1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This transformation analyzes and transforms the induction variables (and 11 // computations derived from them) into simpler forms suitable for subsequent 12 // analysis and transformation. 13 // 14 // If the trip count of a loop is computable, this pass also makes the following 15 // changes: 16 // 1. The exit condition for the loop is canonicalized to compare the 17 // induction value against the exit value. This turns loops like: 18 // 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)' 19 // 2. Any use outside of the loop of an expression derived from the indvar 20 // is changed to compute the derived value outside of the loop, eliminating 21 // the dependence on the exit value of the induction variable. If the only 22 // purpose of the loop is to compute the exit value of some derived 23 // expression, this transformation will make the loop dead. 24 // 25 //===----------------------------------------------------------------------===// 26 27 #define DEBUG_TYPE "indvars" 28 #include "llvm/Transforms/Scalar.h" 29 #include "llvm/BasicBlock.h" 30 #include "llvm/Constants.h" 31 #include "llvm/Instructions.h" 32 #include "llvm/IntrinsicInst.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Type.h" 35 #include "llvm/Analysis/Dominators.h" 36 #include "llvm/Analysis/IVUsers.h" 37 #include "llvm/Analysis/ScalarEvolutionExpander.h" 38 #include "llvm/Analysis/LoopInfo.h" 39 #include "llvm/Analysis/LoopPass.h" 40 #include "llvm/Support/CFG.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/Transforms/Utils/Local.h" 45 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 46 #include "llvm/Transforms/Utils/SimplifyIndVar.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/ADT/DenseMap.h" 49 #include "llvm/ADT/SmallVector.h" 50 #include "llvm/ADT/Statistic.h" 51 using namespace llvm; 52 53 STATISTIC(NumRemoved , "Number of aux indvars removed"); 54 STATISTIC(NumWidened , "Number of indvars widened"); 55 STATISTIC(NumInserted , "Number of canonical indvars added"); 56 STATISTIC(NumReplaced , "Number of exit values replaced"); 57 STATISTIC(NumLFTR , "Number of loop exit tests replaced"); 58 STATISTIC(NumElimExt , "Number of IV sign/zero extends eliminated"); 59 STATISTIC(NumElimIV , "Number of congruent IVs eliminated"); 60 61 static cl::opt<bool> EnableIVRewrite( 62 "enable-iv-rewrite", cl::Hidden, 63 cl::desc("Enable canonical induction variable rewriting")); 64 65 // Trip count verification can be enabled by default under NDEBUG if we 66 // implement a strong expression equivalence checker in SCEV. Until then, we 67 // use the verify-indvars flag, which may assert in some cases. 68 static cl::opt<bool> VerifyIndvars( 69 "verify-indvars", cl::Hidden, 70 cl::desc("Verify the ScalarEvolution result after running indvars")); 71 72 namespace { 73 class IndVarSimplify : public LoopPass { 74 IVUsers *IU; 75 LoopInfo *LI; 76 ScalarEvolution *SE; 77 DominatorTree *DT; 78 TargetData *TD; 79 80 SmallVector<WeakVH, 16> DeadInsts; 81 bool Changed; 82 public: 83 84 static char ID; // Pass identification, replacement for typeid 85 IndVarSimplify() : LoopPass(ID), IU(0), LI(0), SE(0), DT(0), TD(0), 86 Changed(false) { 87 initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry()); 88 } 89 90 virtual bool runOnLoop(Loop *L, LPPassManager &LPM); 91 92 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 93 AU.addRequired<DominatorTree>(); 94 AU.addRequired<LoopInfo>(); 95 AU.addRequired<ScalarEvolution>(); 96 AU.addRequiredID(LoopSimplifyID); 97 AU.addRequiredID(LCSSAID); 98 if (EnableIVRewrite) 99 AU.addRequired<IVUsers>(); 100 AU.addPreserved<ScalarEvolution>(); 101 AU.addPreservedID(LoopSimplifyID); 102 AU.addPreservedID(LCSSAID); 103 if (EnableIVRewrite) 104 AU.addPreserved<IVUsers>(); 105 AU.setPreservesCFG(); 106 } 107 108 private: 109 virtual void releaseMemory() { 110 DeadInsts.clear(); 111 } 112 113 bool isValidRewrite(Value *FromVal, Value *ToVal); 114 115 void HandleFloatingPointIV(Loop *L, PHINode *PH); 116 void RewriteNonIntegerIVs(Loop *L); 117 118 void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM); 119 120 void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter); 121 122 void RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter); 123 124 Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount, 125 PHINode *IndVar, SCEVExpander &Rewriter); 126 127 void SinkUnusedInvariants(Loop *L); 128 }; 129 } 130 131 char IndVarSimplify::ID = 0; 132 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars", 133 "Induction Variable Simplification", false, false) 134 INITIALIZE_PASS_DEPENDENCY(DominatorTree) 135 INITIALIZE_PASS_DEPENDENCY(LoopInfo) 136 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) 137 INITIALIZE_PASS_DEPENDENCY(LoopSimplify) 138 INITIALIZE_PASS_DEPENDENCY(LCSSA) 139 INITIALIZE_PASS_DEPENDENCY(IVUsers) 140 INITIALIZE_PASS_END(IndVarSimplify, "indvars", 141 "Induction Variable Simplification", false, false) 142 143 Pass *llvm::createIndVarSimplifyPass() { 144 return new IndVarSimplify(); 145 } 146 147 /// isValidRewrite - Return true if the SCEV expansion generated by the 148 /// rewriter can replace the original value. SCEV guarantees that it 149 /// produces the same value, but the way it is produced may be illegal IR. 150 /// Ideally, this function will only be called for verification. 151 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) { 152 // If an SCEV expression subsumed multiple pointers, its expansion could 153 // reassociate the GEP changing the base pointer. This is illegal because the 154 // final address produced by a GEP chain must be inbounds relative to its 155 // underlying object. Otherwise basic alias analysis, among other things, 156 // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid 157 // producing an expression involving multiple pointers. Until then, we must 158 // bail out here. 159 // 160 // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject 161 // because it understands lcssa phis while SCEV does not. 162 Value *FromPtr = FromVal; 163 Value *ToPtr = ToVal; 164 if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) { 165 FromPtr = GEP->getPointerOperand(); 166 } 167 if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) { 168 ToPtr = GEP->getPointerOperand(); 169 } 170 if (FromPtr != FromVal || ToPtr != ToVal) { 171 // Quickly check the common case 172 if (FromPtr == ToPtr) 173 return true; 174 175 // SCEV may have rewritten an expression that produces the GEP's pointer 176 // operand. That's ok as long as the pointer operand has the same base 177 // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the 178 // base of a recurrence. This handles the case in which SCEV expansion 179 // converts a pointer type recurrence into a nonrecurrent pointer base 180 // indexed by an integer recurrence. 181 182 // If the GEP base pointer is a vector of pointers, abort. 183 if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy()) 184 return false; 185 186 const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr)); 187 const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr)); 188 if (FromBase == ToBase) 189 return true; 190 191 DEBUG(dbgs() << "INDVARS: GEP rewrite bail out " 192 << *FromBase << " != " << *ToBase << "\n"); 193 194 return false; 195 } 196 return true; 197 } 198 199 /// Determine the insertion point for this user. By default, insert immediately 200 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the 201 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest 202 /// common dominator for the incoming blocks. 203 static Instruction *getInsertPointForUses(Instruction *User, Value *Def, 204 DominatorTree *DT) { 205 PHINode *PHI = dyn_cast<PHINode>(User); 206 if (!PHI) 207 return User; 208 209 Instruction *InsertPt = 0; 210 for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) { 211 if (PHI->getIncomingValue(i) != Def) 212 continue; 213 214 BasicBlock *InsertBB = PHI->getIncomingBlock(i); 215 if (!InsertPt) { 216 InsertPt = InsertBB->getTerminator(); 217 continue; 218 } 219 InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB); 220 InsertPt = InsertBB->getTerminator(); 221 } 222 assert(InsertPt && "Missing phi operand"); 223 assert((!isa<Instruction>(Def) || 224 DT->dominates(cast<Instruction>(Def), InsertPt)) && 225 "def does not dominate all uses"); 226 return InsertPt; 227 } 228 229 //===----------------------------------------------------------------------===// 230 // RewriteNonIntegerIVs and helpers. Prefer integer IVs. 231 //===----------------------------------------------------------------------===// 232 233 /// ConvertToSInt - Convert APF to an integer, if possible. 234 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) { 235 bool isExact = false; 236 if (&APF.getSemantics() == &APFloat::PPCDoubleDouble) 237 return false; 238 // See if we can convert this to an int64_t 239 uint64_t UIntVal; 240 if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero, 241 &isExact) != APFloat::opOK || !isExact) 242 return false; 243 IntVal = UIntVal; 244 return true; 245 } 246 247 /// HandleFloatingPointIV - If the loop has floating induction variable 248 /// then insert corresponding integer induction variable if possible. 249 /// For example, 250 /// for(double i = 0; i < 10000; ++i) 251 /// bar(i) 252 /// is converted into 253 /// for(int i = 0; i < 10000; ++i) 254 /// bar((double)i); 255 /// 256 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) { 257 unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0)); 258 unsigned BackEdge = IncomingEdge^1; 259 260 // Check incoming value. 261 ConstantFP *InitValueVal = 262 dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge)); 263 264 int64_t InitValue; 265 if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue)) 266 return; 267 268 // Check IV increment. Reject this PN if increment operation is not 269 // an add or increment value can not be represented by an integer. 270 BinaryOperator *Incr = 271 dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge)); 272 if (Incr == 0 || Incr->getOpcode() != Instruction::FAdd) return; 273 274 // If this is not an add of the PHI with a constantfp, or if the constant fp 275 // is not an integer, bail out. 276 ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1)); 277 int64_t IncValue; 278 if (IncValueVal == 0 || Incr->getOperand(0) != PN || 279 !ConvertToSInt(IncValueVal->getValueAPF(), IncValue)) 280 return; 281 282 // Check Incr uses. One user is PN and the other user is an exit condition 283 // used by the conditional terminator. 284 Value::use_iterator IncrUse = Incr->use_begin(); 285 Instruction *U1 = cast<Instruction>(*IncrUse++); 286 if (IncrUse == Incr->use_end()) return; 287 Instruction *U2 = cast<Instruction>(*IncrUse++); 288 if (IncrUse != Incr->use_end()) return; 289 290 // Find exit condition, which is an fcmp. If it doesn't exist, or if it isn't 291 // only used by a branch, we can't transform it. 292 FCmpInst *Compare = dyn_cast<FCmpInst>(U1); 293 if (!Compare) 294 Compare = dyn_cast<FCmpInst>(U2); 295 if (Compare == 0 || !Compare->hasOneUse() || 296 !isa<BranchInst>(Compare->use_back())) 297 return; 298 299 BranchInst *TheBr = cast<BranchInst>(Compare->use_back()); 300 301 // We need to verify that the branch actually controls the iteration count 302 // of the loop. If not, the new IV can overflow and no one will notice. 303 // The branch block must be in the loop and one of the successors must be out 304 // of the loop. 305 assert(TheBr->isConditional() && "Can't use fcmp if not conditional"); 306 if (!L->contains(TheBr->getParent()) || 307 (L->contains(TheBr->getSuccessor(0)) && 308 L->contains(TheBr->getSuccessor(1)))) 309 return; 310 311 312 // If it isn't a comparison with an integer-as-fp (the exit value), we can't 313 // transform it. 314 ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1)); 315 int64_t ExitValue; 316 if (ExitValueVal == 0 || 317 !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue)) 318 return; 319 320 // Find new predicate for integer comparison. 321 CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE; 322 switch (Compare->getPredicate()) { 323 default: return; // Unknown comparison. 324 case CmpInst::FCMP_OEQ: 325 case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break; 326 case CmpInst::FCMP_ONE: 327 case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break; 328 case CmpInst::FCMP_OGT: 329 case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break; 330 case CmpInst::FCMP_OGE: 331 case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break; 332 case CmpInst::FCMP_OLT: 333 case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break; 334 case CmpInst::FCMP_OLE: 335 case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break; 336 } 337 338 // We convert the floating point induction variable to a signed i32 value if 339 // we can. This is only safe if the comparison will not overflow in a way 340 // that won't be trapped by the integer equivalent operations. Check for this 341 // now. 342 // TODO: We could use i64 if it is native and the range requires it. 343 344 // The start/stride/exit values must all fit in signed i32. 345 if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue)) 346 return; 347 348 // If not actually striding (add x, 0.0), avoid touching the code. 349 if (IncValue == 0) 350 return; 351 352 // Positive and negative strides have different safety conditions. 353 if (IncValue > 0) { 354 // If we have a positive stride, we require the init to be less than the 355 // exit value. 356 if (InitValue >= ExitValue) 357 return; 358 359 uint32_t Range = uint32_t(ExitValue-InitValue); 360 // Check for infinite loop, either: 361 // while (i <= Exit) or until (i > Exit) 362 if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) { 363 if (++Range == 0) return; // Range overflows. 364 } 365 366 unsigned Leftover = Range % uint32_t(IncValue); 367 368 // If this is an equality comparison, we require that the strided value 369 // exactly land on the exit value, otherwise the IV condition will wrap 370 // around and do things the fp IV wouldn't. 371 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 372 Leftover != 0) 373 return; 374 375 // If the stride would wrap around the i32 before exiting, we can't 376 // transform the IV. 377 if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue) 378 return; 379 380 } else { 381 // If we have a negative stride, we require the init to be greater than the 382 // exit value. 383 if (InitValue <= ExitValue) 384 return; 385 386 uint32_t Range = uint32_t(InitValue-ExitValue); 387 // Check for infinite loop, either: 388 // while (i >= Exit) or until (i < Exit) 389 if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) { 390 if (++Range == 0) return; // Range overflows. 391 } 392 393 unsigned Leftover = Range % uint32_t(-IncValue); 394 395 // If this is an equality comparison, we require that the strided value 396 // exactly land on the exit value, otherwise the IV condition will wrap 397 // around and do things the fp IV wouldn't. 398 if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) && 399 Leftover != 0) 400 return; 401 402 // If the stride would wrap around the i32 before exiting, we can't 403 // transform the IV. 404 if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue) 405 return; 406 } 407 408 IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext()); 409 410 // Insert new integer induction variable. 411 PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN); 412 NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue), 413 PN->getIncomingBlock(IncomingEdge)); 414 415 Value *NewAdd = 416 BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue), 417 Incr->getName()+".int", Incr); 418 NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge)); 419 420 ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd, 421 ConstantInt::get(Int32Ty, ExitValue), 422 Compare->getName()); 423 424 // In the following deletions, PN may become dead and may be deleted. 425 // Use a WeakVH to observe whether this happens. 426 WeakVH WeakPH = PN; 427 428 // Delete the old floating point exit comparison. The branch starts using the 429 // new comparison. 430 NewCompare->takeName(Compare); 431 Compare->replaceAllUsesWith(NewCompare); 432 RecursivelyDeleteTriviallyDeadInstructions(Compare); 433 434 // Delete the old floating point increment. 435 Incr->replaceAllUsesWith(UndefValue::get(Incr->getType())); 436 RecursivelyDeleteTriviallyDeadInstructions(Incr); 437 438 // If the FP induction variable still has uses, this is because something else 439 // in the loop uses its value. In order to canonicalize the induction 440 // variable, we chose to eliminate the IV and rewrite it in terms of an 441 // int->fp cast. 442 // 443 // We give preference to sitofp over uitofp because it is faster on most 444 // platforms. 445 if (WeakPH) { 446 Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv", 447 PN->getParent()->getFirstInsertionPt()); 448 PN->replaceAllUsesWith(Conv); 449 RecursivelyDeleteTriviallyDeadInstructions(PN); 450 } 451 452 // Add a new IVUsers entry for the newly-created integer PHI. 453 if (IU) { 454 SmallPtrSet<Loop*, 16> SimplifiedLoopNests; 455 IU->AddUsersIfInteresting(NewPHI, SimplifiedLoopNests); 456 } 457 458 Changed = true; 459 } 460 461 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) { 462 // First step. Check to see if there are any floating-point recurrences. 463 // If there are, change them into integer recurrences, permitting analysis by 464 // the SCEV routines. 465 // 466 BasicBlock *Header = L->getHeader(); 467 468 SmallVector<WeakVH, 8> PHIs; 469 for (BasicBlock::iterator I = Header->begin(); 470 PHINode *PN = dyn_cast<PHINode>(I); ++I) 471 PHIs.push_back(PN); 472 473 for (unsigned i = 0, e = PHIs.size(); i != e; ++i) 474 if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i])) 475 HandleFloatingPointIV(L, PN); 476 477 // If the loop previously had floating-point IV, ScalarEvolution 478 // may not have been able to compute a trip count. Now that we've done some 479 // re-writing, the trip count may be computable. 480 if (Changed) 481 SE->forgetLoop(L); 482 } 483 484 //===----------------------------------------------------------------------===// 485 // RewriteLoopExitValues - Optimize IV users outside the loop. 486 // As a side effect, reduces the amount of IV processing within the loop. 487 //===----------------------------------------------------------------------===// 488 489 /// RewriteLoopExitValues - Check to see if this loop has a computable 490 /// loop-invariant execution count. If so, this means that we can compute the 491 /// final value of any expressions that are recurrent in the loop, and 492 /// substitute the exit values from the loop into any instructions outside of 493 /// the loop that use the final values of the current expressions. 494 /// 495 /// This is mostly redundant with the regular IndVarSimplify activities that 496 /// happen later, except that it's more powerful in some cases, because it's 497 /// able to brute-force evaluate arbitrary instructions as long as they have 498 /// constant operands at the beginning of the loop. 499 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) { 500 // Verify the input to the pass in already in LCSSA form. 501 assert(L->isLCSSAForm(*DT)); 502 503 SmallVector<BasicBlock*, 8> ExitBlocks; 504 L->getUniqueExitBlocks(ExitBlocks); 505 506 // Find all values that are computed inside the loop, but used outside of it. 507 // Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan 508 // the exit blocks of the loop to find them. 509 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { 510 BasicBlock *ExitBB = ExitBlocks[i]; 511 512 // If there are no PHI nodes in this exit block, then no values defined 513 // inside the loop are used on this path, skip it. 514 PHINode *PN = dyn_cast<PHINode>(ExitBB->begin()); 515 if (!PN) continue; 516 517 unsigned NumPreds = PN->getNumIncomingValues(); 518 519 // Iterate over all of the PHI nodes. 520 BasicBlock::iterator BBI = ExitBB->begin(); 521 while ((PN = dyn_cast<PHINode>(BBI++))) { 522 if (PN->use_empty()) 523 continue; // dead use, don't replace it 524 525 // SCEV only supports integer expressions for now. 526 if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy()) 527 continue; 528 529 // It's necessary to tell ScalarEvolution about this explicitly so that 530 // it can walk the def-use list and forget all SCEVs, as it may not be 531 // watching the PHI itself. Once the new exit value is in place, there 532 // may not be a def-use connection between the loop and every instruction 533 // which got a SCEVAddRecExpr for that loop. 534 SE->forgetValue(PN); 535 536 // Iterate over all of the values in all the PHI nodes. 537 for (unsigned i = 0; i != NumPreds; ++i) { 538 // If the value being merged in is not integer or is not defined 539 // in the loop, skip it. 540 Value *InVal = PN->getIncomingValue(i); 541 if (!isa<Instruction>(InVal)) 542 continue; 543 544 // If this pred is for a subloop, not L itself, skip it. 545 if (LI->getLoopFor(PN->getIncomingBlock(i)) != L) 546 continue; // The Block is in a subloop, skip it. 547 548 // Check that InVal is defined in the loop. 549 Instruction *Inst = cast<Instruction>(InVal); 550 if (!L->contains(Inst)) 551 continue; 552 553 // Okay, this instruction has a user outside of the current loop 554 // and varies predictably *inside* the loop. Evaluate the value it 555 // contains when the loop exits, if possible. 556 const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop()); 557 if (!SE->isLoopInvariant(ExitValue, L)) 558 continue; 559 560 Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst); 561 562 DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n' 563 << " LoopVal = " << *Inst << "\n"); 564 565 if (!isValidRewrite(Inst, ExitVal)) { 566 DeadInsts.push_back(ExitVal); 567 continue; 568 } 569 Changed = true; 570 ++NumReplaced; 571 572 PN->setIncomingValue(i, ExitVal); 573 574 // If this instruction is dead now, delete it. 575 RecursivelyDeleteTriviallyDeadInstructions(Inst); 576 577 if (NumPreds == 1) { 578 // Completely replace a single-pred PHI. This is safe, because the 579 // NewVal won't be variant in the loop, so we don't need an LCSSA phi 580 // node anymore. 581 PN->replaceAllUsesWith(ExitVal); 582 RecursivelyDeleteTriviallyDeadInstructions(PN); 583 } 584 } 585 if (NumPreds != 1) { 586 // Clone the PHI and delete the original one. This lets IVUsers and 587 // any other maps purge the original user from their records. 588 PHINode *NewPN = cast<PHINode>(PN->clone()); 589 NewPN->takeName(PN); 590 NewPN->insertBefore(PN); 591 PN->replaceAllUsesWith(NewPN); 592 PN->eraseFromParent(); 593 } 594 } 595 } 596 597 // The insertion point instruction may have been deleted; clear it out 598 // so that the rewriter doesn't trip over it later. 599 Rewriter.clearInsertPoint(); 600 } 601 602 //===----------------------------------------------------------------------===// 603 // Rewrite IV users based on a canonical IV. 604 // Only for use with -enable-iv-rewrite. 605 //===----------------------------------------------------------------------===// 606 607 /// FIXME: It is an extremely bad idea to indvar substitute anything more 608 /// complex than affine induction variables. Doing so will put expensive 609 /// polynomial evaluations inside of the loop, and the str reduction pass 610 /// currently can only reduce affine polynomials. For now just disable 611 /// indvar subst on anything more complex than an affine addrec, unless 612 /// it can be expanded to a trivial value. 613 static bool isSafe(const SCEV *S, const Loop *L, ScalarEvolution *SE) { 614 // Loop-invariant values are safe. 615 if (SE->isLoopInvariant(S, L)) return true; 616 617 // Affine addrecs are safe. Non-affine are not, because LSR doesn't know how 618 // to transform them into efficient code. 619 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 620 return AR->isAffine(); 621 622 // An add is safe it all its operands are safe. 623 if (const SCEVCommutativeExpr *Commutative 624 = dyn_cast<SCEVCommutativeExpr>(S)) { 625 for (SCEVCommutativeExpr::op_iterator I = Commutative->op_begin(), 626 E = Commutative->op_end(); I != E; ++I) 627 if (!isSafe(*I, L, SE)) return false; 628 return true; 629 } 630 631 // A cast is safe if its operand is. 632 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) 633 return isSafe(C->getOperand(), L, SE); 634 635 // A udiv is safe if its operands are. 636 if (const SCEVUDivExpr *UD = dyn_cast<SCEVUDivExpr>(S)) 637 return isSafe(UD->getLHS(), L, SE) && 638 isSafe(UD->getRHS(), L, SE); 639 640 // SCEVUnknown is always safe. 641 if (isa<SCEVUnknown>(S)) 642 return true; 643 644 // Nothing else is safe. 645 return false; 646 } 647 648 void IndVarSimplify::RewriteIVExpressions(Loop *L, SCEVExpander &Rewriter) { 649 // Rewrite all induction variable expressions in terms of the canonical 650 // induction variable. 651 // 652 // If there were induction variables of other sizes or offsets, manually 653 // add the offsets to the primary induction variable and cast, avoiding 654 // the need for the code evaluation methods to insert induction variables 655 // of different sizes. 656 for (IVUsers::iterator UI = IU->begin(), E = IU->end(); UI != E; ++UI) { 657 Value *Op = UI->getOperandValToReplace(); 658 Type *UseTy = Op->getType(); 659 Instruction *User = UI->getUser(); 660 661 // Compute the final addrec to expand into code. 662 const SCEV *AR = IU->getReplacementExpr(*UI); 663 664 // Evaluate the expression out of the loop, if possible. 665 if (!L->contains(UI->getUser())) { 666 const SCEV *ExitVal = SE->getSCEVAtScope(AR, L->getParentLoop()); 667 if (SE->isLoopInvariant(ExitVal, L)) 668 AR = ExitVal; 669 } 670 671 // FIXME: It is an extremely bad idea to indvar substitute anything more 672 // complex than affine induction variables. Doing so will put expensive 673 // polynomial evaluations inside of the loop, and the str reduction pass 674 // currently can only reduce affine polynomials. For now just disable 675 // indvar subst on anything more complex than an affine addrec, unless 676 // it can be expanded to a trivial value. 677 if (!isSafe(AR, L, SE)) 678 continue; 679 680 // Determine the insertion point for this user. By default, insert 681 // immediately before the user. The SCEVExpander class will automatically 682 // hoist loop invariants out of the loop. For PHI nodes, there may be 683 // multiple uses, so compute the nearest common dominator for the 684 // incoming blocks. 685 Instruction *InsertPt = getInsertPointForUses(User, Op, DT); 686 687 // Now expand it into actual Instructions and patch it into place. 688 Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt); 689 690 DEBUG(dbgs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n' 691 << " into = " << *NewVal << "\n"); 692 693 if (!isValidRewrite(Op, NewVal)) { 694 DeadInsts.push_back(NewVal); 695 continue; 696 } 697 // Inform ScalarEvolution that this value is changing. The change doesn't 698 // affect its value, but it does potentially affect which use lists the 699 // value will be on after the replacement, which affects ScalarEvolution's 700 // ability to walk use lists and drop dangling pointers when a value is 701 // deleted. 702 SE->forgetValue(User); 703 704 // Patch the new value into place. 705 if (Op->hasName()) 706 NewVal->takeName(Op); 707 if (Instruction *NewValI = dyn_cast<Instruction>(NewVal)) 708 NewValI->setDebugLoc(User->getDebugLoc()); 709 User->replaceUsesOfWith(Op, NewVal); 710 UI->setOperandValToReplace(NewVal); 711 712 ++NumRemoved; 713 Changed = true; 714 715 // The old value may be dead now. 716 DeadInsts.push_back(Op); 717 } 718 } 719 720 //===----------------------------------------------------------------------===// 721 // IV Widening - Extend the width of an IV to cover its widest uses. 722 //===----------------------------------------------------------------------===// 723 724 namespace { 725 // Collect information about induction variables that are used by sign/zero 726 // extend operations. This information is recorded by CollectExtend and 727 // provides the input to WidenIV. 728 struct WideIVInfo { 729 PHINode *NarrowIV; 730 Type *WidestNativeType; // Widest integer type created [sz]ext 731 bool IsSigned; // Was an sext user seen before a zext? 732 733 WideIVInfo() : NarrowIV(0), WidestNativeType(0), IsSigned(false) {} 734 }; 735 736 class WideIVVisitor : public IVVisitor { 737 ScalarEvolution *SE; 738 const TargetData *TD; 739 740 public: 741 WideIVInfo WI; 742 743 WideIVVisitor(PHINode *NarrowIV, ScalarEvolution *SCEV, 744 const TargetData *TData) : 745 SE(SCEV), TD(TData) { WI.NarrowIV = NarrowIV; } 746 747 // Implement the interface used by simplifyUsersOfIV. 748 virtual void visitCast(CastInst *Cast); 749 }; 750 } 751 752 /// visitCast - Update information about the induction variable that is 753 /// extended by this sign or zero extend operation. This is used to determine 754 /// the final width of the IV before actually widening it. 755 void WideIVVisitor::visitCast(CastInst *Cast) { 756 bool IsSigned = Cast->getOpcode() == Instruction::SExt; 757 if (!IsSigned && Cast->getOpcode() != Instruction::ZExt) 758 return; 759 760 Type *Ty = Cast->getType(); 761 uint64_t Width = SE->getTypeSizeInBits(Ty); 762 if (TD && !TD->isLegalInteger(Width)) 763 return; 764 765 if (!WI.WidestNativeType) { 766 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 767 WI.IsSigned = IsSigned; 768 return; 769 } 770 771 // We extend the IV to satisfy the sign of its first user, arbitrarily. 772 if (WI.IsSigned != IsSigned) 773 return; 774 775 if (Width > SE->getTypeSizeInBits(WI.WidestNativeType)) 776 WI.WidestNativeType = SE->getEffectiveSCEVType(Ty); 777 } 778 779 namespace { 780 781 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the 782 /// WideIV that computes the same value as the Narrow IV def. This avoids 783 /// caching Use* pointers. 784 struct NarrowIVDefUse { 785 Instruction *NarrowDef; 786 Instruction *NarrowUse; 787 Instruction *WideDef; 788 789 NarrowIVDefUse(): NarrowDef(0), NarrowUse(0), WideDef(0) {} 790 791 NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD): 792 NarrowDef(ND), NarrowUse(NU), WideDef(WD) {} 793 }; 794 795 /// WidenIV - The goal of this transform is to remove sign and zero extends 796 /// without creating any new induction variables. To do this, it creates a new 797 /// phi of the wider type and redirects all users, either removing extends or 798 /// inserting truncs whenever we stop propagating the type. 799 /// 800 class WidenIV { 801 // Parameters 802 PHINode *OrigPhi; 803 Type *WideType; 804 bool IsSigned; 805 806 // Context 807 LoopInfo *LI; 808 Loop *L; 809 ScalarEvolution *SE; 810 DominatorTree *DT; 811 812 // Result 813 PHINode *WidePhi; 814 Instruction *WideInc; 815 const SCEV *WideIncExpr; 816 SmallVectorImpl<WeakVH> &DeadInsts; 817 818 SmallPtrSet<Instruction*,16> Widened; 819 SmallVector<NarrowIVDefUse, 8> NarrowIVUsers; 820 821 public: 822 WidenIV(const WideIVInfo &WI, LoopInfo *LInfo, 823 ScalarEvolution *SEv, DominatorTree *DTree, 824 SmallVectorImpl<WeakVH> &DI) : 825 OrigPhi(WI.NarrowIV), 826 WideType(WI.WidestNativeType), 827 IsSigned(WI.IsSigned), 828 LI(LInfo), 829 L(LI->getLoopFor(OrigPhi->getParent())), 830 SE(SEv), 831 DT(DTree), 832 WidePhi(0), 833 WideInc(0), 834 WideIncExpr(0), 835 DeadInsts(DI) { 836 assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV"); 837 } 838 839 PHINode *CreateWideIV(SCEVExpander &Rewriter); 840 841 protected: 842 Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 843 Instruction *Use); 844 845 Instruction *CloneIVUser(NarrowIVDefUse DU); 846 847 const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse); 848 849 const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU); 850 851 Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter); 852 853 void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef); 854 }; 855 } // anonymous namespace 856 857 /// isLoopInvariant - Perform a quick domtree based check for loop invariance 858 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems 859 /// gratuitous for this purpose. 860 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) { 861 Instruction *Inst = dyn_cast<Instruction>(V); 862 if (!Inst) 863 return true; 864 865 return DT->properlyDominates(Inst->getParent(), L->getHeader()); 866 } 867 868 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned, 869 Instruction *Use) { 870 // Set the debug location and conservative insertion point. 871 IRBuilder<> Builder(Use); 872 // Hoist the insertion point into loop preheaders as far as possible. 873 for (const Loop *L = LI->getLoopFor(Use->getParent()); 874 L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT); 875 L = L->getParentLoop()) 876 Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator()); 877 878 return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) : 879 Builder.CreateZExt(NarrowOper, WideType); 880 } 881 882 /// CloneIVUser - Instantiate a wide operation to replace a narrow 883 /// operation. This only needs to handle operations that can evaluation to 884 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone. 885 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) { 886 unsigned Opcode = DU.NarrowUse->getOpcode(); 887 switch (Opcode) { 888 default: 889 return 0; 890 case Instruction::Add: 891 case Instruction::Mul: 892 case Instruction::UDiv: 893 case Instruction::Sub: 894 case Instruction::And: 895 case Instruction::Or: 896 case Instruction::Xor: 897 case Instruction::Shl: 898 case Instruction::LShr: 899 case Instruction::AShr: 900 DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n"); 901 902 // Replace NarrowDef operands with WideDef. Otherwise, we don't know 903 // anything about the narrow operand yet so must insert a [sz]ext. It is 904 // probably loop invariant and will be folded or hoisted. If it actually 905 // comes from a widened IV, it should be removed during a future call to 906 // WidenIVUse. 907 Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef : 908 getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse); 909 Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef : 910 getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse); 911 912 BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse); 913 BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), 914 LHS, RHS, 915 NarrowBO->getName()); 916 IRBuilder<> Builder(DU.NarrowUse); 917 Builder.Insert(WideBO); 918 if (const OverflowingBinaryOperator *OBO = 919 dyn_cast<OverflowingBinaryOperator>(NarrowBO)) { 920 if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap(); 921 if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap(); 922 } 923 return WideBO; 924 } 925 } 926 927 /// No-wrap operations can transfer sign extension of their result to their 928 /// operands. Generate the SCEV value for the widened operation without 929 /// actually modifying the IR yet. If the expression after extending the 930 /// operands is an AddRec for this loop, return it. 931 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) { 932 // Handle the common case of add<nsw/nuw> 933 if (DU.NarrowUse->getOpcode() != Instruction::Add) 934 return 0; 935 936 // One operand (NarrowDef) has already been extended to WideDef. Now determine 937 // if extending the other will lead to a recurrence. 938 unsigned ExtendOperIdx = DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0; 939 assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU"); 940 941 const SCEV *ExtendOperExpr = 0; 942 const OverflowingBinaryOperator *OBO = 943 cast<OverflowingBinaryOperator>(DU.NarrowUse); 944 if (IsSigned && OBO->hasNoSignedWrap()) 945 ExtendOperExpr = SE->getSignExtendExpr( 946 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 947 else if(!IsSigned && OBO->hasNoUnsignedWrap()) 948 ExtendOperExpr = SE->getZeroExtendExpr( 949 SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType); 950 else 951 return 0; 952 953 // When creating this AddExpr, don't apply the current operations NSW or NUW 954 // flags. This instruction may be guarded by control flow that the no-wrap 955 // behavior depends on. Non-control-equivalent instructions can be mapped to 956 // the same SCEV expression, and it would be incorrect to transfer NSW/NUW 957 // semantics to those operations. 958 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>( 959 SE->getAddExpr(SE->getSCEV(DU.WideDef), ExtendOperExpr)); 960 961 if (!AddRec || AddRec->getLoop() != L) 962 return 0; 963 return AddRec; 964 } 965 966 /// GetWideRecurrence - Is this instruction potentially interesting from 967 /// IVUsers' perspective after widening it's type? In other words, can the 968 /// extend be safely hoisted out of the loop with SCEV reducing the value to a 969 /// recurrence on the same loop. If so, return the sign or zero extended 970 /// recurrence. Otherwise return NULL. 971 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) { 972 if (!SE->isSCEVable(NarrowUse->getType())) 973 return 0; 974 975 const SCEV *NarrowExpr = SE->getSCEV(NarrowUse); 976 if (SE->getTypeSizeInBits(NarrowExpr->getType()) 977 >= SE->getTypeSizeInBits(WideType)) { 978 // NarrowUse implicitly widens its operand. e.g. a gep with a narrow 979 // index. So don't follow this use. 980 return 0; 981 } 982 983 const SCEV *WideExpr = IsSigned ? 984 SE->getSignExtendExpr(NarrowExpr, WideType) : 985 SE->getZeroExtendExpr(NarrowExpr, WideType); 986 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr); 987 if (!AddRec || AddRec->getLoop() != L) 988 return 0; 989 return AddRec; 990 } 991 992 /// WidenIVUse - Determine whether an individual user of the narrow IV can be 993 /// widened. If so, return the wide clone of the user. 994 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) { 995 996 // Stop traversing the def-use chain at inner-loop phis or post-loop phis. 997 if (isa<PHINode>(DU.NarrowUse) && 998 LI->getLoopFor(DU.NarrowUse->getParent()) != L) 999 return 0; 1000 1001 // Our raison d'etre! Eliminate sign and zero extension. 1002 if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) { 1003 Value *NewDef = DU.WideDef; 1004 if (DU.NarrowUse->getType() != WideType) { 1005 unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType()); 1006 unsigned IVWidth = SE->getTypeSizeInBits(WideType); 1007 if (CastWidth < IVWidth) { 1008 // The cast isn't as wide as the IV, so insert a Trunc. 1009 IRBuilder<> Builder(DU.NarrowUse); 1010 NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType()); 1011 } 1012 else { 1013 // A wider extend was hidden behind a narrower one. This may induce 1014 // another round of IV widening in which the intermediate IV becomes 1015 // dead. It should be very rare. 1016 DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi 1017 << " not wide enough to subsume " << *DU.NarrowUse << "\n"); 1018 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef); 1019 NewDef = DU.NarrowUse; 1020 } 1021 } 1022 if (NewDef != DU.NarrowUse) { 1023 DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse 1024 << " replaced by " << *DU.WideDef << "\n"); 1025 ++NumElimExt; 1026 DU.NarrowUse->replaceAllUsesWith(NewDef); 1027 DeadInsts.push_back(DU.NarrowUse); 1028 } 1029 // Now that the extend is gone, we want to expose it's uses for potential 1030 // further simplification. We don't need to directly inform SimplifyIVUsers 1031 // of the new users, because their parent IV will be processed later as a 1032 // new loop phi. If we preserved IVUsers analysis, we would also want to 1033 // push the uses of WideDef here. 1034 1035 // No further widening is needed. The deceased [sz]ext had done it for us. 1036 return 0; 1037 } 1038 1039 // Does this user itself evaluate to a recurrence after widening? 1040 const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse); 1041 if (!WideAddRec) { 1042 WideAddRec = GetExtendedOperandRecurrence(DU); 1043 } 1044 if (!WideAddRec) { 1045 // This user does not evaluate to a recurence after widening, so don't 1046 // follow it. Instead insert a Trunc to kill off the original use, 1047 // eventually isolating the original narrow IV so it can be removed. 1048 IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT)); 1049 Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType()); 1050 DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc); 1051 return 0; 1052 } 1053 // Assume block terminators cannot evaluate to a recurrence. We can't to 1054 // insert a Trunc after a terminator if there happens to be a critical edge. 1055 assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() && 1056 "SCEV is not expected to evaluate a block terminator"); 1057 1058 // Reuse the IV increment that SCEVExpander created as long as it dominates 1059 // NarrowUse. 1060 Instruction *WideUse = 0; 1061 if (WideAddRec == WideIncExpr 1062 && Rewriter.hoistIVInc(WideInc, DU.NarrowUse)) 1063 WideUse = WideInc; 1064 else { 1065 WideUse = CloneIVUser(DU); 1066 if (!WideUse) 1067 return 0; 1068 } 1069 // Evaluation of WideAddRec ensured that the narrow expression could be 1070 // extended outside the loop without overflow. This suggests that the wide use 1071 // evaluates to the same expression as the extended narrow use, but doesn't 1072 // absolutely guarantee it. Hence the following failsafe check. In rare cases 1073 // where it fails, we simply throw away the newly created wide use. 1074 if (WideAddRec != SE->getSCEV(WideUse)) { 1075 DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse 1076 << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n"); 1077 DeadInsts.push_back(WideUse); 1078 return 0; 1079 } 1080 1081 // Returning WideUse pushes it on the worklist. 1082 return WideUse; 1083 } 1084 1085 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers. 1086 /// 1087 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) { 1088 for (Value::use_iterator UI = NarrowDef->use_begin(), 1089 UE = NarrowDef->use_end(); UI != UE; ++UI) { 1090 Instruction *NarrowUse = cast<Instruction>(*UI); 1091 1092 // Handle data flow merges and bizarre phi cycles. 1093 if (!Widened.insert(NarrowUse)) 1094 continue; 1095 1096 NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUse, WideDef)); 1097 } 1098 } 1099 1100 /// CreateWideIV - Process a single induction variable. First use the 1101 /// SCEVExpander to create a wide induction variable that evaluates to the same 1102 /// recurrence as the original narrow IV. Then use a worklist to forward 1103 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all 1104 /// interesting IV users, the narrow IV will be isolated for removal by 1105 /// DeleteDeadPHIs. 1106 /// 1107 /// It would be simpler to delete uses as they are processed, but we must avoid 1108 /// invalidating SCEV expressions. 1109 /// 1110 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) { 1111 // Is this phi an induction variable? 1112 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi)); 1113 if (!AddRec) 1114 return NULL; 1115 1116 // Widen the induction variable expression. 1117 const SCEV *WideIVExpr = IsSigned ? 1118 SE->getSignExtendExpr(AddRec, WideType) : 1119 SE->getZeroExtendExpr(AddRec, WideType); 1120 1121 assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType && 1122 "Expect the new IV expression to preserve its type"); 1123 1124 // Can the IV be extended outside the loop without overflow? 1125 AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr); 1126 if (!AddRec || AddRec->getLoop() != L) 1127 return NULL; 1128 1129 // An AddRec must have loop-invariant operands. Since this AddRec is 1130 // materialized by a loop header phi, the expression cannot have any post-loop 1131 // operands, so they must dominate the loop header. 1132 assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) && 1133 SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) 1134 && "Loop header phi recurrence inputs do not dominate the loop"); 1135 1136 // The rewriter provides a value for the desired IV expression. This may 1137 // either find an existing phi or materialize a new one. Either way, we 1138 // expect a well-formed cyclic phi-with-increments. i.e. any operand not part 1139 // of the phi-SCC dominates the loop entry. 1140 Instruction *InsertPt = L->getHeader()->begin(); 1141 WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt)); 1142 1143 // Remembering the WideIV increment generated by SCEVExpander allows 1144 // WidenIVUse to reuse it when widening the narrow IV's increment. We don't 1145 // employ a general reuse mechanism because the call above is the only call to 1146 // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses. 1147 if (BasicBlock *LatchBlock = L->getLoopLatch()) { 1148 WideInc = 1149 cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock)); 1150 WideIncExpr = SE->getSCEV(WideInc); 1151 } 1152 1153 DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n"); 1154 ++NumWidened; 1155 1156 // Traverse the def-use chain using a worklist starting at the original IV. 1157 assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" ); 1158 1159 Widened.insert(OrigPhi); 1160 pushNarrowIVUsers(OrigPhi, WidePhi); 1161 1162 while (!NarrowIVUsers.empty()) { 1163 NarrowIVDefUse DU = NarrowIVUsers.pop_back_val(); 1164 1165 // Process a def-use edge. This may replace the use, so don't hold a 1166 // use_iterator across it. 1167 Instruction *WideUse = WidenIVUse(DU, Rewriter); 1168 1169 // Follow all def-use edges from the previous narrow use. 1170 if (WideUse) 1171 pushNarrowIVUsers(DU.NarrowUse, WideUse); 1172 1173 // WidenIVUse may have removed the def-use edge. 1174 if (DU.NarrowDef->use_empty()) 1175 DeadInsts.push_back(DU.NarrowDef); 1176 } 1177 return WidePhi; 1178 } 1179 1180 //===----------------------------------------------------------------------===// 1181 // Simplification of IV users based on SCEV evaluation. 1182 //===----------------------------------------------------------------------===// 1183 1184 1185 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV 1186 /// users. Each successive simplification may push more users which may 1187 /// themselves be candidates for simplification. 1188 /// 1189 /// Sign/Zero extend elimination is interleaved with IV simplification. 1190 /// 1191 void IndVarSimplify::SimplifyAndExtend(Loop *L, 1192 SCEVExpander &Rewriter, 1193 LPPassManager &LPM) { 1194 SmallVector<WideIVInfo, 8> WideIVs; 1195 1196 SmallVector<PHINode*, 8> LoopPhis; 1197 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1198 LoopPhis.push_back(cast<PHINode>(I)); 1199 } 1200 // Each round of simplification iterates through the SimplifyIVUsers worklist 1201 // for all current phis, then determines whether any IVs can be 1202 // widened. Widening adds new phis to LoopPhis, inducing another round of 1203 // simplification on the wide IVs. 1204 while (!LoopPhis.empty()) { 1205 // Evaluate as many IV expressions as possible before widening any IVs. This 1206 // forces SCEV to set no-wrap flags before evaluating sign/zero 1207 // extension. The first time SCEV attempts to normalize sign/zero extension, 1208 // the result becomes final. So for the most predictable results, we delay 1209 // evaluation of sign/zero extend evaluation until needed, and avoid running 1210 // other SCEV based analysis prior to SimplifyAndExtend. 1211 do { 1212 PHINode *CurrIV = LoopPhis.pop_back_val(); 1213 1214 // Information about sign/zero extensions of CurrIV. 1215 WideIVVisitor WIV(CurrIV, SE, TD); 1216 1217 Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &WIV); 1218 1219 if (WIV.WI.WidestNativeType) { 1220 WideIVs.push_back(WIV.WI); 1221 } 1222 } while(!LoopPhis.empty()); 1223 1224 for (; !WideIVs.empty(); WideIVs.pop_back()) { 1225 WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts); 1226 if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) { 1227 Changed = true; 1228 LoopPhis.push_back(WidePhi); 1229 } 1230 } 1231 } 1232 } 1233 1234 //===----------------------------------------------------------------------===// 1235 // LinearFunctionTestReplace and its kin. Rewrite the loop exit condition. 1236 //===----------------------------------------------------------------------===// 1237 1238 /// Check for expressions that ScalarEvolution generates to compute 1239 /// BackedgeTakenInfo. If these expressions have not been reduced, then 1240 /// expanding them may incur additional cost (albeit in the loop preheader). 1241 static bool isHighCostExpansion(const SCEV *S, BranchInst *BI, 1242 SmallPtrSet<const SCEV*, 8> &Processed, 1243 ScalarEvolution *SE) { 1244 if (!Processed.insert(S)) 1245 return false; 1246 1247 // If the backedge-taken count is a UDiv, it's very likely a UDiv that 1248 // ScalarEvolution's HowFarToZero or HowManyLessThans produced to compute a 1249 // precise expression, rather than a UDiv from the user's code. If we can't 1250 // find a UDiv in the code with some simple searching, assume the former and 1251 // forego rewriting the loop. 1252 if (isa<SCEVUDivExpr>(S)) { 1253 ICmpInst *OrigCond = dyn_cast<ICmpInst>(BI->getCondition()); 1254 if (!OrigCond) return true; 1255 const SCEV *R = SE->getSCEV(OrigCond->getOperand(1)); 1256 R = SE->getMinusSCEV(R, SE->getConstant(R->getType(), 1)); 1257 if (R != S) { 1258 const SCEV *L = SE->getSCEV(OrigCond->getOperand(0)); 1259 L = SE->getMinusSCEV(L, SE->getConstant(L->getType(), 1)); 1260 if (L != S) 1261 return true; 1262 } 1263 } 1264 1265 if (EnableIVRewrite) 1266 return false; 1267 1268 // Recurse past add expressions, which commonly occur in the 1269 // BackedgeTakenCount. They may already exist in program code, and if not, 1270 // they are not too expensive rematerialize. 1271 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 1272 for (SCEVAddExpr::op_iterator I = Add->op_begin(), E = Add->op_end(); 1273 I != E; ++I) { 1274 if (isHighCostExpansion(*I, BI, Processed, SE)) 1275 return true; 1276 } 1277 return false; 1278 } 1279 1280 // HowManyLessThans uses a Max expression whenever the loop is not guarded by 1281 // the exit condition. 1282 if (isa<SCEVSMaxExpr>(S) || isa<SCEVUMaxExpr>(S)) 1283 return true; 1284 1285 // If we haven't recognized an expensive SCEV pattern, assume it's an 1286 // expression produced by program code. 1287 return false; 1288 } 1289 1290 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken 1291 /// count expression can be safely and cheaply expanded into an instruction 1292 /// sequence that can be used by LinearFunctionTestReplace. 1293 /// 1294 /// TODO: This fails for pointer-type loop counters with greater than one byte 1295 /// strides, consequently preventing LFTR from running. For the purpose of LFTR 1296 /// we could skip this check in the case that the LFTR loop counter (chosen by 1297 /// FindLoopCounter) is also pointer type. Instead, we could directly convert 1298 /// the loop test to an inequality test by checking the target data's alignment 1299 /// of element types (given that the initial pointer value originates from or is 1300 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint). 1301 /// However, we don't yet have a strong motivation for converting loop tests 1302 /// into inequality tests. 1303 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE) { 1304 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1305 if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) || 1306 BackedgeTakenCount->isZero()) 1307 return false; 1308 1309 if (!L->getExitingBlock()) 1310 return false; 1311 1312 // Can't rewrite non-branch yet. 1313 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1314 if (!BI) 1315 return false; 1316 1317 SmallPtrSet<const SCEV*, 8> Processed; 1318 if (isHighCostExpansion(BackedgeTakenCount, BI, Processed, SE)) 1319 return false; 1320 1321 return true; 1322 } 1323 1324 /// getBackedgeIVType - Get the widest type used by the loop test after peeking 1325 /// through Truncs. 1326 /// 1327 /// TODO: Unnecessary when ForceLFTR is removed. 1328 static Type *getBackedgeIVType(Loop *L) { 1329 if (!L->getExitingBlock()) 1330 return 0; 1331 1332 // Can't rewrite non-branch yet. 1333 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1334 if (!BI) 1335 return 0; 1336 1337 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1338 if (!Cond) 1339 return 0; 1340 1341 Type *Ty = 0; 1342 for(User::op_iterator OI = Cond->op_begin(), OE = Cond->op_end(); 1343 OI != OE; ++OI) { 1344 assert((!Ty || Ty == (*OI)->getType()) && "bad icmp operand types"); 1345 TruncInst *Trunc = dyn_cast<TruncInst>(*OI); 1346 if (!Trunc) 1347 continue; 1348 1349 return Trunc->getSrcTy(); 1350 } 1351 return Ty; 1352 } 1353 1354 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop 1355 /// invariant value to the phi. 1356 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) { 1357 Instruction *IncI = dyn_cast<Instruction>(IncV); 1358 if (!IncI) 1359 return 0; 1360 1361 switch (IncI->getOpcode()) { 1362 case Instruction::Add: 1363 case Instruction::Sub: 1364 break; 1365 case Instruction::GetElementPtr: 1366 // An IV counter must preserve its type. 1367 if (IncI->getNumOperands() == 2) 1368 break; 1369 default: 1370 return 0; 1371 } 1372 1373 PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0)); 1374 if (Phi && Phi->getParent() == L->getHeader()) { 1375 if (isLoopInvariant(IncI->getOperand(1), L, DT)) 1376 return Phi; 1377 return 0; 1378 } 1379 if (IncI->getOpcode() == Instruction::GetElementPtr) 1380 return 0; 1381 1382 // Allow add/sub to be commuted. 1383 Phi = dyn_cast<PHINode>(IncI->getOperand(1)); 1384 if (Phi && Phi->getParent() == L->getHeader()) { 1385 if (isLoopInvariant(IncI->getOperand(0), L, DT)) 1386 return Phi; 1387 } 1388 return 0; 1389 } 1390 1391 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show 1392 /// that the current exit test is already sufficiently canonical. 1393 static bool needsLFTR(Loop *L, DominatorTree *DT) { 1394 assert(L->getExitingBlock() && "expected loop exit"); 1395 1396 BasicBlock *LatchBlock = L->getLoopLatch(); 1397 // Don't bother with LFTR if the loop is not properly simplified. 1398 if (!LatchBlock) 1399 return false; 1400 1401 BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1402 assert(BI && "expected exit branch"); 1403 1404 // Do LFTR to simplify the exit condition to an ICMP. 1405 ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition()); 1406 if (!Cond) 1407 return true; 1408 1409 // Do LFTR to simplify the exit ICMP to EQ/NE 1410 ICmpInst::Predicate Pred = Cond->getPredicate(); 1411 if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ) 1412 return true; 1413 1414 // Look for a loop invariant RHS 1415 Value *LHS = Cond->getOperand(0); 1416 Value *RHS = Cond->getOperand(1); 1417 if (!isLoopInvariant(RHS, L, DT)) { 1418 if (!isLoopInvariant(LHS, L, DT)) 1419 return true; 1420 std::swap(LHS, RHS); 1421 } 1422 // Look for a simple IV counter LHS 1423 PHINode *Phi = dyn_cast<PHINode>(LHS); 1424 if (!Phi) 1425 Phi = getLoopPhiForCounter(LHS, L, DT); 1426 1427 if (!Phi) 1428 return true; 1429 1430 // Do LFTR if the exit condition's IV is *not* a simple counter. 1431 Value *IncV = Phi->getIncomingValueForBlock(L->getLoopLatch()); 1432 return Phi != getLoopPhiForCounter(IncV, L, DT); 1433 } 1434 1435 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to 1436 /// be rewritten) loop exit test. 1437 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) { 1438 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1439 Value *IncV = Phi->getIncomingValue(LatchIdx); 1440 1441 for (Value::use_iterator UI = Phi->use_begin(), UE = Phi->use_end(); 1442 UI != UE; ++UI) { 1443 if (*UI != Cond && *UI != IncV) return false; 1444 } 1445 1446 for (Value::use_iterator UI = IncV->use_begin(), UE = IncV->use_end(); 1447 UI != UE; ++UI) { 1448 if (*UI != Cond && *UI != Phi) return false; 1449 } 1450 return true; 1451 } 1452 1453 /// FindLoopCounter - Find an affine IV in canonical form. 1454 /// 1455 /// BECount may be an i8* pointer type. The pointer difference is already 1456 /// valid count without scaling the address stride, so it remains a pointer 1457 /// expression as far as SCEV is concerned. 1458 /// 1459 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount 1460 /// 1461 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride. 1462 /// This is difficult in general for SCEV because of potential overflow. But we 1463 /// could at least handle constant BECounts. 1464 static PHINode * 1465 FindLoopCounter(Loop *L, const SCEV *BECount, 1466 ScalarEvolution *SE, DominatorTree *DT, const TargetData *TD) { 1467 uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType()); 1468 1469 Value *Cond = 1470 cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition(); 1471 1472 // Loop over all of the PHI nodes, looking for a simple counter. 1473 PHINode *BestPhi = 0; 1474 const SCEV *BestInit = 0; 1475 BasicBlock *LatchBlock = L->getLoopLatch(); 1476 assert(LatchBlock && "needsLFTR should guarantee a loop latch"); 1477 1478 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) { 1479 PHINode *Phi = cast<PHINode>(I); 1480 if (!SE->isSCEVable(Phi->getType())) 1481 continue; 1482 1483 // Avoid comparing an integer IV against a pointer Limit. 1484 if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy()) 1485 continue; 1486 1487 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi)); 1488 if (!AR || AR->getLoop() != L || !AR->isAffine()) 1489 continue; 1490 1491 // AR may be a pointer type, while BECount is an integer type. 1492 // AR may be wider than BECount. With eq/ne tests overflow is immaterial. 1493 // AR may not be a narrower type, or we may never exit. 1494 uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType()); 1495 if (PhiWidth < BCWidth || (TD && !TD->isLegalInteger(PhiWidth))) 1496 continue; 1497 1498 const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE)); 1499 if (!Step || !Step->isOne()) 1500 continue; 1501 1502 int LatchIdx = Phi->getBasicBlockIndex(LatchBlock); 1503 Value *IncV = Phi->getIncomingValue(LatchIdx); 1504 if (getLoopPhiForCounter(IncV, L, DT) != Phi) 1505 continue; 1506 1507 const SCEV *Init = AR->getStart(); 1508 1509 if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) { 1510 // Don't force a live loop counter if another IV can be used. 1511 if (AlmostDeadIV(Phi, LatchBlock, Cond)) 1512 continue; 1513 1514 // Prefer to count-from-zero. This is a more "canonical" counter form. It 1515 // also prefers integer to pointer IVs. 1516 if (BestInit->isZero() != Init->isZero()) { 1517 if (BestInit->isZero()) 1518 continue; 1519 } 1520 // If two IVs both count from zero or both count from nonzero then the 1521 // narrower is likely a dead phi that has been widened. Use the wider phi 1522 // to allow the other to be eliminated. 1523 if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType())) 1524 continue; 1525 } 1526 BestPhi = Phi; 1527 BestInit = Init; 1528 } 1529 return BestPhi; 1530 } 1531 1532 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that 1533 /// holds the RHS of the new loop test. 1534 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L, 1535 SCEVExpander &Rewriter, ScalarEvolution *SE) { 1536 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar)); 1537 assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter"); 1538 const SCEV *IVInit = AR->getStart(); 1539 1540 // IVInit may be a pointer while IVCount is an integer when FindLoopCounter 1541 // finds a valid pointer IV. Sign extend BECount in order to materialize a 1542 // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing 1543 // the existing GEPs whenever possible. 1544 if (IndVar->getType()->isPointerTy() 1545 && !IVCount->getType()->isPointerTy()) { 1546 1547 Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType()); 1548 const SCEV *IVOffset = SE->getTruncateOrSignExtend(IVCount, OfsTy); 1549 1550 // Expand the code for the iteration count. 1551 assert(SE->isLoopInvariant(IVOffset, L) && 1552 "Computed iteration count is not loop invariant!"); 1553 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1554 Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI); 1555 1556 Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader()); 1557 assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter"); 1558 // We could handle pointer IVs other than i8*, but we need to compensate for 1559 // gep index scaling. See canExpandBackedgeTakenCount comments. 1560 assert(SE->getSizeOfExpr( 1561 cast<PointerType>(GEPBase->getType())->getElementType())->isOne() 1562 && "unit stride pointer IV must be i8*"); 1563 1564 IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); 1565 return Builder.CreateGEP(GEPBase, GEPOffset, "lftr.limit"); 1566 } 1567 else { 1568 // In any other case, convert both IVInit and IVCount to integers before 1569 // comparing. This may result in SCEV expension of pointers, but in practice 1570 // SCEV will fold the pointer arithmetic away as such: 1571 // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc). 1572 // 1573 // Valid Cases: (1) both integers is most common; (2) both may be pointers 1574 // for simple memset-style loops; (3) IVInit is an integer and IVCount is a 1575 // pointer may occur when enable-iv-rewrite generates a canonical IV on top 1576 // of case #2. 1577 1578 const SCEV *IVLimit = 0; 1579 // For unit stride, IVCount = Start + BECount with 2's complement overflow. 1580 // For non-zero Start, compute IVCount here. 1581 if (AR->getStart()->isZero()) 1582 IVLimit = IVCount; 1583 else { 1584 assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride"); 1585 const SCEV *IVInit = AR->getStart(); 1586 1587 // For integer IVs, truncate the IV before computing IVInit + BECount. 1588 if (SE->getTypeSizeInBits(IVInit->getType()) 1589 > SE->getTypeSizeInBits(IVCount->getType())) 1590 IVInit = SE->getTruncateExpr(IVInit, IVCount->getType()); 1591 1592 IVLimit = SE->getAddExpr(IVInit, IVCount); 1593 } 1594 // Expand the code for the iteration count. 1595 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1596 IRBuilder<> Builder(BI); 1597 assert(SE->isLoopInvariant(IVLimit, L) && 1598 "Computed iteration count is not loop invariant!"); 1599 // Ensure that we generate the same type as IndVar, or a smaller integer 1600 // type. In the presence of null pointer values, we have an integer type 1601 // SCEV expression (IVInit) for a pointer type IV value (IndVar). 1602 Type *LimitTy = IVCount->getType()->isPointerTy() ? 1603 IndVar->getType() : IVCount->getType(); 1604 return Rewriter.expandCodeFor(IVLimit, LimitTy, BI); 1605 } 1606 } 1607 1608 /// LinearFunctionTestReplace - This method rewrites the exit condition of the 1609 /// loop to be a canonical != comparison against the incremented loop induction 1610 /// variable. This pass is able to rewrite the exit tests of any loop where the 1611 /// SCEV analysis can determine a loop-invariant trip count of the loop, which 1612 /// is actually a much broader range than just linear tests. 1613 Value *IndVarSimplify:: 1614 LinearFunctionTestReplace(Loop *L, 1615 const SCEV *BackedgeTakenCount, 1616 PHINode *IndVar, 1617 SCEVExpander &Rewriter) { 1618 assert(canExpandBackedgeTakenCount(L, SE) && "precondition"); 1619 1620 // LFTR can ignore IV overflow and truncate to the width of 1621 // BECount. This avoids materializing the add(zext(add)) expression. 1622 Type *CntTy = !EnableIVRewrite ? 1623 BackedgeTakenCount->getType() : IndVar->getType(); 1624 1625 const SCEV *IVCount = BackedgeTakenCount; 1626 1627 // If the exiting block is the same as the backedge block, we prefer to 1628 // compare against the post-incremented value, otherwise we must compare 1629 // against the preincremented value. 1630 Value *CmpIndVar; 1631 if (L->getExitingBlock() == L->getLoopLatch()) { 1632 // Add one to the "backedge-taken" count to get the trip count. 1633 // If this addition may overflow, we have to be more pessimistic and 1634 // cast the induction variable before doing the add. 1635 const SCEV *N = 1636 SE->getAddExpr(IVCount, SE->getConstant(IVCount->getType(), 1)); 1637 if (CntTy == IVCount->getType()) 1638 IVCount = N; 1639 else { 1640 const SCEV *Zero = SE->getConstant(IVCount->getType(), 0); 1641 if ((isa<SCEVConstant>(N) && !N->isZero()) || 1642 SE->isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) { 1643 // No overflow. Cast the sum. 1644 IVCount = SE->getTruncateOrZeroExtend(N, CntTy); 1645 } else { 1646 // Potential overflow. Cast before doing the add. 1647 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); 1648 IVCount = SE->getAddExpr(IVCount, SE->getConstant(CntTy, 1)); 1649 } 1650 } 1651 // The BackedgeTaken expression contains the number of times that the 1652 // backedge branches to the loop header. This is one less than the 1653 // number of times the loop executes, so use the incremented indvar. 1654 CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock()); 1655 } else { 1656 // We must use the preincremented value... 1657 IVCount = SE->getTruncateOrZeroExtend(IVCount, CntTy); 1658 CmpIndVar = IndVar; 1659 } 1660 1661 Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE); 1662 assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy() 1663 && "genLoopLimit missed a cast"); 1664 1665 // Insert a new icmp_ne or icmp_eq instruction before the branch. 1666 BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator()); 1667 ICmpInst::Predicate P; 1668 if (L->contains(BI->getSuccessor(0))) 1669 P = ICmpInst::ICMP_NE; 1670 else 1671 P = ICmpInst::ICMP_EQ; 1672 1673 DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n" 1674 << " LHS:" << *CmpIndVar << '\n' 1675 << " op:\t" 1676 << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n" 1677 << " RHS:\t" << *ExitCnt << "\n" 1678 << " IVCount:\t" << *IVCount << "\n"); 1679 1680 IRBuilder<> Builder(BI); 1681 if (SE->getTypeSizeInBits(CmpIndVar->getType()) 1682 > SE->getTypeSizeInBits(ExitCnt->getType())) { 1683 CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(), 1684 "lftr.wideiv"); 1685 } 1686 1687 Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond"); 1688 Value *OrigCond = BI->getCondition(); 1689 // It's tempting to use replaceAllUsesWith here to fully replace the old 1690 // comparison, but that's not immediately safe, since users of the old 1691 // comparison may not be dominated by the new comparison. Instead, just 1692 // update the branch to use the new comparison; in the common case this 1693 // will make old comparison dead. 1694 BI->setCondition(Cond); 1695 DeadInsts.push_back(OrigCond); 1696 1697 ++NumLFTR; 1698 Changed = true; 1699 return Cond; 1700 } 1701 1702 //===----------------------------------------------------------------------===// 1703 // SinkUnusedInvariants. A late subpass to cleanup loop preheaders. 1704 //===----------------------------------------------------------------------===// 1705 1706 /// If there's a single exit block, sink any loop-invariant values that 1707 /// were defined in the preheader but not used inside the loop into the 1708 /// exit block to reduce register pressure in the loop. 1709 void IndVarSimplify::SinkUnusedInvariants(Loop *L) { 1710 BasicBlock *ExitBlock = L->getExitBlock(); 1711 if (!ExitBlock) return; 1712 1713 BasicBlock *Preheader = L->getLoopPreheader(); 1714 if (!Preheader) return; 1715 1716 Instruction *InsertPt = ExitBlock->getFirstInsertionPt(); 1717 BasicBlock::iterator I = Preheader->getTerminator(); 1718 while (I != Preheader->begin()) { 1719 --I; 1720 // New instructions were inserted at the end of the preheader. 1721 if (isa<PHINode>(I)) 1722 break; 1723 1724 // Don't move instructions which might have side effects, since the side 1725 // effects need to complete before instructions inside the loop. Also don't 1726 // move instructions which might read memory, since the loop may modify 1727 // memory. Note that it's okay if the instruction might have undefined 1728 // behavior: LoopSimplify guarantees that the preheader dominates the exit 1729 // block. 1730 if (I->mayHaveSideEffects() || I->mayReadFromMemory()) 1731 continue; 1732 1733 // Skip debug info intrinsics. 1734 if (isa<DbgInfoIntrinsic>(I)) 1735 continue; 1736 1737 // Skip landingpad instructions. 1738 if (isa<LandingPadInst>(I)) 1739 continue; 1740 1741 // Don't sink alloca: we never want to sink static alloca's out of the 1742 // entry block, and correctly sinking dynamic alloca's requires 1743 // checks for stacksave/stackrestore intrinsics. 1744 // FIXME: Refactor this check somehow? 1745 if (isa<AllocaInst>(I)) 1746 continue; 1747 1748 // Determine if there is a use in or before the loop (direct or 1749 // otherwise). 1750 bool UsedInLoop = false; 1751 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); 1752 UI != UE; ++UI) { 1753 User *U = *UI; 1754 BasicBlock *UseBB = cast<Instruction>(U)->getParent(); 1755 if (PHINode *P = dyn_cast<PHINode>(U)) { 1756 unsigned i = 1757 PHINode::getIncomingValueNumForOperand(UI.getOperandNo()); 1758 UseBB = P->getIncomingBlock(i); 1759 } 1760 if (UseBB == Preheader || L->contains(UseBB)) { 1761 UsedInLoop = true; 1762 break; 1763 } 1764 } 1765 1766 // If there is, the def must remain in the preheader. 1767 if (UsedInLoop) 1768 continue; 1769 1770 // Otherwise, sink it to the exit block. 1771 Instruction *ToMove = I; 1772 bool Done = false; 1773 1774 if (I != Preheader->begin()) { 1775 // Skip debug info intrinsics. 1776 do { 1777 --I; 1778 } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin()); 1779 1780 if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin()) 1781 Done = true; 1782 } else { 1783 Done = true; 1784 } 1785 1786 ToMove->moveBefore(InsertPt); 1787 if (Done) break; 1788 InsertPt = ToMove; 1789 } 1790 } 1791 1792 //===----------------------------------------------------------------------===// 1793 // IndVarSimplify driver. Manage several subpasses of IV simplification. 1794 //===----------------------------------------------------------------------===// 1795 1796 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) { 1797 // If LoopSimplify form is not available, stay out of trouble. Some notes: 1798 // - LSR currently only supports LoopSimplify-form loops. Indvars' 1799 // canonicalization can be a pessimization without LSR to "clean up" 1800 // afterwards. 1801 // - We depend on having a preheader; in particular, 1802 // Loop::getCanonicalInductionVariable only supports loops with preheaders, 1803 // and we're in trouble if we can't find the induction variable even when 1804 // we've manually inserted one. 1805 if (!L->isLoopSimplifyForm()) 1806 return false; 1807 1808 if (EnableIVRewrite) 1809 IU = &getAnalysis<IVUsers>(); 1810 LI = &getAnalysis<LoopInfo>(); 1811 SE = &getAnalysis<ScalarEvolution>(); 1812 DT = &getAnalysis<DominatorTree>(); 1813 TD = getAnalysisIfAvailable<TargetData>(); 1814 1815 DeadInsts.clear(); 1816 Changed = false; 1817 1818 // If there are any floating-point recurrences, attempt to 1819 // transform them to use integer recurrences. 1820 RewriteNonIntegerIVs(L); 1821 1822 const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L); 1823 1824 // Create a rewriter object which we'll use to transform the code with. 1825 SCEVExpander Rewriter(*SE, "indvars"); 1826 #ifndef NDEBUG 1827 Rewriter.setDebugType(DEBUG_TYPE); 1828 #endif 1829 1830 // Eliminate redundant IV users. 1831 // 1832 // Simplification works best when run before other consumers of SCEV. We 1833 // attempt to avoid evaluating SCEVs for sign/zero extend operations until 1834 // other expressions involving loop IVs have been evaluated. This helps SCEV 1835 // set no-wrap flags before normalizing sign/zero extension. 1836 if (!EnableIVRewrite) { 1837 Rewriter.disableCanonicalMode(); 1838 SimplifyAndExtend(L, Rewriter, LPM); 1839 } 1840 1841 // Check to see if this loop has a computable loop-invariant execution count. 1842 // If so, this means that we can compute the final value of any expressions 1843 // that are recurrent in the loop, and substitute the exit values from the 1844 // loop into any instructions outside of the loop that use the final values of 1845 // the current expressions. 1846 // 1847 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) 1848 RewriteLoopExitValues(L, Rewriter); 1849 1850 // Eliminate redundant IV users. 1851 if (EnableIVRewrite) 1852 Changed |= simplifyIVUsers(IU, SE, &LPM, DeadInsts); 1853 1854 // Eliminate redundant IV cycles. 1855 if (!EnableIVRewrite) 1856 NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts); 1857 1858 // Compute the type of the largest recurrence expression, and decide whether 1859 // a canonical induction variable should be inserted. 1860 Type *LargestType = 0; 1861 bool NeedCannIV = false; 1862 bool ExpandBECount = canExpandBackedgeTakenCount(L, SE); 1863 if (EnableIVRewrite && ExpandBECount) { 1864 // If we have a known trip count and a single exit block, we'll be 1865 // rewriting the loop exit test condition below, which requires a 1866 // canonical induction variable. 1867 NeedCannIV = true; 1868 Type *Ty = BackedgeTakenCount->getType(); 1869 if (!EnableIVRewrite) { 1870 // In this mode, SimplifyIVUsers may have already widened the IV used by 1871 // the backedge test and inserted a Trunc on the compare's operand. Get 1872 // the wider type to avoid creating a redundant narrow IV only used by the 1873 // loop test. 1874 LargestType = getBackedgeIVType(L); 1875 } 1876 if (!LargestType || 1877 SE->getTypeSizeInBits(Ty) > 1878 SE->getTypeSizeInBits(LargestType)) 1879 LargestType = SE->getEffectiveSCEVType(Ty); 1880 } 1881 if (EnableIVRewrite) { 1882 for (IVUsers::const_iterator I = IU->begin(), E = IU->end(); I != E; ++I) { 1883 NeedCannIV = true; 1884 Type *Ty = 1885 SE->getEffectiveSCEVType(I->getOperandValToReplace()->getType()); 1886 if (!LargestType || 1887 SE->getTypeSizeInBits(Ty) > 1888 SE->getTypeSizeInBits(LargestType)) 1889 LargestType = Ty; 1890 } 1891 } 1892 1893 // Now that we know the largest of the induction variable expressions 1894 // in this loop, insert a canonical induction variable of the largest size. 1895 PHINode *IndVar = 0; 1896 if (NeedCannIV) { 1897 // Check to see if the loop already has any canonical-looking induction 1898 // variables. If any are present and wider than the planned canonical 1899 // induction variable, temporarily remove them, so that the Rewriter 1900 // doesn't attempt to reuse them. 1901 SmallVector<PHINode *, 2> OldCannIVs; 1902 while (PHINode *OldCannIV = L->getCanonicalInductionVariable()) { 1903 if (SE->getTypeSizeInBits(OldCannIV->getType()) > 1904 SE->getTypeSizeInBits(LargestType)) 1905 OldCannIV->removeFromParent(); 1906 else 1907 break; 1908 OldCannIVs.push_back(OldCannIV); 1909 } 1910 1911 IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType); 1912 1913 ++NumInserted; 1914 Changed = true; 1915 DEBUG(dbgs() << "INDVARS: New CanIV: " << *IndVar << '\n'); 1916 1917 // Now that the official induction variable is established, reinsert 1918 // any old canonical-looking variables after it so that the IR remains 1919 // consistent. They will be deleted as part of the dead-PHI deletion at 1920 // the end of the pass. 1921 while (!OldCannIVs.empty()) { 1922 PHINode *OldCannIV = OldCannIVs.pop_back_val(); 1923 OldCannIV->insertBefore(L->getHeader()->getFirstInsertionPt()); 1924 } 1925 } 1926 else if (!EnableIVRewrite && ExpandBECount && needsLFTR(L, DT)) { 1927 IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT, TD); 1928 } 1929 // If we have a trip count expression, rewrite the loop's exit condition 1930 // using it. We can currently only handle loops with a single exit. 1931 Value *NewICmp = 0; 1932 if (ExpandBECount && IndVar) { 1933 // Check preconditions for proper SCEVExpander operation. SCEV does not 1934 // express SCEVExpander's dependencies, such as LoopSimplify. Instead any 1935 // pass that uses the SCEVExpander must do it. This does not work well for 1936 // loop passes because SCEVExpander makes assumptions about all loops, while 1937 // LoopPassManager only forces the current loop to be simplified. 1938 // 1939 // FIXME: SCEV expansion has no way to bail out, so the caller must 1940 // explicitly check any assumptions made by SCEV. Brittle. 1941 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount); 1942 if (!AR || AR->getLoop()->getLoopPreheader()) 1943 NewICmp = 1944 LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar, Rewriter); 1945 } 1946 // Rewrite IV-derived expressions. 1947 if (EnableIVRewrite) 1948 RewriteIVExpressions(L, Rewriter); 1949 1950 // Clear the rewriter cache, because values that are in the rewriter's cache 1951 // can be deleted in the loop below, causing the AssertingVH in the cache to 1952 // trigger. 1953 Rewriter.clear(); 1954 1955 // Now that we're done iterating through lists, clean up any instructions 1956 // which are now dead. 1957 while (!DeadInsts.empty()) 1958 if (Instruction *Inst = 1959 dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) 1960 RecursivelyDeleteTriviallyDeadInstructions(Inst); 1961 1962 // The Rewriter may not be used from this point on. 1963 1964 // Loop-invariant instructions in the preheader that aren't used in the 1965 // loop may be sunk below the loop to reduce register pressure. 1966 SinkUnusedInvariants(L); 1967 1968 // For completeness, inform IVUsers of the IV use in the newly-created 1969 // loop exit test instruction. 1970 if (IU && NewICmp) { 1971 ICmpInst *NewICmpInst = dyn_cast<ICmpInst>(NewICmp); 1972 if (NewICmpInst) { 1973 SmallPtrSet<Loop*, 16> SimplifiedLoopNests; 1974 IU->AddUsersIfInteresting(cast<Instruction>(NewICmpInst->getOperand(0)), 1975 SimplifiedLoopNests); 1976 } 1977 } 1978 // Clean up dead instructions. 1979 Changed |= DeleteDeadPHIs(L->getHeader()); 1980 // Check a post-condition. 1981 assert(L->isLCSSAForm(*DT) && 1982 "Indvars did not leave the loop in lcssa form!"); 1983 1984 // Verify that LFTR, and any other change have not interfered with SCEV's 1985 // ability to compute trip count. 1986 #ifndef NDEBUG 1987 if (!EnableIVRewrite && VerifyIndvars && 1988 !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) { 1989 SE->forgetLoop(L); 1990 const SCEV *NewBECount = SE->getBackedgeTakenCount(L); 1991 if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) < 1992 SE->getTypeSizeInBits(NewBECount->getType())) 1993 NewBECount = SE->getTruncateOrNoop(NewBECount, 1994 BackedgeTakenCount->getType()); 1995 else 1996 BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount, 1997 NewBECount->getType()); 1998 assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV"); 1999 } 2000 #endif 2001 2002 return Changed; 2003 } 2004