.push_back(OldCannIV);
1903     }
1904 
1905     IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
1906 
1907     ++NumInserted;
1908     Changed = true;
1909     DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n');
1910 
1911     // Now that the official induction variable is established, reinsert
1912     // any old canonical-looking variables after it so that the IR remains
1913     // consistent. They will be deleted as part of the dead-PHI deletion at
1914     // the end of the pass.
1915     while (!OldCannIVs.empty()) {
1916       PHINode *OldCannIV = OldCannIVs.pop_back_val();
1917       OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt());
1918     }
1919   }
1920   else if (ExpandBECount && ReuseIVForExit && needsLFTR(L, DT)) {
1921     IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1922   }
1923   // If we have a trip count expression, rewrite the loop's exit condition
1924   // using it.  We can currently only handle loops with a single exit.
1925   Value *NewICmp = 0;
1926   if (ExpandBECount && IndVar) {
1927     // Check preconditions for proper SCEVExpander operation. SCEV does not
1928     // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1929     // pass that uses the SCEVExpander must do it. This does not work well for
1930     // loop passes because SCEVExpander makes assumptions about all loops, while
1931     // LoopPassManager only forces the current loop to be simplified.
1932     //
1933     // FIXME: SCEV expansion has no way to bail out, so the caller must
1934     // explicitly check any assumptions made by SCEV. Brittle.
1935     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1936     if (!AR || AR->getLoop()->getLoopPreheader())
1937       NewICmp =
1938         LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter);
1939   }
1940   // Rewrite IV-derived expressions.
1941   if (!DisableIVRewrite)
1942     RewriteIVExpressions(L, Rewriter);
1943 
1944   // Clear the rewriter cache, because values that are in the rewriter's cache
1945   // can be deleted in the loop below, causing the AssertingVH in the cache to
1946   // trigger.
1947   Rewriter.clear();
1948 
1949   // Now that we're done iterating through lists, clean up any instructions
1950   // which are now dead.
1951   while (!DeadInsts.empty())
1952     if (Instruction *Inst =
1953           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1954       RecursivelyDeleteTriviallyDeadInstructions(Inst);
1955 
1956   // The Rewriter may not be used from this point on.
1957 
1958   // Loop-invariant instructions in the preheader that aren't used in the
1959   // loop may be sunk below the loop to reduce register pressure.
1960   SinkUnusedInvariants(L);
1961 
1962   // For completeness, inform IVUsers of the IV use in the newly-created
1963   // loop exit test instruction.
1964   if (IU && NewICmp) {
1965     ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp);
1966     if (NewICmpInst)
1967       IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)));
1968   }
1969   // Clean up dead instructions.
1970   Changed |= DeleteDeadPHIs(L->getHeader());
1971   // Check a post-condition.
1972   assert(L->isLCSSAForm(*DT) &&
1973          "Indvars did not leave the loop in lcssa form!");
1974 
1975   // Verify that LFTR, and any other change have not interfered with SCEV's
1976   // ability to compute trip count.
1977 #ifndef NDEBUG
1978   if (DisableIVRewrite && VerifyIndvars &&
1979       !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1980     SE->forgetLoop(L);
1981     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1982     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1983         SE->getTypeSizeInBits(NewBECount->getType()))
1984       NewBECount = SE->getTruncateOrNoop(NewBECount,
1985                                          BackedgeTakenCount->getType());
1986     else
1987       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1988                                                  NewBECount->getType());
1989     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1990   }
1991 #endif
1992 
1993   return Changed;
1994 }
1995