1 //===- GVNSink.cpp - sink expressions into successors ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file GVNSink.cpp 10 /// This pass attempts to sink instructions into successors, reducing static 11 /// instruction count and enabling if-conversion. 12 /// 13 /// We use a variant of global value numbering to decide what can be sunk. 14 /// Consider: 15 /// 16 /// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ] 17 /// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ] 18 /// \ / 19 /// [ %e = phi i32 %a2, %c2 ] 20 /// [ add i32 %e, 4 ] 21 /// 22 /// 23 /// GVN would number %a1 and %c1 differently because they compute different 24 /// results - the VN of an instruction is a function of its opcode and the 25 /// transitive closure of its operands. This is the key property for hoisting 26 /// and CSE. 27 /// 28 /// What we want when sinking however is for a numbering that is a function of 29 /// the *uses* of an instruction, which allows us to answer the question "if I 30 /// replace %a1 with %c1, will it contribute in an equivalent way to all 31 /// successive instructions?". The PostValueTable class in GVN provides this 32 /// mapping. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/DenseMapInfo.h" 39 #include "llvm/ADT/DenseSet.h" 40 #include "llvm/ADT/Hashing.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/Optional.h" 43 #include "llvm/ADT/PostOrderIterator.h" 44 #include "llvm/ADT/STLExtras.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringExtras.h" 49 #include "llvm/Analysis/GlobalsModRef.h" 50 #include "llvm/IR/BasicBlock.h" 51 #include "llvm/IR/CFG.h" 52 #include "llvm/IR/Constants.h" 53 #include "llvm/IR/Function.h" 54 #include "llvm/IR/InstrTypes.h" 55 #include "llvm/IR/Instruction.h" 56 #include "llvm/IR/Instructions.h" 57 #include "llvm/IR/PassManager.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/InitializePasses.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/Allocator.h" 64 #include "llvm/Support/ArrayRecycler.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/Compiler.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/Scalar.h" 71 #include "llvm/Transforms/Scalar/GVN.h" 72 #include "llvm/Transforms/Scalar/GVNExpression.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include "llvm/Transforms/Utils/Local.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <utility> 81 82 using namespace llvm; 83 84 #define DEBUG_TYPE "gvn-sink" 85 86 STATISTIC(NumRemoved, "Number of instructions removed"); 87 88 namespace llvm { 89 namespace GVNExpression { 90 91 LLVM_DUMP_METHOD void Expression::dump() const { 92 print(dbgs()); 93 dbgs() << "\n"; 94 } 95 96 } // end namespace GVNExpression 97 } // end namespace llvm 98 99 namespace { 100 101 static bool isMemoryInst(const Instruction *I) { 102 return isa<LoadInst>(I) || isa<StoreInst>(I) || 103 (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) || 104 (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory()); 105 } 106 107 /// Iterates through instructions in a set of blocks in reverse order from the 108 /// first non-terminator. For example (assume all blocks have size n): 109 /// LockstepReverseIterator I([B1, B2, B3]); 110 /// *I-- = [B1[n], B2[n], B3[n]]; 111 /// *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 112 /// *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 113 /// ... 114 /// 115 /// It continues until all blocks have been exhausted. Use \c getActiveBlocks() 116 /// to 117 /// determine which blocks are still going and the order they appear in the 118 /// list returned by operator*. 119 class LockstepReverseIterator { 120 ArrayRef<BasicBlock *> Blocks; 121 SmallSetVector<BasicBlock *, 4> ActiveBlocks; 122 SmallVector<Instruction *, 4> Insts; 123 bool Fail; 124 125 public: 126 LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) { 127 reset(); 128 } 129 130 void reset() { 131 Fail = false; 132 ActiveBlocks.clear(); 133 for (BasicBlock *BB : Blocks) 134 ActiveBlocks.insert(BB); 135 Insts.clear(); 136 for (BasicBlock *BB : Blocks) { 137 if (BB->size() <= 1) { 138 // Block wasn't big enough - only contained a terminator. 139 ActiveBlocks.remove(BB); 140 continue; 141 } 142 Insts.push_back(BB->getTerminator()->getPrevNode()); 143 } 144 if (Insts.empty()) 145 Fail = true; 146 } 147 148 bool isValid() const { return !Fail; } 149 ArrayRef<Instruction *> operator*() const { return Insts; } 150 151 // Note: This needs to return a SmallSetVector as the elements of 152 // ActiveBlocks will be later copied to Blocks using std::copy. The 153 // resultant order of elements in Blocks needs to be deterministic. 154 // Using SmallPtrSet instead causes non-deterministic order while 155 // copying. And we cannot simply sort Blocks as they need to match the 156 // corresponding Values. 157 SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; } 158 159 void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) { 160 for (auto II = Insts.begin(); II != Insts.end();) { 161 if (std::find(Blocks.begin(), Blocks.end(), (*II)->getParent()) == 162 Blocks.end()) { 163 ActiveBlocks.remove((*II)->getParent()); 164 II = Insts.erase(II); 165 } else { 166 ++II; 167 } 168 } 169 } 170 171 void operator--() { 172 if (Fail) 173 return; 174 SmallVector<Instruction *, 4> NewInsts; 175 for (auto *Inst : Insts) { 176 if (Inst == &Inst->getParent()->front()) 177 ActiveBlocks.remove(Inst->getParent()); 178 else 179 NewInsts.push_back(Inst->getPrevNode()); 180 } 181 if (NewInsts.empty()) { 182 Fail = true; 183 return; 184 } 185 Insts = NewInsts; 186 } 187 }; 188 189 //===----------------------------------------------------------------------===// 190 191 /// Candidate solution for sinking. There may be different ways to 192 /// sink instructions, differing in the number of instructions sunk, 193 /// the number of predecessors sunk from and the number of PHIs 194 /// required. 195 struct SinkingInstructionCandidate { 196 unsigned NumBlocks; 197 unsigned NumInstructions; 198 unsigned NumPHIs; 199 unsigned NumMemoryInsts; 200 int Cost = -1; 201 SmallVector<BasicBlock *, 4> Blocks; 202 203 void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) { 204 unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs; 205 unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0; 206 Cost = (NumInstructions * (NumBlocks - 1)) - 207 (NumExtraPHIs * 208 NumExtraPHIs) // PHIs are expensive, so make sure they're worth it. 209 - SplitEdgeCost; 210 } 211 212 bool operator>(const SinkingInstructionCandidate &Other) const { 213 return Cost > Other.Cost; 214 } 215 }; 216 217 #ifndef NDEBUG 218 raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) { 219 OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks 220 << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">"; 221 return OS; 222 } 223 #endif 224 225 //===----------------------------------------------------------------------===// 226 227 /// Describes a PHI node that may or may not exist. These track the PHIs 228 /// that must be created if we sunk a sequence of instructions. It provides 229 /// a hash function for efficient equality comparisons. 230 class ModelledPHI { 231 SmallVector<Value *, 4> Values; 232 SmallVector<BasicBlock *, 4> Blocks; 233 234 public: 235 ModelledPHI() = default; 236 237 ModelledPHI(const PHINode *PN) { 238 // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order. 239 SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops; 240 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) 241 Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)}); 242 llvm::sort(Ops); 243 for (auto &P : Ops) { 244 Blocks.push_back(P.first); 245 Values.push_back(P.second); 246 } 247 } 248 249 /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI 250 /// without the same ID. 251 /// \note This is specifically for DenseMapInfo - do not use this! 252 static ModelledPHI createDummy(size_t ID) { 253 ModelledPHI M; 254 M.Values.push_back(reinterpret_cast<Value*>(ID)); 255 return M; 256 } 257 258 /// Create a PHI from an array of incoming values and incoming blocks. 259 template <typename VArray, typename BArray> 260 ModelledPHI(const VArray &V, const BArray &B) { 261 llvm::copy(V, std::back_inserter(Values)); 262 llvm::copy(B, std::back_inserter(Blocks)); 263 } 264 265 /// Create a PHI from [I[OpNum] for I in Insts]. 266 template <typename BArray> 267 ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) { 268 llvm::copy(B, std::back_inserter(Blocks)); 269 for (auto *I : Insts) 270 Values.push_back(I->getOperand(OpNum)); 271 } 272 273 /// Restrict the PHI's contents down to only \c NewBlocks. 274 /// \c NewBlocks must be a subset of \c this->Blocks. 275 void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) { 276 auto BI = Blocks.begin(); 277 auto VI = Values.begin(); 278 while (BI != Blocks.end()) { 279 assert(VI != Values.end()); 280 if (std::find(NewBlocks.begin(), NewBlocks.end(), *BI) == 281 NewBlocks.end()) { 282 BI = Blocks.erase(BI); 283 VI = Values.erase(VI); 284 } else { 285 ++BI; 286 ++VI; 287 } 288 } 289 assert(Blocks.size() == NewBlocks.size()); 290 } 291 292 ArrayRef<Value *> getValues() const { return Values; } 293 294 bool areAllIncomingValuesSame() const { 295 return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; }); 296 } 297 298 bool areAllIncomingValuesSameType() const { 299 return llvm::all_of( 300 Values, [&](Value *V) { return V->getType() == Values[0]->getType(); }); 301 } 302 303 bool areAnyIncomingValuesConstant() const { 304 return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); }); 305 } 306 307 // Hash functor 308 unsigned hash() const { 309 return (unsigned)hash_combine_range(Values.begin(), Values.end()); 310 } 311 312 bool operator==(const ModelledPHI &Other) const { 313 return Values == Other.Values && Blocks == Other.Blocks; 314 } 315 }; 316 317 template <typename ModelledPHI> struct DenseMapInfo { 318 static inline ModelledPHI &getEmptyKey() { 319 static ModelledPHI Dummy = ModelledPHI::createDummy(0); 320 return Dummy; 321 } 322 323 static inline ModelledPHI &getTombstoneKey() { 324 static ModelledPHI Dummy = ModelledPHI::createDummy(1); 325 return Dummy; 326 } 327 328 static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); } 329 330 static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) { 331 return LHS == RHS; 332 } 333 }; 334 335 using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>; 336 337 //===----------------------------------------------------------------------===// 338 // ValueTable 339 //===----------------------------------------------------------------------===// 340 // This is a value number table where the value number is a function of the 341 // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know 342 // that the program would be equivalent if we replaced A with PHI(A, B). 343 //===----------------------------------------------------------------------===// 344 345 /// A GVN expression describing how an instruction is used. The operands 346 /// field of BasicExpression is used to store uses, not operands. 347 /// 348 /// This class also contains fields for discriminators used when determining 349 /// equivalence of instructions with sideeffects. 350 class InstructionUseExpr : public GVNExpression::BasicExpression { 351 unsigned MemoryUseOrder = -1; 352 bool Volatile = false; 353 ArrayRef<int> ShuffleMask; 354 355 public: 356 InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R, 357 BumpPtrAllocator &A) 358 : GVNExpression::BasicExpression(I->getNumUses()) { 359 allocateOperands(R, A); 360 setOpcode(I->getOpcode()); 361 setType(I->getType()); 362 363 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) { 364 ArrayRef<int> OrigMask = SVI->getShuffleMask(); 365 int *Mask = A.Allocate<int>(OrigMask.size()); 366 llvm::copy(OrigMask, Mask); 367 ShuffleMask = ArrayRef<int>(Mask, OrigMask.size()); 368 } 369 370 for (auto &U : I->uses()) 371 op_push_back(U.getUser()); 372 llvm::sort(op_begin(), op_end()); 373 } 374 375 void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; } 376 void setVolatile(bool V) { Volatile = V; } 377 378 hash_code getHashValue() const override { 379 return hash_combine(GVNExpression::BasicExpression::getHashValue(), 380 MemoryUseOrder, Volatile, ShuffleMask); 381 } 382 383 template <typename Function> hash_code getHashValue(Function MapFn) { 384 hash_code H = hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile, 385 ShuffleMask); 386 for (auto *V : operands()) 387 H = hash_combine(H, MapFn(V)); 388 return H; 389 } 390 }; 391 392 class ValueTable { 393 DenseMap<Value *, uint32_t> ValueNumbering; 394 DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering; 395 DenseMap<size_t, uint32_t> HashNumbering; 396 BumpPtrAllocator Allocator; 397 ArrayRecycler<Value *> Recycler; 398 uint32_t nextValueNumber = 1; 399 400 /// Create an expression for I based on its opcode and its uses. If I 401 /// touches or reads memory, the expression is also based upon its memory 402 /// order - see \c getMemoryUseOrder(). 403 InstructionUseExpr *createExpr(Instruction *I) { 404 InstructionUseExpr *E = 405 new (Allocator) InstructionUseExpr(I, Recycler, Allocator); 406 if (isMemoryInst(I)) 407 E->setMemoryUseOrder(getMemoryUseOrder(I)); 408 409 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 410 CmpInst::Predicate Predicate = C->getPredicate(); 411 E->setOpcode((C->getOpcode() << 8) | Predicate); 412 } 413 return E; 414 } 415 416 /// Helper to compute the value number for a memory instruction 417 /// (LoadInst/StoreInst), including checking the memory ordering and 418 /// volatility. 419 template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) { 420 if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic()) 421 return nullptr; 422 InstructionUseExpr *E = createExpr(I); 423 E->setVolatile(I->isVolatile()); 424 return E; 425 } 426 427 public: 428 ValueTable() = default; 429 430 /// Returns the value number for the specified value, assigning 431 /// it a new number if it did not have one before. 432 uint32_t lookupOrAdd(Value *V) { 433 auto VI = ValueNumbering.find(V); 434 if (VI != ValueNumbering.end()) 435 return VI->second; 436 437 if (!isa<Instruction>(V)) { 438 ValueNumbering[V] = nextValueNumber; 439 return nextValueNumber++; 440 } 441 442 Instruction *I = cast<Instruction>(V); 443 InstructionUseExpr *exp = nullptr; 444 switch (I->getOpcode()) { 445 case Instruction::Load: 446 exp = createMemoryExpr(cast<LoadInst>(I)); 447 break; 448 case Instruction::Store: 449 exp = createMemoryExpr(cast<StoreInst>(I)); 450 break; 451 case Instruction::Call: 452 case Instruction::Invoke: 453 case Instruction::FNeg: 454 case Instruction::Add: 455 case Instruction::FAdd: 456 case Instruction::Sub: 457 case Instruction::FSub: 458 case Instruction::Mul: 459 case Instruction::FMul: 460 case Instruction::UDiv: 461 case Instruction::SDiv: 462 case Instruction::FDiv: 463 case Instruction::URem: 464 case Instruction::SRem: 465 case Instruction::FRem: 466 case Instruction::Shl: 467 case Instruction::LShr: 468 case Instruction::AShr: 469 case Instruction::And: 470 case Instruction::Or: 471 case Instruction::Xor: 472 case Instruction::ICmp: 473 case Instruction::FCmp: 474 case Instruction::Trunc: 475 case Instruction::ZExt: 476 case Instruction::SExt: 477 case Instruction::FPToUI: 478 case Instruction::FPToSI: 479 case Instruction::UIToFP: 480 case Instruction::SIToFP: 481 case Instruction::FPTrunc: 482 case Instruction::FPExt: 483 case Instruction::PtrToInt: 484 case Instruction::IntToPtr: 485 case Instruction::BitCast: 486 case Instruction::AddrSpaceCast: 487 case Instruction::Select: 488 case Instruction::ExtractElement: 489 case Instruction::InsertElement: 490 case Instruction::ShuffleVector: 491 case Instruction::InsertValue: 492 case Instruction::GetElementPtr: 493 exp = createExpr(I); 494 break; 495 default: 496 break; 497 } 498 499 if (!exp) { 500 ValueNumbering[V] = nextValueNumber; 501 return nextValueNumber++; 502 } 503 504 uint32_t e = ExpressionNumbering[exp]; 505 if (!e) { 506 hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); }); 507 auto I = HashNumbering.find(H); 508 if (I != HashNumbering.end()) { 509 e = I->second; 510 } else { 511 e = nextValueNumber++; 512 HashNumbering[H] = e; 513 ExpressionNumbering[exp] = e; 514 } 515 } 516 ValueNumbering[V] = e; 517 return e; 518 } 519 520 /// Returns the value number of the specified value. Fails if the value has 521 /// not yet been numbered. 522 uint32_t lookup(Value *V) const { 523 auto VI = ValueNumbering.find(V); 524 assert(VI != ValueNumbering.end() && "Value not numbered?"); 525 return VI->second; 526 } 527 528 /// Removes all value numberings and resets the value table. 529 void clear() { 530 ValueNumbering.clear(); 531 ExpressionNumbering.clear(); 532 HashNumbering.clear(); 533 Recycler.clear(Allocator); 534 nextValueNumber = 1; 535 } 536 537 /// \c Inst uses or touches memory. Return an ID describing the memory state 538 /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2), 539 /// the exact same memory operations happen after I1 and I2. 540 /// 541 /// This is a very hard problem in general, so we use domain-specific 542 /// knowledge that we only ever check for equivalence between blocks sharing a 543 /// single immediate successor that is common, and when determining if I1 == 544 /// I2 we will have already determined that next(I1) == next(I2). This 545 /// inductive property allows us to simply return the value number of the next 546 /// instruction that defines memory. 547 uint32_t getMemoryUseOrder(Instruction *Inst) { 548 auto *BB = Inst->getParent(); 549 for (auto I = std::next(Inst->getIterator()), E = BB->end(); 550 I != E && !I->isTerminator(); ++I) { 551 if (!isMemoryInst(&*I)) 552 continue; 553 if (isa<LoadInst>(&*I)) 554 continue; 555 CallInst *CI = dyn_cast<CallInst>(&*I); 556 if (CI && CI->onlyReadsMemory()) 557 continue; 558 InvokeInst *II = dyn_cast<InvokeInst>(&*I); 559 if (II && II->onlyReadsMemory()) 560 continue; 561 return lookupOrAdd(&*I); 562 } 563 return 0; 564 } 565 }; 566 567 //===----------------------------------------------------------------------===// 568 569 class GVNSink { 570 public: 571 GVNSink() = default; 572 573 bool run(Function &F) { 574 LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName() 575 << "\n"); 576 577 unsigned NumSunk = 0; 578 ReversePostOrderTraversal<Function*> RPOT(&F); 579 for (auto *N : RPOT) 580 NumSunk += sinkBB(N); 581 582 return NumSunk > 0; 583 } 584 585 private: 586 ValueTable VN; 587 588 bool isInstructionBlacklisted(Instruction *I) { 589 // These instructions may change or break semantics if moved. 590 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 591 I->getType()->isTokenTy()) 592 return true; 593 return false; 594 } 595 596 /// The main heuristic function. Analyze the set of instructions pointed to by 597 /// LRI and return a candidate solution if these instructions can be sunk, or 598 /// None otherwise. 599 Optional<SinkingInstructionCandidate> analyzeInstructionForSinking( 600 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, 601 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents); 602 603 /// Create a ModelledPHI for each PHI in BB, adding to PHIs. 604 void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs, 605 SmallPtrSetImpl<Value *> &PHIContents) { 606 for (PHINode &PN : BB->phis()) { 607 auto MPHI = ModelledPHI(&PN); 608 PHIs.insert(MPHI); 609 for (auto *V : MPHI.getValues()) 610 PHIContents.insert(V); 611 } 612 } 613 614 /// The main instruction sinking driver. Set up state and try and sink 615 /// instructions into BBEnd from its predecessors. 616 unsigned sinkBB(BasicBlock *BBEnd); 617 618 /// Perform the actual mechanics of sinking an instruction from Blocks into 619 /// BBEnd, which is their only successor. 620 void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd); 621 622 /// Remove PHIs that all have the same incoming value. 623 void foldPointlessPHINodes(BasicBlock *BB) { 624 auto I = BB->begin(); 625 while (PHINode *PN = dyn_cast<PHINode>(I++)) { 626 if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) { 627 return V == PN->getIncomingValue(0); 628 })) 629 continue; 630 if (PN->getIncomingValue(0) != PN) 631 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 632 else 633 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 634 PN->eraseFromParent(); 635 } 636 } 637 }; 638 639 Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking( 640 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, 641 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) { 642 auto Insts = *LRI; 643 LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I 644 : Insts) { 645 I->dump(); 646 } dbgs() << " ]\n";); 647 648 DenseMap<uint32_t, unsigned> VNums; 649 for (auto *I : Insts) { 650 uint32_t N = VN.lookupOrAdd(I); 651 LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n"); 652 if (N == ~0U) 653 return None; 654 VNums[N]++; 655 } 656 unsigned VNumToSink = 657 std::max_element(VNums.begin(), VNums.end(), 658 [](const std::pair<uint32_t, unsigned> &I, 659 const std::pair<uint32_t, unsigned> &J) { 660 return I.second < J.second; 661 }) 662 ->first; 663 664 if (VNums[VNumToSink] == 1) 665 // Can't sink anything! 666 return None; 667 668 // Now restrict the number of incoming blocks down to only those with 669 // VNumToSink. 670 auto &ActivePreds = LRI.getActiveBlocks(); 671 unsigned InitialActivePredSize = ActivePreds.size(); 672 SmallVector<Instruction *, 4> NewInsts; 673 for (auto *I : Insts) { 674 if (VN.lookup(I) != VNumToSink) 675 ActivePreds.remove(I->getParent()); 676 else 677 NewInsts.push_back(I); 678 } 679 for (auto *I : NewInsts) 680 if (isInstructionBlacklisted(I)) 681 return None; 682 683 // If we've restricted the incoming blocks, restrict all needed PHIs also 684 // to that set. 685 bool RecomputePHIContents = false; 686 if (ActivePreds.size() != InitialActivePredSize) { 687 ModelledPHISet NewNeededPHIs; 688 for (auto P : NeededPHIs) { 689 P.restrictToBlocks(ActivePreds); 690 NewNeededPHIs.insert(P); 691 } 692 NeededPHIs = NewNeededPHIs; 693 LRI.restrictToBlocks(ActivePreds); 694 RecomputePHIContents = true; 695 } 696 697 // The sunk instruction's results. 698 ModelledPHI NewPHI(NewInsts, ActivePreds); 699 700 // Does sinking this instruction render previous PHIs redundant? 701 if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) { 702 NeededPHIs.erase(NewPHI); 703 RecomputePHIContents = true; 704 } 705 706 if (RecomputePHIContents) { 707 // The needed PHIs have changed, so recompute the set of all needed 708 // values. 709 PHIContents.clear(); 710 for (auto &PHI : NeededPHIs) 711 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); 712 } 713 714 // Is this instruction required by a later PHI that doesn't match this PHI? 715 // if so, we can't sink this instruction. 716 for (auto *V : NewPHI.getValues()) 717 if (PHIContents.count(V)) 718 // V exists in this PHI, but the whole PHI is different to NewPHI 719 // (else it would have been removed earlier). We cannot continue 720 // because this isn't representable. 721 return None; 722 723 // Which operands need PHIs? 724 // FIXME: If any of these fail, we should partition up the candidates to 725 // try and continue making progress. 726 Instruction *I0 = NewInsts[0]; 727 728 // If all instructions that are going to participate don't have the same 729 // number of operands, we can't do any useful PHI analysis for all operands. 730 auto hasDifferentNumOperands = [&I0](Instruction *I) { 731 return I->getNumOperands() != I0->getNumOperands(); 732 }; 733 if (any_of(NewInsts, hasDifferentNumOperands)) 734 return None; 735 736 for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) { 737 ModelledPHI PHI(NewInsts, OpNum, ActivePreds); 738 if (PHI.areAllIncomingValuesSame()) 739 continue; 740 if (!canReplaceOperandWithVariable(I0, OpNum)) 741 // We can 't create a PHI from this instruction! 742 return None; 743 if (NeededPHIs.count(PHI)) 744 continue; 745 if (!PHI.areAllIncomingValuesSameType()) 746 return None; 747 // Don't create indirect calls! The called value is the final operand. 748 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 && 749 PHI.areAnyIncomingValuesConstant()) 750 return None; 751 752 NeededPHIs.reserve(NeededPHIs.size()); 753 NeededPHIs.insert(PHI); 754 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); 755 } 756 757 if (isMemoryInst(NewInsts[0])) 758 ++MemoryInstNum; 759 760 SinkingInstructionCandidate Cand; 761 Cand.NumInstructions = ++InstNum; 762 Cand.NumMemoryInsts = MemoryInstNum; 763 Cand.NumBlocks = ActivePreds.size(); 764 Cand.NumPHIs = NeededPHIs.size(); 765 for (auto *C : ActivePreds) 766 Cand.Blocks.push_back(C); 767 768 return Cand; 769 } 770 771 unsigned GVNSink::sinkBB(BasicBlock *BBEnd) { 772 LLVM_DEBUG(dbgs() << "GVNSink: running on basic block "; 773 BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); 774 SmallVector<BasicBlock *, 4> Preds; 775 for (auto *B : predecessors(BBEnd)) { 776 auto *T = B->getTerminator(); 777 if (isa<BranchInst>(T) || isa<SwitchInst>(T)) 778 Preds.push_back(B); 779 else 780 return 0; 781 } 782 if (Preds.size() < 2) 783 return 0; 784 llvm::sort(Preds); 785 786 unsigned NumOrigPreds = Preds.size(); 787 // We can only sink instructions through unconditional branches. 788 for (auto I = Preds.begin(); I != Preds.end();) { 789 if ((*I)->getTerminator()->getNumSuccessors() != 1) 790 I = Preds.erase(I); 791 else 792 ++I; 793 } 794 795 LockstepReverseIterator LRI(Preds); 796 SmallVector<SinkingInstructionCandidate, 4> Candidates; 797 unsigned InstNum = 0, MemoryInstNum = 0; 798 ModelledPHISet NeededPHIs; 799 SmallPtrSet<Value *, 4> PHIContents; 800 analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents); 801 unsigned NumOrigPHIs = NeededPHIs.size(); 802 803 while (LRI.isValid()) { 804 auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum, 805 NeededPHIs, PHIContents); 806 if (!Cand) 807 break; 808 Cand->calculateCost(NumOrigPHIs, Preds.size()); 809 Candidates.emplace_back(*Cand); 810 --LRI; 811 } 812 813 llvm::stable_sort(Candidates, std::greater<SinkingInstructionCandidate>()); 814 LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C 815 : Candidates) dbgs() 816 << " " << C << "\n";); 817 818 // Pick the top candidate, as long it is positive! 819 if (Candidates.empty() || Candidates.front().Cost <= 0) 820 return 0; 821 auto C = Candidates.front(); 822 823 LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n"); 824 BasicBlock *InsertBB = BBEnd; 825 if (C.Blocks.size() < NumOrigPreds) { 826 LLVM_DEBUG(dbgs() << " -- Splitting edge to "; 827 BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); 828 InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split"); 829 if (!InsertBB) { 830 LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n"); 831 // Edge couldn't be split. 832 return 0; 833 } 834 } 835 836 for (unsigned I = 0; I < C.NumInstructions; ++I) 837 sinkLastInstruction(C.Blocks, InsertBB); 838 839 return C.NumInstructions; 840 } 841 842 void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, 843 BasicBlock *BBEnd) { 844 SmallVector<Instruction *, 4> Insts; 845 for (BasicBlock *BB : Blocks) 846 Insts.push_back(BB->getTerminator()->getPrevNode()); 847 Instruction *I0 = Insts.front(); 848 849 SmallVector<Value *, 4> NewOperands; 850 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 851 bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) { 852 return I->getOperand(O) != I0->getOperand(O); 853 }); 854 if (!NeedPHI) { 855 NewOperands.push_back(I0->getOperand(O)); 856 continue; 857 } 858 859 // Create a new PHI in the successor block and populate it. 860 auto *Op = I0->getOperand(O); 861 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 862 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 863 Op->getName() + ".sink", &BBEnd->front()); 864 for (auto *I : Insts) 865 PN->addIncoming(I->getOperand(O), I->getParent()); 866 NewOperands.push_back(PN); 867 } 868 869 // Arbitrarily use I0 as the new "common" instruction; remap its operands 870 // and move it to the start of the successor block. 871 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 872 I0->getOperandUse(O).set(NewOperands[O]); 873 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 874 875 // Update metadata and IR flags. 876 for (auto *I : Insts) 877 if (I != I0) { 878 combineMetadataForCSE(I0, I, true); 879 I0->andIRFlags(I); 880 } 881 882 for (auto *I : Insts) 883 if (I != I0) 884 I->replaceAllUsesWith(I0); 885 foldPointlessPHINodes(BBEnd); 886 887 // Finally nuke all instructions apart from the common instruction. 888 for (auto *I : Insts) 889 if (I != I0) 890 I->eraseFromParent(); 891 892 NumRemoved += Insts.size() - 1; 893 } 894 895 //////////////////////////////////////////////////////////////////////////////// 896 // Pass machinery / boilerplate 897 898 class GVNSinkLegacyPass : public FunctionPass { 899 public: 900 static char ID; 901 902 GVNSinkLegacyPass() : FunctionPass(ID) { 903 initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry()); 904 } 905 906 bool runOnFunction(Function &F) override { 907 if (skipFunction(F)) 908 return false; 909 GVNSink G; 910 return G.run(F); 911 } 912 913 void getAnalysisUsage(AnalysisUsage &AU) const override { 914 AU.addPreserved<GlobalsAAWrapperPass>(); 915 } 916 }; 917 918 } // end anonymous namespace 919 920 PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) { 921 GVNSink G; 922 if (!G.run(F)) 923 return PreservedAnalyses::all(); 924 925 PreservedAnalyses PA; 926 PA.preserve<GlobalsAA>(); 927 return PA; 928 } 929 930 char GVNSinkLegacyPass::ID = 0; 931 932 INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink", 933 "Early GVN sinking of Expressions", false, false) 934 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 935 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 936 INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink", 937 "Early GVN sinking of Expressions", false, false) 938 939 FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); } 940