xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 12d9127833b08733090eabb2b55d1184db8da395)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #define DEBUG_TYPE "indvars"
28 #include "llvm/Transforms/Scalar.h"
29 #include "llvm/BasicBlock.h"
30 #include "llvm/Constants.h"
31 #include "llvm/Instructions.h"
32 #include "llvm/IntrinsicInst.h"
33 #include "llvm/LLVMContext.h"
34 #include "llvm/Type.h"
35 #include "llvm/Analysis/Dominators.h"
36 #include "llvm/Analysis/ScalarEvolutionExpander.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Support/CFG.h"
40 #include "llvm/Support/CommandLine.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/raw_ostream.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
46 #include "llvm/DataLayout.h"
47 #include "llvm/Target/TargetLibraryInfo.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 using namespace llvm;
52 
53 STATISTIC(NumWidened     , "Number of indvars widened");
54 STATISTIC(NumReplaced    , "Number of exit values replaced");
55 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
56 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
57 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
58 
59 // Trip count verification can be enabled by default under NDEBUG if we
60 // implement a strong expression equivalence checker in SCEV. Until then, we
61 // use the verify-indvars flag, which may assert in some cases.
62 static cl::opt<bool> VerifyIndvars(
63   "verify-indvars", cl::Hidden,
64   cl::desc("Verify the ScalarEvolution result after running indvars"));
65 
66 namespace {
67   class IndVarSimplify : public LoopPass {
68     LoopInfo        *LI;
69     ScalarEvolution *SE;
70     DominatorTree   *DT;
71     DataLayout      *TD;
72     TargetLibraryInfo *TLI;
73 
74     SmallVector<WeakVH, 16> DeadInsts;
75     bool Changed;
76   public:
77 
78     static char ID; // Pass identification, replacement for typeid
79     IndVarSimplify() : LoopPass(ID), LI(0), SE(0), DT(0), TD(0),
80                        Changed(false) {
81       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
82     }
83 
84     virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
85 
86     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
87       AU.addRequired<DominatorTree>();
88       AU.addRequired<LoopInfo>();
89       AU.addRequired<ScalarEvolution>();
90       AU.addRequiredID(LoopSimplifyID);
91       AU.addRequiredID(LCSSAID);
92       AU.addPreserved<ScalarEvolution>();
93       AU.addPreservedID(LoopSimplifyID);
94       AU.addPreservedID(LCSSAID);
95       AU.setPreservesCFG();
96     }
97 
98   private:
99     virtual void releaseMemory() {
100       DeadInsts.clear();
101     }
102 
103     bool isValidRewrite(Value *FromVal, Value *ToVal);
104 
105     void HandleFloatingPointIV(Loop *L, PHINode *PH);
106     void RewriteNonIntegerIVs(Loop *L);
107 
108     void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
109 
110     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
111 
112     Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
113                                      PHINode *IndVar, SCEVExpander &Rewriter);
114 
115     void SinkUnusedInvariants(Loop *L);
116   };
117 }
118 
119 char IndVarSimplify::ID = 0;
120 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
121                 "Induction Variable Simplification", false, false)
122 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
123 INITIALIZE_PASS_DEPENDENCY(LoopInfo)
124 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
125 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
126 INITIALIZE_PASS_DEPENDENCY(LCSSA)
127 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
128                 "Induction Variable Simplification", false, false)
129 
130 Pass *llvm::createIndVarSimplifyPass() {
131   return new IndVarSimplify();
132 }
133 
134 /// isValidRewrite - Return true if the SCEV expansion generated by the
135 /// rewriter can replace the original value. SCEV guarantees that it
136 /// produces the same value, but the way it is produced may be illegal IR.
137 /// Ideally, this function will only be called for verification.
138 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
139   // If an SCEV expression subsumed multiple pointers, its expansion could
140   // reassociate the GEP changing the base pointer. This is illegal because the
141   // final address produced by a GEP chain must be inbounds relative to its
142   // underlying object. Otherwise basic alias analysis, among other things,
143   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
144   // producing an expression involving multiple pointers. Until then, we must
145   // bail out here.
146   //
147   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
148   // because it understands lcssa phis while SCEV does not.
149   Value *FromPtr = FromVal;
150   Value *ToPtr = ToVal;
151   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
152     FromPtr = GEP->getPointerOperand();
153   }
154   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
155     ToPtr = GEP->getPointerOperand();
156   }
157   if (FromPtr != FromVal || ToPtr != ToVal) {
158     // Quickly check the common case
159     if (FromPtr == ToPtr)
160       return true;
161 
162     // SCEV may have rewritten an expression that produces the GEP's pointer
163     // operand. That's ok as long as the pointer operand has the same base
164     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
165     // base of a recurrence. This handles the case in which SCEV expansion
166     // converts a pointer type recurrence into a nonrecurrent pointer base
167     // indexed by an integer recurrence.
168 
169     // If the GEP base pointer is a vector of pointers, abort.
170     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
171       return false;
172 
173     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
174     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
175     if (FromBase == ToBase)
176       return true;
177 
178     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
179           << *FromBase << " != " << *ToBase << "\n");
180 
181     return false;
182   }
183   return true;
184 }
185 
186 /// Determine the insertion point for this user. By default, insert immediately
187 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
188 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
189 /// common dominator for the incoming blocks.
190 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
191                                           DominatorTree *DT) {
192   PHINode *PHI = dyn_cast<PHINode>(User);
193   if (!PHI)
194     return User;
195 
196   Instruction *InsertPt = 0;
197   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
198     if (PHI->getIncomingValue(i) != Def)
199       continue;
200 
201     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
202     if (!InsertPt) {
203       InsertPt = InsertBB->getTerminator();
204       continue;
205     }
206     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
207     InsertPt = InsertBB->getTerminator();
208   }
209   assert(InsertPt && "Missing phi operand");
210   assert((!isa<Instruction>(Def) ||
211           DT->dominates(cast<Instruction>(Def), InsertPt)) &&
212          "def does not dominate all uses");
213   return InsertPt;
214 }
215 
216 //===----------------------------------------------------------------------===//
217 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
218 //===----------------------------------------------------------------------===//
219 
220 /// ConvertToSInt - Convert APF to an integer, if possible.
221 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
222   bool isExact = false;
223   if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
224     return false;
225   // See if we can convert this to an int64_t
226   uint64_t UIntVal;
227   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
228                            &isExact) != APFloat::opOK || !isExact)
229     return false;
230   IntVal = UIntVal;
231   return true;
232 }
233 
234 /// HandleFloatingPointIV - If the loop has floating induction variable
235 /// then insert corresponding integer induction variable if possible.
236 /// For example,
237 /// for(double i = 0; i < 10000; ++i)
238 ///   bar(i)
239 /// is converted into
240 /// for(int i = 0; i < 10000; ++i)
241 ///   bar((double)i);
242 ///
243 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
244   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
245   unsigned BackEdge     = IncomingEdge^1;
246 
247   // Check incoming value.
248   ConstantFP *InitValueVal =
249     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
250 
251   int64_t InitValue;
252   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
253     return;
254 
255   // Check IV increment. Reject this PN if increment operation is not
256   // an add or increment value can not be represented by an integer.
257   BinaryOperator *Incr =
258     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
259   if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return;
260 
261   // If this is not an add of the PHI with a constantfp, or if the constant fp
262   // is not an integer, bail out.
263   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
264   int64_t IncValue;
265   if (IncValueVal == 0 || Incr->getOperand(0) != PN ||
266       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
267     return;
268 
269   // Check Incr uses. One user is PN and the other user is an exit condition
270   // used by the conditional terminator.
271   Value::use_iterator IncrUse = Incr->use_begin();
272   Instruction *U1 = cast<Instruction>(*IncrUse++);
273   if (IncrUse == Incr->use_end()) return;
274   Instruction *U2 = cast<Instruction>(*IncrUse++);
275   if (IncrUse != Incr->use_end()) return;
276 
277   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
278   // only used by a branch, we can't transform it.
279   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
280   if (!Compare)
281     Compare = dyn_cast<FCmpInst>(U2);
282   if (Compare == 0 || !Compare->hasOneUse() ||
283       !isa<BranchInst>(Compare->use_back()))
284     return;
285 
286   BranchInst *TheBr = cast<BranchInst>(Compare->use_back());
287 
288   // We need to verify that the branch actually controls the iteration count
289   // of the loop.  If not, the new IV can overflow and no one will notice.
290   // The branch block must be in the loop and one of the successors must be out
291   // of the loop.
292   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
293   if (!L->contains(TheBr->getParent()) ||
294       (L->contains(TheBr->getSuccessor(0)) &&
295        L->contains(TheBr->getSuccessor(1))))
296     return;
297 
298 
299   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
300   // transform it.
301   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
302   int64_t ExitValue;
303   if (ExitValueVal == 0 ||
304       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
305     return;
306 
307   // Find new predicate for integer comparison.
308   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
309   switch (Compare->getPredicate()) {
310   default: return;  // Unknown comparison.
311   case CmpInst::FCMP_OEQ:
312   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
313   case CmpInst::FCMP_ONE:
314   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
315   case CmpInst::FCMP_OGT:
316   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
317   case CmpInst::FCMP_OGE:
318   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
319   case CmpInst::FCMP_OLT:
320   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
321   case CmpInst::FCMP_OLE:
322   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
323   }
324 
325   // We convert the floating point induction variable to a signed i32 value if
326   // we can.  This is only safe if the comparison will not overflow in a way
327   // that won't be trapped by the integer equivalent operations.  Check for this
328   // now.
329   // TODO: We could use i64 if it is native and the range requires it.
330 
331   // The start/stride/exit values must all fit in signed i32.
332   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
333     return;
334 
335   // If not actually striding (add x, 0.0), avoid touching the code.
336   if (IncValue == 0)
337     return;
338 
339   // Positive and negative strides have different safety conditions.
340   if (IncValue > 0) {
341     // If we have a positive stride, we require the init to be less than the
342     // exit value.
343     if (InitValue >= ExitValue)
344       return;
345 
346     uint32_t Range = uint32_t(ExitValue-InitValue);
347     // Check for infinite loop, either:
348     // while (i <= Exit) or until (i > Exit)
349     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
350       if (++Range == 0) return;  // Range overflows.
351     }
352 
353     unsigned Leftover = Range % uint32_t(IncValue);
354 
355     // If this is an equality comparison, we require that the strided value
356     // exactly land on the exit value, otherwise the IV condition will wrap
357     // around and do things the fp IV wouldn't.
358     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
359         Leftover != 0)
360       return;
361 
362     // If the stride would wrap around the i32 before exiting, we can't
363     // transform the IV.
364     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
365       return;
366 
367   } else {
368     // If we have a negative stride, we require the init to be greater than the
369     // exit value.
370     if (InitValue <= ExitValue)
371       return;
372 
373     uint32_t Range = uint32_t(InitValue-ExitValue);
374     // Check for infinite loop, either:
375     // while (i >= Exit) or until (i < Exit)
376     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
377       if (++Range == 0) return;  // Range overflows.
378     }
379 
380     unsigned Leftover = Range % uint32_t(-IncValue);
381 
382     // If this is an equality comparison, we require that the strided value
383     // exactly land on the exit value, otherwise the IV condition will wrap
384     // around and do things the fp IV wouldn't.
385     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
386         Leftover != 0)
387       return;
388 
389     // If the stride would wrap around the i32 before exiting, we can't
390     // transform the IV.
391     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
392       return;
393   }
394 
395   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
396 
397   // Insert new integer induction variable.
398   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
399   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
400                       PN->getIncomingBlock(IncomingEdge));
401 
402   Value *NewAdd =
403     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
404                               Incr->getName()+".int", Incr);
405   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
406 
407   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
408                                       ConstantInt::get(Int32Ty, ExitValue),
409                                       Compare->getName());
410 
411   // In the following deletions, PN may become dead and may be deleted.
412   // Use a WeakVH to observe whether this happens.
413   WeakVH WeakPH = PN;
414 
415   // Delete the old floating point exit comparison.  The branch starts using the
416   // new comparison.
417   NewCompare->takeName(Compare);
418   Compare->replaceAllUsesWith(NewCompare);
419   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
420 
421   // Delete the old floating point increment.
422   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
423   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
424 
425   // If the FP induction variable still has uses, this is because something else
426   // in the loop uses its value.  In order to canonicalize the induction
427   // variable, we chose to eliminate the IV and rewrite it in terms of an
428   // int->fp cast.
429   //
430   // We give preference to sitofp over uitofp because it is faster on most
431   // platforms.
432   if (WeakPH) {
433     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
434                                  PN->getParent()->getFirstInsertionPt());
435     PN->replaceAllUsesWith(Conv);
436     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
437   }
438   Changed = true;
439 }
440 
441 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
442   // First step.  Check to see if there are any floating-point recurrences.
443   // If there are, change them into integer recurrences, permitting analysis by
444   // the SCEV routines.
445   //
446   BasicBlock *Header = L->getHeader();
447 
448   SmallVector<WeakVH, 8> PHIs;
449   for (BasicBlock::iterator I = Header->begin();
450        PHINode *PN = dyn_cast<PHINode>(I); ++I)
451     PHIs.push_back(PN);
452 
453   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
454     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
455       HandleFloatingPointIV(L, PN);
456 
457   // If the loop previously had floating-point IV, ScalarEvolution
458   // may not have been able to compute a trip count. Now that we've done some
459   // re-writing, the trip count may be computable.
460   if (Changed)
461     SE->forgetLoop(L);
462 }
463 
464 //===----------------------------------------------------------------------===//
465 // RewriteLoopExitValues - Optimize IV users outside the loop.
466 // As a side effect, reduces the amount of IV processing within the loop.
467 //===----------------------------------------------------------------------===//
468 
469 /// RewriteLoopExitValues - Check to see if this loop has a computable
470 /// loop-invariant execution count.  If so, this means that we can compute the
471 /// final value of any expressions that are recurrent in the loop, and
472 /// substitute the exit values from the loop into any instructions outside of
473 /// the loop that use the final values of the current expressions.
474 ///
475 /// This is mostly redundant with the regular IndVarSimplify activities that
476 /// happen later, except that it's more powerful in some cases, because it's
477 /// able to brute-force evaluate arbitrary instructions as long as they have
478 /// constant operands at the beginning of the loop.
479 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
480   // Verify the input to the pass in already in LCSSA form.
481   assert(L->isLCSSAForm(*DT));
482 
483   SmallVector<BasicBlock*, 8> ExitBlocks;
484   L->getUniqueExitBlocks(ExitBlocks);
485 
486   // Find all values that are computed inside the loop, but used outside of it.
487   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
488   // the exit blocks of the loop to find them.
489   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
490     BasicBlock *ExitBB = ExitBlocks[i];
491 
492     // If there are no PHI nodes in this exit block, then no values defined
493     // inside the loop are used on this path, skip it.
494     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
495     if (!PN) continue;
496 
497     unsigned NumPreds = PN->getNumIncomingValues();
498 
499     // Iterate over all of the PHI nodes.
500     BasicBlock::iterator BBI = ExitBB->begin();
501     while ((PN = dyn_cast<PHINode>(BBI++))) {
502       if (PN->use_empty())
503         continue; // dead use, don't replace it
504 
505       // SCEV only supports integer expressions for now.
506       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
507         continue;
508 
509       // It's necessary to tell ScalarEvolution about this explicitly so that
510       // it can walk the def-use list and forget all SCEVs, as it may not be
511       // watching the PHI itself. Once the new exit value is in place, there
512       // may not be a def-use connection between the loop and every instruction
513       // which got a SCEVAddRecExpr for that loop.
514       SE->forgetValue(PN);
515 
516       // Iterate over all of the values in all the PHI nodes.
517       for (unsigned i = 0; i != NumPreds; ++i) {
518         // If the value being merged in is not integer or is not defined
519         // in the loop, skip it.
520         Value *InVal = PN->getIncomingValue(i);
521         if (!isa<Instruction>(InVal))
522           continue;
523 
524         // If this pred is for a subloop, not L itself, skip it.
525         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
526           continue; // The Block is in a subloop, skip it.
527 
528         // Check that InVal is defined in the loop.
529         Instruction *Inst = cast<Instruction>(InVal);
530         if (!L->contains(Inst))
531           continue;
532 
533         // Okay, this instruction has a user outside of the current loop
534         // and varies predictably *inside* the loop.  Evaluate the value it
535         // contains when the loop exits, if possible.
536         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
537         if (!SE->isLoopInvariant(ExitValue, L))
538           continue;
539 
540         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
541 
542         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
543                      << "  LoopVal = " << *Inst << "\n");
544 
545         if (!isValidRewrite(Inst, ExitVal)) {
546           DeadInsts.push_back(ExitVal);
547           continue;
548         }
549         Changed = true;
550         ++NumReplaced;
551 
552         PN->setIncomingValue(i, ExitVal);
553 
554         // If this instruction is dead now, delete it. Don't do it now to avoid
555         // invalidating iterators.
556         if (isInstructionTriviallyDead(Inst, TLI))
557           DeadInsts.push_back(Inst);
558 
559         if (NumPreds == 1) {
560           // Completely replace a single-pred PHI. This is safe, because the
561           // NewVal won't be variant in the loop, so we don't need an LCSSA phi
562           // node anymore.
563           PN->replaceAllUsesWith(ExitVal);
564           PN->eraseFromParent();
565         }
566       }
567       if (NumPreds != 1) {
568         // Clone the PHI and delete the original one. This lets IVUsers and
569         // any other maps purge the original user from their records.
570         PHINode *NewPN = cast<PHINode>(PN->clone());
571         NewPN->takeName(PN);
572         NewPN->insertBefore(PN);
573         PN->replaceAllUsesWith(NewPN);
574         PN->eraseFromParent();
575       }
576     }
577   }
578 
579   // The insertion point instruction may have been deleted; clear it out
580   // so that the rewriter doesn't trip over it later.
581   Rewriter.clearInsertPoint();
582 }
583 
584 //===----------------------------------------------------------------------===//
585 //  IV Widening - Extend the width of an IV to cover its widest uses.
586 //===----------------------------------------------------------------------===//
587 
588 namespace {
589   // Collect information about induction variables that are used by sign/zero
590   // extend operations. This information is recorded by CollectExtend and
591   // provides the input to WidenIV.
592   struct WideIVInfo {
593     PHINode *NarrowIV;
594     Type *WidestNativeType; // Widest integer type created [sz]ext
595     bool IsSigned;          // Was an sext user seen before a zext?
596 
597     WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {}
598   };
599 
600   class WideIVVisitor : public IVVisitor {
601     ScalarEvolution *SE;
602     const DataLayout *TD;
603 
604   public:
605     WideIVInfo WI;
606 
607     WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV,
608                   const DataLayout *TData) :
609       SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; }
610 
611     // Implement the interface used by simplifyUsersOfIV.
612     virtual void visitCast(CastInst *Cast);
613   };
614 }
615 
616 /// visitCast - Update information about the induction variable that is
617 /// extended by this sign or zero extend operation. This is used to determine
618 /// the final width of the IV before actually widening it.
619 void WideIVVisitor::visitCast(CastInst *Cast) {
620   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
621   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
622     return;
623 
624   Type *Ty = Cast->getType();
625   uint64_t Width = SE->getTypeSizeInBits(Ty);
626   if (TD && !TD->isLegalInteger(Width))
627     return;
628 
629   if (!WI.WidestNativeType) {
630     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
631     WI.IsSigned = IsSigned;
632     return;
633   }
634 
635   // We extend the IV to satisfy the sign of its first user, arbitrarily.
636   if (WI.IsSigned != IsSigned)
637     return;
638 
639   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
640     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
641 }
642 
643 namespace {
644 
645 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
646 /// WideIV that computes the same value as the Narrow IV def.  This avoids
647 /// caching Use* pointers.
648 struct NarrowIVDefUse {
649   Instruction *NarrowDef;
650   Instruction *NarrowUse;
651   Instruction *WideDef;
652 
653   NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {}
654 
655   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
656     NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
657 };
658 
659 /// WidenIV - The goal of this transform is to remove sign and zero extends
660 /// without creating any new induction variables. To do this, it creates a new
661 /// phi of the wider type and redirects all users, either removing extends or
662 /// inserting truncs whenever we stop propagating the type.
663 ///
664 class WidenIV {
665   // Parameters
666   PHINode *OrigPhi;
667   Type *WideType;
668   bool IsSigned;
669 
670   // Context
671   LoopInfo        *LI;
672   Loop            *L;
673   ScalarEvolution *SE;
674   DominatorTree   *DT;
675 
676   // Result
677   PHINode *WidePhi;
678   Instruction *WideInc;
679   const SCEV *WideIncExpr;
680   SmallVectorImpl<WeakVH> &DeadInsts;
681 
682   SmallPtrSet<Instruction*,16> Widened;
683   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
684 
685 public:
686   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
687           ScalarEvolution *SEv, DominatorTree *DTree,
688           SmallVectorImpl<WeakVH> &DI) :
689     OrigPhi(WI.NarrowIV),
690     WideType(WI.WidestNativeType),
691     IsSigned(WI.IsSigned),
692     LI(LInfo),
693     L(LI->getLoopFor(OrigPhi->getParent())),
694     SE(SEv),
695     DT(DTree),
696     WidePhi(0),
697     WideInc(0),
698     WideIncExpr(0),
699     DeadInsts(DI) {
700     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
701   }
702 
703   PHINode *CreateWideIV(SCEVExpander &Rewriter);
704 
705 protected:
706   Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
707                    Instruction *Use);
708 
709   Instruction *CloneIVUser(NarrowIVDefUse DU);
710 
711   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
712 
713   const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
714 
715   Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
716 
717   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
718 };
719 } // anonymous namespace
720 
721 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
722 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
723 /// gratuitous for this purpose.
724 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
725   Instruction *Inst = dyn_cast<Instruction>(V);
726   if (!Inst)
727     return true;
728 
729   return DT->properlyDominates(Inst->getParent(), L->getHeader());
730 }
731 
732 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
733                           Instruction *Use) {
734   // Set the debug location and conservative insertion point.
735   IRBuilder<> Builder(Use);
736   // Hoist the insertion point into loop preheaders as far as possible.
737   for (const Loop *L = LI->getLoopFor(Use->getParent());
738        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
739        L = L->getParentLoop())
740     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
741 
742   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
743                     Builder.CreateZExt(NarrowOper, WideType);
744 }
745 
746 /// CloneIVUser - Instantiate a wide operation to replace a narrow
747 /// operation. This only needs to handle operations that can evaluation to
748 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
749 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
750   unsigned Opcode = DU.NarrowUse->getOpcode();
751   switch (Opcode) {
752   default:
753     return 0;
754   case Instruction::Add:
755   case Instruction::Mul:
756   case Instruction::UDiv:
757   case Instruction::Sub:
758   case Instruction::And:
759   case Instruction::Or:
760   case Instruction::Xor:
761   case Instruction::Shl:
762   case Instruction::LShr:
763   case Instruction::AShr:
764     DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
765 
766     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
767     // anything about the narrow operand yet so must insert a [sz]ext. It is
768     // probably loop invariant and will be folded or hoisted. If it actually
769     // comes from a widened IV, it should be removed during a future call to
770     // WidenIVUse.
771     Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
772       getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
773     Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
774       getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
775 
776     BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
777     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
778                                                     LHS, RHS,
779                                                     NarrowBO->getName());
780     IRBuilder<> Builder(DU.NarrowUse);
781     Builder.Insert(WideBO);
782     if (const OverflowingBinaryOperator *OBO =
783         dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
784       if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
785       if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
786     }
787     return WideBO;
788   }
789 }
790 
791 /// No-wrap operations can transfer sign extension of their result to their
792 /// operands. Generate the SCEV value for the widened operation without
793 /// actually modifying the IR yet. If the expression after extending the
794 /// operands is an AddRec for this loop, return it.
795 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
796   // Handle the common case of add<nsw/nuw>
797   if (DU.NarrowUse->getOpcode() != Instruction::Add)
798     return 0;
799 
800   // One operand (NarrowDef) has already been extended to WideDef. Now determine
801   // if extending the other will lead to a recurrence.
802   unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
803   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
804 
805   const SCEV *ExtendOperExpr = 0;
806   const OverflowingBinaryOperator *OBO =
807     cast<OverflowingBinaryOperator>(DU.NarrowUse);
808   if (IsSigned && OBO->hasNoSignedWrap())
809     ExtendOperExpr = SE->getSignExtendExpr(
810       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
811   else if(!IsSigned && OBO->hasNoUnsignedWrap())
812     ExtendOperExpr = SE->getZeroExtendExpr(
813       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
814   else
815     return 0;
816 
817   // When creating this AddExpr, don't apply the current operations NSW or NUW
818   // flags. This instruction may be guarded by control flow that the no-wrap
819   // behavior depends on. Non-control-equivalent instructions can be mapped to
820   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
821   // semantics to those operations.
822   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(
823     SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr));
824 
825   if (!AddRec || AddRec->getLoop() != L)
826     return 0;
827   return AddRec;
828 }
829 
830 /// GetWideRecurrence - Is this instruction potentially interesting from
831 /// IVUsers' perspective after widening it's type? In other words, can the
832 /// extend be safely hoisted out of the loop with SCEV reducing the value to a
833 /// recurrence on the same loop. If so, return the sign or zero extended
834 /// recurrence. Otherwise return NULL.
835 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
836   if (!SE->isSCEVable(NarrowUse->getType()))
837     return 0;
838 
839   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
840   if (SE->getTypeSizeInBits(NarrowExpr->getType())
841       >= SE->getTypeSizeInBits(WideType)) {
842     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
843     // index. So don't follow this use.
844     return 0;
845   }
846 
847   const SCEV *WideExpr = IsSigned ?
848     SE->getSignExtendExpr(NarrowExpr, WideType) :
849     SE->getZeroExtendExpr(NarrowExpr, WideType);
850   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
851   if (!AddRec || AddRec->getLoop() != L)
852     return 0;
853   return AddRec;
854 }
855 
856 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
857 /// widened. If so, return the wide clone of the user.
858 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
859 
860   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
861   if (isa<PHINode>(DU.NarrowUse) &&
862       LI->getLoopFor(DU.NarrowUse->getParent()) != L)
863     return 0;
864 
865   // Our raison d'etre! Eliminate sign and zero extension.
866   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
867     Value *NewDef = DU.WideDef;
868     if (DU.NarrowUse->getType() != WideType) {
869       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
870       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
871       if (CastWidth < IVWidth) {
872         // The cast isn't as wide as the IV, so insert a Trunc.
873         IRBuilder<> Builder(DU.NarrowUse);
874         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
875       }
876       else {
877         // A wider extend was hidden behind a narrower one. This may induce
878         // another round of IV widening in which the intermediate IV becomes
879         // dead. It should be very rare.
880         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
881               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
882         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
883         NewDef = DU.NarrowUse;
884       }
885     }
886     if (NewDef != DU.NarrowUse) {
887       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
888             << " replaced by " << *DU.WideDef << "\n");
889       ++NumElimExt;
890       DU.NarrowUse->replaceAllUsesWith(NewDef);
891       DeadInsts.push_back(DU.NarrowUse);
892     }
893     // Now that the extend is gone, we want to expose it's uses for potential
894     // further simplification. We don't need to directly inform SimplifyIVUsers
895     // of the new users, because their parent IV will be processed later as a
896     // new loop phi. If we preserved IVUsers analysis, we would also want to
897     // push the uses of WideDef here.
898 
899     // No further widening is needed. The deceased [sz]ext had done it for us.
900     return 0;
901   }
902 
903   // Does this user itself evaluate to a recurrence after widening?
904   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
905   if (!WideAddRec) {
906       WideAddRec = GetExtendedOperandRecurrence(DU);
907   }
908   if (!WideAddRec) {
909     // This user does not evaluate to a recurence after widening, so don't
910     // follow it. Instead insert a Trunc to kill off the original use,
911     // eventually isolating the original narrow IV so it can be removed.
912     IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
913     Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
914     DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
915     return 0;
916   }
917   // Assume block terminators cannot evaluate to a recurrence. We can't to
918   // insert a Trunc after a terminator if there happens to be a critical edge.
919   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
920          "SCEV is not expected to evaluate a block terminator");
921 
922   // Reuse the IV increment that SCEVExpander created as long as it dominates
923   // NarrowUse.
924   Instruction *WideUse = 0;
925   if (WideAddRec == WideIncExpr
926       && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
927     WideUse = WideInc;
928   else {
929     WideUse = CloneIVUser(DU);
930     if (!WideUse)
931       return 0;
932   }
933   // Evaluation of WideAddRec ensured that the narrow expression could be
934   // extended outside the loop without overflow. This suggests that the wide use
935   // evaluates to the same expression as the extended narrow use, but doesn't
936   // absolutely guarantee it. Hence the following failsafe check. In rare cases
937   // where it fails, we simply throw away the newly created wide use.
938   if (WideAddRec != SE->getSCEV(WideUse)) {
939     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
940           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
941     DeadInsts.push_back(WideUse);
942     return 0;
943   }
944 
945   // Returning WideUse pushes it on the worklist.
946   return WideUse;
947 }
948 
949 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
950 ///
951 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
952   for (Value::use_iterator UI = NarrowDef->use_begin(),
953          UE = NarrowDef->use_end(); UI != UE; ++UI) {
954     Instruction *NarrowUse = cast<Instruction>(*UI);
955 
956     // Handle data flow merges and bizarre phi cycles.
957     if (!Widened.insert(NarrowUse))
958       continue;
959 
960     NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef));
961   }
962 }
963 
964 /// CreateWideIV - Process a single induction variable. First use the
965 /// SCEVExpander to create a wide induction variable that evaluates to the same
966 /// recurrence as the original narrow IV. Then use a worklist to forward
967 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
968 /// interesting IV users, the narrow IV will be isolated for removal by
969 /// DeleteDeadPHIs.
970 ///
971 /// It would be simpler to delete uses as they are processed, but we must avoid
972 /// invalidating SCEV expressions.
973 ///
974 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
975   // Is this phi an induction variable?
976   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
977   if (!AddRec)
978     return NULL;
979 
980   // Widen the induction variable expression.
981   const SCEV *WideIVExpr = IsSigned ?
982     SE->getSignExtendExpr(AddRec, WideType) :
983     SE->getZeroExtendExpr(AddRec, WideType);
984 
985   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
986          "Expect the new IV expression to preserve its type");
987 
988   // Can the IV be extended outside the loop without overflow?
989   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
990   if (!AddRec || AddRec->getLoop() != L)
991     return NULL;
992 
993   // An AddRec must have loop-invariant operands. Since this AddRec is
994   // materialized by a loop header phi, the expression cannot have any post-loop
995   // operands, so they must dominate the loop header.
996   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
997          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
998          && "Loop header phi recurrence inputs do not dominate the loop");
999 
1000   // The rewriter provides a value for the desired IV expression. This may
1001   // either find an existing phi or materialize a new one. Either way, we
1002   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1003   // of the phi-SCC dominates the loop entry.
1004   Instruction *InsertPt = L->getHeader()->begin();
1005   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1006 
1007   // Remembering the WideIV increment generated by SCEVExpander allows
1008   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
1009   // employ a general reuse mechanism because the call above is the only call to
1010   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1011   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1012     WideInc =
1013       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1014     WideIncExpr = SE->getSCEV(WideInc);
1015   }
1016 
1017   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1018   ++NumWidened;
1019 
1020   // Traverse the def-use chain using a worklist starting at the original IV.
1021   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1022 
1023   Widened.insert(OrigPhi);
1024   pushNarrowIVUsers(OrigPhi, WidePhi);
1025 
1026   while (!NarrowIVUsers.empty()) {
1027     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1028 
1029     // Process a def-use edge. This may replace the use, so don't hold a
1030     // use_iterator across it.
1031     Instruction *WideUse = WidenIVUse(DU, Rewriter);
1032 
1033     // Follow all def-use edges from the previous narrow use.
1034     if (WideUse)
1035       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1036 
1037     // WidenIVUse may have removed the def-use edge.
1038     if (DU.NarrowDef->use_empty())
1039       DeadInsts.push_back(DU.NarrowDef);
1040   }
1041   return WidePhi;
1042 }
1043 
1044 //===----------------------------------------------------------------------===//
1045 //  Simplification of IV users based on SCEV evaluation.
1046 //===----------------------------------------------------------------------===//
1047 
1048 
1049 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
1050 /// users. Each successive simplification may push more users which may
1051 /// themselves be candidates for simplification.
1052 ///
1053 /// Sign/Zero extend elimination is interleaved with IV simplification.
1054 ///
1055 void IndVarSimplify::SimplifyAndExtend(Loop *L,
1056                                        SCEVExpander &Rewriter,
1057                                        LPPassManager &LPM) {
1058   SmallVector<WideIVInfo, 8> WideIVs;
1059 
1060   SmallVector<PHINode*, 8> LoopPhis;
1061   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1062     LoopPhis.push_back(cast<PHINode>(I));
1063   }
1064   // Each round of simplification iterates through the SimplifyIVUsers worklist
1065   // for all current phis, then determines whether any IVs can be
1066   // widened. Widening adds new phis to LoopPhis, inducing another round of
1067   // simplification on the wide IVs.
1068   while (!LoopPhis.empty()) {
1069     // Evaluate as many IV expressions as possible before widening any IVs. This
1070     // forces SCEV to set no-wrap flags before evaluating sign/zero
1071     // extension. The first time SCEV attempts to normalize sign/zero extension,
1072     // the result becomes final. So for the most predictable results, we delay
1073     // evaluation of sign/zero extend evaluation until needed, and avoid running
1074     // other SCEV based analysis prior to SimplifyAndExtend.
1075     do {
1076       PHINode *CurrIV = LoopPhis.pop_back_val();
1077 
1078       // Information about sign/zero extensions of CurrIV.
1079       WideIVVisitor WIV(CurrIV, SE, TD);
1080 
1081       Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV);
1082 
1083       if (WIV.WI.WidestNativeType) {
1084         WideIVs.push_back(WIV.WI);
1085       }
1086     } while(!LoopPhis.empty());
1087 
1088     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1089       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1090       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
1091         Changed = true;
1092         LoopPhis.push_back(WidePhi);
1093       }
1094     }
1095   }
1096 }
1097 
1098 //===----------------------------------------------------------------------===//
1099 //  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1100 //===----------------------------------------------------------------------===//
1101 
1102 /// Check for expressions that ScalarEvolution generates to compute
1103 /// BackedgeTakenInfo. If these expressions have not been reduced, then
1104 /// expanding them may incur additional cost (albeit in the loop preheader).
1105 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI,
1106                                 SmallPtrSet<const SCEV*, 8> &Processed,
1107                                 ScalarEvolution *SE) {
1108   if (!Processed.insert(S))
1109     return false;
1110 
1111   // If the backedge-taken count is a UDiv, it's very likely a UDiv that
1112   // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a
1113   // precise expression, rather than a UDiv from the user's code. If we can't
1114   // find a UDiv in the code with some simple searching, assume the former and
1115   // forego rewriting the loop.
1116   if (isa<SCEVUDivExpr>(S)) {
1117     ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition());
1118     if (!OrigCond) return true;
1119     const SCEV *R = SE->getSCEV(OrigCond->getOperand(1));
1120     R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1));
1121     if (R != S) {
1122       const SCEV *L = SE->getSCEV(OrigCond->getOperand(0));
1123       L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1));
1124       if (L != S)
1125         return true;
1126     }
1127   }
1128 
1129   // Recurse past add expressions, which commonly occur in the
1130   // BackedgeTakenCount. They may already exist in program code, and if not,
1131   // they are not too expensive rematerialize.
1132   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
1133     for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end();
1134          I != E; ++I) {
1135       if (isHighCostExpansion(*I, BI, Processed, SE))
1136         return true;
1137     }
1138     return false;
1139   }
1140 
1141   // HowManyLessThans uses a Max expression whenever the loop is not guarded by
1142   // the exit condition.
1143   if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S))
1144     return true;
1145 
1146   // If we haven't recognized an expensive SCEV pattern, assume it's an
1147   // expression produced by program code.
1148   return false;
1149 }
1150 
1151 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
1152 /// count expression can be safely and cheaply expanded into an instruction
1153 /// sequence that can be used by LinearFunctionTestReplace.
1154 ///
1155 /// TODO: This fails for pointer-type loop counters with greater than one byte
1156 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1157 /// we could skip this check in the case that the LFTR loop counter (chosen by
1158 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1159 /// the loop test to an inequality test by checking the target data's alignment
1160 /// of element types (given that the initial pointer value originates from or is
1161 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1162 /// However, we don't yet have a strong motivation for converting loop tests
1163 /// into inequality tests.
1164 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) {
1165   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1166   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1167       BackedgeTakenCount->isZero())
1168     return false;
1169 
1170   if (!L->getExitingBlock())
1171     return false;
1172 
1173   // Can't rewrite non-branch yet.
1174   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1175   if (!BI)
1176     return false;
1177 
1178   SmallPtrSet<const SCEV*, 8> Processed;
1179   if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE))
1180     return false;
1181 
1182   return true;
1183 }
1184 
1185 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
1186 /// invariant value to the phi.
1187 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1188   Instruction *IncI = dyn_cast<Instruction>(IncV);
1189   if (!IncI)
1190     return 0;
1191 
1192   switch (IncI->getOpcode()) {
1193   case Instruction::Add:
1194   case Instruction::Sub:
1195     break;
1196   case Instruction::GetElementPtr:
1197     // An IV counter must preserve its type.
1198     if (IncI->getNumOperands() == 2)
1199       break;
1200   default:
1201     return 0;
1202   }
1203 
1204   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1205   if (Phi && Phi->getParent() == L->getHeader()) {
1206     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1207       return Phi;
1208     return 0;
1209   }
1210   if (IncI->getOpcode() == Instruction::GetElementPtr)
1211     return 0;
1212 
1213   // Allow add/sub to be commuted.
1214   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1215   if (Phi && Phi->getParent() == L->getHeader()) {
1216     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1217       return Phi;
1218   }
1219   return 0;
1220 }
1221 
1222 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1223 static ICmpInst *getLoopTest(Loop *L) {
1224   assert(L->getExitingBlock() && "expected loop exit");
1225 
1226   BasicBlock *LatchBlock = L->getLoopLatch();
1227   // Don't bother with LFTR if the loop is not properly simplified.
1228   if (!LatchBlock)
1229     return 0;
1230 
1231   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1232   assert(BI && "expected exit branch");
1233 
1234   return dyn_cast<ICmpInst>(BI->getCondition());
1235 }
1236 
1237 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
1238 /// that the current exit test is already sufficiently canonical.
1239 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1240   // Do LFTR to simplify the exit condition to an ICMP.
1241   ICmpInst *Cond = getLoopTest(L);
1242   if (!Cond)
1243     return true;
1244 
1245   // Do LFTR to simplify the exit ICMP to EQ/NE
1246   ICmpInst::Predicate Pred = Cond->getPredicate();
1247   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1248     return true;
1249 
1250   // Look for a loop invariant RHS
1251   Value *LHS = Cond->getOperand(0);
1252   Value *RHS = Cond->getOperand(1);
1253   if (!isLoopInvariant(RHS, L, DT)) {
1254     if (!isLoopInvariant(LHS, L, DT))
1255       return true;
1256     std::swap(LHS, RHS);
1257   }
1258   // Look for a simple IV counter LHS
1259   PHINode *Phi = dyn_cast<PHINode>(LHS);
1260   if (!Phi)
1261     Phi = getLoopPhiForCounter(LHS, L, DT);
1262 
1263   if (!Phi)
1264     return true;
1265 
1266   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1267   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1268   if (Idx < 0)
1269     return true;
1270 
1271   // Do LFTR if the exit condition's IV is *not* a simple counter.
1272   Value *IncV = Phi->getIncomingValue(Idx);
1273   return Phi != getLoopPhiForCounter(IncV, L, DT);
1274 }
1275 
1276 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1277 /// down to checking that all operands are constant and listing instructions
1278 /// that may hide undef.
1279 static bool hasConcreteDefImpl(Value *V, SmallPtrSet<Value*, 8> &Visited,
1280                                unsigned Depth) {
1281   if (isa<Constant>(V))
1282     return !isa<UndefValue>(V);
1283 
1284   if (Depth >= 6)
1285     return false;
1286 
1287   // Conservatively handle non-constant non-instructions. For example, Arguments
1288   // may be undef.
1289   Instruction *I = dyn_cast<Instruction>(V);
1290   if (!I)
1291     return false;
1292 
1293   // Load and return values may be undef.
1294   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1295     return false;
1296 
1297   // Optimistically handle other instructions.
1298   for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
1299     if (!Visited.insert(*OI))
1300       continue;
1301     if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
1302       return false;
1303   }
1304   return true;
1305 }
1306 
1307 /// Return true if the given value is concrete. We must prove that undef can
1308 /// never reach it.
1309 ///
1310 /// TODO: If we decide that this is a good approach to checking for undef, we
1311 /// may factor it into a common location.
1312 static bool hasConcreteDef(Value *V) {
1313   SmallPtrSet<Value*, 8> Visited;
1314   Visited.insert(V);
1315   return hasConcreteDefImpl(V, Visited, 0);
1316 }
1317 
1318 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
1319 /// be rewritten) loop exit test.
1320 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1321   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1322   Value *IncV = Phi->getIncomingValue(LatchIdx);
1323 
1324   for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end();
1325        UI != UE; ++UI) {
1326     if (*UI != Cond && *UI != IncV) return false;
1327   }
1328 
1329   for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end();
1330        UI != UE; ++UI) {
1331     if (*UI != Cond && *UI != Phi) return false;
1332   }
1333   return true;
1334 }
1335 
1336 /// FindLoopCounter - Find an affine IV in canonical form.
1337 ///
1338 /// BECount may be an i8* pointer type. The pointer difference is already
1339 /// valid count without scaling the address stride, so it remains a pointer
1340 /// expression as far as SCEV is concerned.
1341 ///
1342 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1343 ///
1344 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1345 ///
1346 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1347 /// This is difficult in general for SCEV because of potential overflow. But we
1348 /// could at least handle constant BECounts.
1349 static PHINode *
1350 FindLoopCounter(Loop *L, const SCEV *BECount,
1351                 ScalarEvolution *SE, DominatorTree *DT, const DataLayout *TD) {
1352   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1353 
1354   Value *Cond =
1355     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1356 
1357   // Loop over all of the PHI nodes, looking for a simple counter.
1358   PHINode *BestPhi = 0;
1359   const SCEV *BestInit = 0;
1360   BasicBlock *LatchBlock = L->getLoopLatch();
1361   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1362 
1363   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1364     PHINode *Phi = cast<PHINode>(I);
1365     if (!SE->isSCEVable(Phi->getType()))
1366       continue;
1367 
1368     // Avoid comparing an integer IV against a pointer Limit.
1369     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1370       continue;
1371 
1372     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1373     if (!AR || AR->getLoop() != L || !AR->isAffine())
1374       continue;
1375 
1376     // AR may be a pointer type, while BECount is an integer type.
1377     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1378     // AR may not be a narrower type, or we may never exit.
1379     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1380     if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth)))
1381       continue;
1382 
1383     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1384     if (!Step || !Step->isOne())
1385       continue;
1386 
1387     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1388     Value *IncV = Phi->getIncomingValue(LatchIdx);
1389     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1390       continue;
1391 
1392     // Avoid reusing a potentially undef value to compute other values that may
1393     // have originally had a concrete definition.
1394     if (!hasConcreteDef(Phi)) {
1395       // We explicitly allow unknown phis as long as they are already used by
1396       // the loop test. In this case we assume that performing LFTR could not
1397       // increase the number of undef users.
1398       if (ICmpInst *Cond = getLoopTest(L)) {
1399         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
1400             && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1401           continue;
1402         }
1403       }
1404     }
1405     const SCEV *Init = AR->getStart();
1406 
1407     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1408       // Don't force a live loop counter if another IV can be used.
1409       if (AlmostDeadIV(Phi, LatchBlock, Cond))
1410         continue;
1411 
1412       // Prefer to count-from-zero. This is a more "canonical" counter form. It
1413       // also prefers integer to pointer IVs.
1414       if (BestInit->isZero() != Init->isZero()) {
1415         if (BestInit->isZero())
1416           continue;
1417       }
1418       // If two IVs both count from zero or both count from nonzero then the
1419       // narrower is likely a dead phi that has been widened. Use the wider phi
1420       // to allow the other to be eliminated.
1421       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1422         continue;
1423     }
1424     BestPhi = Phi;
1425     BestInit = Init;
1426   }
1427   return BestPhi;
1428 }
1429 
1430 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
1431 /// holds the RHS of the new loop test.
1432 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1433                            SCEVExpander &Rewriter, ScalarEvolution *SE,
1434                            Type *IntPtrTy) {
1435   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1436   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1437   const SCEV *IVInit = AR->getStart();
1438 
1439   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1440   // finds a valid pointer IV. Sign extend BECount in order to materialize a
1441   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1442   // the existing GEPs whenever possible.
1443   if (IndVar->getType()->isPointerTy()
1444       && !IVCount->getType()->isPointerTy()) {
1445 
1446     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1447     const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy);
1448 
1449     // Expand the code for the iteration count.
1450     assert(SE->isLoopInvariant(IVOffset, L) &&
1451            "Computed iteration count is not loop invariant!");
1452     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1453     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1454 
1455     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1456     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1457     // We could handle pointer IVs other than i8*, but we need to compensate for
1458     // gep index scaling. See canExpandBackedgeTakenCount comments.
1459     assert(SE->getSizeOfExpr(
1460              cast<PointerType>(GEPBase->getType())->getElementType(),
1461              IntPtrTy)->isOne()
1462            && "unit stride pointer IV must be i8*");
1463 
1464     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1465     return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit");
1466   }
1467   else {
1468     // In any other case, convert both IVInit and IVCount to integers before
1469     // comparing. This may result in SCEV expension of pointers, but in practice
1470     // SCEV will fold the pointer arithmetic away as such:
1471     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1472     //
1473     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1474     // for simple memset-style loops; (3) IVInit is an integer and IVCount is a
1475     // pointer may occur when enable-iv-rewrite generates a canonical IV on top
1476     // of case #2.
1477 
1478     const SCEV *IVLimit = 0;
1479     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1480     // For non-zero Start, compute IVCount here.
1481     if (AR->getStart()->isZero())
1482       IVLimit = IVCount;
1483     else {
1484       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1485       const SCEV *IVInit = AR->getStart();
1486 
1487       // For integer IVs, truncate the IV before computing IVInit + BECount.
1488       if (SE->getTypeSizeInBits(IVInit->getType())
1489           > SE->getTypeSizeInBits(IVCount->getType()))
1490         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1491 
1492       IVLimit = SE->getAddExpr(IVInit, IVCount);
1493     }
1494     // Expand the code for the iteration count.
1495     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1496     IRBuilder<> Builder(BI);
1497     assert(SE->isLoopInvariant(IVLimit, L) &&
1498            "Computed iteration count is not loop invariant!");
1499     // Ensure that we generate the same type as IndVar, or a smaller integer
1500     // type. In the presence of null pointer values, we have an integer type
1501     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1502     Type *LimitTy = IVCount->getType()->isPointerTy() ?
1503       IndVar->getType() : IVCount->getType();
1504     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1505   }
1506 }
1507 
1508 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
1509 /// loop to be a canonical != comparison against the incremented loop induction
1510 /// variable.  This pass is able to rewrite the exit tests of any loop where the
1511 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
1512 /// is actually a much broader range than just linear tests.
1513 Value *IndVarSimplify::
1514 LinearFunctionTestReplace(Loop *L,
1515                           const SCEV *BackedgeTakenCount,
1516                           PHINode *IndVar,
1517                           SCEVExpander &Rewriter) {
1518   assert(canExpandBackedgeTakenCount(L, SE) && "precondition");
1519 
1520   // LFTR can ignore IV overflow and truncate to the width of
1521   // BECount. This avoids materializing the add(zext(add)) expression.
1522   Type *CntTy = BackedgeTakenCount->getType();
1523 
1524   const SCEV *IVCount = BackedgeTakenCount;
1525 
1526   // If the exiting block is the same as the backedge block, we prefer to
1527   // compare against the post-incremented value, otherwise we must compare
1528   // against the preincremented value.
1529   Value *CmpIndVar;
1530   if (L->getExitingBlock() == L->getLoopLatch()) {
1531     // Add one to the "backedge-taken" count to get the trip count.
1532     // If this addition may overflow, we have to be more pessimistic and
1533     // cast the induction variable before doing the add.
1534     const SCEV *N =
1535       SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1));
1536     if (CntTy == IVCount->getType())
1537       IVCount = N;
1538     else {
1539       const SCEV *Zero = SE->getConstant(IVCount->getType(), 0);
1540       if ((isa<SCEVConstant>(N) && !N->isZero()) ||
1541           SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
1542         // No overflow. Cast the sum.
1543         IVCount = SE->getTruncateOrZeroExtend(N, CntTy);
1544       } else {
1545         // Potential overflow. Cast before doing the add.
1546         IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1547         IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1));
1548       }
1549     }
1550     // The BackedgeTaken expression contains the number of times that the
1551     // backedge branches to the loop header.  This is one less than the
1552     // number of times the loop executes, so use the incremented indvar.
1553     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1554   } else {
1555     // We must use the preincremented value...
1556     IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy);
1557     CmpIndVar = IndVar;
1558   }
1559 
1560   Type *IntPtrTy = TD ? TD->getIntPtrType(IndVar->getType()) :
1561     IntegerType::getInt64Ty(IndVar->getContext());
1562   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE, IntPtrTy);
1563   assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
1564          && "genLoopLimit missed a cast");
1565 
1566   // Insert a new icmp_ne or icmp_eq instruction before the branch.
1567   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1568   ICmpInst::Predicate P;
1569   if (L->contains(BI->getSuccessor(0)))
1570     P = ICmpInst::ICMP_NE;
1571   else
1572     P = ICmpInst::ICMP_EQ;
1573 
1574   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
1575                << "      LHS:" << *CmpIndVar << '\n'
1576                << "       op:\t"
1577                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
1578                << "      RHS:\t" << *ExitCnt << "\n"
1579                << "  IVCount:\t" << *IVCount << "\n");
1580 
1581   IRBuilder<> Builder(BI);
1582   if (SE->getTypeSizeInBits(CmpIndVar->getType())
1583       > SE->getTypeSizeInBits(ExitCnt->getType())) {
1584     CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
1585                                     "lftr.wideiv");
1586   }
1587 
1588   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
1589   Value *OrigCond = BI->getCondition();
1590   // It's tempting to use replaceAllUsesWith here to fully replace the old
1591   // comparison, but that's not immediately safe, since users of the old
1592   // comparison may not be dominated by the new comparison. Instead, just
1593   // update the branch to use the new comparison; in the common case this
1594   // will make old comparison dead.
1595   BI->setCondition(Cond);
1596   DeadInsts.push_back(OrigCond);
1597 
1598   ++NumLFTR;
1599   Changed = true;
1600   return Cond;
1601 }
1602 
1603 //===----------------------------------------------------------------------===//
1604 //  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
1605 //===----------------------------------------------------------------------===//
1606 
1607 /// If there's a single exit block, sink any loop-invariant values that
1608 /// were defined in the preheader but not used inside the loop into the
1609 /// exit block to reduce register pressure in the loop.
1610 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
1611   BasicBlock *ExitBlock = L->getExitBlock();
1612   if (!ExitBlock) return;
1613 
1614   BasicBlock *Preheader = L->getLoopPreheader();
1615   if (!Preheader) return;
1616 
1617   Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
1618   BasicBlock::iterator I = Preheader->getTerminator();
1619   while (I != Preheader->begin()) {
1620     --I;
1621     // New instructions were inserted at the end of the preheader.
1622     if (isa<PHINode>(I))
1623       break;
1624 
1625     // Don't move instructions which might have side effects, since the side
1626     // effects need to complete before instructions inside the loop.  Also don't
1627     // move instructions which might read memory, since the loop may modify
1628     // memory. Note that it's okay if the instruction might have undefined
1629     // behavior: LoopSimplify guarantees that the preheader dominates the exit
1630     // block.
1631     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
1632       continue;
1633 
1634     // Skip debug info intrinsics.
1635     if (isa<DbgInfoIntrinsic>(I))
1636       continue;
1637 
1638     // Skip landingpad instructions.
1639     if (isa<LandingPadInst>(I))
1640       continue;
1641 
1642     // Don't sink alloca: we never want to sink static alloca's out of the
1643     // entry block, and correctly sinking dynamic alloca's requires
1644     // checks for stacksave/stackrestore intrinsics.
1645     // FIXME: Refactor this check somehow?
1646     if (isa<AllocaInst>(I))
1647       continue;
1648 
1649     // Determine if there is a use in or before the loop (direct or
1650     // otherwise).
1651     bool UsedInLoop = false;
1652     for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1653          UI != UE; ++UI) {
1654       User *U = *UI;
1655       BasicBlock *UseBB = cast<Instruction>(U)->getParent();
1656       if (PHINode *P = dyn_cast<PHINode>(U)) {
1657         unsigned i =
1658           PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
1659         UseBB = P->getIncomingBlock(i);
1660       }
1661       if (UseBB == Preheader || L->contains(UseBB)) {
1662         UsedInLoop = true;
1663         break;
1664       }
1665     }
1666 
1667     // If there is, the def must remain in the preheader.
1668     if (UsedInLoop)
1669       continue;
1670 
1671     // Otherwise, sink it to the exit block.
1672     Instruction *ToMove = I;
1673     bool Done = false;
1674 
1675     if (I != Preheader->begin()) {
1676       // Skip debug info intrinsics.
1677       do {
1678         --I;
1679       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
1680 
1681       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
1682         Done = true;
1683     } else {
1684       Done = true;
1685     }
1686 
1687     ToMove->moveBefore(InsertPt);
1688     if (Done) break;
1689     InsertPt = ToMove;
1690   }
1691 }
1692 
1693 //===----------------------------------------------------------------------===//
1694 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
1695 //===----------------------------------------------------------------------===//
1696 
1697 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
1698   // If LoopSimplify form is not available, stay out of trouble. Some notes:
1699   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
1700   //    canonicalization can be a pessimization without LSR to "clean up"
1701   //    afterwards.
1702   //  - We depend on having a preheader; in particular,
1703   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
1704   //    and we're in trouble if we can't find the induction variable even when
1705   //    we've manually inserted one.
1706   if (!L->isLoopSimplifyForm())
1707     return false;
1708 
1709   LI = &getAnalysis<LoopInfo>();
1710   SE = &getAnalysis<ScalarEvolution>();
1711   DT = &getAnalysis<DominatorTree>();
1712   TD = getAnalysisIfAvailable<DataLayout>();
1713   TLI = getAnalysisIfAvailable<TargetLibraryInfo>();
1714 
1715   DeadInsts.clear();
1716   Changed = false;
1717 
1718   // If there are any floating-point recurrences, attempt to
1719   // transform them to use integer recurrences.
1720   RewriteNonIntegerIVs(L);
1721 
1722   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1723 
1724   // Create a rewriter object which we'll use to transform the code with.
1725   SCEVExpander Rewriter(*SE, "indvars");
1726 #ifndef NDEBUG
1727   Rewriter.setDebugType(DEBUG_TYPE);
1728 #endif
1729 
1730   // Eliminate redundant IV users.
1731   //
1732   // Simplification works best when run before other consumers of SCEV. We
1733   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
1734   // other expressions involving loop IVs have been evaluated. This helps SCEV
1735   // set no-wrap flags before normalizing sign/zero extension.
1736   Rewriter.disableCanonicalMode();
1737   SimplifyAndExtend(L, Rewriter, LPM);
1738 
1739   // Check to see if this loop has a computable loop-invariant execution count.
1740   // If so, this means that we can compute the final value of any expressions
1741   // that are recurrent in the loop, and substitute the exit values from the
1742   // loop into any instructions outside of the loop that use the final values of
1743   // the current expressions.
1744   //
1745   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
1746     RewriteLoopExitValues(L, Rewriter);
1747 
1748   // Eliminate redundant IV cycles.
1749   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
1750 
1751   // If we have a trip count expression, rewrite the loop's exit condition
1752   // using it.  We can currently only handle loops with a single exit.
1753   if (canExpandBackedgeTakenCount(L, SE) && needsLFTR(L, DT)) {
1754     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD);
1755     if (IndVar) {
1756       // Check preconditions for proper SCEVExpander operation. SCEV does not
1757       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
1758       // pass that uses the SCEVExpander must do it. This does not work well for
1759       // loop passes because SCEVExpander makes assumptions about all loops, while
1760       // LoopPassManager only forces the current loop to be simplified.
1761       //
1762       // FIXME: SCEV expansion has no way to bail out, so the caller must
1763       // explicitly check any assumptions made by SCEV. Brittle.
1764       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
1765       if (!AR || AR->getLoop()->getLoopPreheader())
1766         (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
1767                                         Rewriter);
1768     }
1769   }
1770   // Clear the rewriter cache, because values that are in the rewriter's cache
1771   // can be deleted in the loop below, causing the AssertingVH in the cache to
1772   // trigger.
1773   Rewriter.clear();
1774 
1775   // Now that we're done iterating through lists, clean up any instructions
1776   // which are now dead.
1777   while (!DeadInsts.empty())
1778     if (Instruction *Inst =
1779           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
1780       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
1781 
1782   // The Rewriter may not be used from this point on.
1783 
1784   // Loop-invariant instructions in the preheader that aren't used in the
1785   // loop may be sunk below the loop to reduce register pressure.
1786   SinkUnusedInvariants(L);
1787 
1788   // Clean up dead instructions.
1789   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
1790   // Check a post-condition.
1791   assert(L->isLCSSAForm(*DT) &&
1792          "Indvars did not leave the loop in lcssa form!");
1793 
1794   // Verify that LFTR, and any other change have not interfered with SCEV's
1795   // ability to compute trip count.
1796 #ifndef NDEBUG
1797   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
1798     SE->forgetLoop(L);
1799     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
1800     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
1801         SE->getTypeSizeInBits(NewBECount->getType()))
1802       NewBECount = SE->getTruncateOrNoop(NewBECount,
1803                                          BackedgeTakenCount->getType());
1804     else
1805       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
1806                                                  NewBECount->getType());
1807     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
1808   }
1809 #endif
1810 
1811   return Changed;
1812 }
1813