1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #define DEBUG_TYPE "indvars" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/BasicBlock.h" 30 #include "llvm/Constants.h" 31 #include "llvm/Instructions.h" 32 #include "llvm/IntrinsicInst.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Type.h" 35 #include "llvm/Analysis/Dominators.h" 36 #include "llvm/Analysis/ScalarEvolutionExpander.h" 37 #include "llvm/Analysis/LoopInfo.h" 38 #include "llvm/Analysis/LoopPass.h" 39 #include "llvm/Support/CFG.h" 40 #include "llvm/Support/CommandLine.h" 41 #include "llvm/Support/Debug.h" 42 #include "llvm/Support/raw_ostream.h" 43 #include "llvm/Transforms/Utils/Local.h" 44 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 45 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 46 #include "llvm/DataLayout.h" 47 #include "llvm/Target/TargetLibraryInfo.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 using namespace llvm; 52 53 STATISTIC(NumWidened , "Number of indvars widened"); 54 STATISTIC(NumReplaced , "Number of exit values replaced"); 55 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 56 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 57 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 58 59 // Trip count verification can be enabled by default under NDEBUG if we 60 // implement a strong expression equivalence checker in SCEV. Until then, we 61 // use the verify-indvars flag, which may assert in some cases. 62 static cl::opt<bool> VerifyIndvars( 63 "verify-indvars", cl::Hidden, 64 cl::desc("Verify the ScalarEvolution result after running indvars")); 65 66 namespace { 67 class IndVarSimplify : public LoopPass { 68 LoopInfo *LI; 69 ScalarEvolution *SE; 70 DominatorTree *DT; 71 DataLayout *TD; 72 TargetLibraryInfo *TLI; 73 74 SmallVector<WeakVH, 16> DeadInsts; 75 bool Changed; 76 public: 77 78 static char ID; // Pass identification, replacement for typeid 79 IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0), 80 Changed(false) { 81 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 82 } 83 84 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 85 86 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 87 AU.addRequired<DominatorTree>(); 88 AU.addRequired<LoopInfo>(); 89 AU.addRequired<ScalarEvolution>(); 90 AU.addRequiredID(LoopSimplifyID); 91 AU.addRequiredID(LCSSAID); 92 AU.addPreserved<ScalarEvolution>(); 93 AU.addPreservedID(LoopSimplifyID); 94 AU.addPreservedID(LCSSAID); 95 AU.setPreservesCFG(); 96 } 97 98 private: 99 virtual void releaseMemory() { 100 DeadInsts.clear(); 101 } 102 103 bool isValidRewrite(Value *FromVal, Value *ToVal); 104 105 void HandleFloatingPointIV(Loop *L, PHINode *PH); 106 void RewriteNonIntegerIVs(Loop *L); 107 108 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 109 110 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 111 112 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 113 PHINode *IndVar, SCEVExpander &Rewriter); 114 115 void SinkUnusedInvariants(Loop *L); 116 }; 117 } 118 119 char IndVarSimplify::ID = 0; 120 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 121 "Induction Variable Simplification", false, false) 122 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 123 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 124 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 125 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 126 INITIALIZE_PASS_DEPENDENCY(LCSSA) 127 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 128 "Induction Variable Simplification", false, false) 129 130 Pass *llvm::createIndVarSimplifyPass() { 131 return new IndVarSimplify(); 132 } 133 134 /// isValidRewrite - Return true if the SCEV expansion generated by the 135 /// rewriter can replace the original value. SCEV guarantees that it 136 /// produces the same value, but the way it is produced may be illegal IR. 137 /// Ideally, this function will only be called for verification. 138 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 139 // If an SCEV expression subsumed multiple pointers, its expansion could 140 // reassociate the GEP changing the base pointer. This is illegal because the 141 // final address produced by a GEP chain must be inbounds relative to its 142 // underlying object. Otherwise basic alias analysis, among other things, 143 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 144 // producing an expression involving multiple pointers. Until then, we must 145 // bail out here. 146 // 147 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 148 // because it understands lcssa phis while SCEV does not. 149 Value *FromPtr = FromVal; 150 Value *ToPtr = ToVal; 151 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 152 FromPtr = GEP->getPointerOperand(); 153 } 154 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 155 ToPtr = GEP->getPointerOperand(); 156 } 157 if (FromPtr != FromVal || ToPtr != ToVal) { 158 // Quickly check the common case 159 if (FromPtr == ToPtr) 160 return true; 161 162 // SCEV may have rewritten an expression that produces the GEP's pointer 163 // operand. That's ok as long as the pointer operand has the same base 164 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 165 // base of a recurrence. This handles the case in which SCEV expansion 166 // converts a pointer type recurrence into a nonrecurrent pointer base 167 // indexed by an integer recurrence. 168 169 // If the GEP base pointer is a vector of pointers, abort. 170 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 171 return false; 172 173 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 174 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 175 if (FromBase == ToBase) 176 return true; 177 178 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 179 << *FromBase << " != " << *ToBase << "\n"); 180 181 return false; 182 } 183 return true; 184 } 185 186 /// Determine the insertion point for this user. By default, insert immediately 187 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 188 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 189 /// common dominator for the incoming blocks. 190 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 191 DominatorTree *DT) { 192 PHINode *PHI = dyn_cast<PHINode>(User); 193 if (!PHI) 194 return User; 195 196 Instruction *InsertPt = 0; 197 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 198 if (PHI->getIncomingValue(i) != Def) 199 continue; 200 201 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 202 if (!InsertPt) { 203 InsertPt = InsertBB->getTerminator(); 204 continue; 205 } 206 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 207 InsertPt = InsertBB->getTerminator(); 208 } 209 assert(InsertPt && "Missing phi operand"); 210 assert((!isa<Instruction>(Def) || 211 DT->dominates(cast<Instruction>(Def), InsertPt)) && 212 "def does not dominate all uses"); 213 return InsertPt; 214 } 215 216 //===----------------------------------------------------------------------===// 217 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 218 //===----------------------------------------------------------------------===// 219 220 /// ConvertToSInt - Convert APF to an integer, if possible. 221 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 222 bool isExact = false; 223 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) 224 return false; 225 // See if we can convert this to an int64_t 226 uint64_t UIntVal; 227 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 228 &isExact) != APFloat::opOK || !isExact) 229 return false; 230 IntVal = UIntVal; 231 return true; 232 } 233 234 /// HandleFloatingPointIV - If the loop has floating induction variable 235 /// then insert corresponding integer induction variable if possible. 236 /// For example, 237 /// for(double i = 0; i < 10000; ++i) 238 /// bar(i) 239 /// is converted into 240 /// for(int i = 0; i < 10000; ++i) 241 /// bar((double)i); 242 /// 243 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 244 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 245 unsigned BackEdge = IncomingEdge^1; 246 247 // Check incoming value. 248 ConstantFP *InitValueVal = 249 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 250 251 int64_t InitValue; 252 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 253 return; 254 255 // Check IV increment. Reject this PN if increment operation is not 256 // an add or increment value can not be represented by an integer. 257 BinaryOperator *Incr = 258 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 259 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; 260 261 // If this is not an add of the PHI with a constantfp, or if the constant fp 262 // is not an integer, bail out. 263 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 264 int64_t IncValue; 265 if (IncValueVal == 0 || Incr->getOperand(0) != PN || 266 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 267 return; 268 269 // Check Incr uses. One user is PN and the other user is an exit condition 270 // used by the conditional terminator. 271 Value::use_iterator IncrUse = Incr->use_begin(); 272 Instruction *U1 = cast<Instruction>(*IncrUse++); 273 if (IncrUse == Incr->use_end()) return; 274 Instruction *U2 = cast<Instruction>(*IncrUse++); 275 if (IncrUse != Incr->use_end()) return; 276 277 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 278 // only used by a branch, we can't transform it. 279 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 280 if (!Compare) 281 Compare = dyn_cast<FCmpInst>(U2); 282 if (Compare == 0 || !Compare->hasOneUse() || 283 !isa<BranchInst>(Compare->use_back())) 284 return; 285 286 BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); 287 288 // We need to verify that the branch actually controls the iteration count 289 // of the loop. If not, the new IV can overflow and no one will notice. 290 // The branch block must be in the loop and one of the successors must be out 291 // of the loop. 292 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 293 if (!L->contains(TheBr->getParent()) || 294 (L->contains(TheBr->getSuccessor(0)) && 295 L->contains(TheBr->getSuccessor(1)))) 296 return; 297 298 299 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 300 // transform it. 301 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 302 int64_t ExitValue; 303 if (ExitValueVal == 0 || 304 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 305 return; 306 307 // Find new predicate for integer comparison. 308 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 309 switch (Compare->getPredicate()) { 310 default: return; // Unknown comparison. 311 case CmpInst::FCMP_OEQ: 312 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 313 case CmpInst::FCMP_ONE: 314 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 315 case CmpInst::FCMP_OGT: 316 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 317 case CmpInst::FCMP_OGE: 318 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 319 case CmpInst::FCMP_OLT: 320 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 321 case CmpInst::FCMP_OLE: 322 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 323 } 324 325 // We convert the floating point induction variable to a signed i32 value if 326 // we can. This is only safe if the comparison will not overflow in a way 327 // that won't be trapped by the integer equivalent operations. Check for this 328 // now. 329 // TODO: We could use i64 if it is native and the range requires it. 330 331 // The start/stride/exit values must all fit in signed i32. 332 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 333 return; 334 335 // If not actually striding (add x, 0.0), avoid touching the code. 336 if (IncValue == 0) 337 return; 338 339 // Positive and negative strides have different safety conditions. 340 if (IncValue > 0) { 341 // If we have a positive stride, we require the init to be less than the 342 // exit value. 343 if (InitValue >= ExitValue) 344 return; 345 346 uint32_t Range = uint32_t(ExitValue-InitValue); 347 // Check for infinite loop, either: 348 // while (i <= Exit) or until (i > Exit) 349 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 350 if (++Range == 0) return; // Range overflows. 351 } 352 353 unsigned Leftover = Range % uint32_t(IncValue); 354 355 // If this is an equality comparison, we require that the strided value 356 // exactly land on the exit value, otherwise the IV condition will wrap 357 // around and do things the fp IV wouldn't. 358 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 359 Leftover != 0) 360 return; 361 362 // If the stride would wrap around the i32 before exiting, we can't 363 // transform the IV. 364 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 365 return; 366 367 } else { 368 // If we have a negative stride, we require the init to be greater than the 369 // exit value. 370 if (InitValue <= ExitValue) 371 return; 372 373 uint32_t Range = uint32_t(InitValue-ExitValue); 374 // Check for infinite loop, either: 375 // while (i >= Exit) or until (i < Exit) 376 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 377 if (++Range == 0) return; // Range overflows. 378 } 379 380 unsigned Leftover = Range % uint32_t(-IncValue); 381 382 // If this is an equality comparison, we require that the strided value 383 // exactly land on the exit value, otherwise the IV condition will wrap 384 // around and do things the fp IV wouldn't. 385 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 386 Leftover != 0) 387 return; 388 389 // If the stride would wrap around the i32 before exiting, we can't 390 // transform the IV. 391 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 392 return; 393 } 394 395 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 396 397 // Insert new integer induction variable. 398 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 399 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 400 PN->getIncomingBlock(IncomingEdge)); 401 402 Value *NewAdd = 403 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 404 Incr->getName()+".int", Incr); 405 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 406 407 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 408 ConstantInt::get(Int32Ty, ExitValue), 409 Compare->getName()); 410 411 // In the following deletions, PN may become dead and may be deleted. 412 // Use a WeakVH to observe whether this happens. 413 WeakVH WeakPH = PN; 414 415 // Delete the old floating point exit comparison. The branch starts using the 416 // new comparison. 417 NewCompare->takeName(Compare); 418 Compare->replaceAllUsesWith(NewCompare); 419 RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI); 420 421 // Delete the old floating point increment. 422 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 423 RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI); 424 425 // If the FP induction variable still has uses, this is because something else 426 // in the loop uses its value. In order to canonicalize the induction 427 // variable, we chose to eliminate the IV and rewrite it in terms of an 428 // int->fp cast. 429 // 430 // We give preference to sitofp over uitofp because it is faster on most 431 // platforms. 432 if (WeakPH) { 433 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 434 PN->getParent()->getFirstInsertionPt()); 435 PN->replaceAllUsesWith(Conv); 436 RecursivelyDeleteTriviallyDeadInstructions(PN, TLI); 437 } 438 Changed = true; 439 } 440 441 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 442 // First step. Check to see if there are any floating-point recurrences. 443 // If there are, change them into integer recurrences, permitting analysis by 444 // the SCEV routines. 445 // 446 BasicBlock *Header = L->getHeader(); 447 448 SmallVector<WeakVH, 8> PHIs; 449 for (BasicBlock::iterator I = Header->begin(); 450 PHINode *PN = dyn_cast<PHINode>(I); ++I) 451 PHIs.push_back(PN); 452 453 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 454 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 455 HandleFloatingPointIV(L, PN); 456 457 // If the loop previously had floating-point IV, ScalarEvolution 458 // may not have been able to compute a trip count. Now that we've done some 459 // re-writing, the trip count may be computable. 460 if (Changed) 461 SE->forgetLoop(L); 462 } 463 464 //===----------------------------------------------------------------------===// 465 // RewriteLoopExitValues - Optimize IV users outside the loop. 466 // As a side effect, reduces the amount of IV processing within the loop. 467 //===----------------------------------------------------------------------===// 468 469 /// RewriteLoopExitValues - Check to see if this loop has a computable 470 /// loop-invariant execution count. If so, this means that we can compute the 471 /// final value of any expressions that are recurrent in the loop, and 472 /// substitute the exit values from the loop into any instructions outside of 473 /// the loop that use the final values of the current expressions. 474 /// 475 /// This is mostly redundant with the regular IndVarSimplify activities that 476 /// happen later, except that it's more powerful in some cases, because it's 477 /// able to brute-force evaluate arbitrary instructions as long as they have 478 /// constant operands at the beginning of the loop. 479 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 480 // Verify the input to the pass in already in LCSSA form. 481 assert(L->isLCSSAForm(*DT)); 482 483 SmallVector<BasicBlock*, 8> ExitBlocks; 484 L->getUniqueExitBlocks(ExitBlocks); 485 486 // Find all values that are computed inside the loop, but used outside of it. 487 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 488 // the exit blocks of the loop to find them. 489 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 490 BasicBlock *ExitBB = ExitBlocks[i]; 491 492 // If there are no PHI nodes in this exit block, then no values defined 493 // inside the loop are used on this path, skip it. 494 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 495 if (!PN) continue; 496 497 unsigned NumPreds = PN->getNumIncomingValues(); 498 499 // Iterate over all of the PHI nodes. 500 BasicBlock::iterator BBI = ExitBB->begin(); 501 while ((PN = dyn_cast<PHINode>(BBI++))) { 502 if (PN->use_empty()) 503 continue; // dead use, don't replace it 504 505 // SCEV only supports integer expressions for now. 506 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 507 continue; 508 509 // It's necessary to tell ScalarEvolution about this explicitly so that 510 // it can walk the def-use list and forget all SCEVs, as it may not be 511 // watching the PHI itself. Once the new exit value is in place, there 512 // may not be a def-use connection between the loop and every instruction 513 // which got a SCEVAddRecExpr for that loop. 514 SE->forgetValue(PN); 515 516 // Iterate over all of the values in all the PHI nodes. 517 for (unsigned i = 0; i != NumPreds; ++i) { 518 // If the value being merged in is not integer or is not defined 519 // in the loop, skip it. 520 Value *InVal = PN->getIncomingValue(i); 521 if (!isa<Instruction>(InVal)) 522 continue; 523 524 // If this pred is for a subloop, not L itself, skip it. 525 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 526 continue; // The Block is in a subloop, skip it. 527 528 // Check that InVal is defined in the loop. 529 Instruction *Inst = cast<Instruction>(InVal); 530 if (!L->contains(Inst)) 531 continue; 532 533 // Okay, this instruction has a user outside of the current loop 534 // and varies predictably *inside* the loop. Evaluate the value it 535 // contains when the loop exits, if possible. 536 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 537 if (!SE->isLoopInvariant(ExitValue, L)) 538 continue; 539 540 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 541 542 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 543 << " LoopVal = " << *Inst << "\n"); 544 545 if (!isValidRewrite(Inst, ExitVal)) { 546 DeadInsts.push_back(ExitVal); 547 continue; 548 } 549 Changed = true; 550 ++NumReplaced; 551 552 PN->setIncomingValue(i, ExitVal); 553 554 // If this instruction is dead now, delete it. Don't do it now to avoid 555 // invalidating iterators. 556 if (isInstructionTriviallyDead(Inst, TLI)) 557 DeadInsts.push_back(Inst); 558 559 if (NumPreds == 1) { 560 // Completely replace a single-pred PHI. This is safe, because the 561 // NewVal won't be variant in the loop, so we don't need an LCSSA phi 562 // node anymore. 563 PN->replaceAllUsesWith(ExitVal); 564 PN->eraseFromParent(); 565 } 566 } 567 if (NumPreds != 1) { 568 // Clone the PHI and delete the original one. This lets IVUsers and 569 // any other maps purge the original user from their records. 570 PHINode *NewPN = cast<PHINode>(PN->clone()); 571 NewPN->takeName(PN); 572 NewPN->insertBefore(PN); 573 PN->replaceAllUsesWith(NewPN); 574 PN->eraseFromParent(); 575 } 576 } 577 } 578 579 // The insertion point instruction may have been deleted; clear it out 580 // so that the rewriter doesn't trip over it later. 581 Rewriter.clearInsertPoint(); 582 } 583 584 //===----------------------------------------------------------------------===// 585 // IV Widening - Extend the width of an IV to cover its widest uses. 586 //===----------------------------------------------------------------------===// 587 588 namespace { 589 // Collect information about induction variables that are used by sign/zero 590 // extend operations. This information is recorded by CollectExtend and 591 // provides the input to WidenIV. 592 struct WideIVInfo { 593 PHINode *NarrowIV; 594 Type *WidestNativeType; // Widest integer type created [sz]ext 595 bool IsSigned; // Was an sext user seen before a zext? 596 597 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {} 598 }; 599 600 class WideIVVisitor : public IVVisitor { 601 ScalarEvolution *SE; 602 const DataLayout *TD; 603 604 public: 605 WideIVInfo WI; 606 607 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV, 608 const DataLayout *TData) : 609 SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; } 610 611 // Implement the interface used by simplifyUsersOfIV. 612 virtual void visitCast(CastInst *Cast); 613 }; 614 } 615 616 /// visitCast - Update information about the induction variable that is 617 /// extended by this sign or zero extend operation. This is used to determine 618 /// the final width of the IV before actually widening it. 619 void WideIVVisitor::visitCast(CastInst *Cast) { 620 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 621 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 622 return; 623 624 Type *Ty = Cast->getType(); 625 uint64_t Width = SE->getTypeSizeInBits(Ty); 626 if (TD && !TD->isLegalInteger(Width)) 627 return; 628 629 if (!WI.WidestNativeType) { 630 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 631 WI.IsSigned = IsSigned; 632 return; 633 } 634 635 // We extend the IV to satisfy the sign of its first user, arbitrarily. 636 if (WI.IsSigned != IsSigned) 637 return; 638 639 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 640 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 641 } 642 643 namespace { 644 645 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 646 /// WideIV that computes the same value as the Narrow IV def. This avoids 647 /// caching Use* pointers. 648 struct NarrowIVDefUse { 649 Instruction *NarrowDef; 650 Instruction *NarrowUse; 651 Instruction *WideDef; 652 653 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {} 654 655 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 656 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 657 }; 658 659 /// WidenIV - The goal of this transform is to remove sign and zero extends 660 /// without creating any new induction variables. To do this, it creates a new 661 /// phi of the wider type and redirects all users, either removing extends or 662 /// inserting truncs whenever we stop propagating the type. 663 /// 664 class WidenIV { 665 // Parameters 666 PHINode *OrigPhi; 667 Type *WideType; 668 bool IsSigned; 669 670 // Context 671 LoopInfo *LI; 672 Loop *L; 673 ScalarEvolution *SE; 674 DominatorTree *DT; 675 676 // Result 677 PHINode *WidePhi; 678 Instruction *WideInc; 679 const SCEV *WideIncExpr; 680 SmallVectorImpl<WeakVH> &DeadInsts; 681 682 SmallPtrSet<Instruction*,16> Widened; 683 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 684 685 public: 686 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 687 ScalarEvolution *SEv, DominatorTree *DTree, 688 SmallVectorImpl<WeakVH> &DI) : 689 OrigPhi(WI.NarrowIV), 690 WideType(WI.WidestNativeType), 691 IsSigned(WI.IsSigned), 692 LI(LInfo), 693 L(LI->getLoopFor(OrigPhi->getParent())), 694 SE(SEv), 695 DT(DTree), 696 WidePhi(0), 697 WideInc(0), 698 WideIncExpr(0), 699 DeadInsts(DI) { 700 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 701 } 702 703 PHINode *CreateWideIV(SCEVExpander &Rewriter); 704 705 protected: 706 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 707 Instruction *Use); 708 709 Instruction *CloneIVUser(NarrowIVDefUse DU); 710 711 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 712 713 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 714 715 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 716 717 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 718 }; 719 } // anonymous namespace 720 721 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 722 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 723 /// gratuitous for this purpose. 724 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 725 Instruction *Inst = dyn_cast<Instruction>(V); 726 if (!Inst) 727 return true; 728 729 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 730 } 731 732 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 733 Instruction *Use) { 734 // Set the debug location and conservative insertion point. 735 IRBuilder<> Builder(Use); 736 // Hoist the insertion point into loop preheaders as far as possible. 737 for (const Loop *L = LI->getLoopFor(Use->getParent()); 738 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 739 L = L->getParentLoop()) 740 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 741 742 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 743 Builder.CreateZExt(NarrowOper, WideType); 744 } 745 746 /// CloneIVUser - Instantiate a wide operation to replace a narrow 747 /// operation. This only needs to handle operations that can evaluation to 748 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 749 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 750 unsigned Opcode = DU.NarrowUse->getOpcode(); 751 switch (Opcode) { 752 default: 753 return 0; 754 case Instruction::Add: 755 case Instruction::Mul: 756 case Instruction::UDiv: 757 case Instruction::Sub: 758 case Instruction::And: 759 case Instruction::Or: 760 case Instruction::Xor: 761 case Instruction::Shl: 762 case Instruction::LShr: 763 case Instruction::AShr: 764 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 765 766 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 767 // anything about the narrow operand yet so must insert a [sz]ext. It is 768 // probably loop invariant and will be folded or hoisted. If it actually 769 // comes from a widened IV, it should be removed during a future call to 770 // WidenIVUse. 771 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 772 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 773 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 774 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 775 776 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 777 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 778 LHS, RHS, 779 NarrowBO->getName()); 780 IRBuilder<> Builder(DU.NarrowUse); 781 Builder.Insert(WideBO); 782 if (const OverflowingBinaryOperator *OBO = 783 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 784 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 785 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 786 } 787 return WideBO; 788 } 789 } 790 791 /// No-wrap operations can transfer sign extension of their result to their 792 /// operands. Generate the SCEV value for the widened operation without 793 /// actually modifying the IR yet. If the expression after extending the 794 /// operands is an AddRec for this loop, return it. 795 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 796 // Handle the common case of add<nsw/nuw> 797 if (DU.NarrowUse->getOpcode() != Instruction::Add) 798 return 0; 799 800 // One operand (NarrowDef) has already been extended to WideDef. Now determine 801 // if extending the other will lead to a recurrence. 802 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 803 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 804 805 const SCEV *ExtendOperExpr = 0; 806 const OverflowingBinaryOperator *OBO = 807 cast<OverflowingBinaryOperator>(DU.NarrowUse); 808 if (IsSigned && OBO->hasNoSignedWrap()) 809 ExtendOperExpr = SE->getSignExtendExpr( 810 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 811 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 812 ExtendOperExpr = SE->getZeroExtendExpr( 813 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 814 else 815 return 0; 816 817 // When creating this AddExpr, don't apply the current operations NSW or NUW 818 // flags. This instruction may be guarded by control flow that the no-wrap 819 // behavior depends on. Non-control-equivalent instructions can be mapped to 820 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 821 // semantics to those operations. 822 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>( 823 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr)); 824 825 if (!AddRec || AddRec->getLoop() != L) 826 return 0; 827 return AddRec; 828 } 829 830 /// GetWideRecurrence - Is this instruction potentially interesting from 831 /// IVUsers' perspective after widening it's type? In other words, can the 832 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 833 /// recurrence on the same loop. If so, return the sign or zero extended 834 /// recurrence. Otherwise return NULL. 835 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 836 if (!SE->isSCEVable(NarrowUse->getType())) 837 return 0; 838 839 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 840 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 841 >= SE->getTypeSizeInBits(WideType)) { 842 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 843 // index. So don't follow this use. 844 return 0; 845 } 846 847 const SCEV *WideExpr = IsSigned ? 848 SE->getSignExtendExpr(NarrowExpr, WideType) : 849 SE->getZeroExtendExpr(NarrowExpr, WideType); 850 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 851 if (!AddRec || AddRec->getLoop() != L) 852 return 0; 853 return AddRec; 854 } 855 856 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 857 /// widened. If so, return the wide clone of the user. 858 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 859 860 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 861 if (isa<PHINode>(DU.NarrowUse) && 862 LI->getLoopFor(DU.NarrowUse->getParent()) != L) 863 return 0; 864 865 // Our raison d'etre! Eliminate sign and zero extension. 866 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 867 Value *NewDef = DU.WideDef; 868 if (DU.NarrowUse->getType() != WideType) { 869 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 870 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 871 if (CastWidth < IVWidth) { 872 // The cast isn't as wide as the IV, so insert a Trunc. 873 IRBuilder<> Builder(DU.NarrowUse); 874 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 875 } 876 else { 877 // A wider extend was hidden behind a narrower one. This may induce 878 // another round of IV widening in which the intermediate IV becomes 879 // dead. It should be very rare. 880 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 881 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 882 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 883 NewDef = DU.NarrowUse; 884 } 885 } 886 if (NewDef != DU.NarrowUse) { 887 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 888 << " replaced by " << *DU.WideDef << "\n"); 889 ++NumElimExt; 890 DU.NarrowUse->replaceAllUsesWith(NewDef); 891 DeadInsts.push_back(DU.NarrowUse); 892 } 893 // Now that the extend is gone, we want to expose it's uses for potential 894 // further simplification. We don't need to directly inform SimplifyIVUsers 895 // of the new users, because their parent IV will be processed later as a 896 // new loop phi. If we preserved IVUsers analysis, we would also want to 897 // push the uses of WideDef here. 898 899 // No further widening is needed. The deceased [sz]ext had done it for us. 900 return 0; 901 } 902 903 // Does this user itself evaluate to a recurrence after widening? 904 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 905 if (!WideAddRec) { 906 WideAddRec = GetExtendedOperandRecurrence(DU); 907 } 908 if (!WideAddRec) { 909 // This user does not evaluate to a recurence after widening, so don't 910 // follow it. Instead insert a Trunc to kill off the original use, 911 // eventually isolating the original narrow IV so it can be removed. 912 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 913 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 914 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 915 return 0; 916 } 917 // Assume block terminators cannot evaluate to a recurrence. We can't to 918 // insert a Trunc after a terminator if there happens to be a critical edge. 919 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 920 "SCEV is not expected to evaluate a block terminator"); 921 922 // Reuse the IV increment that SCEVExpander created as long as it dominates 923 // NarrowUse. 924 Instruction *WideUse = 0; 925 if (WideAddRec == WideIncExpr 926 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 927 WideUse = WideInc; 928 else { 929 WideUse = CloneIVUser(DU); 930 if (!WideUse) 931 return 0; 932 } 933 // Evaluation of WideAddRec ensured that the narrow expression could be 934 // extended outside the loop without overflow. This suggests that the wide use 935 // evaluates to the same expression as the extended narrow use, but doesn't 936 // absolutely guarantee it. Hence the following failsafe check. In rare cases 937 // where it fails, we simply throw away the newly created wide use. 938 if (WideAddRec != SE->getSCEV(WideUse)) { 939 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 940 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 941 DeadInsts.push_back(WideUse); 942 return 0; 943 } 944 945 // Returning WideUse pushes it on the worklist. 946 return WideUse; 947 } 948 949 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 950 /// 951 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 952 for (Value::use_iterator UI = NarrowDef->use_begin(), 953 UE = NarrowDef->use_end(); UI != UE; ++UI) { 954 Instruction *NarrowUse = cast<Instruction>(*UI); 955 956 // Handle data flow merges and bizarre phi cycles. 957 if (!Widened.insert(NarrowUse)) 958 continue; 959 960 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef)); 961 } 962 } 963 964 /// CreateWideIV - Process a single induction variable. First use the 965 /// SCEVExpander to create a wide induction variable that evaluates to the same 966 /// recurrence as the original narrow IV. Then use a worklist to forward 967 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 968 /// interesting IV users, the narrow IV will be isolated for removal by 969 /// DeleteDeadPHIs. 970 /// 971 /// It would be simpler to delete uses as they are processed, but we must avoid 972 /// invalidating SCEV expressions. 973 /// 974 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 975 // Is this phi an induction variable? 976 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 977 if (!AddRec) 978 return NULL; 979 980 // Widen the induction variable expression. 981 const SCEV *WideIVExpr = IsSigned ? 982 SE->getSignExtendExpr(AddRec, WideType) : 983 SE->getZeroExtendExpr(AddRec, WideType); 984 985 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 986 "Expect the new IV expression to preserve its type"); 987 988 // Can the IV be extended outside the loop without overflow? 989 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 990 if (!AddRec || AddRec->getLoop() != L) 991 return NULL; 992 993 // An AddRec must have loop-invariant operands. Since this AddRec is 994 // materialized by a loop header phi, the expression cannot have any post-loop 995 // operands, so they must dominate the loop header. 996 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 997 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 998 && "Loop header phi recurrence inputs do not dominate the loop"); 999 1000 // The rewriter provides a value for the desired IV expression. This may 1001 // either find an existing phi or materialize a new one. Either way, we 1002 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1003 // of the phi-SCC dominates the loop entry. 1004 Instruction *InsertPt = L->getHeader()->begin(); 1005 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1006 1007 // Remembering the WideIV increment generated by SCEVExpander allows 1008 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1009 // employ a general reuse mechanism because the call above is the only call to 1010 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1011 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1012 WideInc = 1013 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1014 WideIncExpr = SE->getSCEV(WideInc); 1015 } 1016 1017 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1018 ++NumWidened; 1019 1020 // Traverse the def-use chain using a worklist starting at the original IV. 1021 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1022 1023 Widened.insert(OrigPhi); 1024 pushNarrowIVUsers(OrigPhi, WidePhi); 1025 1026 while (!NarrowIVUsers.empty()) { 1027 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1028 1029 // Process a def-use edge. This may replace the use, so don't hold a 1030 // use_iterator across it. 1031 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1032 1033 // Follow all def-use edges from the previous narrow use. 1034 if (WideUse) 1035 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1036 1037 // WidenIVUse may have removed the def-use edge. 1038 if (DU.NarrowDef->use_empty()) 1039 DeadInsts.push_back(DU.NarrowDef); 1040 } 1041 return WidePhi; 1042 } 1043 1044 //===----------------------------------------------------------------------===// 1045 // Simplification of IV users based on SCEV evaluation. 1046 //===----------------------------------------------------------------------===// 1047 1048 1049 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1050 /// users. Each successive simplification may push more users which may 1051 /// themselves be candidates for simplification. 1052 /// 1053 /// Sign/Zero extend elimination is interleaved with IV simplification. 1054 /// 1055 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1056 SCEVExpander &Rewriter, 1057 LPPassManager &LPM) { 1058 SmallVector<WideIVInfo, 8> WideIVs; 1059 1060 SmallVector<PHINode*, 8> LoopPhis; 1061 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1062 LoopPhis.push_back(cast<PHINode>(I)); 1063 } 1064 // Each round of simplification iterates through the SimplifyIVUsers worklist 1065 // for all current phis, then determines whether any IVs can be 1066 // widened. Widening adds new phis to LoopPhis, inducing another round of 1067 // simplification on the wide IVs. 1068 while (!LoopPhis.empty()) { 1069 // Evaluate as many IV expressions as possible before widening any IVs. This 1070 // forces SCEV to set no-wrap flags before evaluating sign/zero 1071 // extension. The first time SCEV attempts to normalize sign/zero extension, 1072 // the result becomes final. So for the most predictable results, we delay 1073 // evaluation of sign/zero extend evaluation until needed, and avoid running 1074 // other SCEV based analysis prior to SimplifyAndExtend. 1075 do { 1076 PHINode *CurrIV = LoopPhis.pop_back_val(); 1077 1078 // Information about sign/zero extensions of CurrIV. 1079 WideIVVisitor WIV(CurrIV, SE, TD); 1080 1081 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV); 1082 1083 if (WIV.WI.WidestNativeType) { 1084 WideIVs.push_back(WIV.WI); 1085 } 1086 } while(!LoopPhis.empty()); 1087 1088 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1089 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1090 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1091 Changed = true; 1092 LoopPhis.push_back(WidePhi); 1093 } 1094 } 1095 } 1096 } 1097 1098 //===----------------------------------------------------------------------===// 1099 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1100 //===----------------------------------------------------------------------===// 1101 1102 /// Check for expressions that ScalarEvolution generates to compute 1103 /// BackedgeTakenInfo. If these expressions have not been reduced, then 1104 /// expanding them may incur additional cost (albeit in the loop preheader). 1105 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, 1106 SmallPtrSet<const SCEV*, 8> &Processed, 1107 ScalarEvolution *SE) { 1108 if (!Processed.insert(S)) 1109 return false; 1110 1111 // If the backedge-taken count is a UDiv, it's very likely a UDiv that 1112 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a 1113 // precise expression, rather than a UDiv from the user's code. If we can't 1114 // find a UDiv in the code with some simple searching, assume the former and 1115 // forego rewriting the loop. 1116 if (isa<SCEVUDivExpr>(S)) { 1117 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 1118 if (!OrigCond) return true; 1119 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 1120 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 1121 if (R != S) { 1122 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 1123 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 1124 if (L != S) 1125 return true; 1126 } 1127 } 1128 1129 // Recurse past add expressions, which commonly occur in the 1130 // BackedgeTakenCount. They may already exist in program code, and if not, 1131 // they are not too expensive rematerialize. 1132 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1133 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1134 I != E; ++I) { 1135 if (isHighCostExpansion(*I, BI, Processed, SE)) 1136 return true; 1137 } 1138 return false; 1139 } 1140 1141 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1142 // the exit condition. 1143 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1144 return true; 1145 1146 // If we haven't recognized an expensive SCEV pattern, assume it's an 1147 // expression produced by program code. 1148 return false; 1149 } 1150 1151 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1152 /// count expression can be safely and cheaply expanded into an instruction 1153 /// sequence that can be used by LinearFunctionTestReplace. 1154 /// 1155 /// TODO: This fails for pointer-type loop counters with greater than one byte 1156 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1157 /// we could skip this check in the case that the LFTR loop counter (chosen by 1158 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1159 /// the loop test to an inequality test by checking the target data's alignment 1160 /// of element types (given that the initial pointer value originates from or is 1161 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1162 /// However, we don't yet have a strong motivation for converting loop tests 1163 /// into inequality tests. 1164 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { 1165 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1166 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1167 BackedgeTakenCount->isZero()) 1168 return false; 1169 1170 if (!L->getExitingBlock()) 1171 return false; 1172 1173 // Can't rewrite non-branch yet. 1174 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1175 if (!BI) 1176 return false; 1177 1178 SmallPtrSet<const SCEV*, 8> Processed; 1179 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE)) 1180 return false; 1181 1182 return true; 1183 } 1184 1185 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1186 /// invariant value to the phi. 1187 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1188 Instruction *IncI = dyn_cast<Instruction>(IncV); 1189 if (!IncI) 1190 return 0; 1191 1192 switch (IncI->getOpcode()) { 1193 case Instruction::Add: 1194 case Instruction::Sub: 1195 break; 1196 case Instruction::GetElementPtr: 1197 // An IV counter must preserve its type. 1198 if (IncI->getNumOperands() == 2) 1199 break; 1200 default: 1201 return 0; 1202 } 1203 1204 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1205 if (Phi && Phi->getParent() == L->getHeader()) { 1206 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1207 return Phi; 1208 return 0; 1209 } 1210 if (IncI->getOpcode() == Instruction::GetElementPtr) 1211 return 0; 1212 1213 // Allow add/sub to be commuted. 1214 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1215 if (Phi && Phi->getParent() == L->getHeader()) { 1216 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1217 return Phi; 1218 } 1219 return 0; 1220 } 1221 1222 /// Return the compare guarding the loop latch, or NULL for unrecognized tests. 1223 static ICmpInst *getLoopTest(Loop *L) { 1224 assert(L->getExitingBlock() && "expected loop exit"); 1225 1226 BasicBlock *LatchBlock = L->getLoopLatch(); 1227 // Don't bother with LFTR if the loop is not properly simplified. 1228 if (!LatchBlock) 1229 return 0; 1230 1231 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1232 assert(BI && "expected exit branch"); 1233 1234 return dyn_cast<ICmpInst>(BI->getCondition()); 1235 } 1236 1237 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1238 /// that the current exit test is already sufficiently canonical. 1239 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1240 // Do LFTR to simplify the exit condition to an ICMP. 1241 ICmpInst *Cond = getLoopTest(L); 1242 if (!Cond) 1243 return true; 1244 1245 // Do LFTR to simplify the exit ICMP to EQ/NE 1246 ICmpInst::Predicate Pred = Cond->getPredicate(); 1247 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1248 return true; 1249 1250 // Look for a loop invariant RHS 1251 Value *LHS = Cond->getOperand(0); 1252 Value *RHS = Cond->getOperand(1); 1253 if (!isLoopInvariant(RHS, L, DT)) { 1254 if (!isLoopInvariant(LHS, L, DT)) 1255 return true; 1256 std::swap(LHS, RHS); 1257 } 1258 // Look for a simple IV counter LHS 1259 PHINode *Phi = dyn_cast<PHINode>(LHS); 1260 if (!Phi) 1261 Phi = getLoopPhiForCounter(LHS, L, DT); 1262 1263 if (!Phi) 1264 return true; 1265 1266 // Do LFTR if PHI node is defined in the loop, but is *not* a counter. 1267 int Idx = Phi->getBasicBlockIndex(L->getLoopLatch()); 1268 if (Idx < 0) 1269 return true; 1270 1271 // Do LFTR if the exit condition's IV is *not* a simple counter. 1272 Value *IncV = Phi->getIncomingValue(Idx); 1273 return Phi != getLoopPhiForCounter(IncV, L, DT); 1274 } 1275 1276 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils 1277 /// down to checking that all operands are constant and listing instructions 1278 /// that may hide undef. 1279 static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited, 1280 unsigned Depth) { 1281 if (isa<Constant>(V)) 1282 return !isa<UndefValue>(V); 1283 1284 if (Depth >= 6) 1285 return false; 1286 1287 // Conservatively handle non-constant non-instructions. For example, Arguments 1288 // may be undef. 1289 Instruction *I = dyn_cast<Instruction>(V); 1290 if (!I) 1291 return false; 1292 1293 // Load and return values may be undef. 1294 if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I)) 1295 return false; 1296 1297 // Optimistically handle other instructions. 1298 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) { 1299 if (!Visited.insert(*OI)) 1300 continue; 1301 if (!hasConcreteDefImpl(*OI, Visited, Depth+1)) 1302 return false; 1303 } 1304 return true; 1305 } 1306 1307 /// Return true if the given value is concrete. We must prove that undef can 1308 /// never reach it. 1309 /// 1310 /// TODO: If we decide that this is a good approach to checking for undef, we 1311 /// may factor it into a common location. 1312 static bool hasConcreteDef(Value *V) { 1313 SmallPtrSet<Value*, 8> Visited; 1314 Visited.insert(V); 1315 return hasConcreteDefImpl(V, Visited, 0); 1316 } 1317 1318 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1319 /// be rewritten) loop exit test. 1320 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1321 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1322 Value *IncV = Phi->getIncomingValue(LatchIdx); 1323 1324 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end(); 1325 UI != UE; ++UI) { 1326 if (*UI != Cond && *UI != IncV) return false; 1327 } 1328 1329 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end(); 1330 UI != UE; ++UI) { 1331 if (*UI != Cond && *UI != Phi) return false; 1332 } 1333 return true; 1334 } 1335 1336 /// FindLoopCounter - Find an affine IV in canonical form. 1337 /// 1338 /// BECount may be an i8* pointer type. The pointer difference is already 1339 /// valid count without scaling the address stride, so it remains a pointer 1340 /// expression as far as SCEV is concerned. 1341 /// 1342 /// Currently only valid for LFTR. See the comments on hasConcreteDef below. 1343 /// 1344 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1345 /// 1346 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1347 /// This is difficult in general for SCEV because of potential overflow. But we 1348 /// could at least handle constant BECounts. 1349 static PHINode * 1350 FindLoopCounter(Loop *L, const SCEV *BECount, 1351 ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) { 1352 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1353 1354 Value *Cond = 1355 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1356 1357 // Loop over all of the PHI nodes, looking for a simple counter. 1358 PHINode *BestPhi = 0; 1359 const SCEV *BestInit = 0; 1360 BasicBlock *LatchBlock = L->getLoopLatch(); 1361 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1362 1363 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1364 PHINode *Phi = cast<PHINode>(I); 1365 if (!SE->isSCEVable(Phi->getType())) 1366 continue; 1367 1368 // Avoid comparing an integer IV against a pointer Limit. 1369 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1370 continue; 1371 1372 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1373 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1374 continue; 1375 1376 // AR may be a pointer type, while BECount is an integer type. 1377 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1378 // AR may not be a narrower type, or we may never exit. 1379 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1380 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth))) 1381 continue; 1382 1383 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1384 if (!Step || !Step->isOne()) 1385 continue; 1386 1387 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1388 Value *IncV = Phi->getIncomingValue(LatchIdx); 1389 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1390 continue; 1391 1392 // Avoid reusing a potentially undef value to compute other values that may 1393 // have originally had a concrete definition. 1394 if (!hasConcreteDef(Phi)) { 1395 // We explicitly allow unknown phis as long as they are already used by 1396 // the loop test. In this case we assume that performing LFTR could not 1397 // increase the number of undef users. 1398 if (ICmpInst *Cond = getLoopTest(L)) { 1399 if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) 1400 && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) { 1401 continue; 1402 } 1403 } 1404 } 1405 const SCEV *Init = AR->getStart(); 1406 1407 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1408 // Don't force a live loop counter if another IV can be used. 1409 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1410 continue; 1411 1412 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1413 // also prefers integer to pointer IVs. 1414 if (BestInit->isZero() != Init->isZero()) { 1415 if (BestInit->isZero()) 1416 continue; 1417 } 1418 // If two IVs both count from zero or both count from nonzero then the 1419 // narrower is likely a dead phi that has been widened. Use the wider phi 1420 // to allow the other to be eliminated. 1421 else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1422 continue; 1423 } 1424 BestPhi = Phi; 1425 BestInit = Init; 1426 } 1427 return BestPhi; 1428 } 1429 1430 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1431 /// holds the RHS of the new loop test. 1432 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1433 SCEVExpander &Rewriter, ScalarEvolution *SE, 1434 Type *IntPtrTy) { 1435 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1436 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1437 const SCEV *IVInit = AR->getStart(); 1438 1439 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1440 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1441 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1442 // the existing GEPs whenever possible. 1443 if (IndVar->getType()->isPointerTy() 1444 && !IVCount->getType()->isPointerTy()) { 1445 1446 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1447 const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy); 1448 1449 // Expand the code for the iteration count. 1450 assert(SE->isLoopInvariant(IVOffset, L) && 1451 "Computed iteration count is not loop invariant!"); 1452 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1453 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1454 1455 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1456 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1457 // We could handle pointer IVs other than i8*, but we need to compensate for 1458 // gep index scaling. See canExpandBackedgeTakenCount comments. 1459 assert(SE->getSizeOfExpr( 1460 cast<PointerType>(GEPBase->getType())->getElementType(), 1461 IntPtrTy)->isOne() 1462 && "unit stride pointer IV must be i8*"); 1463 1464 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1465 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit"); 1466 } 1467 else { 1468 // In any other case, convert both IVInit and IVCount to integers before 1469 // comparing. This may result in SCEV expension of pointers, but in practice 1470 // SCEV will fold the pointer arithmetic away as such: 1471 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1472 // 1473 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1474 // for simple memset-style loops; (3) IVInit is an integer and IVCount is a 1475 // pointer may occur when enable-iv-rewrite generates a canonical IV on top 1476 // of case #2. 1477 1478 const SCEV *IVLimit = 0; 1479 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1480 // For non-zero Start, compute IVCount here. 1481 if (AR->getStart()->isZero()) 1482 IVLimit = IVCount; 1483 else { 1484 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1485 const SCEV *IVInit = AR->getStart(); 1486 1487 // For integer IVs, truncate the IV before computing IVInit + BECount. 1488 if (SE->getTypeSizeInBits(IVInit->getType()) 1489 > SE->getTypeSizeInBits(IVCount->getType())) 1490 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1491 1492 IVLimit = SE->getAddExpr(IVInit, IVCount); 1493 } 1494 // Expand the code for the iteration count. 1495 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1496 IRBuilder<> Builder(BI); 1497 assert(SE->isLoopInvariant(IVLimit, L) && 1498 "Computed iteration count is not loop invariant!"); 1499 // Ensure that we generate the same type as IndVar, or a smaller integer 1500 // type. In the presence of null pointer values, we have an integer type 1501 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1502 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1503 IndVar->getType() : IVCount->getType(); 1504 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1505 } 1506 } 1507 1508 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1509 /// loop to be a canonical != comparison against the incremented loop induction 1510 /// variable. This pass is able to rewrite the exit tests of any loop where the 1511 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1512 /// is actually a much broader range than just linear tests. 1513 Value *IndVarSimplify:: 1514 LinearFunctionTestReplace(Loop *L, 1515 const SCEV *BackedgeTakenCount, 1516 PHINode *IndVar, 1517 SCEVExpander &Rewriter) { 1518 assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); 1519 1520 // LFTR can ignore IV overflow and truncate to the width of 1521 // BECount. This avoids materializing the add(zext(add)) expression. 1522 Type *CntTy = BackedgeTakenCount->getType(); 1523 1524 const SCEV *IVCount = BackedgeTakenCount; 1525 1526 // If the exiting block is the same as the backedge block, we prefer to 1527 // compare against the post-incremented value, otherwise we must compare 1528 // against the preincremented value. 1529 Value *CmpIndVar; 1530 if (L->getExitingBlock() == L->getLoopLatch()) { 1531 // Add one to the "backedge-taken" count to get the trip count. 1532 // If this addition may overflow, we have to be more pessimistic and 1533 // cast the induction variable before doing the add. 1534 const SCEV *N = 1535 SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1)); 1536 if (CntTy == IVCount->getType()) 1537 IVCount = N; 1538 else { 1539 const SCEV *Zero = SE->getConstant(IVCount->getType(), 0); 1540 if ((isa<SCEVConstant>(N) && !N->isZero()) || 1541 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { 1542 // No overflow. Cast the sum. 1543 IVCount = SE->getTruncateOrZeroExtend(N, CntTy); 1544 } else { 1545 // Potential overflow. Cast before doing the add. 1546 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); 1547 IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1)); 1548 } 1549 } 1550 // The BackedgeTaken expression contains the number of times that the 1551 // backedge branches to the loop header. This is one less than the 1552 // number of times the loop executes, so use the incremented indvar. 1553 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1554 } else { 1555 // We must use the preincremented value... 1556 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); 1557 CmpIndVar = IndVar; 1558 } 1559 1560 Type *IntPtrTy = TD ? TD->getIntPtrType(IndVar->getType()) : 1561 IntegerType::getInt64Ty(IndVar->getContext()); 1562 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE, IntPtrTy); 1563 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1564 && "genLoopLimit missed a cast"); 1565 1566 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1567 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1568 ICmpInst::Predicate P; 1569 if (L->contains(BI->getSuccessor(0))) 1570 P = ICmpInst::ICMP_NE; 1571 else 1572 P = ICmpInst::ICMP_EQ; 1573 1574 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1575 << " LHS:" << *CmpIndVar << '\n' 1576 << " op:\t" 1577 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1578 << " RHS:\t" << *ExitCnt << "\n" 1579 << " IVCount:\t" << *IVCount << "\n"); 1580 1581 IRBuilder<> Builder(BI); 1582 if (SE->getTypeSizeInBits(CmpIndVar->getType()) 1583 > SE->getTypeSizeInBits(ExitCnt->getType())) { 1584 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1585 "lftr.wideiv"); 1586 } 1587 1588 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1589 Value *OrigCond = BI->getCondition(); 1590 // It's tempting to use replaceAllUsesWith here to fully replace the old 1591 // comparison, but that's not immediately safe, since users of the old 1592 // comparison may not be dominated by the new comparison. Instead, just 1593 // update the branch to use the new comparison; in the common case this 1594 // will make old comparison dead. 1595 BI->setCondition(Cond); 1596 DeadInsts.push_back(OrigCond); 1597 1598 ++NumLFTR; 1599 Changed = true; 1600 return Cond; 1601 } 1602 1603 //===----------------------------------------------------------------------===// 1604 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1605 //===----------------------------------------------------------------------===// 1606 1607 /// If there's a single exit block, sink any loop-invariant values that 1608 /// were defined in the preheader but not used inside the loop into the 1609 /// exit block to reduce register pressure in the loop. 1610 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1611 BasicBlock *ExitBlock = L->getExitBlock(); 1612 if (!ExitBlock) return; 1613 1614 BasicBlock *Preheader = L->getLoopPreheader(); 1615 if (!Preheader) return; 1616 1617 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1618 BasicBlock::iterator I = Preheader->getTerminator(); 1619 while (I != Preheader->begin()) { 1620 --I; 1621 // New instructions were inserted at the end of the preheader. 1622 if (isa<PHINode>(I)) 1623 break; 1624 1625 // Don't move instructions which might have side effects, since the side 1626 // effects need to complete before instructions inside the loop. Also don't 1627 // move instructions which might read memory, since the loop may modify 1628 // memory. Note that it's okay if the instruction might have undefined 1629 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1630 // block. 1631 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1632 continue; 1633 1634 // Skip debug info intrinsics. 1635 if (isa<DbgInfoIntrinsic>(I)) 1636 continue; 1637 1638 // Skip landingpad instructions. 1639 if (isa<LandingPadInst>(I)) 1640 continue; 1641 1642 // Don't sink alloca: we never want to sink static alloca's out of the 1643 // entry block, and correctly sinking dynamic alloca's requires 1644 // checks for stacksave/stackrestore intrinsics. 1645 // FIXME: Refactor this check somehow? 1646 if (isa<AllocaInst>(I)) 1647 continue; 1648 1649 // Determine if there is a use in or before the loop (direct or 1650 // otherwise). 1651 bool UsedInLoop = false; 1652 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 1653 UI != UE; ++UI) { 1654 User *U = *UI; 1655 BasicBlock *UseBB = cast<Instruction>(U)->getParent(); 1656 if (PHINode *P = dyn_cast<PHINode>(U)) { 1657 unsigned i = 1658 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); 1659 UseBB = P->getIncomingBlock(i); 1660 } 1661 if (UseBB == Preheader || L->contains(UseBB)) { 1662 UsedInLoop = true; 1663 break; 1664 } 1665 } 1666 1667 // If there is, the def must remain in the preheader. 1668 if (UsedInLoop) 1669 continue; 1670 1671 // Otherwise, sink it to the exit block. 1672 Instruction *ToMove = I; 1673 bool Done = false; 1674 1675 if (I != Preheader->begin()) { 1676 // Skip debug info intrinsics. 1677 do { 1678 --I; 1679 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1680 1681 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1682 Done = true; 1683 } else { 1684 Done = true; 1685 } 1686 1687 ToMove->moveBefore(InsertPt); 1688 if (Done) break; 1689 InsertPt = ToMove; 1690 } 1691 } 1692 1693 //===----------------------------------------------------------------------===// 1694 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1695 //===----------------------------------------------------------------------===// 1696 1697 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1698 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1699 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1700 // canonicalization can be a pessimization without LSR to "clean up" 1701 // afterwards. 1702 // - We depend on having a preheader; in particular, 1703 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1704 // and we're in trouble if we can't find the induction variable even when 1705 // we've manually inserted one. 1706 if (!L->isLoopSimplifyForm()) 1707 return false; 1708 1709 LI = &getAnalysis<LoopInfo>(); 1710 SE = &getAnalysis<ScalarEvolution>(); 1711 DT = &getAnalysis<DominatorTree>(); 1712 TD = getAnalysisIfAvailable<DataLayout>(); 1713 TLI = getAnalysisIfAvailable<TargetLibraryInfo>(); 1714 1715 DeadInsts.clear(); 1716 Changed = false; 1717 1718 // If there are any floating-point recurrences, attempt to 1719 // transform them to use integer recurrences. 1720 RewriteNonIntegerIVs(L); 1721 1722 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1723 1724 // Create a rewriter object which we'll use to transform the code with. 1725 SCEVExpander Rewriter(*SE, "indvars"); 1726 #ifndef NDEBUG 1727 Rewriter.setDebugType(DEBUG_TYPE); 1728 #endif 1729 1730 // Eliminate redundant IV users. 1731 // 1732 // Simplification works best when run before other consumers of SCEV. We 1733 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1734 // other expressions involving loop IVs have been evaluated. This helps SCEV 1735 // set no-wrap flags before normalizing sign/zero extension. 1736 Rewriter.disableCanonicalMode(); 1737 SimplifyAndExtend(L, Rewriter, LPM); 1738 1739 // Check to see if this loop has a computable loop-invariant execution count. 1740 // If so, this means that we can compute the final value of any expressions 1741 // that are recurrent in the loop, and substitute the exit values from the 1742 // loop into any instructions outside of the loop that use the final values of 1743 // the current expressions. 1744 // 1745 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1746 RewriteLoopExitValues(L, Rewriter); 1747 1748 // Eliminate redundant IV cycles. 1749 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1750 1751 // If we have a trip count expression, rewrite the loop's exit condition 1752 // using it. We can currently only handle loops with a single exit. 1753 if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) { 1754 PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); 1755 if (IndVar) { 1756 // Check preconditions for proper SCEVExpander operation. SCEV does not 1757 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 1758 // pass that uses the SCEVExpander must do it. This does not work well for 1759 // loop passes because SCEVExpander makes assumptions about all loops, while 1760 // LoopPassManager only forces the current loop to be simplified. 1761 // 1762 // FIXME: SCEV expansion has no way to bail out, so the caller must 1763 // explicitly check any assumptions made by SCEV. Brittle. 1764 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 1765 if (!AR || AR->getLoop()->getLoopPreheader()) 1766 (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, 1767 Rewriter); 1768 } 1769 } 1770 // Clear the rewriter cache, because values that are in the rewriter's cache 1771 // can be deleted in the loop below, causing the AssertingVH in the cache to 1772 // trigger. 1773 Rewriter.clear(); 1774 1775 // Now that we're done iterating through lists, clean up any instructions 1776 // which are now dead. 1777 while (!DeadInsts.empty()) 1778 if (Instruction *Inst = 1779 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 1780 RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI); 1781 1782 // The Rewriter may not be used from this point on. 1783 1784 // Loop-invariant instructions in the preheader that aren't used in the 1785 // loop may be sunk below the loop to reduce register pressure. 1786 SinkUnusedInvariants(L); 1787 1788 // Clean up dead instructions. 1789 Changed |= DeleteDeadPHIs(L->getHeader(), TLI); 1790 // Check a post-condition. 1791 assert(L->isLCSSAForm(*DT) && 1792 "Indvars did not leave the loop in lcssa form!"); 1793 1794 // Verify that LFTR, and any other change have not interfered with SCEV's 1795 // ability to compute trip count. 1796 #ifndef NDEBUG 1797 if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1798 SE->forgetLoop(L); 1799 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1800 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1801 SE->getTypeSizeInBits(NewBECount->getType())) 1802 NewBECount = SE->getTruncateOrNoop(NewBECount, 1803 BackedgeTakenCount->getType()); 1804 else 1805 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1806 NewBECount->getType()); 1807 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 1808 } 1809 #endif 1810 1811 return Changed; 1812 } 1813