xref: /llvm-project/llvm/lib/Transforms/Scalar/IndVarSimplify.cpp (revision 04423cf785f917220a19e803c58f4f5023108137)
1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This transformation analyzes and transforms the induction variables (and
11 // computations derived from them) into simpler forms suitable for subsequent
12 // analysis and transformation.
13 //
14 // If the trip count of a loop is computable, this pass also makes the following
15 // changes:
16 //   1. The exit condition for the loop is canonicalized to compare the
17 //      induction value against the exit value.  This turns loops like:
18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
19 //   2. Any use outside of the loop of an expression derived from the indvar
20 //      is changed to compute the derived value outside of the loop, eliminating
21 //      the dependence on the exit value of the induction variable.  If the only
22 //      purpose of the loop is to compute the exit value of some derived
23 //      expression, this transformation will make the loop dead.
24 //
25 //===----------------------------------------------------------------------===//
26 
27 #include "llvm/Transforms/Scalar/IndVarSimplify.h"
28 #include "llvm/Transforms/Scalar.h"
29 #include "llvm/ADT/SmallVector.h"
30 #include "llvm/ADT/Statistic.h"
31 #include "llvm/Analysis/GlobalsModRef.h"
32 #include "llvm/Analysis/LoopInfo.h"
33 #include "llvm/Analysis/LoopPass.h"
34 #include "llvm/Analysis/LoopPassManager.h"
35 #include "llvm/Analysis/ScalarEvolutionExpander.h"
36 #include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/TargetTransformInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/CFG.h"
41 #include "llvm/IR/Constants.h"
42 #include "llvm/IR/DataLayout.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/LLVMContext.h"
47 #include "llvm/IR/PatternMatch.h"
48 #include "llvm/IR/Type.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
53 #include "llvm/Transforms/Utils/Local.h"
54 #include "llvm/Transforms/Utils/LoopUtils.h"
55 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
56 using namespace llvm;
57 
58 #define DEBUG_TYPE "indvars"
59 
60 STATISTIC(NumWidened     , "Number of indvars widened");
61 STATISTIC(NumReplaced    , "Number of exit values replaced");
62 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
63 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
64 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
65 
66 // Trip count verification can be enabled by default under NDEBUG if we
67 // implement a strong expression equivalence checker in SCEV. Until then, we
68 // use the verify-indvars flag, which may assert in some cases.
69 static cl::opt<bool> VerifyIndvars(
70   "verify-indvars", cl::Hidden,
71   cl::desc("Verify the ScalarEvolution result after running indvars"));
72 
73 enum ReplaceExitVal { NeverRepl, OnlyCheapRepl, AlwaysRepl };
74 
75 static cl::opt<ReplaceExitVal> ReplaceExitValue(
76     "replexitval", cl::Hidden, cl::init(OnlyCheapRepl),
77     cl::desc("Choose the strategy to replace exit value in IndVarSimplify"),
78     cl::values(clEnumValN(NeverRepl, "never", "never replace exit value"),
79                clEnumValN(OnlyCheapRepl, "cheap",
80                           "only replace exit value when the cost is cheap"),
81                clEnumValN(AlwaysRepl, "always",
82                           "always replace exit value whenever possible")));
83 
84 namespace {
85 struct RewritePhi;
86 
87 class IndVarSimplify {
88   LoopInfo *LI;
89   ScalarEvolution *SE;
90   DominatorTree *DT;
91   const DataLayout &DL;
92   TargetLibraryInfo *TLI;
93   const TargetTransformInfo *TTI;
94 
95   SmallVector<WeakVH, 16> DeadInsts;
96   bool Changed = false;
97 
98   bool isValidRewrite(Value *FromVal, Value *ToVal);
99 
100   void handleFloatingPointIV(Loop *L, PHINode *PH);
101   void rewriteNonIntegerIVs(Loop *L);
102 
103   void simplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LoopInfo *LI);
104 
105   bool canLoopBeDeleted(Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet);
106   void rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
107   void rewriteFirstIterationLoopExitValues(Loop *L);
108 
109   Value *linearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
110                                    PHINode *IndVar, SCEVExpander &Rewriter);
111 
112   void sinkUnusedInvariants(Loop *L);
113 
114   Value *expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S, Loop *L,
115                             Instruction *InsertPt, Type *Ty);
116 
117 public:
118   IndVarSimplify(LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT,
119                  const DataLayout &DL, TargetLibraryInfo *TLI,
120                  TargetTransformInfo *TTI)
121       : LI(LI), SE(SE), DT(DT), DL(DL), TLI(TLI), TTI(TTI) {}
122 
123   bool run(Loop *L);
124 };
125 }
126 
127 /// Return true if the SCEV expansion generated by the rewriter can replace the
128 /// original value. SCEV guarantees that it produces the same value, but the way
129 /// it is produced may be illegal IR.  Ideally, this function will only be
130 /// called for verification.
131 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
132   // If an SCEV expression subsumed multiple pointers, its expansion could
133   // reassociate the GEP changing the base pointer. This is illegal because the
134   // final address produced by a GEP chain must be inbounds relative to its
135   // underlying object. Otherwise basic alias analysis, among other things,
136   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
137   // producing an expression involving multiple pointers. Until then, we must
138   // bail out here.
139   //
140   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
141   // because it understands lcssa phis while SCEV does not.
142   Value *FromPtr = FromVal;
143   Value *ToPtr = ToVal;
144   if (auto *GEP = dyn_cast<GEPOperator>(FromVal)) {
145     FromPtr = GEP->getPointerOperand();
146   }
147   if (auto *GEP = dyn_cast<GEPOperator>(ToVal)) {
148     ToPtr = GEP->getPointerOperand();
149   }
150   if (FromPtr != FromVal || ToPtr != ToVal) {
151     // Quickly check the common case
152     if (FromPtr == ToPtr)
153       return true;
154 
155     // SCEV may have rewritten an expression that produces the GEP's pointer
156     // operand. That's ok as long as the pointer operand has the same base
157     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
158     // base of a recurrence. This handles the case in which SCEV expansion
159     // converts a pointer type recurrence into a nonrecurrent pointer base
160     // indexed by an integer recurrence.
161 
162     // If the GEP base pointer is a vector of pointers, abort.
163     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
164       return false;
165 
166     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
167     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
168     if (FromBase == ToBase)
169       return true;
170 
171     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
172           << *FromBase << " != " << *ToBase << "\n");
173 
174     return false;
175   }
176   return true;
177 }
178 
179 /// Determine the insertion point for this user. By default, insert immediately
180 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
181 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
182 /// common dominator for the incoming blocks.
183 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
184                                           DominatorTree *DT, LoopInfo *LI) {
185   PHINode *PHI = dyn_cast<PHINode>(User);
186   if (!PHI)
187     return User;
188 
189   Instruction *InsertPt = nullptr;
190   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
191     if (PHI->getIncomingValue(i) != Def)
192       continue;
193 
194     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
195     if (!InsertPt) {
196       InsertPt = InsertBB->getTerminator();
197       continue;
198     }
199     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
200     InsertPt = InsertBB->getTerminator();
201   }
202   assert(InsertPt && "Missing phi operand");
203 
204   auto *DefI = dyn_cast<Instruction>(Def);
205   if (!DefI)
206     return InsertPt;
207 
208   assert(DT->dominates(DefI, InsertPt) && "def does not dominate all uses");
209 
210   auto *L = LI->getLoopFor(DefI->getParent());
211   assert(!L || L->contains(LI->getLoopFor(InsertPt->getParent())));
212 
213   for (auto *DTN = (*DT)[InsertPt->getParent()]; DTN; DTN = DTN->getIDom())
214     if (LI->getLoopFor(DTN->getBlock()) == L)
215       return DTN->getBlock()->getTerminator();
216 
217   llvm_unreachable("DefI dominates InsertPt!");
218 }
219 
220 //===----------------------------------------------------------------------===//
221 // rewriteNonIntegerIVs and helpers. Prefer integer IVs.
222 //===----------------------------------------------------------------------===//
223 
224 /// Convert APF to an integer, if possible.
225 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
226   bool isExact = false;
227   // See if we can convert this to an int64_t
228   uint64_t UIntVal;
229   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
230                            &isExact) != APFloat::opOK || !isExact)
231     return false;
232   IntVal = UIntVal;
233   return true;
234 }
235 
236 /// If the loop has floating induction variable then insert corresponding
237 /// integer induction variable if possible.
238 /// For example,
239 /// for(double i = 0; i < 10000; ++i)
240 ///   bar(i)
241 /// is converted into
242 /// for(int i = 0; i < 10000; ++i)
243 ///   bar((double)i);
244 ///
245 void IndVarSimplify::handleFloatingPointIV(Loop *L, PHINode *PN) {
246   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
247   unsigned BackEdge     = IncomingEdge^1;
248 
249   // Check incoming value.
250   auto *InitValueVal = dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
251 
252   int64_t InitValue;
253   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
254     return;
255 
256   // Check IV increment. Reject this PN if increment operation is not
257   // an add or increment value can not be represented by an integer.
258   auto *Incr = dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
259   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
260 
261   // If this is not an add of the PHI with a constantfp, or if the constant fp
262   // is not an integer, bail out.
263   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
264   int64_t IncValue;
265   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
266       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
267     return;
268 
269   // Check Incr uses. One user is PN and the other user is an exit condition
270   // used by the conditional terminator.
271   Value::user_iterator IncrUse = Incr->user_begin();
272   Instruction *U1 = cast<Instruction>(*IncrUse++);
273   if (IncrUse == Incr->user_end()) return;
274   Instruction *U2 = cast<Instruction>(*IncrUse++);
275   if (IncrUse != Incr->user_end()) return;
276 
277   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
278   // only used by a branch, we can't transform it.
279   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
280   if (!Compare)
281     Compare = dyn_cast<FCmpInst>(U2);
282   if (!Compare || !Compare->hasOneUse() ||
283       !isa<BranchInst>(Compare->user_back()))
284     return;
285 
286   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
287 
288   // We need to verify that the branch actually controls the iteration count
289   // of the loop.  If not, the new IV can overflow and no one will notice.
290   // The branch block must be in the loop and one of the successors must be out
291   // of the loop.
292   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
293   if (!L->contains(TheBr->getParent()) ||
294       (L->contains(TheBr->getSuccessor(0)) &&
295        L->contains(TheBr->getSuccessor(1))))
296     return;
297 
298 
299   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
300   // transform it.
301   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
302   int64_t ExitValue;
303   if (ExitValueVal == nullptr ||
304       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
305     return;
306 
307   // Find new predicate for integer comparison.
308   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
309   switch (Compare->getPredicate()) {
310   default: return;  // Unknown comparison.
311   case CmpInst::FCMP_OEQ:
312   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
313   case CmpInst::FCMP_ONE:
314   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
315   case CmpInst::FCMP_OGT:
316   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
317   case CmpInst::FCMP_OGE:
318   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
319   case CmpInst::FCMP_OLT:
320   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
321   case CmpInst::FCMP_OLE:
322   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
323   }
324 
325   // We convert the floating point induction variable to a signed i32 value if
326   // we can.  This is only safe if the comparison will not overflow in a way
327   // that won't be trapped by the integer equivalent operations.  Check for this
328   // now.
329   // TODO: We could use i64 if it is native and the range requires it.
330 
331   // The start/stride/exit values must all fit in signed i32.
332   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
333     return;
334 
335   // If not actually striding (add x, 0.0), avoid touching the code.
336   if (IncValue == 0)
337     return;
338 
339   // Positive and negative strides have different safety conditions.
340   if (IncValue > 0) {
341     // If we have a positive stride, we require the init to be less than the
342     // exit value.
343     if (InitValue >= ExitValue)
344       return;
345 
346     uint32_t Range = uint32_t(ExitValue-InitValue);
347     // Check for infinite loop, either:
348     // while (i <= Exit) or until (i > Exit)
349     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
350       if (++Range == 0) return;  // Range overflows.
351     }
352 
353     unsigned Leftover = Range % uint32_t(IncValue);
354 
355     // If this is an equality comparison, we require that the strided value
356     // exactly land on the exit value, otherwise the IV condition will wrap
357     // around and do things the fp IV wouldn't.
358     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
359         Leftover != 0)
360       return;
361 
362     // If the stride would wrap around the i32 before exiting, we can't
363     // transform the IV.
364     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
365       return;
366 
367   } else {
368     // If we have a negative stride, we require the init to be greater than the
369     // exit value.
370     if (InitValue <= ExitValue)
371       return;
372 
373     uint32_t Range = uint32_t(InitValue-ExitValue);
374     // Check for infinite loop, either:
375     // while (i >= Exit) or until (i < Exit)
376     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
377       if (++Range == 0) return;  // Range overflows.
378     }
379 
380     unsigned Leftover = Range % uint32_t(-IncValue);
381 
382     // If this is an equality comparison, we require that the strided value
383     // exactly land on the exit value, otherwise the IV condition will wrap
384     // around and do things the fp IV wouldn't.
385     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
386         Leftover != 0)
387       return;
388 
389     // If the stride would wrap around the i32 before exiting, we can't
390     // transform the IV.
391     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
392       return;
393   }
394 
395   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
396 
397   // Insert new integer induction variable.
398   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
399   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
400                       PN->getIncomingBlock(IncomingEdge));
401 
402   Value *NewAdd =
403     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
404                               Incr->getName()+".int", Incr);
405   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
406 
407   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
408                                       ConstantInt::get(Int32Ty, ExitValue),
409                                       Compare->getName());
410 
411   // In the following deletions, PN may become dead and may be deleted.
412   // Use a WeakVH to observe whether this happens.
413   WeakVH WeakPH = PN;
414 
415   // Delete the old floating point exit comparison.  The branch starts using the
416   // new comparison.
417   NewCompare->takeName(Compare);
418   Compare->replaceAllUsesWith(NewCompare);
419   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
420 
421   // Delete the old floating point increment.
422   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
423   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
424 
425   // If the FP induction variable still has uses, this is because something else
426   // in the loop uses its value.  In order to canonicalize the induction
427   // variable, we chose to eliminate the IV and rewrite it in terms of an
428   // int->fp cast.
429   //
430   // We give preference to sitofp over uitofp because it is faster on most
431   // platforms.
432   if (WeakPH) {
433     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
434                                  &*PN->getParent()->getFirstInsertionPt());
435     PN->replaceAllUsesWith(Conv);
436     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
437   }
438   Changed = true;
439 }
440 
441 void IndVarSimplify::rewriteNonIntegerIVs(Loop *L) {
442   // First step.  Check to see if there are any floating-point recurrences.
443   // If there are, change them into integer recurrences, permitting analysis by
444   // the SCEV routines.
445   //
446   BasicBlock *Header = L->getHeader();
447 
448   SmallVector<WeakVH, 8> PHIs;
449   for (BasicBlock::iterator I = Header->begin();
450        PHINode *PN = dyn_cast<PHINode>(I); ++I)
451     PHIs.push_back(PN);
452 
453   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
454     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
455       handleFloatingPointIV(L, PN);
456 
457   // If the loop previously had floating-point IV, ScalarEvolution
458   // may not have been able to compute a trip count. Now that we've done some
459   // re-writing, the trip count may be computable.
460   if (Changed)
461     SE->forgetLoop(L);
462 }
463 
464 namespace {
465 // Collect information about PHI nodes which can be transformed in
466 // rewriteLoopExitValues.
467 struct RewritePhi {
468   PHINode *PN;
469   unsigned Ith;  // Ith incoming value.
470   Value *Val;    // Exit value after expansion.
471   bool HighCost; // High Cost when expansion.
472 
473   RewritePhi(PHINode *P, unsigned I, Value *V, bool H)
474       : PN(P), Ith(I), Val(V), HighCost(H) {}
475 };
476 }
477 
478 Value *IndVarSimplify::expandSCEVIfNeeded(SCEVExpander &Rewriter, const SCEV *S,
479                                           Loop *L, Instruction *InsertPt,
480                                           Type *ResultTy) {
481   // Before expanding S into an expensive LLVM expression, see if we can use an
482   // already existing value as the expansion for S.
483   if (Value *ExistingValue = Rewriter.getExactExistingExpansion(S, InsertPt, L))
484     if (ExistingValue->getType() == ResultTy)
485       return ExistingValue;
486 
487   // We didn't find anything, fall back to using SCEVExpander.
488   return Rewriter.expandCodeFor(S, ResultTy, InsertPt);
489 }
490 
491 //===----------------------------------------------------------------------===//
492 // rewriteLoopExitValues - Optimize IV users outside the loop.
493 // As a side effect, reduces the amount of IV processing within the loop.
494 //===----------------------------------------------------------------------===//
495 
496 /// Check to see if this loop has a computable loop-invariant execution count.
497 /// If so, this means that we can compute the final value of any expressions
498 /// that are recurrent in the loop, and substitute the exit values from the loop
499 /// into any instructions outside of the loop that use the final values of the
500 /// current expressions.
501 ///
502 /// This is mostly redundant with the regular IndVarSimplify activities that
503 /// happen later, except that it's more powerful in some cases, because it's
504 /// able to brute-force evaluate arbitrary instructions as long as they have
505 /// constant operands at the beginning of the loop.
506 void IndVarSimplify::rewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
507   // Check a pre-condition.
508   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
509          "Indvars did not preserve LCSSA!");
510 
511   SmallVector<BasicBlock*, 8> ExitBlocks;
512   L->getUniqueExitBlocks(ExitBlocks);
513 
514   SmallVector<RewritePhi, 8> RewritePhiSet;
515   // Find all values that are computed inside the loop, but used outside of it.
516   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
517   // the exit blocks of the loop to find them.
518   for (BasicBlock *ExitBB : ExitBlocks) {
519     // If there are no PHI nodes in this exit block, then no values defined
520     // inside the loop are used on this path, skip it.
521     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
522     if (!PN) continue;
523 
524     unsigned NumPreds = PN->getNumIncomingValues();
525 
526     // Iterate over all of the PHI nodes.
527     BasicBlock::iterator BBI = ExitBB->begin();
528     while ((PN = dyn_cast<PHINode>(BBI++))) {
529       if (PN->use_empty())
530         continue; // dead use, don't replace it
531 
532       if (!SE->isSCEVable(PN->getType()))
533         continue;
534 
535       // It's necessary to tell ScalarEvolution about this explicitly so that
536       // it can walk the def-use list and forget all SCEVs, as it may not be
537       // watching the PHI itself. Once the new exit value is in place, there
538       // may not be a def-use connection between the loop and every instruction
539       // which got a SCEVAddRecExpr for that loop.
540       SE->forgetValue(PN);
541 
542       // Iterate over all of the values in all the PHI nodes.
543       for (unsigned i = 0; i != NumPreds; ++i) {
544         // If the value being merged in is not integer or is not defined
545         // in the loop, skip it.
546         Value *InVal = PN->getIncomingValue(i);
547         if (!isa<Instruction>(InVal))
548           continue;
549 
550         // If this pred is for a subloop, not L itself, skip it.
551         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
552           continue; // The Block is in a subloop, skip it.
553 
554         // Check that InVal is defined in the loop.
555         Instruction *Inst = cast<Instruction>(InVal);
556         if (!L->contains(Inst))
557           continue;
558 
559         // Okay, this instruction has a user outside of the current loop
560         // and varies predictably *inside* the loop.  Evaluate the value it
561         // contains when the loop exits, if possible.
562         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
563         if (!SE->isLoopInvariant(ExitValue, L) ||
564             !isSafeToExpand(ExitValue, *SE))
565           continue;
566 
567         // Computing the value outside of the loop brings no benefit if :
568         //  - it is definitely used inside the loop in a way which can not be
569         //    optimized away.
570         //  - no use outside of the loop can take advantage of hoisting the
571         //    computation out of the loop
572         if (ExitValue->getSCEVType()>=scMulExpr) {
573           unsigned NumHardInternalUses = 0;
574           unsigned NumSoftExternalUses = 0;
575           unsigned NumUses = 0;
576           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
577                IB != IE && NumUses <= 6; ++IB) {
578             Instruction *UseInstr = cast<Instruction>(*IB);
579             unsigned Opc = UseInstr->getOpcode();
580             NumUses++;
581             if (L->contains(UseInstr)) {
582               if (Opc == Instruction::Call || Opc == Instruction::Ret)
583                 NumHardInternalUses++;
584             } else {
585               if (Opc == Instruction::PHI) {
586                 // Do not count the Phi as a use. LCSSA may have inserted
587                 // plenty of trivial ones.
588                 NumUses--;
589                 for (auto PB = UseInstr->user_begin(),
590                           PE = UseInstr->user_end();
591                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
592                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
593                   if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
594                     NumSoftExternalUses++;
595                 }
596                 continue;
597               }
598               if (Opc != Instruction::Call && Opc != Instruction::Ret)
599                 NumSoftExternalUses++;
600             }
601           }
602           if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
603             continue;
604         }
605 
606         bool HighCost = Rewriter.isHighCostExpansion(ExitValue, L, Inst);
607         Value *ExitVal =
608             expandSCEVIfNeeded(Rewriter, ExitValue, L, Inst, PN->getType());
609 
610         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
611                      << "  LoopVal = " << *Inst << "\n");
612 
613         if (!isValidRewrite(Inst, ExitVal)) {
614           DeadInsts.push_back(ExitVal);
615           continue;
616         }
617 
618         // Collect all the candidate PHINodes to be rewritten.
619         RewritePhiSet.emplace_back(PN, i, ExitVal, HighCost);
620       }
621     }
622   }
623 
624   bool LoopCanBeDel = canLoopBeDeleted(L, RewritePhiSet);
625 
626   // Transformation.
627   for (const RewritePhi &Phi : RewritePhiSet) {
628     PHINode *PN = Phi.PN;
629     Value *ExitVal = Phi.Val;
630 
631     // Only do the rewrite when the ExitValue can be expanded cheaply.
632     // If LoopCanBeDel is true, rewrite exit value aggressively.
633     if (ReplaceExitValue == OnlyCheapRepl && !LoopCanBeDel && Phi.HighCost) {
634       DeadInsts.push_back(ExitVal);
635       continue;
636     }
637 
638     Changed = true;
639     ++NumReplaced;
640     Instruction *Inst = cast<Instruction>(PN->getIncomingValue(Phi.Ith));
641     PN->setIncomingValue(Phi.Ith, ExitVal);
642 
643     // If this instruction is dead now, delete it. Don't do it now to avoid
644     // invalidating iterators.
645     if (isInstructionTriviallyDead(Inst, TLI))
646       DeadInsts.push_back(Inst);
647 
648     // Replace PN with ExitVal if that is legal and does not break LCSSA.
649     if (PN->getNumIncomingValues() == 1 &&
650         LI->replacementPreservesLCSSAForm(PN, ExitVal)) {
651       PN->replaceAllUsesWith(ExitVal);
652       PN->eraseFromParent();
653     }
654   }
655 
656   // The insertion point instruction may have been deleted; clear it out
657   // so that the rewriter doesn't trip over it later.
658   Rewriter.clearInsertPoint();
659 }
660 
661 //===---------------------------------------------------------------------===//
662 // rewriteFirstIterationLoopExitValues: Rewrite loop exit values if we know
663 // they will exit at the first iteration.
664 //===---------------------------------------------------------------------===//
665 
666 /// Check to see if this loop has loop invariant conditions which lead to loop
667 /// exits. If so, we know that if the exit path is taken, it is at the first
668 /// loop iteration. This lets us predict exit values of PHI nodes that live in
669 /// loop header.
670 void IndVarSimplify::rewriteFirstIterationLoopExitValues(Loop *L) {
671   // Verify the input to the pass is already in LCSSA form.
672   assert(L->isLCSSAForm(*DT));
673 
674   SmallVector<BasicBlock *, 8> ExitBlocks;
675   L->getUniqueExitBlocks(ExitBlocks);
676   auto *LoopHeader = L->getHeader();
677   assert(LoopHeader && "Invalid loop");
678 
679   for (auto *ExitBB : ExitBlocks) {
680     BasicBlock::iterator BBI = ExitBB->begin();
681     // If there are no more PHI nodes in this exit block, then no more
682     // values defined inside the loop are used on this path.
683     while (auto *PN = dyn_cast<PHINode>(BBI++)) {
684       for (unsigned IncomingValIdx = 0, E = PN->getNumIncomingValues();
685           IncomingValIdx != E; ++IncomingValIdx) {
686         auto *IncomingBB = PN->getIncomingBlock(IncomingValIdx);
687 
688         // We currently only support loop exits from loop header. If the
689         // incoming block is not loop header, we need to recursively check
690         // all conditions starting from loop header are loop invariants.
691         // Additional support might be added in the future.
692         if (IncomingBB != LoopHeader)
693           continue;
694 
695         // Get condition that leads to the exit path.
696         auto *TermInst = IncomingBB->getTerminator();
697 
698         Value *Cond = nullptr;
699         if (auto *BI = dyn_cast<BranchInst>(TermInst)) {
700           // Must be a conditional branch, otherwise the block
701           // should not be in the loop.
702           Cond = BI->getCondition();
703         } else if (auto *SI = dyn_cast<SwitchInst>(TermInst))
704           Cond = SI->getCondition();
705         else
706           continue;
707 
708         if (!L->isLoopInvariant(Cond))
709           continue;
710 
711         auto *ExitVal =
712             dyn_cast<PHINode>(PN->getIncomingValue(IncomingValIdx));
713 
714         // Only deal with PHIs.
715         if (!ExitVal)
716           continue;
717 
718         // If ExitVal is a PHI on the loop header, then we know its
719         // value along this exit because the exit can only be taken
720         // on the first iteration.
721         auto *LoopPreheader = L->getLoopPreheader();
722         assert(LoopPreheader && "Invalid loop");
723         int PreheaderIdx = ExitVal->getBasicBlockIndex(LoopPreheader);
724         if (PreheaderIdx != -1) {
725           assert(ExitVal->getParent() == LoopHeader &&
726                  "ExitVal must be in loop header");
727           PN->setIncomingValue(IncomingValIdx,
728               ExitVal->getIncomingValue(PreheaderIdx));
729         }
730       }
731     }
732   }
733 }
734 
735 /// Check whether it is possible to delete the loop after rewriting exit
736 /// value. If it is possible, ignore ReplaceExitValue and do rewriting
737 /// aggressively.
738 bool IndVarSimplify::canLoopBeDeleted(
739     Loop *L, SmallVector<RewritePhi, 8> &RewritePhiSet) {
740 
741   BasicBlock *Preheader = L->getLoopPreheader();
742   // If there is no preheader, the loop will not be deleted.
743   if (!Preheader)
744     return false;
745 
746   // In LoopDeletion pass Loop can be deleted when ExitingBlocks.size() > 1.
747   // We obviate multiple ExitingBlocks case for simplicity.
748   // TODO: If we see testcase with multiple ExitingBlocks can be deleted
749   // after exit value rewriting, we can enhance the logic here.
750   SmallVector<BasicBlock *, 4> ExitingBlocks;
751   L->getExitingBlocks(ExitingBlocks);
752   SmallVector<BasicBlock *, 8> ExitBlocks;
753   L->getUniqueExitBlocks(ExitBlocks);
754   if (ExitBlocks.size() > 1 || ExitingBlocks.size() > 1)
755     return false;
756 
757   BasicBlock *ExitBlock = ExitBlocks[0];
758   BasicBlock::iterator BI = ExitBlock->begin();
759   while (PHINode *P = dyn_cast<PHINode>(BI)) {
760     Value *Incoming = P->getIncomingValueForBlock(ExitingBlocks[0]);
761 
762     // If the Incoming value of P is found in RewritePhiSet, we know it
763     // could be rewritten to use a loop invariant value in transformation
764     // phase later. Skip it in the loop invariant check below.
765     bool found = false;
766     for (const RewritePhi &Phi : RewritePhiSet) {
767       unsigned i = Phi.Ith;
768       if (Phi.PN == P && (Phi.PN)->getIncomingValue(i) == Incoming) {
769         found = true;
770         break;
771       }
772     }
773 
774     Instruction *I;
775     if (!found && (I = dyn_cast<Instruction>(Incoming)))
776       if (!L->hasLoopInvariantOperands(I))
777         return false;
778 
779     ++BI;
780   }
781 
782   for (auto *BB : L->blocks())
783     if (any_of(*BB, [](Instruction &I) { return I.mayHaveSideEffects(); }))
784       return false;
785 
786   return true;
787 }
788 
789 //===----------------------------------------------------------------------===//
790 //  IV Widening - Extend the width of an IV to cover its widest uses.
791 //===----------------------------------------------------------------------===//
792 
793 namespace {
794 // Collect information about induction variables that are used by sign/zero
795 // extend operations. This information is recorded by CollectExtend and provides
796 // the input to WidenIV.
797 struct WideIVInfo {
798   PHINode *NarrowIV = nullptr;
799   Type *WidestNativeType = nullptr; // Widest integer type created [sz]ext
800   bool IsSigned = false;            // Was a sext user seen before a zext?
801 };
802 }
803 
804 /// Update information about the induction variable that is extended by this
805 /// sign or zero extend operation. This is used to determine the final width of
806 /// the IV before actually widening it.
807 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
808                         const TargetTransformInfo *TTI) {
809   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
810   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
811     return;
812 
813   Type *Ty = Cast->getType();
814   uint64_t Width = SE->getTypeSizeInBits(Ty);
815   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
816     return;
817 
818   // Check that `Cast` actually extends the induction variable (we rely on this
819   // later).  This takes care of cases where `Cast` is extending a truncation of
820   // the narrow induction variable, and thus can end up being narrower than the
821   // "narrow" induction variable.
822   uint64_t NarrowIVWidth = SE->getTypeSizeInBits(WI.NarrowIV->getType());
823   if (NarrowIVWidth >= Width)
824     return;
825 
826   // Cast is either an sext or zext up to this point.
827   // We should not widen an indvar if arithmetics on the wider indvar are more
828   // expensive than those on the narrower indvar. We check only the cost of ADD
829   // because at least an ADD is required to increment the induction variable. We
830   // could compute more comprehensively the cost of all instructions on the
831   // induction variable when necessary.
832   if (TTI &&
833       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
834           TTI->getArithmeticInstrCost(Instruction::Add,
835                                       Cast->getOperand(0)->getType())) {
836     return;
837   }
838 
839   if (!WI.WidestNativeType) {
840     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
841     WI.IsSigned = IsSigned;
842     return;
843   }
844 
845   // We extend the IV to satisfy the sign of its first user, arbitrarily.
846   if (WI.IsSigned != IsSigned)
847     return;
848 
849   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
850     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
851 }
852 
853 namespace {
854 
855 /// Record a link in the Narrow IV def-use chain along with the WideIV that
856 /// computes the same value as the Narrow IV def.  This avoids caching Use*
857 /// pointers.
858 struct NarrowIVDefUse {
859   Instruction *NarrowDef = nullptr;
860   Instruction *NarrowUse = nullptr;
861   Instruction *WideDef = nullptr;
862 
863   // True if the narrow def is never negative.  Tracking this information lets
864   // us use a sign extension instead of a zero extension or vice versa, when
865   // profitable and legal.
866   bool NeverNegative = false;
867 
868   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD,
869                  bool NeverNegative)
870       : NarrowDef(ND), NarrowUse(NU), WideDef(WD),
871         NeverNegative(NeverNegative) {}
872 };
873 
874 /// The goal of this transform is to remove sign and zero extends without
875 /// creating any new induction variables. To do this, it creates a new phi of
876 /// the wider type and redirects all users, either removing extends or inserting
877 /// truncs whenever we stop propagating the type.
878 ///
879 class WidenIV {
880   // Parameters
881   PHINode *OrigPhi;
882   Type *WideType;
883 
884   // Context
885   LoopInfo        *LI;
886   Loop            *L;
887   ScalarEvolution *SE;
888   DominatorTree   *DT;
889 
890   // Result
891   PHINode *WidePhi;
892   Instruction *WideInc;
893   const SCEV *WideIncExpr;
894   SmallVectorImpl<WeakVH> &DeadInsts;
895 
896   SmallPtrSet<Instruction *,16> Widened;
897   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
898 
899   enum ExtendKind { ZeroExtended, SignExtended, Unknown };
900   // A map tracking the kind of extension used to widen each narrow IV
901   // and narrow IV user.
902   // Key: pointer to a narrow IV or IV user.
903   // Value: the kind of extension used to widen this Instruction.
904   DenseMap<AssertingVH<Instruction>, ExtendKind> ExtendKindMap;
905 
906 public:
907   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
908           ScalarEvolution *SEv, DominatorTree *DTree,
909           SmallVectorImpl<WeakVH> &DI) :
910     OrigPhi(WI.NarrowIV),
911     WideType(WI.WidestNativeType),
912     LI(LInfo),
913     L(LI->getLoopFor(OrigPhi->getParent())),
914     SE(SEv),
915     DT(DTree),
916     WidePhi(nullptr),
917     WideInc(nullptr),
918     WideIncExpr(nullptr),
919     DeadInsts(DI) {
920     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
921     ExtendKindMap[OrigPhi] = WI.IsSigned ? SignExtended : ZeroExtended;
922   }
923 
924   PHINode *createWideIV(SCEVExpander &Rewriter);
925 
926 protected:
927   Value *createExtendInst(Value *NarrowOper, Type *WideType, bool IsSigned,
928                           Instruction *Use);
929 
930   Instruction *cloneIVUser(NarrowIVDefUse DU, const SCEVAddRecExpr *WideAR);
931   Instruction *cloneArithmeticIVUser(NarrowIVDefUse DU,
932                                      const SCEVAddRecExpr *WideAR);
933   Instruction *cloneBitwiseIVUser(NarrowIVDefUse DU);
934 
935   ExtendKind getExtendKind(Instruction *I);
936 
937   typedef std::pair<const SCEVAddRecExpr *, ExtendKind> WidenedRecTy;
938 
939   WidenedRecTy getWideRecurrence(NarrowIVDefUse DU);
940 
941   WidenedRecTy getExtendedOperandRecurrence(NarrowIVDefUse DU);
942 
943   const SCEV *getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
944                               unsigned OpCode) const;
945 
946   Instruction *widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
947 
948   bool widenLoopCompare(NarrowIVDefUse DU);
949 
950   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
951 };
952 } // anonymous namespace
953 
954 /// Perform a quick domtree based check for loop invariance assuming that V is
955 /// used within the loop. LoopInfo::isLoopInvariant() seems gratuitous for this
956 /// purpose.
957 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
958   Instruction *Inst = dyn_cast<Instruction>(V);
959   if (!Inst)
960     return true;
961 
962   return DT->properlyDominates(Inst->getParent(), L->getHeader());
963 }
964 
965 Value *WidenIV::createExtendInst(Value *NarrowOper, Type *WideType,
966                                  bool IsSigned, Instruction *Use) {
967   // Set the debug location and conservative insertion point.
968   IRBuilder<> Builder(Use);
969   // Hoist the insertion point into loop preheaders as far as possible.
970   for (const Loop *L = LI->getLoopFor(Use->getParent());
971        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
972        L = L->getParentLoop())
973     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
974 
975   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
976                     Builder.CreateZExt(NarrowOper, WideType);
977 }
978 
979 /// Instantiate a wide operation to replace a narrow operation. This only needs
980 /// to handle operations that can evaluation to SCEVAddRec. It can safely return
981 /// 0 for any operation we decide not to clone.
982 Instruction *WidenIV::cloneIVUser(NarrowIVDefUse DU,
983                                   const SCEVAddRecExpr *WideAR) {
984   unsigned Opcode = DU.NarrowUse->getOpcode();
985   switch (Opcode) {
986   default:
987     return nullptr;
988   case Instruction::Add:
989   case Instruction::Mul:
990   case Instruction::UDiv:
991   case Instruction::Sub:
992     return cloneArithmeticIVUser(DU, WideAR);
993 
994   case Instruction::And:
995   case Instruction::Or:
996   case Instruction::Xor:
997   case Instruction::Shl:
998   case Instruction::LShr:
999   case Instruction::AShr:
1000     return cloneBitwiseIVUser(DU);
1001   }
1002 }
1003 
1004 Instruction *WidenIV::cloneBitwiseIVUser(NarrowIVDefUse DU) {
1005   Instruction *NarrowUse = DU.NarrowUse;
1006   Instruction *NarrowDef = DU.NarrowDef;
1007   Instruction *WideDef = DU.WideDef;
1008 
1009   DEBUG(dbgs() << "Cloning bitwise IVUser: " << *NarrowUse << "\n");
1010 
1011   // Replace NarrowDef operands with WideDef. Otherwise, we don't know anything
1012   // about the narrow operand yet so must insert a [sz]ext. It is probably loop
1013   // invariant and will be folded or hoisted. If it actually comes from a
1014   // widened IV, it should be removed during a future call to widenIVUse.
1015   bool IsSigned = getExtendKind(NarrowDef) == SignExtended;
1016   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1017                    ? WideDef
1018                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1019                                       IsSigned, NarrowUse);
1020   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1021                    ? WideDef
1022                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1023                                       IsSigned, NarrowUse);
1024 
1025   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1026   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1027                                         NarrowBO->getName());
1028   IRBuilder<> Builder(NarrowUse);
1029   Builder.Insert(WideBO);
1030   WideBO->copyIRFlags(NarrowBO);
1031   return WideBO;
1032 }
1033 
1034 Instruction *WidenIV::cloneArithmeticIVUser(NarrowIVDefUse DU,
1035                                             const SCEVAddRecExpr *WideAR) {
1036   Instruction *NarrowUse = DU.NarrowUse;
1037   Instruction *NarrowDef = DU.NarrowDef;
1038   Instruction *WideDef = DU.WideDef;
1039 
1040   DEBUG(dbgs() << "Cloning arithmetic IVUser: " << *NarrowUse << "\n");
1041 
1042   unsigned IVOpIdx = (NarrowUse->getOperand(0) == NarrowDef) ? 0 : 1;
1043 
1044   // We're trying to find X such that
1045   //
1046   //  Widen(NarrowDef `op` NonIVNarrowDef) == WideAR == WideDef `op.wide` X
1047   //
1048   // We guess two solutions to X, sext(NonIVNarrowDef) and zext(NonIVNarrowDef),
1049   // and check using SCEV if any of them are correct.
1050 
1051   // Returns true if extending NonIVNarrowDef according to `SignExt` is a
1052   // correct solution to X.
1053   auto GuessNonIVOperand = [&](bool SignExt) {
1054     const SCEV *WideLHS;
1055     const SCEV *WideRHS;
1056 
1057     auto GetExtend = [this, SignExt](const SCEV *S, Type *Ty) {
1058       if (SignExt)
1059         return SE->getSignExtendExpr(S, Ty);
1060       return SE->getZeroExtendExpr(S, Ty);
1061     };
1062 
1063     if (IVOpIdx == 0) {
1064       WideLHS = SE->getSCEV(WideDef);
1065       const SCEV *NarrowRHS = SE->getSCEV(NarrowUse->getOperand(1));
1066       WideRHS = GetExtend(NarrowRHS, WideType);
1067     } else {
1068       const SCEV *NarrowLHS = SE->getSCEV(NarrowUse->getOperand(0));
1069       WideLHS = GetExtend(NarrowLHS, WideType);
1070       WideRHS = SE->getSCEV(WideDef);
1071     }
1072 
1073     // WideUse is "WideDef `op.wide` X" as described in the comment.
1074     const SCEV *WideUse = nullptr;
1075 
1076     switch (NarrowUse->getOpcode()) {
1077     default:
1078       llvm_unreachable("No other possibility!");
1079 
1080     case Instruction::Add:
1081       WideUse = SE->getAddExpr(WideLHS, WideRHS);
1082       break;
1083 
1084     case Instruction::Mul:
1085       WideUse = SE->getMulExpr(WideLHS, WideRHS);
1086       break;
1087 
1088     case Instruction::UDiv:
1089       WideUse = SE->getUDivExpr(WideLHS, WideRHS);
1090       break;
1091 
1092     case Instruction::Sub:
1093       WideUse = SE->getMinusSCEV(WideLHS, WideRHS);
1094       break;
1095     }
1096 
1097     return WideUse == WideAR;
1098   };
1099 
1100   bool SignExtend = getExtendKind(NarrowDef) == SignExtended;
1101   if (!GuessNonIVOperand(SignExtend)) {
1102     SignExtend = !SignExtend;
1103     if (!GuessNonIVOperand(SignExtend))
1104       return nullptr;
1105   }
1106 
1107   Value *LHS = (NarrowUse->getOperand(0) == NarrowDef)
1108                    ? WideDef
1109                    : createExtendInst(NarrowUse->getOperand(0), WideType,
1110                                       SignExtend, NarrowUse);
1111   Value *RHS = (NarrowUse->getOperand(1) == NarrowDef)
1112                    ? WideDef
1113                    : createExtendInst(NarrowUse->getOperand(1), WideType,
1114                                       SignExtend, NarrowUse);
1115 
1116   auto *NarrowBO = cast<BinaryOperator>(NarrowUse);
1117   auto *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(), LHS, RHS,
1118                                         NarrowBO->getName());
1119 
1120   IRBuilder<> Builder(NarrowUse);
1121   Builder.Insert(WideBO);
1122   WideBO->copyIRFlags(NarrowBO);
1123   return WideBO;
1124 }
1125 
1126 WidenIV::ExtendKind WidenIV::getExtendKind(Instruction *I) {
1127   auto It = ExtendKindMap.find(I);
1128   assert(It != ExtendKindMap.end() && "Instruction not yet extended!");
1129   return It->second;
1130 }
1131 
1132 const SCEV *WidenIV::getSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
1133                                      unsigned OpCode) const {
1134   if (OpCode == Instruction::Add)
1135     return SE->getAddExpr(LHS, RHS);
1136   if (OpCode == Instruction::Sub)
1137     return SE->getMinusSCEV(LHS, RHS);
1138   if (OpCode == Instruction::Mul)
1139     return SE->getMulExpr(LHS, RHS);
1140 
1141   llvm_unreachable("Unsupported opcode.");
1142 }
1143 
1144 /// No-wrap operations can transfer sign extension of their result to their
1145 /// operands. Generate the SCEV value for the widened operation without
1146 /// actually modifying the IR yet. If the expression after extending the
1147 /// operands is an AddRec for this loop, return the AddRec and the kind of
1148 /// extension used.
1149 WidenIV::WidenedRecTy WidenIV::getExtendedOperandRecurrence(NarrowIVDefUse DU) {
1150 
1151   // Handle the common case of add<nsw/nuw>
1152   const unsigned OpCode = DU.NarrowUse->getOpcode();
1153   // Only Add/Sub/Mul instructions supported yet.
1154   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
1155       OpCode != Instruction::Mul)
1156     return {nullptr, Unknown};
1157 
1158   // One operand (NarrowDef) has already been extended to WideDef. Now determine
1159   // if extending the other will lead to a recurrence.
1160   const unsigned ExtendOperIdx =
1161       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
1162   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
1163 
1164   const SCEV *ExtendOperExpr = nullptr;
1165   const OverflowingBinaryOperator *OBO =
1166     cast<OverflowingBinaryOperator>(DU.NarrowUse);
1167   ExtendKind ExtKind = getExtendKind(DU.NarrowDef);
1168   if (ExtKind == SignExtended && OBO->hasNoSignedWrap())
1169     ExtendOperExpr = SE->getSignExtendExpr(
1170       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1171   else if(ExtKind == ZeroExtended && OBO->hasNoUnsignedWrap())
1172     ExtendOperExpr = SE->getZeroExtendExpr(
1173       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
1174   else
1175     return {nullptr, Unknown};
1176 
1177   // When creating this SCEV expr, don't apply the current operations NSW or NUW
1178   // flags. This instruction may be guarded by control flow that the no-wrap
1179   // behavior depends on. Non-control-equivalent instructions can be mapped to
1180   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
1181   // semantics to those operations.
1182   const SCEV *lhs = SE->getSCEV(DU.WideDef);
1183   const SCEV *rhs = ExtendOperExpr;
1184 
1185   // Let's swap operands to the initial order for the case of non-commutative
1186   // operations, like SUB. See PR21014.
1187   if (ExtendOperIdx == 0)
1188     std::swap(lhs, rhs);
1189   const SCEVAddRecExpr *AddRec =
1190       dyn_cast<SCEVAddRecExpr>(getSCEVByOpCode(lhs, rhs, OpCode));
1191 
1192   if (!AddRec || AddRec->getLoop() != L)
1193     return {nullptr, Unknown};
1194 
1195   return {AddRec, ExtKind};
1196 }
1197 
1198 /// Is this instruction potentially interesting for further simplification after
1199 /// widening it's type? In other words, can the extend be safely hoisted out of
1200 /// the loop with SCEV reducing the value to a recurrence on the same loop. If
1201 /// so, return the extended recurrence and the kind of extension used. Otherwise
1202 /// return {nullptr, Unknown}.
1203 WidenIV::WidenedRecTy WidenIV::getWideRecurrence(NarrowIVDefUse DU) {
1204   if (!SE->isSCEVable(DU.NarrowUse->getType()))
1205     return {nullptr, Unknown};
1206 
1207   const SCEV *NarrowExpr = SE->getSCEV(DU.NarrowUse);
1208   if (SE->getTypeSizeInBits(NarrowExpr->getType()) >=
1209       SE->getTypeSizeInBits(WideType)) {
1210     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
1211     // index. So don't follow this use.
1212     return {nullptr, Unknown};
1213   }
1214 
1215   const SCEV *WideExpr;
1216   ExtendKind ExtKind;
1217   if (DU.NeverNegative) {
1218     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1219     if (isa<SCEVAddRecExpr>(WideExpr))
1220       ExtKind = SignExtended;
1221     else {
1222       WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1223       ExtKind = ZeroExtended;
1224     }
1225   } else if (getExtendKind(DU.NarrowDef) == SignExtended) {
1226     WideExpr = SE->getSignExtendExpr(NarrowExpr, WideType);
1227     ExtKind = SignExtended;
1228   } else {
1229     WideExpr = SE->getZeroExtendExpr(NarrowExpr, WideType);
1230     ExtKind = ZeroExtended;
1231   }
1232   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
1233   if (!AddRec || AddRec->getLoop() != L)
1234     return {nullptr, Unknown};
1235   return {AddRec, ExtKind};
1236 }
1237 
1238 /// This IV user cannot be widen. Replace this use of the original narrow IV
1239 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
1240 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT, LoopInfo *LI) {
1241   DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
1242         << " for user " << *DU.NarrowUse << "\n");
1243   IRBuilder<> Builder(
1244       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1245   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
1246   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
1247 }
1248 
1249 /// If the narrow use is a compare instruction, then widen the compare
1250 //  (and possibly the other operand).  The extend operation is hoisted into the
1251 // loop preheader as far as possible.
1252 bool WidenIV::widenLoopCompare(NarrowIVDefUse DU) {
1253   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
1254   if (!Cmp)
1255     return false;
1256 
1257   // We can legally widen the comparison in the following two cases:
1258   //
1259   //  - The signedness of the IV extension and comparison match
1260   //
1261   //  - The narrow IV is always positive (and thus its sign extension is equal
1262   //    to its zero extension).  For instance, let's say we're zero extending
1263   //    %narrow for the following use
1264   //
1265   //      icmp slt i32 %narrow, %val   ... (A)
1266   //
1267   //    and %narrow is always positive.  Then
1268   //
1269   //      (A) == icmp slt i32 sext(%narrow), sext(%val)
1270   //          == icmp slt i32 zext(%narrow), sext(%val)
1271   bool IsSigned = getExtendKind(DU.NarrowDef) == SignExtended;
1272   if (!(DU.NeverNegative || IsSigned == Cmp->isSigned()))
1273     return false;
1274 
1275   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
1276   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
1277   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1278   assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
1279 
1280   // Widen the compare instruction.
1281   IRBuilder<> Builder(
1282       getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT, LI));
1283   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1284 
1285   // Widen the other operand of the compare, if necessary.
1286   if (CastWidth < IVWidth) {
1287     Value *ExtOp = createExtendInst(Op, WideType, Cmp->isSigned(), Cmp);
1288     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
1289   }
1290   return true;
1291 }
1292 
1293 /// Determine whether an individual user of the narrow IV can be widened. If so,
1294 /// return the wide clone of the user.
1295 Instruction *WidenIV::widenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
1296   assert(ExtendKindMap.count(DU.NarrowDef) &&
1297          "Should already know the kind of extension used to widen NarrowDef");
1298 
1299   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
1300   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
1301     if (LI->getLoopFor(UsePhi->getParent()) != L) {
1302       // For LCSSA phis, sink the truncate outside the loop.
1303       // After SimplifyCFG most loop exit targets have a single predecessor.
1304       // Otherwise fall back to a truncate within the loop.
1305       if (UsePhi->getNumOperands() != 1)
1306         truncateIVUse(DU, DT, LI);
1307       else {
1308         // Widening the PHI requires us to insert a trunc.  The logical place
1309         // for this trunc is in the same BB as the PHI.  This is not possible if
1310         // the BB is terminated by a catchswitch.
1311         if (isa<CatchSwitchInst>(UsePhi->getParent()->getTerminator()))
1312           return nullptr;
1313 
1314         PHINode *WidePhi =
1315           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
1316                           UsePhi);
1317         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
1318         IRBuilder<> Builder(&*WidePhi->getParent()->getFirstInsertionPt());
1319         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
1320         UsePhi->replaceAllUsesWith(Trunc);
1321         DeadInsts.emplace_back(UsePhi);
1322         DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
1323               << " to " << *WidePhi << "\n");
1324       }
1325       return nullptr;
1326     }
1327   }
1328 
1329   // This narrow use can be widened by a sext if it's non-negative or its narrow
1330   // def was widended by a sext. Same for zext.
1331   auto canWidenBySExt = [&]() {
1332     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == SignExtended;
1333   };
1334   auto canWidenByZExt = [&]() {
1335     return DU.NeverNegative || getExtendKind(DU.NarrowDef) == ZeroExtended;
1336   };
1337 
1338   // Our raison d'etre! Eliminate sign and zero extension.
1339   if ((isa<SExtInst>(DU.NarrowUse) && canWidenBySExt()) ||
1340       (isa<ZExtInst>(DU.NarrowUse) && canWidenByZExt())) {
1341     Value *NewDef = DU.WideDef;
1342     if (DU.NarrowUse->getType() != WideType) {
1343       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
1344       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
1345       if (CastWidth < IVWidth) {
1346         // The cast isn't as wide as the IV, so insert a Trunc.
1347         IRBuilder<> Builder(DU.NarrowUse);
1348         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
1349       }
1350       else {
1351         // A wider extend was hidden behind a narrower one. This may induce
1352         // another round of IV widening in which the intermediate IV becomes
1353         // dead. It should be very rare.
1354         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
1355               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
1356         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
1357         NewDef = DU.NarrowUse;
1358       }
1359     }
1360     if (NewDef != DU.NarrowUse) {
1361       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
1362             << " replaced by " << *DU.WideDef << "\n");
1363       ++NumElimExt;
1364       DU.NarrowUse->replaceAllUsesWith(NewDef);
1365       DeadInsts.emplace_back(DU.NarrowUse);
1366     }
1367     // Now that the extend is gone, we want to expose it's uses for potential
1368     // further simplification. We don't need to directly inform SimplifyIVUsers
1369     // of the new users, because their parent IV will be processed later as a
1370     // new loop phi. If we preserved IVUsers analysis, we would also want to
1371     // push the uses of WideDef here.
1372 
1373     // No further widening is needed. The deceased [sz]ext had done it for us.
1374     return nullptr;
1375   }
1376 
1377   // Does this user itself evaluate to a recurrence after widening?
1378   WidenedRecTy WideAddRec = getWideRecurrence(DU);
1379   if (!WideAddRec.first)
1380     WideAddRec = getExtendedOperandRecurrence(DU);
1381 
1382   assert((WideAddRec.first == nullptr) == (WideAddRec.second == Unknown));
1383   if (!WideAddRec.first) {
1384     // If use is a loop condition, try to promote the condition instead of
1385     // truncating the IV first.
1386     if (widenLoopCompare(DU))
1387       return nullptr;
1388 
1389     // This user does not evaluate to a recurence after widening, so don't
1390     // follow it. Instead insert a Trunc to kill off the original use,
1391     // eventually isolating the original narrow IV so it can be removed.
1392     truncateIVUse(DU, DT, LI);
1393     return nullptr;
1394   }
1395   // Assume block terminators cannot evaluate to a recurrence. We can't to
1396   // insert a Trunc after a terminator if there happens to be a critical edge.
1397   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
1398          "SCEV is not expected to evaluate a block terminator");
1399 
1400   // Reuse the IV increment that SCEVExpander created as long as it dominates
1401   // NarrowUse.
1402   Instruction *WideUse = nullptr;
1403   if (WideAddRec.first == WideIncExpr &&
1404       Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
1405     WideUse = WideInc;
1406   else {
1407     WideUse = cloneIVUser(DU, WideAddRec.first);
1408     if (!WideUse)
1409       return nullptr;
1410   }
1411   // Evaluation of WideAddRec ensured that the narrow expression could be
1412   // extended outside the loop without overflow. This suggests that the wide use
1413   // evaluates to the same expression as the extended narrow use, but doesn't
1414   // absolutely guarantee it. Hence the following failsafe check. In rare cases
1415   // where it fails, we simply throw away the newly created wide use.
1416   if (WideAddRec.first != SE->getSCEV(WideUse)) {
1417     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
1418           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec.first << "\n");
1419     DeadInsts.emplace_back(WideUse);
1420     return nullptr;
1421   }
1422 
1423   ExtendKindMap[DU.NarrowUse] = WideAddRec.second;
1424   // Returning WideUse pushes it on the worklist.
1425   return WideUse;
1426 }
1427 
1428 /// Add eligible users of NarrowDef to NarrowIVUsers.
1429 ///
1430 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
1431   const SCEV *NarrowSCEV = SE->getSCEV(NarrowDef);
1432   bool NeverNegative =
1433       SE->isKnownPredicate(ICmpInst::ICMP_SGE, NarrowSCEV,
1434                            SE->getConstant(NarrowSCEV->getType(), 0));
1435   for (User *U : NarrowDef->users()) {
1436     Instruction *NarrowUser = cast<Instruction>(U);
1437 
1438     // Handle data flow merges and bizarre phi cycles.
1439     if (!Widened.insert(NarrowUser).second)
1440       continue;
1441 
1442     NarrowIVUsers.emplace_back(NarrowDef, NarrowUser, WideDef, NeverNegative);
1443   }
1444 }
1445 
1446 /// Process a single induction variable. First use the SCEVExpander to create a
1447 /// wide induction variable that evaluates to the same recurrence as the
1448 /// original narrow IV. Then use a worklist to forward traverse the narrow IV's
1449 /// def-use chain. After widenIVUse has processed all interesting IV users, the
1450 /// narrow IV will be isolated for removal by DeleteDeadPHIs.
1451 ///
1452 /// It would be simpler to delete uses as they are processed, but we must avoid
1453 /// invalidating SCEV expressions.
1454 ///
1455 PHINode *WidenIV::createWideIV(SCEVExpander &Rewriter) {
1456   // Is this phi an induction variable?
1457   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
1458   if (!AddRec)
1459     return nullptr;
1460 
1461   // Widen the induction variable expression.
1462   const SCEV *WideIVExpr = getExtendKind(OrigPhi) == SignExtended
1463                                ? SE->getSignExtendExpr(AddRec, WideType)
1464                                : SE->getZeroExtendExpr(AddRec, WideType);
1465 
1466   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
1467          "Expect the new IV expression to preserve its type");
1468 
1469   // Can the IV be extended outside the loop without overflow?
1470   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
1471   if (!AddRec || AddRec->getLoop() != L)
1472     return nullptr;
1473 
1474   // An AddRec must have loop-invariant operands. Since this AddRec is
1475   // materialized by a loop header phi, the expression cannot have any post-loop
1476   // operands, so they must dominate the loop header.
1477   assert(
1478       SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
1479       SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader()) &&
1480       "Loop header phi recurrence inputs do not dominate the loop");
1481 
1482   // The rewriter provides a value for the desired IV expression. This may
1483   // either find an existing phi or materialize a new one. Either way, we
1484   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
1485   // of the phi-SCC dominates the loop entry.
1486   Instruction *InsertPt = &L->getHeader()->front();
1487   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
1488 
1489   // Remembering the WideIV increment generated by SCEVExpander allows
1490   // widenIVUse to reuse it when widening the narrow IV's increment. We don't
1491   // employ a general reuse mechanism because the call above is the only call to
1492   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
1493   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
1494     WideInc =
1495       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
1496     WideIncExpr = SE->getSCEV(WideInc);
1497   }
1498 
1499   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
1500   ++NumWidened;
1501 
1502   // Traverse the def-use chain using a worklist starting at the original IV.
1503   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
1504 
1505   Widened.insert(OrigPhi);
1506   pushNarrowIVUsers(OrigPhi, WidePhi);
1507 
1508   while (!NarrowIVUsers.empty()) {
1509     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
1510 
1511     // Process a def-use edge. This may replace the use, so don't hold a
1512     // use_iterator across it.
1513     Instruction *WideUse = widenIVUse(DU, Rewriter);
1514 
1515     // Follow all def-use edges from the previous narrow use.
1516     if (WideUse)
1517       pushNarrowIVUsers(DU.NarrowUse, WideUse);
1518 
1519     // widenIVUse may have removed the def-use edge.
1520     if (DU.NarrowDef->use_empty())
1521       DeadInsts.emplace_back(DU.NarrowDef);
1522   }
1523   return WidePhi;
1524 }
1525 
1526 //===----------------------------------------------------------------------===//
1527 //  Live IV Reduction - Minimize IVs live across the loop.
1528 //===----------------------------------------------------------------------===//
1529 
1530 
1531 //===----------------------------------------------------------------------===//
1532 //  Simplification of IV users based on SCEV evaluation.
1533 //===----------------------------------------------------------------------===//
1534 
1535 namespace {
1536 class IndVarSimplifyVisitor : public IVVisitor {
1537   ScalarEvolution *SE;
1538   const TargetTransformInfo *TTI;
1539   PHINode *IVPhi;
1540 
1541 public:
1542   WideIVInfo WI;
1543 
1544   IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
1545                         const TargetTransformInfo *TTI,
1546                         const DominatorTree *DTree)
1547     : SE(SCEV), TTI(TTI), IVPhi(IV) {
1548     DT = DTree;
1549     WI.NarrowIV = IVPhi;
1550   }
1551 
1552   // Implement the interface used by simplifyUsersOfIV.
1553   void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
1554 };
1555 }
1556 
1557 /// Iteratively perform simplification on a worklist of IV users. Each
1558 /// successive simplification may push more users which may themselves be
1559 /// candidates for simplification.
1560 ///
1561 /// Sign/Zero extend elimination is interleaved with IV simplification.
1562 ///
1563 void IndVarSimplify::simplifyAndExtend(Loop *L,
1564                                        SCEVExpander &Rewriter,
1565                                        LoopInfo *LI) {
1566   SmallVector<WideIVInfo, 8> WideIVs;
1567 
1568   SmallVector<PHINode*, 8> LoopPhis;
1569   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1570     LoopPhis.push_back(cast<PHINode>(I));
1571   }
1572   // Each round of simplification iterates through the SimplifyIVUsers worklist
1573   // for all current phis, then determines whether any IVs can be
1574   // widened. Widening adds new phis to LoopPhis, inducing another round of
1575   // simplification on the wide IVs.
1576   while (!LoopPhis.empty()) {
1577     // Evaluate as many IV expressions as possible before widening any IVs. This
1578     // forces SCEV to set no-wrap flags before evaluating sign/zero
1579     // extension. The first time SCEV attempts to normalize sign/zero extension,
1580     // the result becomes final. So for the most predictable results, we delay
1581     // evaluation of sign/zero extend evaluation until needed, and avoid running
1582     // other SCEV based analysis prior to simplifyAndExtend.
1583     do {
1584       PHINode *CurrIV = LoopPhis.pop_back_val();
1585 
1586       // Information about sign/zero extensions of CurrIV.
1587       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
1588 
1589       Changed |= simplifyUsersOfIV(CurrIV, SE, DT, LI, DeadInsts, &Visitor);
1590 
1591       if (Visitor.WI.WidestNativeType) {
1592         WideIVs.push_back(Visitor.WI);
1593       }
1594     } while(!LoopPhis.empty());
1595 
1596     for (; !WideIVs.empty(); WideIVs.pop_back()) {
1597       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
1598       if (PHINode *WidePhi = Widener.createWideIV(Rewriter)) {
1599         Changed = true;
1600         LoopPhis.push_back(WidePhi);
1601       }
1602     }
1603   }
1604 }
1605 
1606 //===----------------------------------------------------------------------===//
1607 //  linearFunctionTestReplace and its kin. Rewrite the loop exit condition.
1608 //===----------------------------------------------------------------------===//
1609 
1610 /// Return true if this loop's backedge taken count expression can be safely and
1611 /// cheaply expanded into an instruction sequence that can be used by
1612 /// linearFunctionTestReplace.
1613 ///
1614 /// TODO: This fails for pointer-type loop counters with greater than one byte
1615 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
1616 /// we could skip this check in the case that the LFTR loop counter (chosen by
1617 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
1618 /// the loop test to an inequality test by checking the target data's alignment
1619 /// of element types (given that the initial pointer value originates from or is
1620 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
1621 /// However, we don't yet have a strong motivation for converting loop tests
1622 /// into inequality tests.
1623 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
1624                                         SCEVExpander &Rewriter) {
1625   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
1626   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
1627       BackedgeTakenCount->isZero())
1628     return false;
1629 
1630   if (!L->getExitingBlock())
1631     return false;
1632 
1633   // Can't rewrite non-branch yet.
1634   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
1635     return false;
1636 
1637   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
1638     return false;
1639 
1640   return true;
1641 }
1642 
1643 /// Return the loop header phi IFF IncV adds a loop invariant value to the phi.
1644 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
1645   Instruction *IncI = dyn_cast<Instruction>(IncV);
1646   if (!IncI)
1647     return nullptr;
1648 
1649   switch (IncI->getOpcode()) {
1650   case Instruction::Add:
1651   case Instruction::Sub:
1652     break;
1653   case Instruction::GetElementPtr:
1654     // An IV counter must preserve its type.
1655     if (IncI->getNumOperands() == 2)
1656       break;
1657   default:
1658     return nullptr;
1659   }
1660 
1661   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
1662   if (Phi && Phi->getParent() == L->getHeader()) {
1663     if (isLoopInvariant(IncI->getOperand(1), L, DT))
1664       return Phi;
1665     return nullptr;
1666   }
1667   if (IncI->getOpcode() == Instruction::GetElementPtr)
1668     return nullptr;
1669 
1670   // Allow add/sub to be commuted.
1671   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
1672   if (Phi && Phi->getParent() == L->getHeader()) {
1673     if (isLoopInvariant(IncI->getOperand(0), L, DT))
1674       return Phi;
1675   }
1676   return nullptr;
1677 }
1678 
1679 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
1680 static ICmpInst *getLoopTest(Loop *L) {
1681   assert(L->getExitingBlock() && "expected loop exit");
1682 
1683   BasicBlock *LatchBlock = L->getLoopLatch();
1684   // Don't bother with LFTR if the loop is not properly simplified.
1685   if (!LatchBlock)
1686     return nullptr;
1687 
1688   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
1689   assert(BI && "expected exit branch");
1690 
1691   return dyn_cast<ICmpInst>(BI->getCondition());
1692 }
1693 
1694 /// linearFunctionTestReplace policy. Return true unless we can show that the
1695 /// current exit test is already sufficiently canonical.
1696 static bool needsLFTR(Loop *L, DominatorTree *DT) {
1697   // Do LFTR to simplify the exit condition to an ICMP.
1698   ICmpInst *Cond = getLoopTest(L);
1699   if (!Cond)
1700     return true;
1701 
1702   // Do LFTR to simplify the exit ICMP to EQ/NE
1703   ICmpInst::Predicate Pred = Cond->getPredicate();
1704   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
1705     return true;
1706 
1707   // Look for a loop invariant RHS
1708   Value *LHS = Cond->getOperand(0);
1709   Value *RHS = Cond->getOperand(1);
1710   if (!isLoopInvariant(RHS, L, DT)) {
1711     if (!isLoopInvariant(LHS, L, DT))
1712       return true;
1713     std::swap(LHS, RHS);
1714   }
1715   // Look for a simple IV counter LHS
1716   PHINode *Phi = dyn_cast<PHINode>(LHS);
1717   if (!Phi)
1718     Phi = getLoopPhiForCounter(LHS, L, DT);
1719 
1720   if (!Phi)
1721     return true;
1722 
1723   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
1724   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
1725   if (Idx < 0)
1726     return true;
1727 
1728   // Do LFTR if the exit condition's IV is *not* a simple counter.
1729   Value *IncV = Phi->getIncomingValue(Idx);
1730   return Phi != getLoopPhiForCounter(IncV, L, DT);
1731 }
1732 
1733 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
1734 /// down to checking that all operands are constant and listing instructions
1735 /// that may hide undef.
1736 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
1737                                unsigned Depth) {
1738   if (isa<Constant>(V))
1739     return !isa<UndefValue>(V);
1740 
1741   if (Depth >= 6)
1742     return false;
1743 
1744   // Conservatively handle non-constant non-instructions. For example, Arguments
1745   // may be undef.
1746   Instruction *I = dyn_cast<Instruction>(V);
1747   if (!I)
1748     return false;
1749 
1750   // Load and return values may be undef.
1751   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
1752     return false;
1753 
1754   // Optimistically handle other instructions.
1755   for (Value *Op : I->operands()) {
1756     if (!Visited.insert(Op).second)
1757       continue;
1758     if (!hasConcreteDefImpl(Op, Visited, Depth+1))
1759       return false;
1760   }
1761   return true;
1762 }
1763 
1764 /// Return true if the given value is concrete. We must prove that undef can
1765 /// never reach it.
1766 ///
1767 /// TODO: If we decide that this is a good approach to checking for undef, we
1768 /// may factor it into a common location.
1769 static bool hasConcreteDef(Value *V) {
1770   SmallPtrSet<Value*, 8> Visited;
1771   Visited.insert(V);
1772   return hasConcreteDefImpl(V, Visited, 0);
1773 }
1774 
1775 /// Return true if this IV has any uses other than the (soon to be rewritten)
1776 /// loop exit test.
1777 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
1778   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1779   Value *IncV = Phi->getIncomingValue(LatchIdx);
1780 
1781   for (User *U : Phi->users())
1782     if (U != Cond && U != IncV) return false;
1783 
1784   for (User *U : IncV->users())
1785     if (U != Cond && U != Phi) return false;
1786   return true;
1787 }
1788 
1789 /// Find an affine IV in canonical form.
1790 ///
1791 /// BECount may be an i8* pointer type. The pointer difference is already
1792 /// valid count without scaling the address stride, so it remains a pointer
1793 /// expression as far as SCEV is concerned.
1794 ///
1795 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
1796 ///
1797 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
1798 ///
1799 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
1800 /// This is difficult in general for SCEV because of potential overflow. But we
1801 /// could at least handle constant BECounts.
1802 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
1803                                 ScalarEvolution *SE, DominatorTree *DT) {
1804   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
1805 
1806   Value *Cond =
1807     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
1808 
1809   // Loop over all of the PHI nodes, looking for a simple counter.
1810   PHINode *BestPhi = nullptr;
1811   const SCEV *BestInit = nullptr;
1812   BasicBlock *LatchBlock = L->getLoopLatch();
1813   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
1814   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1815 
1816   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
1817     PHINode *Phi = cast<PHINode>(I);
1818     if (!SE->isSCEVable(Phi->getType()))
1819       continue;
1820 
1821     // Avoid comparing an integer IV against a pointer Limit.
1822     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
1823       continue;
1824 
1825     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
1826     if (!AR || AR->getLoop() != L || !AR->isAffine())
1827       continue;
1828 
1829     // AR may be a pointer type, while BECount is an integer type.
1830     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
1831     // AR may not be a narrower type, or we may never exit.
1832     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
1833     if (PhiWidth < BCWidth || !DL.isLegalInteger(PhiWidth))
1834       continue;
1835 
1836     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
1837     if (!Step || !Step->isOne())
1838       continue;
1839 
1840     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
1841     Value *IncV = Phi->getIncomingValue(LatchIdx);
1842     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
1843       continue;
1844 
1845     // Avoid reusing a potentially undef value to compute other values that may
1846     // have originally had a concrete definition.
1847     if (!hasConcreteDef(Phi)) {
1848       // We explicitly allow unknown phis as long as they are already used by
1849       // the loop test. In this case we assume that performing LFTR could not
1850       // increase the number of undef users.
1851       if (ICmpInst *Cond = getLoopTest(L)) {
1852         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT) &&
1853             Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
1854           continue;
1855         }
1856       }
1857     }
1858     const SCEV *Init = AR->getStart();
1859 
1860     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
1861       // Don't force a live loop counter if another IV can be used.
1862       if (AlmostDeadIV(Phi, LatchBlock, Cond))
1863         continue;
1864 
1865       // Prefer to count-from-zero. This is a more "canonical" counter form. It
1866       // also prefers integer to pointer IVs.
1867       if (BestInit->isZero() != Init->isZero()) {
1868         if (BestInit->isZero())
1869           continue;
1870       }
1871       // If two IVs both count from zero or both count from nonzero then the
1872       // narrower is likely a dead phi that has been widened. Use the wider phi
1873       // to allow the other to be eliminated.
1874       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
1875         continue;
1876     }
1877     BestPhi = Phi;
1878     BestInit = Init;
1879   }
1880   return BestPhi;
1881 }
1882 
1883 /// Help linearFunctionTestReplace by generating a value that holds the RHS of
1884 /// the new loop test.
1885 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
1886                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
1887   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
1888   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
1889   const SCEV *IVInit = AR->getStart();
1890 
1891   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
1892   // finds a valid pointer IV. Sign extend BECount in order to materialize a
1893   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
1894   // the existing GEPs whenever possible.
1895   if (IndVar->getType()->isPointerTy() && !IVCount->getType()->isPointerTy()) {
1896     // IVOffset will be the new GEP offset that is interpreted by GEP as a
1897     // signed value. IVCount on the other hand represents the loop trip count,
1898     // which is an unsigned value. FindLoopCounter only allows induction
1899     // variables that have a positive unit stride of one. This means we don't
1900     // have to handle the case of negative offsets (yet) and just need to zero
1901     // extend IVCount.
1902     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
1903     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
1904 
1905     // Expand the code for the iteration count.
1906     assert(SE->isLoopInvariant(IVOffset, L) &&
1907            "Computed iteration count is not loop invariant!");
1908     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1909     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
1910 
1911     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
1912     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
1913     // We could handle pointer IVs other than i8*, but we need to compensate for
1914     // gep index scaling. See canExpandBackedgeTakenCount comments.
1915     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
1916                              cast<PointerType>(GEPBase->getType())
1917                                  ->getElementType())->isOne() &&
1918            "unit stride pointer IV must be i8*");
1919 
1920     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
1921     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
1922   } else {
1923     // In any other case, convert both IVInit and IVCount to integers before
1924     // comparing. This may result in SCEV expension of pointers, but in practice
1925     // SCEV will fold the pointer arithmetic away as such:
1926     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
1927     //
1928     // Valid Cases: (1) both integers is most common; (2) both may be pointers
1929     // for simple memset-style loops.
1930     //
1931     // IVInit integer and IVCount pointer would only occur if a canonical IV
1932     // were generated on top of case #2, which is not expected.
1933 
1934     const SCEV *IVLimit = nullptr;
1935     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
1936     // For non-zero Start, compute IVCount here.
1937     if (AR->getStart()->isZero())
1938       IVLimit = IVCount;
1939     else {
1940       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
1941       const SCEV *IVInit = AR->getStart();
1942 
1943       // For integer IVs, truncate the IV before computing IVInit + BECount.
1944       if (SE->getTypeSizeInBits(IVInit->getType())
1945           > SE->getTypeSizeInBits(IVCount->getType()))
1946         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
1947 
1948       IVLimit = SE->getAddExpr(IVInit, IVCount);
1949     }
1950     // Expand the code for the iteration count.
1951     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
1952     IRBuilder<> Builder(BI);
1953     assert(SE->isLoopInvariant(IVLimit, L) &&
1954            "Computed iteration count is not loop invariant!");
1955     // Ensure that we generate the same type as IndVar, or a smaller integer
1956     // type. In the presence of null pointer values, we have an integer type
1957     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
1958     Type *LimitTy = IVCount->getType()->isPointerTy() ?
1959       IndVar->getType() : IVCount->getType();
1960     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
1961   }
1962 }
1963 
1964 /// This method rewrites the exit condition of the loop to be a canonical !=
1965 /// comparison against the incremented loop induction variable.  This pass is
1966 /// able to rewrite the exit tests of any loop where the SCEV analysis can
1967 /// determine a loop-invariant trip count of the loop, which is actually a much
1968 /// broader range than just linear tests.
1969 Value *IndVarSimplify::
1970 linearFunctionTestReplace(Loop *L,
1971                           const SCEV *BackedgeTakenCount,
1972                           PHINode *IndVar,
1973                           SCEVExpander &Rewriter) {
1974   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
1975 
1976   // Initialize CmpIndVar and IVCount to their preincremented values.
1977   Value *CmpIndVar = IndVar;
1978   const SCEV *IVCount = BackedgeTakenCount;
1979 
1980   // If the exiting block is the same as the backedge block, we prefer to
1981   // compare against the post-incremented value, otherwise we must compare
1982   // against the preincremented value.
1983   if (L->getExitingBlock() == L->getLoopLatch()) {
1984     // Add one to the "backedge-taken" count to get the trip count.
1985     // This addition may overflow, which is valid as long as the comparison is
1986     // truncated to BackedgeTakenCount->getType().
1987     IVCount = SE->getAddExpr(BackedgeTakenCount,
1988                              SE->getOne(BackedgeTakenCount->getType()));
1989     // The BackedgeTaken expression contains the number of times that the
1990     // backedge branches to the loop header.  This is one less than the
1991     // number of times the loop executes, so use the incremented indvar.
1992     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
1993   }
1994 
1995   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
1996   assert(ExitCnt->getType()->isPointerTy() ==
1997              IndVar->getType()->isPointerTy() &&
1998          "genLoopLimit missed a cast");
1999 
2000   // Insert a new icmp_ne or icmp_eq instruction before the branch.
2001   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
2002   ICmpInst::Predicate P;
2003   if (L->contains(BI->getSuccessor(0)))
2004     P = ICmpInst::ICMP_NE;
2005   else
2006     P = ICmpInst::ICMP_EQ;
2007 
2008   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
2009                << "      LHS:" << *CmpIndVar << '\n'
2010                << "       op:\t"
2011                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
2012                << "      RHS:\t" << *ExitCnt << "\n"
2013                << "  IVCount:\t" << *IVCount << "\n");
2014 
2015   IRBuilder<> Builder(BI);
2016 
2017   // LFTR can ignore IV overflow and truncate to the width of
2018   // BECount. This avoids materializing the add(zext(add)) expression.
2019   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
2020   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
2021   if (CmpIndVarSize > ExitCntSize) {
2022     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
2023     const SCEV *ARStart = AR->getStart();
2024     const SCEV *ARStep = AR->getStepRecurrence(*SE);
2025     // For constant IVCount, avoid truncation.
2026     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
2027       const APInt &Start = cast<SCEVConstant>(ARStart)->getAPInt();
2028       APInt Count = cast<SCEVConstant>(IVCount)->getAPInt();
2029       // Note that the post-inc value of BackedgeTakenCount may have overflowed
2030       // above such that IVCount is now zero.
2031       if (IVCount != BackedgeTakenCount && Count == 0) {
2032         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
2033         ++Count;
2034       }
2035       else
2036         Count = Count.zext(CmpIndVarSize);
2037       APInt NewLimit;
2038       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
2039         NewLimit = Start - Count;
2040       else
2041         NewLimit = Start + Count;
2042       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
2043 
2044       DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
2045     } else {
2046       // We try to extend trip count first. If that doesn't work we truncate IV.
2047       // Zext(trunc(IV)) == IV implies equivalence of the following two:
2048       // Trunc(IV) == ExitCnt and IV == zext(ExitCnt). Similarly for sext. If
2049       // one of the two holds, extend the trip count, otherwise we truncate IV.
2050       bool Extended = false;
2051       const SCEV *IV = SE->getSCEV(CmpIndVar);
2052       const SCEV *ZExtTrunc =
2053            SE->getZeroExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2054                                                      ExitCnt->getType()),
2055                                  CmpIndVar->getType());
2056 
2057       if (ZExtTrunc == IV) {
2058         Extended = true;
2059         ExitCnt = Builder.CreateZExt(ExitCnt, IndVar->getType(),
2060                                      "wide.trip.count");
2061       } else {
2062         const SCEV *SExtTrunc =
2063           SE->getSignExtendExpr(SE->getTruncateExpr(SE->getSCEV(CmpIndVar),
2064                                                     ExitCnt->getType()),
2065                                 CmpIndVar->getType());
2066         if (SExtTrunc == IV) {
2067           Extended = true;
2068           ExitCnt = Builder.CreateSExt(ExitCnt, IndVar->getType(),
2069                                        "wide.trip.count");
2070         }
2071       }
2072 
2073       if (!Extended)
2074         CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
2075                                         "lftr.wideiv");
2076     }
2077   }
2078   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
2079   Value *OrigCond = BI->getCondition();
2080   // It's tempting to use replaceAllUsesWith here to fully replace the old
2081   // comparison, but that's not immediately safe, since users of the old
2082   // comparison may not be dominated by the new comparison. Instead, just
2083   // update the branch to use the new comparison; in the common case this
2084   // will make old comparison dead.
2085   BI->setCondition(Cond);
2086   DeadInsts.push_back(OrigCond);
2087 
2088   ++NumLFTR;
2089   Changed = true;
2090   return Cond;
2091 }
2092 
2093 //===----------------------------------------------------------------------===//
2094 //  sinkUnusedInvariants. A late subpass to cleanup loop preheaders.
2095 //===----------------------------------------------------------------------===//
2096 
2097 /// If there's a single exit block, sink any loop-invariant values that
2098 /// were defined in the preheader but not used inside the loop into the
2099 /// exit block to reduce register pressure in the loop.
2100 void IndVarSimplify::sinkUnusedInvariants(Loop *L) {
2101   BasicBlock *ExitBlock = L->getExitBlock();
2102   if (!ExitBlock) return;
2103 
2104   BasicBlock *Preheader = L->getLoopPreheader();
2105   if (!Preheader) return;
2106 
2107   BasicBlock::iterator InsertPt = ExitBlock->getFirstInsertionPt();
2108   BasicBlock::iterator I(Preheader->getTerminator());
2109   while (I != Preheader->begin()) {
2110     --I;
2111     // New instructions were inserted at the end of the preheader.
2112     if (isa<PHINode>(I))
2113       break;
2114 
2115     // Don't move instructions which might have side effects, since the side
2116     // effects need to complete before instructions inside the loop.  Also don't
2117     // move instructions which might read memory, since the loop may modify
2118     // memory. Note that it's okay if the instruction might have undefined
2119     // behavior: LoopSimplify guarantees that the preheader dominates the exit
2120     // block.
2121     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
2122       continue;
2123 
2124     // Skip debug info intrinsics.
2125     if (isa<DbgInfoIntrinsic>(I))
2126       continue;
2127 
2128     // Skip eh pad instructions.
2129     if (I->isEHPad())
2130       continue;
2131 
2132     // Don't sink alloca: we never want to sink static alloca's out of the
2133     // entry block, and correctly sinking dynamic alloca's requires
2134     // checks for stacksave/stackrestore intrinsics.
2135     // FIXME: Refactor this check somehow?
2136     if (isa<AllocaInst>(I))
2137       continue;
2138 
2139     // Determine if there is a use in or before the loop (direct or
2140     // otherwise).
2141     bool UsedInLoop = false;
2142     for (Use &U : I->uses()) {
2143       Instruction *User = cast<Instruction>(U.getUser());
2144       BasicBlock *UseBB = User->getParent();
2145       if (PHINode *P = dyn_cast<PHINode>(User)) {
2146         unsigned i =
2147           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
2148         UseBB = P->getIncomingBlock(i);
2149       }
2150       if (UseBB == Preheader || L->contains(UseBB)) {
2151         UsedInLoop = true;
2152         break;
2153       }
2154     }
2155 
2156     // If there is, the def must remain in the preheader.
2157     if (UsedInLoop)
2158       continue;
2159 
2160     // Otherwise, sink it to the exit block.
2161     Instruction *ToMove = &*I;
2162     bool Done = false;
2163 
2164     if (I != Preheader->begin()) {
2165       // Skip debug info intrinsics.
2166       do {
2167         --I;
2168       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
2169 
2170       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
2171         Done = true;
2172     } else {
2173       Done = true;
2174     }
2175 
2176     ToMove->moveBefore(*ExitBlock, InsertPt);
2177     if (Done) break;
2178     InsertPt = ToMove->getIterator();
2179   }
2180 }
2181 
2182 //===----------------------------------------------------------------------===//
2183 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
2184 //===----------------------------------------------------------------------===//
2185 
2186 bool IndVarSimplify::run(Loop *L) {
2187   // We need (and expect!) the incoming loop to be in LCSSA.
2188   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2189          "LCSSA required to run indvars!");
2190 
2191   // If LoopSimplify form is not available, stay out of trouble. Some notes:
2192   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
2193   //    canonicalization can be a pessimization without LSR to "clean up"
2194   //    afterwards.
2195   //  - We depend on having a preheader; in particular,
2196   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
2197   //    and we're in trouble if we can't find the induction variable even when
2198   //    we've manually inserted one.
2199   if (!L->isLoopSimplifyForm())
2200     return false;
2201 
2202   // If there are any floating-point recurrences, attempt to
2203   // transform them to use integer recurrences.
2204   rewriteNonIntegerIVs(L);
2205 
2206   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
2207 
2208   // Create a rewriter object which we'll use to transform the code with.
2209   SCEVExpander Rewriter(*SE, DL, "indvars");
2210 #ifndef NDEBUG
2211   Rewriter.setDebugType(DEBUG_TYPE);
2212 #endif
2213 
2214   // Eliminate redundant IV users.
2215   //
2216   // Simplification works best when run before other consumers of SCEV. We
2217   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
2218   // other expressions involving loop IVs have been evaluated. This helps SCEV
2219   // set no-wrap flags before normalizing sign/zero extension.
2220   Rewriter.disableCanonicalMode();
2221   simplifyAndExtend(L, Rewriter, LI);
2222 
2223   // Check to see if this loop has a computable loop-invariant execution count.
2224   // If so, this means that we can compute the final value of any expressions
2225   // that are recurrent in the loop, and substitute the exit values from the
2226   // loop into any instructions outside of the loop that use the final values of
2227   // the current expressions.
2228   //
2229   if (ReplaceExitValue != NeverRepl &&
2230       !isa<SCEVCouldNotCompute>(BackedgeTakenCount))
2231     rewriteLoopExitValues(L, Rewriter);
2232 
2233   // Eliminate redundant IV cycles.
2234   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
2235 
2236   // If we have a trip count expression, rewrite the loop's exit condition
2237   // using it.  We can currently only handle loops with a single exit.
2238   if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) {
2239     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
2240     if (IndVar) {
2241       // Check preconditions for proper SCEVExpander operation. SCEV does not
2242       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
2243       // pass that uses the SCEVExpander must do it. This does not work well for
2244       // loop passes because SCEVExpander makes assumptions about all loops,
2245       // while LoopPassManager only forces the current loop to be simplified.
2246       //
2247       // FIXME: SCEV expansion has no way to bail out, so the caller must
2248       // explicitly check any assumptions made by SCEV. Brittle.
2249       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
2250       if (!AR || AR->getLoop()->getLoopPreheader())
2251         (void)linearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
2252                                         Rewriter);
2253     }
2254   }
2255   // Clear the rewriter cache, because values that are in the rewriter's cache
2256   // can be deleted in the loop below, causing the AssertingVH in the cache to
2257   // trigger.
2258   Rewriter.clear();
2259 
2260   // Now that we're done iterating through lists, clean up any instructions
2261   // which are now dead.
2262   while (!DeadInsts.empty())
2263     if (Instruction *Inst =
2264             dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val()))
2265       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
2266 
2267   // The Rewriter may not be used from this point on.
2268 
2269   // Loop-invariant instructions in the preheader that aren't used in the
2270   // loop may be sunk below the loop to reduce register pressure.
2271   sinkUnusedInvariants(L);
2272 
2273   // rewriteFirstIterationLoopExitValues does not rely on the computation of
2274   // trip count and therefore can further simplify exit values in addition to
2275   // rewriteLoopExitValues.
2276   rewriteFirstIterationLoopExitValues(L);
2277 
2278   // Clean up dead instructions.
2279   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
2280 
2281   // Check a post-condition.
2282   assert(L->isRecursivelyLCSSAForm(*DT, *LI) &&
2283          "Indvars did not preserve LCSSA!");
2284 
2285   // Verify that LFTR, and any other change have not interfered with SCEV's
2286   // ability to compute trip count.
2287 #ifndef NDEBUG
2288   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
2289     SE->forgetLoop(L);
2290     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
2291     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
2292         SE->getTypeSizeInBits(NewBECount->getType()))
2293       NewBECount = SE->getTruncateOrNoop(NewBECount,
2294                                          BackedgeTakenCount->getType());
2295     else
2296       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
2297                                                  NewBECount->getType());
2298     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
2299   }
2300 #endif
2301 
2302   return Changed;
2303 }
2304 
2305 PreservedAnalyses IndVarSimplifyPass::run(Loop &L, LoopAnalysisManager &AM) {
2306   auto &FAM = AM.getResult<FunctionAnalysisManagerLoopProxy>(L).getManager();
2307   Function *F = L.getHeader()->getParent();
2308   const DataLayout &DL = F->getParent()->getDataLayout();
2309 
2310   auto *LI = FAM.getCachedResult<LoopAnalysis>(*F);
2311   auto *SE = FAM.getCachedResult<ScalarEvolutionAnalysis>(*F);
2312   auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(*F);
2313 
2314   assert((LI && SE && DT) &&
2315          "Analyses required for indvarsimplify not available!");
2316 
2317   // Optional analyses.
2318   auto *TTI = FAM.getCachedResult<TargetIRAnalysis>(*F);
2319   auto *TLI = FAM.getCachedResult<TargetLibraryAnalysis>(*F);
2320 
2321   IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2322   if (!IVS.run(&L))
2323     return PreservedAnalyses::all();
2324 
2325   // FIXME: This should also 'preserve the CFG'.
2326   return getLoopPassPreservedAnalyses();
2327 }
2328 
2329 namespace {
2330 struct IndVarSimplifyLegacyPass : public LoopPass {
2331   static char ID; // Pass identification, replacement for typeid
2332   IndVarSimplifyLegacyPass() : LoopPass(ID) {
2333     initializeIndVarSimplifyLegacyPassPass(*PassRegistry::getPassRegistry());
2334   }
2335 
2336   bool runOnLoop(Loop *L, LPPassManager &LPM) override {
2337     if (skipLoop(L))
2338       return false;
2339 
2340     auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
2341     auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
2342     auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
2343     auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
2344     auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
2345     auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
2346     auto *TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
2347     const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
2348 
2349     IndVarSimplify IVS(LI, SE, DT, DL, TLI, TTI);
2350     return IVS.run(L);
2351   }
2352 
2353   void getAnalysisUsage(AnalysisUsage &AU) const override {
2354     AU.setPreservesCFG();
2355     getLoopAnalysisUsage(AU);
2356   }
2357 };
2358 }
2359 
2360 char IndVarSimplifyLegacyPass::ID = 0;
2361 INITIALIZE_PASS_BEGIN(IndVarSimplifyLegacyPass, "indvars",
2362                       "Induction Variable Simplification", false, false)
2363 INITIALIZE_PASS_DEPENDENCY(LoopPass)
2364 INITIALIZE_PASS_END(IndVarSimplifyLegacyPass, "indvars",
2365                     "Induction Variable Simplification", false, false)
2366 
2367 Pass *llvm::createIndVarSimplifyPass() {
2368   return new IndVarSimplifyLegacyPass();
2369 }
2370