xref: /llvm-project/llvm/lib/Transforms/Scalar/GVNSink.cpp (revision 9c46a9cf611f107c34a8616bef7476842e7e5d71)
1 //===- GVNSink.cpp - sink expressions into successors ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file GVNSink.cpp
10 /// This pass attempts to sink instructions into successors, reducing static
11 /// instruction count and enabling if-conversion.
12 ///
13 /// We use a variant of global value numbering to decide what can be sunk.
14 /// Consider:
15 ///
16 /// [ %a1 = add i32 %b, 1  ]   [ %c1 = add i32 %d, 1  ]
17 /// [ %a2 = xor i32 %a1, 1 ]   [ %c2 = xor i32 %c1, 1 ]
18 ///                  \           /
19 ///            [ %e = phi i32 %a2, %c2 ]
20 ///            [ add i32 %e, 4         ]
21 ///
22 ///
23 /// GVN would number %a1 and %c1 differently because they compute different
24 /// results - the VN of an instruction is a function of its opcode and the
25 /// transitive closure of its operands. This is the key property for hoisting
26 /// and CSE.
27 ///
28 /// What we want when sinking however is for a numbering that is a function of
29 /// the *uses* of an instruction, which allows us to answer the question "if I
30 /// replace %a1 with %c1, will it contribute in an equivalent way to all
31 /// successive instructions?". The PostValueTable class in GVN provides this
32 /// mapping.
33 //
34 //===----------------------------------------------------------------------===//
35 
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/DenseSet.h"
39 #include "llvm/ADT/Hashing.h"
40 #include "llvm/ADT/None.h"
41 #include "llvm/ADT/Optional.h"
42 #include "llvm/ADT/PostOrderIterator.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/ADT/SmallPtrSet.h"
45 #include "llvm/ADT/SmallVector.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/Analysis/GlobalsModRef.h"
48 #include "llvm/IR/BasicBlock.h"
49 #include "llvm/IR/CFG.h"
50 #include "llvm/IR/Constants.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/PassManager.h"
56 #include "llvm/IR/Type.h"
57 #include "llvm/IR/Use.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/InitializePasses.h"
60 #include "llvm/Pass.h"
61 #include "llvm/Support/Allocator.h"
62 #include "llvm/Support/ArrayRecycler.h"
63 #include "llvm/Support/AtomicOrdering.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/raw_ostream.h"
68 #include "llvm/Transforms/Scalar.h"
69 #include "llvm/Transforms/Scalar/GVN.h"
70 #include "llvm/Transforms/Scalar/GVNExpression.h"
71 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
72 #include "llvm/Transforms/Utils/Local.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <iterator>
78 #include <utility>
79 
80 using namespace llvm;
81 
82 #define DEBUG_TYPE "gvn-sink"
83 
84 STATISTIC(NumRemoved, "Number of instructions removed");
85 
86 namespace llvm {
87 namespace GVNExpression {
88 
89 LLVM_DUMP_METHOD void Expression::dump() const {
90   print(dbgs());
91   dbgs() << "\n";
92 }
93 
94 } // end namespace GVNExpression
95 } // end namespace llvm
96 
97 namespace {
98 
99 static bool isMemoryInst(const Instruction *I) {
100   return isa<LoadInst>(I) || isa<StoreInst>(I) ||
101          (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) ||
102          (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory());
103 }
104 
105 /// Iterates through instructions in a set of blocks in reverse order from the
106 /// first non-terminator. For example (assume all blocks have size n):
107 ///   LockstepReverseIterator I([B1, B2, B3]);
108 ///   *I-- = [B1[n], B2[n], B3[n]];
109 ///   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
110 ///   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
111 ///   ...
112 ///
113 /// It continues until all blocks have been exhausted. Use \c getActiveBlocks()
114 /// to
115 /// determine which blocks are still going and the order they appear in the
116 /// list returned by operator*.
117 class LockstepReverseIterator {
118   ArrayRef<BasicBlock *> Blocks;
119   SmallSetVector<BasicBlock *, 4> ActiveBlocks;
120   SmallVector<Instruction *, 4> Insts;
121   bool Fail;
122 
123 public:
124   LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) {
125     reset();
126   }
127 
128   void reset() {
129     Fail = false;
130     ActiveBlocks.clear();
131     for (BasicBlock *BB : Blocks)
132       ActiveBlocks.insert(BB);
133     Insts.clear();
134     for (BasicBlock *BB : Blocks) {
135       if (BB->size() <= 1) {
136         // Block wasn't big enough - only contained a terminator.
137         ActiveBlocks.remove(BB);
138         continue;
139       }
140       Insts.push_back(BB->getTerminator()->getPrevNode());
141     }
142     if (Insts.empty())
143       Fail = true;
144   }
145 
146   bool isValid() const { return !Fail; }
147   ArrayRef<Instruction *> operator*() const { return Insts; }
148 
149   // Note: This needs to return a SmallSetVector as the elements of
150   // ActiveBlocks will be later copied to Blocks using std::copy. The
151   // resultant order of elements in Blocks needs to be deterministic.
152   // Using SmallPtrSet instead causes non-deterministic order while
153   // copying. And we cannot simply sort Blocks as they need to match the
154   // corresponding Values.
155   SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; }
156 
157   void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) {
158     for (auto II = Insts.begin(); II != Insts.end();) {
159       if (!llvm::is_contained(Blocks, (*II)->getParent())) {
160         ActiveBlocks.remove((*II)->getParent());
161         II = Insts.erase(II);
162       } else {
163         ++II;
164       }
165     }
166   }
167 
168   void operator--() {
169     if (Fail)
170       return;
171     SmallVector<Instruction *, 4> NewInsts;
172     for (auto *Inst : Insts) {
173       if (Inst == &Inst->getParent()->front())
174         ActiveBlocks.remove(Inst->getParent());
175       else
176         NewInsts.push_back(Inst->getPrevNode());
177     }
178     if (NewInsts.empty()) {
179       Fail = true;
180       return;
181     }
182     Insts = NewInsts;
183   }
184 };
185 
186 //===----------------------------------------------------------------------===//
187 
188 /// Candidate solution for sinking. There may be different ways to
189 /// sink instructions, differing in the number of instructions sunk,
190 /// the number of predecessors sunk from and the number of PHIs
191 /// required.
192 struct SinkingInstructionCandidate {
193   unsigned NumBlocks;
194   unsigned NumInstructions;
195   unsigned NumPHIs;
196   unsigned NumMemoryInsts;
197   int Cost = -1;
198   SmallVector<BasicBlock *, 4> Blocks;
199 
200   void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) {
201     unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs;
202     unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0;
203     Cost = (NumInstructions * (NumBlocks - 1)) -
204            (NumExtraPHIs *
205             NumExtraPHIs) // PHIs are expensive, so make sure they're worth it.
206            - SplitEdgeCost;
207   }
208 
209   bool operator>(const SinkingInstructionCandidate &Other) const {
210     return Cost > Other.Cost;
211   }
212 };
213 
214 #ifndef NDEBUG
215 raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) {
216   OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks
217      << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">";
218   return OS;
219 }
220 #endif
221 
222 //===----------------------------------------------------------------------===//
223 
224 /// Describes a PHI node that may or may not exist. These track the PHIs
225 /// that must be created if we sunk a sequence of instructions. It provides
226 /// a hash function for efficient equality comparisons.
227 class ModelledPHI {
228   SmallVector<Value *, 4> Values;
229   SmallVector<BasicBlock *, 4> Blocks;
230 
231 public:
232   ModelledPHI() = default;
233 
234   ModelledPHI(const PHINode *PN) {
235     // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order.
236     SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops;
237     for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I)
238       Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)});
239     llvm::sort(Ops);
240     for (auto &P : Ops) {
241       Blocks.push_back(P.first);
242       Values.push_back(P.second);
243     }
244   }
245 
246   /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI
247   /// without the same ID.
248   /// \note This is specifically for DenseMapInfo - do not use this!
249   static ModelledPHI createDummy(size_t ID) {
250     ModelledPHI M;
251     M.Values.push_back(reinterpret_cast<Value*>(ID));
252     return M;
253   }
254 
255   /// Create a PHI from an array of incoming values and incoming blocks.
256   template <typename VArray, typename BArray>
257   ModelledPHI(const VArray &V, const BArray &B) {
258     llvm::copy(V, std::back_inserter(Values));
259     llvm::copy(B, std::back_inserter(Blocks));
260   }
261 
262   /// Create a PHI from [I[OpNum] for I in Insts].
263   template <typename BArray>
264   ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) {
265     llvm::copy(B, std::back_inserter(Blocks));
266     for (auto *I : Insts)
267       Values.push_back(I->getOperand(OpNum));
268   }
269 
270   /// Restrict the PHI's contents down to only \c NewBlocks.
271   /// \c NewBlocks must be a subset of \c this->Blocks.
272   void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) {
273     auto BI = Blocks.begin();
274     auto VI = Values.begin();
275     while (BI != Blocks.end()) {
276       assert(VI != Values.end());
277       if (!llvm::is_contained(NewBlocks, *BI)) {
278         BI = Blocks.erase(BI);
279         VI = Values.erase(VI);
280       } else {
281         ++BI;
282         ++VI;
283       }
284     }
285     assert(Blocks.size() == NewBlocks.size());
286   }
287 
288   ArrayRef<Value *> getValues() const { return Values; }
289 
290   bool areAllIncomingValuesSame() const {
291     return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; });
292   }
293 
294   bool areAllIncomingValuesSameType() const {
295     return llvm::all_of(
296         Values, [&](Value *V) { return V->getType() == Values[0]->getType(); });
297   }
298 
299   bool areAnyIncomingValuesConstant() const {
300     return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); });
301   }
302 
303   // Hash functor
304   unsigned hash() const {
305       return (unsigned)hash_combine_range(Values.begin(), Values.end());
306   }
307 
308   bool operator==(const ModelledPHI &Other) const {
309     return Values == Other.Values && Blocks == Other.Blocks;
310   }
311 };
312 
313 template <typename ModelledPHI> struct DenseMapInfo {
314   static inline ModelledPHI &getEmptyKey() {
315     static ModelledPHI Dummy = ModelledPHI::createDummy(0);
316     return Dummy;
317   }
318 
319   static inline ModelledPHI &getTombstoneKey() {
320     static ModelledPHI Dummy = ModelledPHI::createDummy(1);
321     return Dummy;
322   }
323 
324   static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); }
325 
326   static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) {
327     return LHS == RHS;
328   }
329 };
330 
331 using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>;
332 
333 //===----------------------------------------------------------------------===//
334 //                             ValueTable
335 //===----------------------------------------------------------------------===//
336 // This is a value number table where the value number is a function of the
337 // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know
338 // that the program would be equivalent if we replaced A with PHI(A, B).
339 //===----------------------------------------------------------------------===//
340 
341 /// A GVN expression describing how an instruction is used. The operands
342 /// field of BasicExpression is used to store uses, not operands.
343 ///
344 /// This class also contains fields for discriminators used when determining
345 /// equivalence of instructions with sideeffects.
346 class InstructionUseExpr : public GVNExpression::BasicExpression {
347   unsigned MemoryUseOrder = -1;
348   bool Volatile = false;
349   ArrayRef<int> ShuffleMask;
350 
351 public:
352   InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R,
353                      BumpPtrAllocator &A)
354       : GVNExpression::BasicExpression(I->getNumUses()) {
355     allocateOperands(R, A);
356     setOpcode(I->getOpcode());
357     setType(I->getType());
358 
359     if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
360       ShuffleMask = SVI->getShuffleMask().copy(A);
361 
362     for (auto &U : I->uses())
363       op_push_back(U.getUser());
364     llvm::sort(op_begin(), op_end());
365   }
366 
367   void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; }
368   void setVolatile(bool V) { Volatile = V; }
369 
370   hash_code getHashValue() const override {
371     return hash_combine(GVNExpression::BasicExpression::getHashValue(),
372                         MemoryUseOrder, Volatile, ShuffleMask);
373   }
374 
375   template <typename Function> hash_code getHashValue(Function MapFn) {
376     hash_code H = hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile,
377                                ShuffleMask);
378     for (auto *V : operands())
379       H = hash_combine(H, MapFn(V));
380     return H;
381   }
382 };
383 
384 class ValueTable {
385   DenseMap<Value *, uint32_t> ValueNumbering;
386   DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering;
387   DenseMap<size_t, uint32_t> HashNumbering;
388   BumpPtrAllocator Allocator;
389   ArrayRecycler<Value *> Recycler;
390   uint32_t nextValueNumber = 1;
391 
392   /// Create an expression for I based on its opcode and its uses. If I
393   /// touches or reads memory, the expression is also based upon its memory
394   /// order - see \c getMemoryUseOrder().
395   InstructionUseExpr *createExpr(Instruction *I) {
396     InstructionUseExpr *E =
397         new (Allocator) InstructionUseExpr(I, Recycler, Allocator);
398     if (isMemoryInst(I))
399       E->setMemoryUseOrder(getMemoryUseOrder(I));
400 
401     if (CmpInst *C = dyn_cast<CmpInst>(I)) {
402       CmpInst::Predicate Predicate = C->getPredicate();
403       E->setOpcode((C->getOpcode() << 8) | Predicate);
404     }
405     return E;
406   }
407 
408   /// Helper to compute the value number for a memory instruction
409   /// (LoadInst/StoreInst), including checking the memory ordering and
410   /// volatility.
411   template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) {
412     if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic())
413       return nullptr;
414     InstructionUseExpr *E = createExpr(I);
415     E->setVolatile(I->isVolatile());
416     return E;
417   }
418 
419 public:
420   ValueTable() = default;
421 
422   /// Returns the value number for the specified value, assigning
423   /// it a new number if it did not have one before.
424   uint32_t lookupOrAdd(Value *V) {
425     auto VI = ValueNumbering.find(V);
426     if (VI != ValueNumbering.end())
427       return VI->second;
428 
429     if (!isa<Instruction>(V)) {
430       ValueNumbering[V] = nextValueNumber;
431       return nextValueNumber++;
432     }
433 
434     Instruction *I = cast<Instruction>(V);
435     InstructionUseExpr *exp = nullptr;
436     switch (I->getOpcode()) {
437     case Instruction::Load:
438       exp = createMemoryExpr(cast<LoadInst>(I));
439       break;
440     case Instruction::Store:
441       exp = createMemoryExpr(cast<StoreInst>(I));
442       break;
443     case Instruction::Call:
444     case Instruction::Invoke:
445     case Instruction::FNeg:
446     case Instruction::Add:
447     case Instruction::FAdd:
448     case Instruction::Sub:
449     case Instruction::FSub:
450     case Instruction::Mul:
451     case Instruction::FMul:
452     case Instruction::UDiv:
453     case Instruction::SDiv:
454     case Instruction::FDiv:
455     case Instruction::URem:
456     case Instruction::SRem:
457     case Instruction::FRem:
458     case Instruction::Shl:
459     case Instruction::LShr:
460     case Instruction::AShr:
461     case Instruction::And:
462     case Instruction::Or:
463     case Instruction::Xor:
464     case Instruction::ICmp:
465     case Instruction::FCmp:
466     case Instruction::Trunc:
467     case Instruction::ZExt:
468     case Instruction::SExt:
469     case Instruction::FPToUI:
470     case Instruction::FPToSI:
471     case Instruction::UIToFP:
472     case Instruction::SIToFP:
473     case Instruction::FPTrunc:
474     case Instruction::FPExt:
475     case Instruction::PtrToInt:
476     case Instruction::IntToPtr:
477     case Instruction::BitCast:
478     case Instruction::AddrSpaceCast:
479     case Instruction::Select:
480     case Instruction::ExtractElement:
481     case Instruction::InsertElement:
482     case Instruction::ShuffleVector:
483     case Instruction::InsertValue:
484     case Instruction::GetElementPtr:
485       exp = createExpr(I);
486       break;
487     default:
488       break;
489     }
490 
491     if (!exp) {
492       ValueNumbering[V] = nextValueNumber;
493       return nextValueNumber++;
494     }
495 
496     uint32_t e = ExpressionNumbering[exp];
497     if (!e) {
498       hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); });
499       auto I = HashNumbering.find(H);
500       if (I != HashNumbering.end()) {
501         e = I->second;
502       } else {
503         e = nextValueNumber++;
504         HashNumbering[H] = e;
505         ExpressionNumbering[exp] = e;
506       }
507     }
508     ValueNumbering[V] = e;
509     return e;
510   }
511 
512   /// Returns the value number of the specified value. Fails if the value has
513   /// not yet been numbered.
514   uint32_t lookup(Value *V) const {
515     auto VI = ValueNumbering.find(V);
516     assert(VI != ValueNumbering.end() && "Value not numbered?");
517     return VI->second;
518   }
519 
520   /// Removes all value numberings and resets the value table.
521   void clear() {
522     ValueNumbering.clear();
523     ExpressionNumbering.clear();
524     HashNumbering.clear();
525     Recycler.clear(Allocator);
526     nextValueNumber = 1;
527   }
528 
529   /// \c Inst uses or touches memory. Return an ID describing the memory state
530   /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2),
531   /// the exact same memory operations happen after I1 and I2.
532   ///
533   /// This is a very hard problem in general, so we use domain-specific
534   /// knowledge that we only ever check for equivalence between blocks sharing a
535   /// single immediate successor that is common, and when determining if I1 ==
536   /// I2 we will have already determined that next(I1) == next(I2). This
537   /// inductive property allows us to simply return the value number of the next
538   /// instruction that defines memory.
539   uint32_t getMemoryUseOrder(Instruction *Inst) {
540     auto *BB = Inst->getParent();
541     for (auto I = std::next(Inst->getIterator()), E = BB->end();
542          I != E && !I->isTerminator(); ++I) {
543       if (!isMemoryInst(&*I))
544         continue;
545       if (isa<LoadInst>(&*I))
546         continue;
547       CallInst *CI = dyn_cast<CallInst>(&*I);
548       if (CI && CI->onlyReadsMemory())
549         continue;
550       InvokeInst *II = dyn_cast<InvokeInst>(&*I);
551       if (II && II->onlyReadsMemory())
552         continue;
553       return lookupOrAdd(&*I);
554     }
555     return 0;
556   }
557 };
558 
559 //===----------------------------------------------------------------------===//
560 
561 class GVNSink {
562 public:
563   GVNSink() = default;
564 
565   bool run(Function &F) {
566     LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName()
567                       << "\n");
568 
569     unsigned NumSunk = 0;
570     ReversePostOrderTraversal<Function*> RPOT(&F);
571     for (auto *N : RPOT)
572       NumSunk += sinkBB(N);
573 
574     return NumSunk > 0;
575   }
576 
577 private:
578   ValueTable VN;
579 
580   bool shouldAvoidSinkingInstruction(Instruction *I) {
581     // These instructions may change or break semantics if moved.
582     if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
583         I->getType()->isTokenTy())
584       return true;
585     return false;
586   }
587 
588   /// The main heuristic function. Analyze the set of instructions pointed to by
589   /// LRI and return a candidate solution if these instructions can be sunk, or
590   /// None otherwise.
591   Optional<SinkingInstructionCandidate> analyzeInstructionForSinking(
592       LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
593       ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents);
594 
595   /// Create a ModelledPHI for each PHI in BB, adding to PHIs.
596   void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs,
597                           SmallPtrSetImpl<Value *> &PHIContents) {
598     for (PHINode &PN : BB->phis()) {
599       auto MPHI = ModelledPHI(&PN);
600       PHIs.insert(MPHI);
601       for (auto *V : MPHI.getValues())
602         PHIContents.insert(V);
603     }
604   }
605 
606   /// The main instruction sinking driver. Set up state and try and sink
607   /// instructions into BBEnd from its predecessors.
608   unsigned sinkBB(BasicBlock *BBEnd);
609 
610   /// Perform the actual mechanics of sinking an instruction from Blocks into
611   /// BBEnd, which is their only successor.
612   void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd);
613 
614   /// Remove PHIs that all have the same incoming value.
615   void foldPointlessPHINodes(BasicBlock *BB) {
616     auto I = BB->begin();
617     while (PHINode *PN = dyn_cast<PHINode>(I++)) {
618       if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) {
619             return V == PN->getIncomingValue(0);
620           }))
621         continue;
622       if (PN->getIncomingValue(0) != PN)
623         PN->replaceAllUsesWith(PN->getIncomingValue(0));
624       else
625         PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
626       PN->eraseFromParent();
627     }
628   }
629 };
630 
631 Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking(
632   LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
633   ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) {
634   auto Insts = *LRI;
635   LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I
636                                                                   : Insts) {
637     I->dump();
638   } dbgs() << " ]\n";);
639 
640   DenseMap<uint32_t, unsigned> VNums;
641   for (auto *I : Insts) {
642     uint32_t N = VN.lookupOrAdd(I);
643     LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n");
644     if (N == ~0U)
645       return None;
646     VNums[N]++;
647   }
648   unsigned VNumToSink =
649       std::max_element(VNums.begin(), VNums.end(),
650                        [](const std::pair<uint32_t, unsigned> &I,
651                           const std::pair<uint32_t, unsigned> &J) {
652                          return I.second < J.second;
653                        })
654           ->first;
655 
656   if (VNums[VNumToSink] == 1)
657     // Can't sink anything!
658     return None;
659 
660   // Now restrict the number of incoming blocks down to only those with
661   // VNumToSink.
662   auto &ActivePreds = LRI.getActiveBlocks();
663   unsigned InitialActivePredSize = ActivePreds.size();
664   SmallVector<Instruction *, 4> NewInsts;
665   for (auto *I : Insts) {
666     if (VN.lookup(I) != VNumToSink)
667       ActivePreds.remove(I->getParent());
668     else
669       NewInsts.push_back(I);
670   }
671   for (auto *I : NewInsts)
672     if (shouldAvoidSinkingInstruction(I))
673       return None;
674 
675   // If we've restricted the incoming blocks, restrict all needed PHIs also
676   // to that set.
677   bool RecomputePHIContents = false;
678   if (ActivePreds.size() != InitialActivePredSize) {
679     ModelledPHISet NewNeededPHIs;
680     for (auto P : NeededPHIs) {
681       P.restrictToBlocks(ActivePreds);
682       NewNeededPHIs.insert(P);
683     }
684     NeededPHIs = NewNeededPHIs;
685     LRI.restrictToBlocks(ActivePreds);
686     RecomputePHIContents = true;
687   }
688 
689   // The sunk instruction's results.
690   ModelledPHI NewPHI(NewInsts, ActivePreds);
691 
692   // Does sinking this instruction render previous PHIs redundant?
693   if (NeededPHIs.erase(NewPHI))
694     RecomputePHIContents = true;
695 
696   if (RecomputePHIContents) {
697     // The needed PHIs have changed, so recompute the set of all needed
698     // values.
699     PHIContents.clear();
700     for (auto &PHI : NeededPHIs)
701       PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
702   }
703 
704   // Is this instruction required by a later PHI that doesn't match this PHI?
705   // if so, we can't sink this instruction.
706   for (auto *V : NewPHI.getValues())
707     if (PHIContents.count(V))
708       // V exists in this PHI, but the whole PHI is different to NewPHI
709       // (else it would have been removed earlier). We cannot continue
710       // because this isn't representable.
711       return None;
712 
713   // Which operands need PHIs?
714   // FIXME: If any of these fail, we should partition up the candidates to
715   // try and continue making progress.
716   Instruction *I0 = NewInsts[0];
717 
718   // If all instructions that are going to participate don't have the same
719   // number of operands, we can't do any useful PHI analysis for all operands.
720   auto hasDifferentNumOperands = [&I0](Instruction *I) {
721     return I->getNumOperands() != I0->getNumOperands();
722   };
723   if (any_of(NewInsts, hasDifferentNumOperands))
724     return None;
725 
726   for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) {
727     ModelledPHI PHI(NewInsts, OpNum, ActivePreds);
728     if (PHI.areAllIncomingValuesSame())
729       continue;
730     if (!canReplaceOperandWithVariable(I0, OpNum))
731       // We can 't create a PHI from this instruction!
732       return None;
733     if (NeededPHIs.count(PHI))
734       continue;
735     if (!PHI.areAllIncomingValuesSameType())
736       return None;
737     // Don't create indirect calls! The called value is the final operand.
738     if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 &&
739         PHI.areAnyIncomingValuesConstant())
740       return None;
741 
742     NeededPHIs.reserve(NeededPHIs.size());
743     NeededPHIs.insert(PHI);
744     PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
745   }
746 
747   if (isMemoryInst(NewInsts[0]))
748     ++MemoryInstNum;
749 
750   SinkingInstructionCandidate Cand;
751   Cand.NumInstructions = ++InstNum;
752   Cand.NumMemoryInsts = MemoryInstNum;
753   Cand.NumBlocks = ActivePreds.size();
754   Cand.NumPHIs = NeededPHIs.size();
755   append_range(Cand.Blocks, ActivePreds);
756 
757   return Cand;
758 }
759 
760 unsigned GVNSink::sinkBB(BasicBlock *BBEnd) {
761   LLVM_DEBUG(dbgs() << "GVNSink: running on basic block ";
762              BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
763   SmallVector<BasicBlock *, 4> Preds;
764   for (auto *B : predecessors(BBEnd)) {
765     auto *T = B->getTerminator();
766     if (isa<BranchInst>(T) || isa<SwitchInst>(T))
767       Preds.push_back(B);
768     else
769       return 0;
770   }
771   if (Preds.size() < 2)
772     return 0;
773   llvm::sort(Preds);
774 
775   unsigned NumOrigPreds = Preds.size();
776   // We can only sink instructions through unconditional branches.
777   llvm::erase_if(Preds, [](BasicBlock *BB) {
778     return BB->getTerminator()->getNumSuccessors() != 1;
779   });
780 
781   LockstepReverseIterator LRI(Preds);
782   SmallVector<SinkingInstructionCandidate, 4> Candidates;
783   unsigned InstNum = 0, MemoryInstNum = 0;
784   ModelledPHISet NeededPHIs;
785   SmallPtrSet<Value *, 4> PHIContents;
786   analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents);
787   unsigned NumOrigPHIs = NeededPHIs.size();
788 
789   while (LRI.isValid()) {
790     auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum,
791                                              NeededPHIs, PHIContents);
792     if (!Cand)
793       break;
794     Cand->calculateCost(NumOrigPHIs, Preds.size());
795     Candidates.emplace_back(*Cand);
796     --LRI;
797   }
798 
799   llvm::stable_sort(Candidates, std::greater<SinkingInstructionCandidate>());
800   LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C
801                                                          : Candidates) dbgs()
802                                                     << "  " << C << "\n";);
803 
804   // Pick the top candidate, as long it is positive!
805   if (Candidates.empty() || Candidates.front().Cost <= 0)
806     return 0;
807   auto C = Candidates.front();
808 
809   LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n");
810   BasicBlock *InsertBB = BBEnd;
811   if (C.Blocks.size() < NumOrigPreds) {
812     LLVM_DEBUG(dbgs() << " -- Splitting edge to ";
813                BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
814     InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split");
815     if (!InsertBB) {
816       LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n");
817       // Edge couldn't be split.
818       return 0;
819     }
820   }
821 
822   for (unsigned I = 0; I < C.NumInstructions; ++I)
823     sinkLastInstruction(C.Blocks, InsertBB);
824 
825   return C.NumInstructions;
826 }
827 
828 void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks,
829                                   BasicBlock *BBEnd) {
830   SmallVector<Instruction *, 4> Insts;
831   for (BasicBlock *BB : Blocks)
832     Insts.push_back(BB->getTerminator()->getPrevNode());
833   Instruction *I0 = Insts.front();
834 
835   SmallVector<Value *, 4> NewOperands;
836   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
837     bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) {
838       return I->getOperand(O) != I0->getOperand(O);
839     });
840     if (!NeedPHI) {
841       NewOperands.push_back(I0->getOperand(O));
842       continue;
843     }
844 
845     // Create a new PHI in the successor block and populate it.
846     auto *Op = I0->getOperand(O);
847     assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
848     auto *PN = PHINode::Create(Op->getType(), Insts.size(),
849                                Op->getName() + ".sink", &BBEnd->front());
850     for (auto *I : Insts)
851       PN->addIncoming(I->getOperand(O), I->getParent());
852     NewOperands.push_back(PN);
853   }
854 
855   // Arbitrarily use I0 as the new "common" instruction; remap its operands
856   // and move it to the start of the successor block.
857   for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
858     I0->getOperandUse(O).set(NewOperands[O]);
859   I0->moveBefore(&*BBEnd->getFirstInsertionPt());
860 
861   // Update metadata and IR flags.
862   for (auto *I : Insts)
863     if (I != I0) {
864       combineMetadataForCSE(I0, I, true);
865       I0->andIRFlags(I);
866     }
867 
868   for (auto *I : Insts)
869     if (I != I0)
870       I->replaceAllUsesWith(I0);
871   foldPointlessPHINodes(BBEnd);
872 
873   // Finally nuke all instructions apart from the common instruction.
874   for (auto *I : Insts)
875     if (I != I0)
876       I->eraseFromParent();
877 
878   NumRemoved += Insts.size() - 1;
879 }
880 
881 ////////////////////////////////////////////////////////////////////////////////
882 // Pass machinery / boilerplate
883 
884 class GVNSinkLegacyPass : public FunctionPass {
885 public:
886   static char ID;
887 
888   GVNSinkLegacyPass() : FunctionPass(ID) {
889     initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry());
890   }
891 
892   bool runOnFunction(Function &F) override {
893     if (skipFunction(F))
894       return false;
895     GVNSink G;
896     return G.run(F);
897   }
898 
899   void getAnalysisUsage(AnalysisUsage &AU) const override {
900     AU.addPreserved<GlobalsAAWrapperPass>();
901   }
902 };
903 
904 } // end anonymous namespace
905 
906 PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) {
907   GVNSink G;
908   if (!G.run(F))
909     return PreservedAnalyses::all();
910   return PreservedAnalyses::none();
911 }
912 
913 char GVNSinkLegacyPass::ID = 0;
914 
915 INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink",
916                       "Early GVN sinking of Expressions", false, false)
917 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
918 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
919 INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink",
920                     "Early GVN sinking of Expressions", false, false)
921 
922 FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); }
923