1 //===- GVNSink.cpp - sink expressions into successors ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file GVNSink.cpp 10 /// This pass attempts to sink instructions into successors, reducing static 11 /// instruction count and enabling if-conversion. 12 /// 13 /// We use a variant of global value numbering to decide what can be sunk. 14 /// Consider: 15 /// 16 /// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ] 17 /// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ] 18 /// \ / 19 /// [ %e = phi i32 %a2, %c2 ] 20 /// [ add i32 %e, 4 ] 21 /// 22 /// 23 /// GVN would number %a1 and %c1 differently because they compute different 24 /// results - the VN of an instruction is a function of its opcode and the 25 /// transitive closure of its operands. This is the key property for hoisting 26 /// and CSE. 27 /// 28 /// What we want when sinking however is for a numbering that is a function of 29 /// the *uses* of an instruction, which allows us to answer the question "if I 30 /// replace %a1 with %c1, will it contribute in an equivalent way to all 31 /// successive instructions?". The PostValueTable class in GVN provides this 32 /// mapping. 33 // 34 //===----------------------------------------------------------------------===// 35 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/DenseMapInfo.h" 39 #include "llvm/ADT/DenseSet.h" 40 #include "llvm/ADT/Hashing.h" 41 #include "llvm/ADT/None.h" 42 #include "llvm/ADT/Optional.h" 43 #include "llvm/ADT/PostOrderIterator.h" 44 #include "llvm/ADT/STLExtras.h" 45 #include "llvm/ADT/SmallPtrSet.h" 46 #include "llvm/ADT/SmallVector.h" 47 #include "llvm/ADT/Statistic.h" 48 #include "llvm/ADT/StringExtras.h" 49 #include "llvm/Analysis/GlobalsModRef.h" 50 #include "llvm/Transforms/Utils/Local.h" 51 #include "llvm/IR/BasicBlock.h" 52 #include "llvm/IR/CFG.h" 53 #include "llvm/IR/Constants.h" 54 #include "llvm/IR/Function.h" 55 #include "llvm/IR/InstrTypes.h" 56 #include "llvm/IR/Instruction.h" 57 #include "llvm/IR/Instructions.h" 58 #include "llvm/IR/PassManager.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Use.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/Pass.h" 63 #include "llvm/Support/Allocator.h" 64 #include "llvm/Support/ArrayRecycler.h" 65 #include "llvm/Support/AtomicOrdering.h" 66 #include "llvm/Support/Casting.h" 67 #include "llvm/Support/Compiler.h" 68 #include "llvm/Support/Debug.h" 69 #include "llvm/Support/raw_ostream.h" 70 #include "llvm/Transforms/Scalar.h" 71 #include "llvm/Transforms/Scalar/GVN.h" 72 #include "llvm/Transforms/Scalar/GVNExpression.h" 73 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <iterator> 79 #include <utility> 80 81 using namespace llvm; 82 83 #define DEBUG_TYPE "gvn-sink" 84 85 STATISTIC(NumRemoved, "Number of instructions removed"); 86 87 namespace llvm { 88 namespace GVNExpression { 89 90 LLVM_DUMP_METHOD void Expression::dump() const { 91 print(dbgs()); 92 dbgs() << "\n"; 93 } 94 95 } // end namespace GVNExpression 96 } // end namespace llvm 97 98 namespace { 99 100 static bool isMemoryInst(const Instruction *I) { 101 return isa<LoadInst>(I) || isa<StoreInst>(I) || 102 (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) || 103 (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory()); 104 } 105 106 /// Iterates through instructions in a set of blocks in reverse order from the 107 /// first non-terminator. For example (assume all blocks have size n): 108 /// LockstepReverseIterator I([B1, B2, B3]); 109 /// *I-- = [B1[n], B2[n], B3[n]]; 110 /// *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 111 /// *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 112 /// ... 113 /// 114 /// It continues until all blocks have been exhausted. Use \c getActiveBlocks() 115 /// to 116 /// determine which blocks are still going and the order they appear in the 117 /// list returned by operator*. 118 class LockstepReverseIterator { 119 ArrayRef<BasicBlock *> Blocks; 120 SmallSetVector<BasicBlock *, 4> ActiveBlocks; 121 SmallVector<Instruction *, 4> Insts; 122 bool Fail; 123 124 public: 125 LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) { 126 reset(); 127 } 128 129 void reset() { 130 Fail = false; 131 ActiveBlocks.clear(); 132 for (BasicBlock *BB : Blocks) 133 ActiveBlocks.insert(BB); 134 Insts.clear(); 135 for (BasicBlock *BB : Blocks) { 136 if (BB->size() <= 1) { 137 // Block wasn't big enough - only contained a terminator. 138 ActiveBlocks.remove(BB); 139 continue; 140 } 141 Insts.push_back(BB->getTerminator()->getPrevNode()); 142 } 143 if (Insts.empty()) 144 Fail = true; 145 } 146 147 bool isValid() const { return !Fail; } 148 ArrayRef<Instruction *> operator*() const { return Insts; } 149 150 // Note: This needs to return a SmallSetVector as the elements of 151 // ActiveBlocks will be later copied to Blocks using std::copy. The 152 // resultant order of elements in Blocks needs to be deterministic. 153 // Using SmallPtrSet instead causes non-deterministic order while 154 // copying. And we cannot simply sort Blocks as they need to match the 155 // corresponding Values. 156 SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; } 157 158 void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) { 159 for (auto II = Insts.begin(); II != Insts.end();) { 160 if (std::find(Blocks.begin(), Blocks.end(), (*II)->getParent()) == 161 Blocks.end()) { 162 ActiveBlocks.remove((*II)->getParent()); 163 II = Insts.erase(II); 164 } else { 165 ++II; 166 } 167 } 168 } 169 170 void operator--() { 171 if (Fail) 172 return; 173 SmallVector<Instruction *, 4> NewInsts; 174 for (auto *Inst : Insts) { 175 if (Inst == &Inst->getParent()->front()) 176 ActiveBlocks.remove(Inst->getParent()); 177 else 178 NewInsts.push_back(Inst->getPrevNode()); 179 } 180 if (NewInsts.empty()) { 181 Fail = true; 182 return; 183 } 184 Insts = NewInsts; 185 } 186 }; 187 188 //===----------------------------------------------------------------------===// 189 190 /// Candidate solution for sinking. There may be different ways to 191 /// sink instructions, differing in the number of instructions sunk, 192 /// the number of predecessors sunk from and the number of PHIs 193 /// required. 194 struct SinkingInstructionCandidate { 195 unsigned NumBlocks; 196 unsigned NumInstructions; 197 unsigned NumPHIs; 198 unsigned NumMemoryInsts; 199 int Cost = -1; 200 SmallVector<BasicBlock *, 4> Blocks; 201 202 void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) { 203 unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs; 204 unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0; 205 Cost = (NumInstructions * (NumBlocks - 1)) - 206 (NumExtraPHIs * 207 NumExtraPHIs) // PHIs are expensive, so make sure they're worth it. 208 - SplitEdgeCost; 209 } 210 211 bool operator>(const SinkingInstructionCandidate &Other) const { 212 return Cost > Other.Cost; 213 } 214 }; 215 216 #ifndef NDEBUG 217 raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) { 218 OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks 219 << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">"; 220 return OS; 221 } 222 #endif 223 224 //===----------------------------------------------------------------------===// 225 226 /// Describes a PHI node that may or may not exist. These track the PHIs 227 /// that must be created if we sunk a sequence of instructions. It provides 228 /// a hash function for efficient equality comparisons. 229 class ModelledPHI { 230 SmallVector<Value *, 4> Values; 231 SmallVector<BasicBlock *, 4> Blocks; 232 233 public: 234 ModelledPHI() = default; 235 236 ModelledPHI(const PHINode *PN) { 237 // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order. 238 SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops; 239 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) 240 Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)}); 241 llvm::sort(Ops); 242 for (auto &P : Ops) { 243 Blocks.push_back(P.first); 244 Values.push_back(P.second); 245 } 246 } 247 248 /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI 249 /// without the same ID. 250 /// \note This is specifically for DenseMapInfo - do not use this! 251 static ModelledPHI createDummy(size_t ID) { 252 ModelledPHI M; 253 M.Values.push_back(reinterpret_cast<Value*>(ID)); 254 return M; 255 } 256 257 /// Create a PHI from an array of incoming values and incoming blocks. 258 template <typename VArray, typename BArray> 259 ModelledPHI(const VArray &V, const BArray &B) { 260 llvm::copy(V, std::back_inserter(Values)); 261 llvm::copy(B, std::back_inserter(Blocks)); 262 } 263 264 /// Create a PHI from [I[OpNum] for I in Insts]. 265 template <typename BArray> 266 ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) { 267 llvm::copy(B, std::back_inserter(Blocks)); 268 for (auto *I : Insts) 269 Values.push_back(I->getOperand(OpNum)); 270 } 271 272 /// Restrict the PHI's contents down to only \c NewBlocks. 273 /// \c NewBlocks must be a subset of \c this->Blocks. 274 void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) { 275 auto BI = Blocks.begin(); 276 auto VI = Values.begin(); 277 while (BI != Blocks.end()) { 278 assert(VI != Values.end()); 279 if (std::find(NewBlocks.begin(), NewBlocks.end(), *BI) == 280 NewBlocks.end()) { 281 BI = Blocks.erase(BI); 282 VI = Values.erase(VI); 283 } else { 284 ++BI; 285 ++VI; 286 } 287 } 288 assert(Blocks.size() == NewBlocks.size()); 289 } 290 291 ArrayRef<Value *> getValues() const { return Values; } 292 293 bool areAllIncomingValuesSame() const { 294 return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; }); 295 } 296 297 bool areAllIncomingValuesSameType() const { 298 return llvm::all_of( 299 Values, [&](Value *V) { return V->getType() == Values[0]->getType(); }); 300 } 301 302 bool areAnyIncomingValuesConstant() const { 303 return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); }); 304 } 305 306 // Hash functor 307 unsigned hash() const { 308 return (unsigned)hash_combine_range(Values.begin(), Values.end()); 309 } 310 311 bool operator==(const ModelledPHI &Other) const { 312 return Values == Other.Values && Blocks == Other.Blocks; 313 } 314 }; 315 316 template <typename ModelledPHI> struct DenseMapInfo { 317 static inline ModelledPHI &getEmptyKey() { 318 static ModelledPHI Dummy = ModelledPHI::createDummy(0); 319 return Dummy; 320 } 321 322 static inline ModelledPHI &getTombstoneKey() { 323 static ModelledPHI Dummy = ModelledPHI::createDummy(1); 324 return Dummy; 325 } 326 327 static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); } 328 329 static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) { 330 return LHS == RHS; 331 } 332 }; 333 334 using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>; 335 336 //===----------------------------------------------------------------------===// 337 // ValueTable 338 //===----------------------------------------------------------------------===// 339 // This is a value number table where the value number is a function of the 340 // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know 341 // that the program would be equivalent if we replaced A with PHI(A, B). 342 //===----------------------------------------------------------------------===// 343 344 /// A GVN expression describing how an instruction is used. The operands 345 /// field of BasicExpression is used to store uses, not operands. 346 /// 347 /// This class also contains fields for discriminators used when determining 348 /// equivalence of instructions with sideeffects. 349 class InstructionUseExpr : public GVNExpression::BasicExpression { 350 unsigned MemoryUseOrder = -1; 351 bool Volatile = false; 352 353 public: 354 InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R, 355 BumpPtrAllocator &A) 356 : GVNExpression::BasicExpression(I->getNumUses()) { 357 allocateOperands(R, A); 358 setOpcode(I->getOpcode()); 359 setType(I->getType()); 360 361 for (auto &U : I->uses()) 362 op_push_back(U.getUser()); 363 llvm::sort(op_begin(), op_end()); 364 } 365 366 void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; } 367 void setVolatile(bool V) { Volatile = V; } 368 369 hash_code getHashValue() const override { 370 return hash_combine(GVNExpression::BasicExpression::getHashValue(), 371 MemoryUseOrder, Volatile); 372 } 373 374 template <typename Function> hash_code getHashValue(Function MapFn) { 375 hash_code H = 376 hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile); 377 for (auto *V : operands()) 378 H = hash_combine(H, MapFn(V)); 379 return H; 380 } 381 }; 382 383 class ValueTable { 384 DenseMap<Value *, uint32_t> ValueNumbering; 385 DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering; 386 DenseMap<size_t, uint32_t> HashNumbering; 387 BumpPtrAllocator Allocator; 388 ArrayRecycler<Value *> Recycler; 389 uint32_t nextValueNumber = 1; 390 391 /// Create an expression for I based on its opcode and its uses. If I 392 /// touches or reads memory, the expression is also based upon its memory 393 /// order - see \c getMemoryUseOrder(). 394 InstructionUseExpr *createExpr(Instruction *I) { 395 InstructionUseExpr *E = 396 new (Allocator) InstructionUseExpr(I, Recycler, Allocator); 397 if (isMemoryInst(I)) 398 E->setMemoryUseOrder(getMemoryUseOrder(I)); 399 400 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 401 CmpInst::Predicate Predicate = C->getPredicate(); 402 E->setOpcode((C->getOpcode() << 8) | Predicate); 403 } 404 return E; 405 } 406 407 /// Helper to compute the value number for a memory instruction 408 /// (LoadInst/StoreInst), including checking the memory ordering and 409 /// volatility. 410 template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) { 411 if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic()) 412 return nullptr; 413 InstructionUseExpr *E = createExpr(I); 414 E->setVolatile(I->isVolatile()); 415 return E; 416 } 417 418 public: 419 ValueTable() = default; 420 421 /// Returns the value number for the specified value, assigning 422 /// it a new number if it did not have one before. 423 uint32_t lookupOrAdd(Value *V) { 424 auto VI = ValueNumbering.find(V); 425 if (VI != ValueNumbering.end()) 426 return VI->second; 427 428 if (!isa<Instruction>(V)) { 429 ValueNumbering[V] = nextValueNumber; 430 return nextValueNumber++; 431 } 432 433 Instruction *I = cast<Instruction>(V); 434 InstructionUseExpr *exp = nullptr; 435 switch (I->getOpcode()) { 436 case Instruction::Load: 437 exp = createMemoryExpr(cast<LoadInst>(I)); 438 break; 439 case Instruction::Store: 440 exp = createMemoryExpr(cast<StoreInst>(I)); 441 break; 442 case Instruction::Call: 443 case Instruction::Invoke: 444 case Instruction::Add: 445 case Instruction::FAdd: 446 case Instruction::Sub: 447 case Instruction::FSub: 448 case Instruction::Mul: 449 case Instruction::FMul: 450 case Instruction::UDiv: 451 case Instruction::SDiv: 452 case Instruction::FDiv: 453 case Instruction::URem: 454 case Instruction::SRem: 455 case Instruction::FRem: 456 case Instruction::Shl: 457 case Instruction::LShr: 458 case Instruction::AShr: 459 case Instruction::And: 460 case Instruction::Or: 461 case Instruction::Xor: 462 case Instruction::ICmp: 463 case Instruction::FCmp: 464 case Instruction::Trunc: 465 case Instruction::ZExt: 466 case Instruction::SExt: 467 case Instruction::FPToUI: 468 case Instruction::FPToSI: 469 case Instruction::UIToFP: 470 case Instruction::SIToFP: 471 case Instruction::FPTrunc: 472 case Instruction::FPExt: 473 case Instruction::PtrToInt: 474 case Instruction::IntToPtr: 475 case Instruction::BitCast: 476 case Instruction::Select: 477 case Instruction::ExtractElement: 478 case Instruction::InsertElement: 479 case Instruction::ShuffleVector: 480 case Instruction::InsertValue: 481 case Instruction::GetElementPtr: 482 exp = createExpr(I); 483 break; 484 default: 485 break; 486 } 487 488 if (!exp) { 489 ValueNumbering[V] = nextValueNumber; 490 return nextValueNumber++; 491 } 492 493 uint32_t e = ExpressionNumbering[exp]; 494 if (!e) { 495 hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); }); 496 auto I = HashNumbering.find(H); 497 if (I != HashNumbering.end()) { 498 e = I->second; 499 } else { 500 e = nextValueNumber++; 501 HashNumbering[H] = e; 502 ExpressionNumbering[exp] = e; 503 } 504 } 505 ValueNumbering[V] = e; 506 return e; 507 } 508 509 /// Returns the value number of the specified value. Fails if the value has 510 /// not yet been numbered. 511 uint32_t lookup(Value *V) const { 512 auto VI = ValueNumbering.find(V); 513 assert(VI != ValueNumbering.end() && "Value not numbered?"); 514 return VI->second; 515 } 516 517 /// Removes all value numberings and resets the value table. 518 void clear() { 519 ValueNumbering.clear(); 520 ExpressionNumbering.clear(); 521 HashNumbering.clear(); 522 Recycler.clear(Allocator); 523 nextValueNumber = 1; 524 } 525 526 /// \c Inst uses or touches memory. Return an ID describing the memory state 527 /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2), 528 /// the exact same memory operations happen after I1 and I2. 529 /// 530 /// This is a very hard problem in general, so we use domain-specific 531 /// knowledge that we only ever check for equivalence between blocks sharing a 532 /// single immediate successor that is common, and when determining if I1 == 533 /// I2 we will have already determined that next(I1) == next(I2). This 534 /// inductive property allows us to simply return the value number of the next 535 /// instruction that defines memory. 536 uint32_t getMemoryUseOrder(Instruction *Inst) { 537 auto *BB = Inst->getParent(); 538 for (auto I = std::next(Inst->getIterator()), E = BB->end(); 539 I != E && !I->isTerminator(); ++I) { 540 if (!isMemoryInst(&*I)) 541 continue; 542 if (isa<LoadInst>(&*I)) 543 continue; 544 CallInst *CI = dyn_cast<CallInst>(&*I); 545 if (CI && CI->onlyReadsMemory()) 546 continue; 547 InvokeInst *II = dyn_cast<InvokeInst>(&*I); 548 if (II && II->onlyReadsMemory()) 549 continue; 550 return lookupOrAdd(&*I); 551 } 552 return 0; 553 } 554 }; 555 556 //===----------------------------------------------------------------------===// 557 558 class GVNSink { 559 public: 560 GVNSink() = default; 561 562 bool run(Function &F) { 563 LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName() 564 << "\n"); 565 566 unsigned NumSunk = 0; 567 ReversePostOrderTraversal<Function*> RPOT(&F); 568 for (auto *N : RPOT) 569 NumSunk += sinkBB(N); 570 571 return NumSunk > 0; 572 } 573 574 private: 575 ValueTable VN; 576 577 bool isInstructionBlacklisted(Instruction *I) { 578 // These instructions may change or break semantics if moved. 579 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 580 I->getType()->isTokenTy()) 581 return true; 582 return false; 583 } 584 585 /// The main heuristic function. Analyze the set of instructions pointed to by 586 /// LRI and return a candidate solution if these instructions can be sunk, or 587 /// None otherwise. 588 Optional<SinkingInstructionCandidate> analyzeInstructionForSinking( 589 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, 590 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents); 591 592 /// Create a ModelledPHI for each PHI in BB, adding to PHIs. 593 void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs, 594 SmallPtrSetImpl<Value *> &PHIContents) { 595 for (PHINode &PN : BB->phis()) { 596 auto MPHI = ModelledPHI(&PN); 597 PHIs.insert(MPHI); 598 for (auto *V : MPHI.getValues()) 599 PHIContents.insert(V); 600 } 601 } 602 603 /// The main instruction sinking driver. Set up state and try and sink 604 /// instructions into BBEnd from its predecessors. 605 unsigned sinkBB(BasicBlock *BBEnd); 606 607 /// Perform the actual mechanics of sinking an instruction from Blocks into 608 /// BBEnd, which is their only successor. 609 void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd); 610 611 /// Remove PHIs that all have the same incoming value. 612 void foldPointlessPHINodes(BasicBlock *BB) { 613 auto I = BB->begin(); 614 while (PHINode *PN = dyn_cast<PHINode>(I++)) { 615 if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) { 616 return V == PN->getIncomingValue(0); 617 })) 618 continue; 619 if (PN->getIncomingValue(0) != PN) 620 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 621 else 622 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 623 PN->eraseFromParent(); 624 } 625 } 626 }; 627 628 Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking( 629 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, 630 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) { 631 auto Insts = *LRI; 632 LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I 633 : Insts) { 634 I->dump(); 635 } dbgs() << " ]\n";); 636 637 DenseMap<uint32_t, unsigned> VNums; 638 for (auto *I : Insts) { 639 uint32_t N = VN.lookupOrAdd(I); 640 LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n"); 641 if (N == ~0U) 642 return None; 643 VNums[N]++; 644 } 645 unsigned VNumToSink = 646 std::max_element(VNums.begin(), VNums.end(), 647 [](const std::pair<uint32_t, unsigned> &I, 648 const std::pair<uint32_t, unsigned> &J) { 649 return I.second < J.second; 650 }) 651 ->first; 652 653 if (VNums[VNumToSink] == 1) 654 // Can't sink anything! 655 return None; 656 657 // Now restrict the number of incoming blocks down to only those with 658 // VNumToSink. 659 auto &ActivePreds = LRI.getActiveBlocks(); 660 unsigned InitialActivePredSize = ActivePreds.size(); 661 SmallVector<Instruction *, 4> NewInsts; 662 for (auto *I : Insts) { 663 if (VN.lookup(I) != VNumToSink) 664 ActivePreds.remove(I->getParent()); 665 else 666 NewInsts.push_back(I); 667 } 668 for (auto *I : NewInsts) 669 if (isInstructionBlacklisted(I)) 670 return None; 671 672 // If we've restricted the incoming blocks, restrict all needed PHIs also 673 // to that set. 674 bool RecomputePHIContents = false; 675 if (ActivePreds.size() != InitialActivePredSize) { 676 ModelledPHISet NewNeededPHIs; 677 for (auto P : NeededPHIs) { 678 P.restrictToBlocks(ActivePreds); 679 NewNeededPHIs.insert(P); 680 } 681 NeededPHIs = NewNeededPHIs; 682 LRI.restrictToBlocks(ActivePreds); 683 RecomputePHIContents = true; 684 } 685 686 // The sunk instruction's results. 687 ModelledPHI NewPHI(NewInsts, ActivePreds); 688 689 // Does sinking this instruction render previous PHIs redundant? 690 if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) { 691 NeededPHIs.erase(NewPHI); 692 RecomputePHIContents = true; 693 } 694 695 if (RecomputePHIContents) { 696 // The needed PHIs have changed, so recompute the set of all needed 697 // values. 698 PHIContents.clear(); 699 for (auto &PHI : NeededPHIs) 700 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); 701 } 702 703 // Is this instruction required by a later PHI that doesn't match this PHI? 704 // if so, we can't sink this instruction. 705 for (auto *V : NewPHI.getValues()) 706 if (PHIContents.count(V)) 707 // V exists in this PHI, but the whole PHI is different to NewPHI 708 // (else it would have been removed earlier). We cannot continue 709 // because this isn't representable. 710 return None; 711 712 // Which operands need PHIs? 713 // FIXME: If any of these fail, we should partition up the candidates to 714 // try and continue making progress. 715 Instruction *I0 = NewInsts[0]; 716 for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) { 717 ModelledPHI PHI(NewInsts, OpNum, ActivePreds); 718 if (PHI.areAllIncomingValuesSame()) 719 continue; 720 if (!canReplaceOperandWithVariable(I0, OpNum)) 721 // We can 't create a PHI from this instruction! 722 return None; 723 if (NeededPHIs.count(PHI)) 724 continue; 725 if (!PHI.areAllIncomingValuesSameType()) 726 return None; 727 // Don't create indirect calls! The called value is the final operand. 728 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 && 729 PHI.areAnyIncomingValuesConstant()) 730 return None; 731 732 NeededPHIs.reserve(NeededPHIs.size()); 733 NeededPHIs.insert(PHI); 734 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); 735 } 736 737 if (isMemoryInst(NewInsts[0])) 738 ++MemoryInstNum; 739 740 SinkingInstructionCandidate Cand; 741 Cand.NumInstructions = ++InstNum; 742 Cand.NumMemoryInsts = MemoryInstNum; 743 Cand.NumBlocks = ActivePreds.size(); 744 Cand.NumPHIs = NeededPHIs.size(); 745 for (auto *C : ActivePreds) 746 Cand.Blocks.push_back(C); 747 748 return Cand; 749 } 750 751 unsigned GVNSink::sinkBB(BasicBlock *BBEnd) { 752 LLVM_DEBUG(dbgs() << "GVNSink: running on basic block "; 753 BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); 754 SmallVector<BasicBlock *, 4> Preds; 755 for (auto *B : predecessors(BBEnd)) { 756 auto *T = B->getTerminator(); 757 if (isa<BranchInst>(T) || isa<SwitchInst>(T)) 758 Preds.push_back(B); 759 else 760 return 0; 761 } 762 if (Preds.size() < 2) 763 return 0; 764 llvm::sort(Preds); 765 766 unsigned NumOrigPreds = Preds.size(); 767 // We can only sink instructions through unconditional branches. 768 for (auto I = Preds.begin(); I != Preds.end();) { 769 if ((*I)->getTerminator()->getNumSuccessors() != 1) 770 I = Preds.erase(I); 771 else 772 ++I; 773 } 774 775 LockstepReverseIterator LRI(Preds); 776 SmallVector<SinkingInstructionCandidate, 4> Candidates; 777 unsigned InstNum = 0, MemoryInstNum = 0; 778 ModelledPHISet NeededPHIs; 779 SmallPtrSet<Value *, 4> PHIContents; 780 analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents); 781 unsigned NumOrigPHIs = NeededPHIs.size(); 782 783 while (LRI.isValid()) { 784 auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum, 785 NeededPHIs, PHIContents); 786 if (!Cand) 787 break; 788 Cand->calculateCost(NumOrigPHIs, Preds.size()); 789 Candidates.emplace_back(*Cand); 790 --LRI; 791 } 792 793 std::stable_sort( 794 Candidates.begin(), Candidates.end(), 795 [](const SinkingInstructionCandidate &A, 796 const SinkingInstructionCandidate &B) { return A > B; }); 797 LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C 798 : Candidates) dbgs() 799 << " " << C << "\n";); 800 801 // Pick the top candidate, as long it is positive! 802 if (Candidates.empty() || Candidates.front().Cost <= 0) 803 return 0; 804 auto C = Candidates.front(); 805 806 LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n"); 807 BasicBlock *InsertBB = BBEnd; 808 if (C.Blocks.size() < NumOrigPreds) { 809 LLVM_DEBUG(dbgs() << " -- Splitting edge to "; 810 BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); 811 InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split"); 812 if (!InsertBB) { 813 LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n"); 814 // Edge couldn't be split. 815 return 0; 816 } 817 } 818 819 for (unsigned I = 0; I < C.NumInstructions; ++I) 820 sinkLastInstruction(C.Blocks, InsertBB); 821 822 return C.NumInstructions; 823 } 824 825 void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, 826 BasicBlock *BBEnd) { 827 SmallVector<Instruction *, 4> Insts; 828 for (BasicBlock *BB : Blocks) 829 Insts.push_back(BB->getTerminator()->getPrevNode()); 830 Instruction *I0 = Insts.front(); 831 832 SmallVector<Value *, 4> NewOperands; 833 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 834 bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) { 835 return I->getOperand(O) != I0->getOperand(O); 836 }); 837 if (!NeedPHI) { 838 NewOperands.push_back(I0->getOperand(O)); 839 continue; 840 } 841 842 // Create a new PHI in the successor block and populate it. 843 auto *Op = I0->getOperand(O); 844 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 845 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 846 Op->getName() + ".sink", &BBEnd->front()); 847 for (auto *I : Insts) 848 PN->addIncoming(I->getOperand(O), I->getParent()); 849 NewOperands.push_back(PN); 850 } 851 852 // Arbitrarily use I0 as the new "common" instruction; remap its operands 853 // and move it to the start of the successor block. 854 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 855 I0->getOperandUse(O).set(NewOperands[O]); 856 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 857 858 // Update metadata and IR flags. 859 for (auto *I : Insts) 860 if (I != I0) { 861 combineMetadataForCSE(I0, I, true); 862 I0->andIRFlags(I); 863 } 864 865 for (auto *I : Insts) 866 if (I != I0) 867 I->replaceAllUsesWith(I0); 868 foldPointlessPHINodes(BBEnd); 869 870 // Finally nuke all instructions apart from the common instruction. 871 for (auto *I : Insts) 872 if (I != I0) 873 I->eraseFromParent(); 874 875 NumRemoved += Insts.size() - 1; 876 } 877 878 //////////////////////////////////////////////////////////////////////////////// 879 // Pass machinery / boilerplate 880 881 class GVNSinkLegacyPass : public FunctionPass { 882 public: 883 static char ID; 884 885 GVNSinkLegacyPass() : FunctionPass(ID) { 886 initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry()); 887 } 888 889 bool runOnFunction(Function &F) override { 890 if (skipFunction(F)) 891 return false; 892 GVNSink G; 893 return G.run(F); 894 } 895 896 void getAnalysisUsage(AnalysisUsage &AU) const override { 897 AU.addPreserved<GlobalsAAWrapperPass>(); 898 } 899 }; 900 901 } // end anonymous namespace 902 903 PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) { 904 GVNSink G; 905 if (!G.run(F)) 906 return PreservedAnalyses::all(); 907 908 PreservedAnalyses PA; 909 PA.preserve<GlobalsAA>(); 910 return PA; 911 } 912 913 char GVNSinkLegacyPass::ID = 0; 914 915 INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink", 916 "Early GVN sinking of Expressions", false, false) 917 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 918 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 919 INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink", 920 "Early GVN sinking of Expressions", false, false) 921 922 FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); } 923