1 //===- GVNSink.cpp - sink expressions into successors ---------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file GVNSink.cpp 11 /// This pass attempts to sink instructions into successors, reducing static 12 /// instruction count and enabling if-conversion. 13 /// 14 /// We use a variant of global value numbering to decide what can be sunk. 15 /// Consider: 16 /// 17 /// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ] 18 /// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ] 19 /// \ / 20 /// [ %e = phi i32 %a2, %c2 ] 21 /// [ add i32 %e, 4 ] 22 /// 23 /// 24 /// GVN would number %a1 and %c1 differently because they compute different 25 /// results - the VN of an instruction is a function of its opcode and the 26 /// transitive closure of its operands. This is the key property for hoisting 27 /// and CSE. 28 /// 29 /// What we want when sinking however is for a numbering that is a function of 30 /// the *uses* of an instruction, which allows us to answer the question "if I 31 /// replace %a1 with %c1, will it contribute in an equivalent way to all 32 /// successive instructions?". The PostValueTable class in GVN provides this 33 /// mapping. 34 // 35 //===----------------------------------------------------------------------===// 36 37 #include "llvm/ADT/ArrayRef.h" 38 #include "llvm/ADT/DenseMap.h" 39 #include "llvm/ADT/DenseMapInfo.h" 40 #include "llvm/ADT/DenseSet.h" 41 #include "llvm/ADT/Hashing.h" 42 #include "llvm/ADT/None.h" 43 #include "llvm/ADT/Optional.h" 44 #include "llvm/ADT/PostOrderIterator.h" 45 #include "llvm/ADT/STLExtras.h" 46 #include "llvm/ADT/SmallPtrSet.h" 47 #include "llvm/ADT/SmallVector.h" 48 #include "llvm/ADT/Statistic.h" 49 #include "llvm/ADT/StringExtras.h" 50 #include "llvm/Analysis/GlobalsModRef.h" 51 #include "llvm/Transforms/Utils/Local.h" 52 #include "llvm/IR/BasicBlock.h" 53 #include "llvm/IR/CFG.h" 54 #include "llvm/IR/Constants.h" 55 #include "llvm/IR/Function.h" 56 #include "llvm/IR/InstrTypes.h" 57 #include "llvm/IR/Instruction.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/PassManager.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Use.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/Pass.h" 64 #include "llvm/Support/Allocator.h" 65 #include "llvm/Support/ArrayRecycler.h" 66 #include "llvm/Support/AtomicOrdering.h" 67 #include "llvm/Support/Casting.h" 68 #include "llvm/Support/Compiler.h" 69 #include "llvm/Support/Debug.h" 70 #include "llvm/Support/raw_ostream.h" 71 #include "llvm/Transforms/Scalar.h" 72 #include "llvm/Transforms/Scalar/GVN.h" 73 #include "llvm/Transforms/Scalar/GVNExpression.h" 74 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <iterator> 80 #include <utility> 81 82 using namespace llvm; 83 84 #define DEBUG_TYPE "gvn-sink" 85 86 STATISTIC(NumRemoved, "Number of instructions removed"); 87 88 namespace llvm { 89 namespace GVNExpression { 90 91 LLVM_DUMP_METHOD void Expression::dump() const { 92 print(dbgs()); 93 dbgs() << "\n"; 94 } 95 96 } // end namespace GVNExpression 97 } // end namespace llvm 98 99 namespace { 100 101 static bool isMemoryInst(const Instruction *I) { 102 return isa<LoadInst>(I) || isa<StoreInst>(I) || 103 (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) || 104 (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory()); 105 } 106 107 /// Iterates through instructions in a set of blocks in reverse order from the 108 /// first non-terminator. For example (assume all blocks have size n): 109 /// LockstepReverseIterator I([B1, B2, B3]); 110 /// *I-- = [B1[n], B2[n], B3[n]]; 111 /// *I-- = [B1[n-1], B2[n-1], B3[n-1]]; 112 /// *I-- = [B1[n-2], B2[n-2], B3[n-2]]; 113 /// ... 114 /// 115 /// It continues until all blocks have been exhausted. Use \c getActiveBlocks() 116 /// to 117 /// determine which blocks are still going and the order they appear in the 118 /// list returned by operator*. 119 class LockstepReverseIterator { 120 ArrayRef<BasicBlock *> Blocks; 121 SmallSetVector<BasicBlock *, 4> ActiveBlocks; 122 SmallVector<Instruction *, 4> Insts; 123 bool Fail; 124 125 public: 126 LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) { 127 reset(); 128 } 129 130 void reset() { 131 Fail = false; 132 ActiveBlocks.clear(); 133 for (BasicBlock *BB : Blocks) 134 ActiveBlocks.insert(BB); 135 Insts.clear(); 136 for (BasicBlock *BB : Blocks) { 137 if (BB->size() <= 1) { 138 // Block wasn't big enough - only contained a terminator. 139 ActiveBlocks.remove(BB); 140 continue; 141 } 142 Insts.push_back(BB->getTerminator()->getPrevNode()); 143 } 144 if (Insts.empty()) 145 Fail = true; 146 } 147 148 bool isValid() const { return !Fail; } 149 ArrayRef<Instruction *> operator*() const { return Insts; } 150 151 // Note: This needs to return a SmallSetVector as the elements of 152 // ActiveBlocks will be later copied to Blocks using std::copy. The 153 // resultant order of elements in Blocks needs to be deterministic. 154 // Using SmallPtrSet instead causes non-deterministic order while 155 // copying. And we cannot simply sort Blocks as they need to match the 156 // corresponding Values. 157 SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; } 158 159 void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) { 160 for (auto II = Insts.begin(); II != Insts.end();) { 161 if (std::find(Blocks.begin(), Blocks.end(), (*II)->getParent()) == 162 Blocks.end()) { 163 ActiveBlocks.remove((*II)->getParent()); 164 II = Insts.erase(II); 165 } else { 166 ++II; 167 } 168 } 169 } 170 171 void operator--() { 172 if (Fail) 173 return; 174 SmallVector<Instruction *, 4> NewInsts; 175 for (auto *Inst : Insts) { 176 if (Inst == &Inst->getParent()->front()) 177 ActiveBlocks.remove(Inst->getParent()); 178 else 179 NewInsts.push_back(Inst->getPrevNode()); 180 } 181 if (NewInsts.empty()) { 182 Fail = true; 183 return; 184 } 185 Insts = NewInsts; 186 } 187 }; 188 189 //===----------------------------------------------------------------------===// 190 191 /// Candidate solution for sinking. There may be different ways to 192 /// sink instructions, differing in the number of instructions sunk, 193 /// the number of predecessors sunk from and the number of PHIs 194 /// required. 195 struct SinkingInstructionCandidate { 196 unsigned NumBlocks; 197 unsigned NumInstructions; 198 unsigned NumPHIs; 199 unsigned NumMemoryInsts; 200 int Cost = -1; 201 SmallVector<BasicBlock *, 4> Blocks; 202 203 void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) { 204 unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs; 205 unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0; 206 Cost = (NumInstructions * (NumBlocks - 1)) - 207 (NumExtraPHIs * 208 NumExtraPHIs) // PHIs are expensive, so make sure they're worth it. 209 - SplitEdgeCost; 210 } 211 212 bool operator>(const SinkingInstructionCandidate &Other) const { 213 return Cost > Other.Cost; 214 } 215 }; 216 217 #ifndef NDEBUG 218 raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) { 219 OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks 220 << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">"; 221 return OS; 222 } 223 #endif 224 225 //===----------------------------------------------------------------------===// 226 227 /// Describes a PHI node that may or may not exist. These track the PHIs 228 /// that must be created if we sunk a sequence of instructions. It provides 229 /// a hash function for efficient equality comparisons. 230 class ModelledPHI { 231 SmallVector<Value *, 4> Values; 232 SmallVector<BasicBlock *, 4> Blocks; 233 234 public: 235 ModelledPHI() = default; 236 237 ModelledPHI(const PHINode *PN) { 238 // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order. 239 SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops; 240 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) 241 Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)}); 242 llvm::sort(Ops); 243 for (auto &P : Ops) { 244 Blocks.push_back(P.first); 245 Values.push_back(P.second); 246 } 247 } 248 249 /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI 250 /// without the same ID. 251 /// \note This is specifically for DenseMapInfo - do not use this! 252 static ModelledPHI createDummy(size_t ID) { 253 ModelledPHI M; 254 M.Values.push_back(reinterpret_cast<Value*>(ID)); 255 return M; 256 } 257 258 /// Create a PHI from an array of incoming values and incoming blocks. 259 template <typename VArray, typename BArray> 260 ModelledPHI(const VArray &V, const BArray &B) { 261 std::copy(V.begin(), V.end(), std::back_inserter(Values)); 262 std::copy(B.begin(), B.end(), std::back_inserter(Blocks)); 263 } 264 265 /// Create a PHI from [I[OpNum] for I in Insts]. 266 template <typename BArray> 267 ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) { 268 std::copy(B.begin(), B.end(), std::back_inserter(Blocks)); 269 for (auto *I : Insts) 270 Values.push_back(I->getOperand(OpNum)); 271 } 272 273 /// Restrict the PHI's contents down to only \c NewBlocks. 274 /// \c NewBlocks must be a subset of \c this->Blocks. 275 void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) { 276 auto BI = Blocks.begin(); 277 auto VI = Values.begin(); 278 while (BI != Blocks.end()) { 279 assert(VI != Values.end()); 280 if (std::find(NewBlocks.begin(), NewBlocks.end(), *BI) == 281 NewBlocks.end()) { 282 BI = Blocks.erase(BI); 283 VI = Values.erase(VI); 284 } else { 285 ++BI; 286 ++VI; 287 } 288 } 289 assert(Blocks.size() == NewBlocks.size()); 290 } 291 292 ArrayRef<Value *> getValues() const { return Values; } 293 294 bool areAllIncomingValuesSame() const { 295 return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; }); 296 } 297 298 bool areAllIncomingValuesSameType() const { 299 return llvm::all_of( 300 Values, [&](Value *V) { return V->getType() == Values[0]->getType(); }); 301 } 302 303 bool areAnyIncomingValuesConstant() const { 304 return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); }); 305 } 306 307 // Hash functor 308 unsigned hash() const { 309 return (unsigned)hash_combine_range(Values.begin(), Values.end()); 310 } 311 312 bool operator==(const ModelledPHI &Other) const { 313 return Values == Other.Values && Blocks == Other.Blocks; 314 } 315 }; 316 317 template <typename ModelledPHI> struct DenseMapInfo { 318 static inline ModelledPHI &getEmptyKey() { 319 static ModelledPHI Dummy = ModelledPHI::createDummy(0); 320 return Dummy; 321 } 322 323 static inline ModelledPHI &getTombstoneKey() { 324 static ModelledPHI Dummy = ModelledPHI::createDummy(1); 325 return Dummy; 326 } 327 328 static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); } 329 330 static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) { 331 return LHS == RHS; 332 } 333 }; 334 335 using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>; 336 337 //===----------------------------------------------------------------------===// 338 // ValueTable 339 //===----------------------------------------------------------------------===// 340 // This is a value number table where the value number is a function of the 341 // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know 342 // that the program would be equivalent if we replaced A with PHI(A, B). 343 //===----------------------------------------------------------------------===// 344 345 /// A GVN expression describing how an instruction is used. The operands 346 /// field of BasicExpression is used to store uses, not operands. 347 /// 348 /// This class also contains fields for discriminators used when determining 349 /// equivalence of instructions with sideeffects. 350 class InstructionUseExpr : public GVNExpression::BasicExpression { 351 unsigned MemoryUseOrder = -1; 352 bool Volatile = false; 353 354 public: 355 InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R, 356 BumpPtrAllocator &A) 357 : GVNExpression::BasicExpression(I->getNumUses()) { 358 allocateOperands(R, A); 359 setOpcode(I->getOpcode()); 360 setType(I->getType()); 361 362 for (auto &U : I->uses()) 363 op_push_back(U.getUser()); 364 llvm::sort(op_begin(), op_end()); 365 } 366 367 void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; } 368 void setVolatile(bool V) { Volatile = V; } 369 370 hash_code getHashValue() const override { 371 return hash_combine(GVNExpression::BasicExpression::getHashValue(), 372 MemoryUseOrder, Volatile); 373 } 374 375 template <typename Function> hash_code getHashValue(Function MapFn) { 376 hash_code H = 377 hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile); 378 for (auto *V : operands()) 379 H = hash_combine(H, MapFn(V)); 380 return H; 381 } 382 }; 383 384 class ValueTable { 385 DenseMap<Value *, uint32_t> ValueNumbering; 386 DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering; 387 DenseMap<size_t, uint32_t> HashNumbering; 388 BumpPtrAllocator Allocator; 389 ArrayRecycler<Value *> Recycler; 390 uint32_t nextValueNumber = 1; 391 392 /// Create an expression for I based on its opcode and its uses. If I 393 /// touches or reads memory, the expression is also based upon its memory 394 /// order - see \c getMemoryUseOrder(). 395 InstructionUseExpr *createExpr(Instruction *I) { 396 InstructionUseExpr *E = 397 new (Allocator) InstructionUseExpr(I, Recycler, Allocator); 398 if (isMemoryInst(I)) 399 E->setMemoryUseOrder(getMemoryUseOrder(I)); 400 401 if (CmpInst *C = dyn_cast<CmpInst>(I)) { 402 CmpInst::Predicate Predicate = C->getPredicate(); 403 E->setOpcode((C->getOpcode() << 8) | Predicate); 404 } 405 return E; 406 } 407 408 /// Helper to compute the value number for a memory instruction 409 /// (LoadInst/StoreInst), including checking the memory ordering and 410 /// volatility. 411 template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) { 412 if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic()) 413 return nullptr; 414 InstructionUseExpr *E = createExpr(I); 415 E->setVolatile(I->isVolatile()); 416 return E; 417 } 418 419 public: 420 ValueTable() = default; 421 422 /// Returns the value number for the specified value, assigning 423 /// it a new number if it did not have one before. 424 uint32_t lookupOrAdd(Value *V) { 425 auto VI = ValueNumbering.find(V); 426 if (VI != ValueNumbering.end()) 427 return VI->second; 428 429 if (!isa<Instruction>(V)) { 430 ValueNumbering[V] = nextValueNumber; 431 return nextValueNumber++; 432 } 433 434 Instruction *I = cast<Instruction>(V); 435 InstructionUseExpr *exp = nullptr; 436 switch (I->getOpcode()) { 437 case Instruction::Load: 438 exp = createMemoryExpr(cast<LoadInst>(I)); 439 break; 440 case Instruction::Store: 441 exp = createMemoryExpr(cast<StoreInst>(I)); 442 break; 443 case Instruction::Call: 444 case Instruction::Invoke: 445 case Instruction::Add: 446 case Instruction::FAdd: 447 case Instruction::Sub: 448 case Instruction::FSub: 449 case Instruction::Mul: 450 case Instruction::FMul: 451 case Instruction::UDiv: 452 case Instruction::SDiv: 453 case Instruction::FDiv: 454 case Instruction::URem: 455 case Instruction::SRem: 456 case Instruction::FRem: 457 case Instruction::Shl: 458 case Instruction::LShr: 459 case Instruction::AShr: 460 case Instruction::And: 461 case Instruction::Or: 462 case Instruction::Xor: 463 case Instruction::ICmp: 464 case Instruction::FCmp: 465 case Instruction::Trunc: 466 case Instruction::ZExt: 467 case Instruction::SExt: 468 case Instruction::FPToUI: 469 case Instruction::FPToSI: 470 case Instruction::UIToFP: 471 case Instruction::SIToFP: 472 case Instruction::FPTrunc: 473 case Instruction::FPExt: 474 case Instruction::PtrToInt: 475 case Instruction::IntToPtr: 476 case Instruction::BitCast: 477 case Instruction::Select: 478 case Instruction::ExtractElement: 479 case Instruction::InsertElement: 480 case Instruction::ShuffleVector: 481 case Instruction::InsertValue: 482 case Instruction::GetElementPtr: 483 exp = createExpr(I); 484 break; 485 default: 486 break; 487 } 488 489 if (!exp) { 490 ValueNumbering[V] = nextValueNumber; 491 return nextValueNumber++; 492 } 493 494 uint32_t e = ExpressionNumbering[exp]; 495 if (!e) { 496 hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); }); 497 auto I = HashNumbering.find(H); 498 if (I != HashNumbering.end()) { 499 e = I->second; 500 } else { 501 e = nextValueNumber++; 502 HashNumbering[H] = e; 503 ExpressionNumbering[exp] = e; 504 } 505 } 506 ValueNumbering[V] = e; 507 return e; 508 } 509 510 /// Returns the value number of the specified value. Fails if the value has 511 /// not yet been numbered. 512 uint32_t lookup(Value *V) const { 513 auto VI = ValueNumbering.find(V); 514 assert(VI != ValueNumbering.end() && "Value not numbered?"); 515 return VI->second; 516 } 517 518 /// Removes all value numberings and resets the value table. 519 void clear() { 520 ValueNumbering.clear(); 521 ExpressionNumbering.clear(); 522 HashNumbering.clear(); 523 Recycler.clear(Allocator); 524 nextValueNumber = 1; 525 } 526 527 /// \c Inst uses or touches memory. Return an ID describing the memory state 528 /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2), 529 /// the exact same memory operations happen after I1 and I2. 530 /// 531 /// This is a very hard problem in general, so we use domain-specific 532 /// knowledge that we only ever check for equivalence between blocks sharing a 533 /// single immediate successor that is common, and when determining if I1 == 534 /// I2 we will have already determined that next(I1) == next(I2). This 535 /// inductive property allows us to simply return the value number of the next 536 /// instruction that defines memory. 537 uint32_t getMemoryUseOrder(Instruction *Inst) { 538 auto *BB = Inst->getParent(); 539 for (auto I = std::next(Inst->getIterator()), E = BB->end(); 540 I != E && !I->isTerminator(); ++I) { 541 if (!isMemoryInst(&*I)) 542 continue; 543 if (isa<LoadInst>(&*I)) 544 continue; 545 CallInst *CI = dyn_cast<CallInst>(&*I); 546 if (CI && CI->onlyReadsMemory()) 547 continue; 548 InvokeInst *II = dyn_cast<InvokeInst>(&*I); 549 if (II && II->onlyReadsMemory()) 550 continue; 551 return lookupOrAdd(&*I); 552 } 553 return 0; 554 } 555 }; 556 557 //===----------------------------------------------------------------------===// 558 559 class GVNSink { 560 public: 561 GVNSink() = default; 562 563 bool run(Function &F) { 564 LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName() 565 << "\n"); 566 567 unsigned NumSunk = 0; 568 ReversePostOrderTraversal<Function*> RPOT(&F); 569 for (auto *N : RPOT) 570 NumSunk += sinkBB(N); 571 572 return NumSunk > 0; 573 } 574 575 private: 576 ValueTable VN; 577 578 bool isInstructionBlacklisted(Instruction *I) { 579 // These instructions may change or break semantics if moved. 580 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) || 581 I->getType()->isTokenTy()) 582 return true; 583 return false; 584 } 585 586 /// The main heuristic function. Analyze the set of instructions pointed to by 587 /// LRI and return a candidate solution if these instructions can be sunk, or 588 /// None otherwise. 589 Optional<SinkingInstructionCandidate> analyzeInstructionForSinking( 590 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, 591 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents); 592 593 /// Create a ModelledPHI for each PHI in BB, adding to PHIs. 594 void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs, 595 SmallPtrSetImpl<Value *> &PHIContents) { 596 for (PHINode &PN : BB->phis()) { 597 auto MPHI = ModelledPHI(&PN); 598 PHIs.insert(MPHI); 599 for (auto *V : MPHI.getValues()) 600 PHIContents.insert(V); 601 } 602 } 603 604 /// The main instruction sinking driver. Set up state and try and sink 605 /// instructions into BBEnd from its predecessors. 606 unsigned sinkBB(BasicBlock *BBEnd); 607 608 /// Perform the actual mechanics of sinking an instruction from Blocks into 609 /// BBEnd, which is their only successor. 610 void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd); 611 612 /// Remove PHIs that all have the same incoming value. 613 void foldPointlessPHINodes(BasicBlock *BB) { 614 auto I = BB->begin(); 615 while (PHINode *PN = dyn_cast<PHINode>(I++)) { 616 if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) { 617 return V == PN->getIncomingValue(0); 618 })) 619 continue; 620 if (PN->getIncomingValue(0) != PN) 621 PN->replaceAllUsesWith(PN->getIncomingValue(0)); 622 else 623 PN->replaceAllUsesWith(UndefValue::get(PN->getType())); 624 PN->eraseFromParent(); 625 } 626 } 627 }; 628 629 Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking( 630 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum, 631 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) { 632 auto Insts = *LRI; 633 LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I 634 : Insts) { 635 I->dump(); 636 } dbgs() << " ]\n";); 637 638 DenseMap<uint32_t, unsigned> VNums; 639 for (auto *I : Insts) { 640 uint32_t N = VN.lookupOrAdd(I); 641 LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n"); 642 if (N == ~0U) 643 return None; 644 VNums[N]++; 645 } 646 unsigned VNumToSink = 647 std::max_element(VNums.begin(), VNums.end(), 648 [](const std::pair<uint32_t, unsigned> &I, 649 const std::pair<uint32_t, unsigned> &J) { 650 return I.second < J.second; 651 }) 652 ->first; 653 654 if (VNums[VNumToSink] == 1) 655 // Can't sink anything! 656 return None; 657 658 // Now restrict the number of incoming blocks down to only those with 659 // VNumToSink. 660 auto &ActivePreds = LRI.getActiveBlocks(); 661 unsigned InitialActivePredSize = ActivePreds.size(); 662 SmallVector<Instruction *, 4> NewInsts; 663 for (auto *I : Insts) { 664 if (VN.lookup(I) != VNumToSink) 665 ActivePreds.remove(I->getParent()); 666 else 667 NewInsts.push_back(I); 668 } 669 for (auto *I : NewInsts) 670 if (isInstructionBlacklisted(I)) 671 return None; 672 673 // If we've restricted the incoming blocks, restrict all needed PHIs also 674 // to that set. 675 bool RecomputePHIContents = false; 676 if (ActivePreds.size() != InitialActivePredSize) { 677 ModelledPHISet NewNeededPHIs; 678 for (auto P : NeededPHIs) { 679 P.restrictToBlocks(ActivePreds); 680 NewNeededPHIs.insert(P); 681 } 682 NeededPHIs = NewNeededPHIs; 683 LRI.restrictToBlocks(ActivePreds); 684 RecomputePHIContents = true; 685 } 686 687 // The sunk instruction's results. 688 ModelledPHI NewPHI(NewInsts, ActivePreds); 689 690 // Does sinking this instruction render previous PHIs redundant? 691 if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) { 692 NeededPHIs.erase(NewPHI); 693 RecomputePHIContents = true; 694 } 695 696 if (RecomputePHIContents) { 697 // The needed PHIs have changed, so recompute the set of all needed 698 // values. 699 PHIContents.clear(); 700 for (auto &PHI : NeededPHIs) 701 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); 702 } 703 704 // Is this instruction required by a later PHI that doesn't match this PHI? 705 // if so, we can't sink this instruction. 706 for (auto *V : NewPHI.getValues()) 707 if (PHIContents.count(V)) 708 // V exists in this PHI, but the whole PHI is different to NewPHI 709 // (else it would have been removed earlier). We cannot continue 710 // because this isn't representable. 711 return None; 712 713 // Which operands need PHIs? 714 // FIXME: If any of these fail, we should partition up the candidates to 715 // try and continue making progress. 716 Instruction *I0 = NewInsts[0]; 717 for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) { 718 ModelledPHI PHI(NewInsts, OpNum, ActivePreds); 719 if (PHI.areAllIncomingValuesSame()) 720 continue; 721 if (!canReplaceOperandWithVariable(I0, OpNum)) 722 // We can 't create a PHI from this instruction! 723 return None; 724 if (NeededPHIs.count(PHI)) 725 continue; 726 if (!PHI.areAllIncomingValuesSameType()) 727 return None; 728 // Don't create indirect calls! The called value is the final operand. 729 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 && 730 PHI.areAnyIncomingValuesConstant()) 731 return None; 732 733 NeededPHIs.reserve(NeededPHIs.size()); 734 NeededPHIs.insert(PHI); 735 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end()); 736 } 737 738 if (isMemoryInst(NewInsts[0])) 739 ++MemoryInstNum; 740 741 SinkingInstructionCandidate Cand; 742 Cand.NumInstructions = ++InstNum; 743 Cand.NumMemoryInsts = MemoryInstNum; 744 Cand.NumBlocks = ActivePreds.size(); 745 Cand.NumPHIs = NeededPHIs.size(); 746 for (auto *C : ActivePreds) 747 Cand.Blocks.push_back(C); 748 749 return Cand; 750 } 751 752 unsigned GVNSink::sinkBB(BasicBlock *BBEnd) { 753 LLVM_DEBUG(dbgs() << "GVNSink: running on basic block "; 754 BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); 755 SmallVector<BasicBlock *, 4> Preds; 756 for (auto *B : predecessors(BBEnd)) { 757 auto *T = B->getTerminator(); 758 if (isa<BranchInst>(T) || isa<SwitchInst>(T)) 759 Preds.push_back(B); 760 else 761 return 0; 762 } 763 if (Preds.size() < 2) 764 return 0; 765 llvm::sort(Preds); 766 767 unsigned NumOrigPreds = Preds.size(); 768 // We can only sink instructions through unconditional branches. 769 for (auto I = Preds.begin(); I != Preds.end();) { 770 if ((*I)->getTerminator()->getNumSuccessors() != 1) 771 I = Preds.erase(I); 772 else 773 ++I; 774 } 775 776 LockstepReverseIterator LRI(Preds); 777 SmallVector<SinkingInstructionCandidate, 4> Candidates; 778 unsigned InstNum = 0, MemoryInstNum = 0; 779 ModelledPHISet NeededPHIs; 780 SmallPtrSet<Value *, 4> PHIContents; 781 analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents); 782 unsigned NumOrigPHIs = NeededPHIs.size(); 783 784 while (LRI.isValid()) { 785 auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum, 786 NeededPHIs, PHIContents); 787 if (!Cand) 788 break; 789 Cand->calculateCost(NumOrigPHIs, Preds.size()); 790 Candidates.emplace_back(*Cand); 791 --LRI; 792 } 793 794 std::stable_sort( 795 Candidates.begin(), Candidates.end(), 796 [](const SinkingInstructionCandidate &A, 797 const SinkingInstructionCandidate &B) { return A > B; }); 798 LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C 799 : Candidates) dbgs() 800 << " " << C << "\n";); 801 802 // Pick the top candidate, as long it is positive! 803 if (Candidates.empty() || Candidates.front().Cost <= 0) 804 return 0; 805 auto C = Candidates.front(); 806 807 LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n"); 808 BasicBlock *InsertBB = BBEnd; 809 if (C.Blocks.size() < NumOrigPreds) { 810 LLVM_DEBUG(dbgs() << " -- Splitting edge to "; 811 BBEnd->printAsOperand(dbgs()); dbgs() << "\n"); 812 InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split"); 813 if (!InsertBB) { 814 LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n"); 815 // Edge couldn't be split. 816 return 0; 817 } 818 } 819 820 for (unsigned I = 0; I < C.NumInstructions; ++I) 821 sinkLastInstruction(C.Blocks, InsertBB); 822 823 return C.NumInstructions; 824 } 825 826 void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, 827 BasicBlock *BBEnd) { 828 SmallVector<Instruction *, 4> Insts; 829 for (BasicBlock *BB : Blocks) 830 Insts.push_back(BB->getTerminator()->getPrevNode()); 831 Instruction *I0 = Insts.front(); 832 833 SmallVector<Value *, 4> NewOperands; 834 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) { 835 bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) { 836 return I->getOperand(O) != I0->getOperand(O); 837 }); 838 if (!NeedPHI) { 839 NewOperands.push_back(I0->getOperand(O)); 840 continue; 841 } 842 843 // Create a new PHI in the successor block and populate it. 844 auto *Op = I0->getOperand(O); 845 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!"); 846 auto *PN = PHINode::Create(Op->getType(), Insts.size(), 847 Op->getName() + ".sink", &BBEnd->front()); 848 for (auto *I : Insts) 849 PN->addIncoming(I->getOperand(O), I->getParent()); 850 NewOperands.push_back(PN); 851 } 852 853 // Arbitrarily use I0 as the new "common" instruction; remap its operands 854 // and move it to the start of the successor block. 855 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) 856 I0->getOperandUse(O).set(NewOperands[O]); 857 I0->moveBefore(&*BBEnd->getFirstInsertionPt()); 858 859 // Update metadata and IR flags. 860 for (auto *I : Insts) 861 if (I != I0) { 862 combineMetadataForCSE(I0, I, true); 863 I0->andIRFlags(I); 864 } 865 866 for (auto *I : Insts) 867 if (I != I0) 868 I->replaceAllUsesWith(I0); 869 foldPointlessPHINodes(BBEnd); 870 871 // Finally nuke all instructions apart from the common instruction. 872 for (auto *I : Insts) 873 if (I != I0) 874 I->eraseFromParent(); 875 876 NumRemoved += Insts.size() - 1; 877 } 878 879 //////////////////////////////////////////////////////////////////////////////// 880 // Pass machinery / boilerplate 881 882 class GVNSinkLegacyPass : public FunctionPass { 883 public: 884 static char ID; 885 886 GVNSinkLegacyPass() : FunctionPass(ID) { 887 initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry()); 888 } 889 890 bool runOnFunction(Function &F) override { 891 if (skipFunction(F)) 892 return false; 893 GVNSink G; 894 return G.run(F); 895 } 896 897 void getAnalysisUsage(AnalysisUsage &AU) const override { 898 AU.addPreserved<GlobalsAAWrapperPass>(); 899 } 900 }; 901 902 } // end anonymous namespace 903 904 PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) { 905 GVNSink G; 906 if (!G.run(F)) 907 return PreservedAnalyses::all(); 908 909 PreservedAnalyses PA; 910 PA.preserve<GlobalsAA>(); 911 return PA; 912 } 913 914 char GVNSinkLegacyPass::ID = 0; 915 916 INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink", 917 "Early GVN sinking of Expressions", false, false) 918 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 919 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) 920 INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink", 921 "Early GVN sinking of Expressions", false, false) 922 923 FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); } 924