1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass hoists expressions from branches to a common dominator. It uses 11 // GVN (global value numbering) to discover expressions computing the same 12 // values. The primary goals of code-hoisting are: 13 // 1. To reduce the code size. 14 // 2. In some cases reduce critical path (by exposing more ILP). 15 // 16 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 17 // is disabled in the following cases. 18 // 1. Scalars across calls. 19 // 2. geps when corresponding load/store cannot be hoisted. 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/Transforms/Scalar/GVN.h" 23 #include "llvm/ADT/DenseMap.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/ValueTracking.h" 27 #include "llvm/Transforms/Scalar.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/Transforms/Utils/MemorySSA.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "gvn-hoist" 34 35 STATISTIC(NumHoisted, "Number of instructions hoisted"); 36 STATISTIC(NumRemoved, "Number of instructions removed"); 37 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 38 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 39 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 40 STATISTIC(NumStoresRemoved, "Number of stores removed"); 41 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 42 STATISTIC(NumCallsRemoved, "Number of calls removed"); 43 44 static cl::opt<int> 45 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 46 cl::desc("Max number of instructions to hoist " 47 "(default unlimited = -1)")); 48 static cl::opt<int> MaxNumberOfBBSInPath( 49 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 50 cl::desc("Max number of basic blocks on the path between " 51 "hoisting locations (default = 4, unlimited = -1)")); 52 53 static cl::opt<int> MaxDepthInBB( 54 "gvn-hoist-max-depth", cl::Hidden, cl::init(100), 55 cl::desc("Hoist instructions from the beginning of the BB up to the " 56 "maximum specified depth (default = 100, unlimited = -1)")); 57 58 static cl::opt<int> 59 MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), 60 cl::desc("Maximum length of dependent chains to hoist " 61 "(default = 10, unlimited = -1)")); 62 63 namespace { 64 65 // Provides a sorting function based on the execution order of two instructions. 66 struct SortByDFSIn { 67 private: 68 DenseMap<const Value *, unsigned> &DFSNumber; 69 70 public: 71 SortByDFSIn(DenseMap<const Value *, unsigned> &D) : DFSNumber(D) {} 72 73 // Returns true when A executes before B. 74 bool operator()(const Instruction *A, const Instruction *B) const { 75 // FIXME: libc++ has a std::sort() algorithm that will call the compare 76 // function on the same element. Once PR20837 is fixed and some more years 77 // pass by and all the buildbots have moved to a corrected std::sort(), 78 // enable the following assert: 79 // 80 // assert(A != B); 81 82 const BasicBlock *BA = A->getParent(); 83 const BasicBlock *BB = B->getParent(); 84 unsigned ADFS, BDFS; 85 if (BA == BB) { 86 ADFS = DFSNumber.lookup(A); 87 BDFS = DFSNumber.lookup(B); 88 } else { 89 ADFS = DFSNumber.lookup(BA); 90 BDFS = DFSNumber.lookup(BB); 91 } 92 assert(ADFS && BDFS); 93 return ADFS < BDFS; 94 } 95 }; 96 97 // A map from a pair of VNs to all the instructions with those VNs. 98 typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>> 99 VNtoInsns; 100 // An invalid value number Used when inserting a single value number into 101 // VNtoInsns. 102 enum : unsigned { InvalidVN = ~2U }; 103 104 // Records all scalar instructions candidate for code hoisting. 105 class InsnInfo { 106 VNtoInsns VNtoScalars; 107 108 public: 109 // Inserts I and its value number in VNtoScalars. 110 void insert(Instruction *I, GVN::ValueTable &VN) { 111 // Scalar instruction. 112 unsigned V = VN.lookupOrAdd(I); 113 VNtoScalars[{V, InvalidVN}].push_back(I); 114 } 115 116 const VNtoInsns &getVNTable() const { return VNtoScalars; } 117 }; 118 119 // Records all load instructions candidate for code hoisting. 120 class LoadInfo { 121 VNtoInsns VNtoLoads; 122 123 public: 124 // Insert Load and the value number of its memory address in VNtoLoads. 125 void insert(LoadInst *Load, GVN::ValueTable &VN) { 126 if (Load->isSimple()) { 127 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 128 VNtoLoads[{V, InvalidVN}].push_back(Load); 129 } 130 } 131 132 const VNtoInsns &getVNTable() const { return VNtoLoads; } 133 }; 134 135 // Records all store instructions candidate for code hoisting. 136 class StoreInfo { 137 VNtoInsns VNtoStores; 138 139 public: 140 // Insert the Store and a hash number of the store address and the stored 141 // value in VNtoStores. 142 void insert(StoreInst *Store, GVN::ValueTable &VN) { 143 if (!Store->isSimple()) 144 return; 145 // Hash the store address and the stored value. 146 Value *Ptr = Store->getPointerOperand(); 147 Value *Val = Store->getValueOperand(); 148 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 149 } 150 151 const VNtoInsns &getVNTable() const { return VNtoStores; } 152 }; 153 154 // Records all call instructions candidate for code hoisting. 155 class CallInfo { 156 VNtoInsns VNtoCallsScalars; 157 VNtoInsns VNtoCallsLoads; 158 VNtoInsns VNtoCallsStores; 159 160 public: 161 // Insert Call and its value numbering in one of the VNtoCalls* containers. 162 void insert(CallInst *Call, GVN::ValueTable &VN) { 163 // A call that doesNotAccessMemory is handled as a Scalar, 164 // onlyReadsMemory will be handled as a Load instruction, 165 // all other calls will be handled as stores. 166 unsigned V = VN.lookupOrAdd(Call); 167 auto Entry = std::make_pair(V, InvalidVN); 168 169 if (Call->doesNotAccessMemory()) 170 VNtoCallsScalars[Entry].push_back(Call); 171 else if (Call->onlyReadsMemory()) 172 VNtoCallsLoads[Entry].push_back(Call); 173 else 174 VNtoCallsStores[Entry].push_back(Call); 175 } 176 177 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 178 179 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 180 181 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 182 }; 183 184 typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet; 185 typedef SmallVector<Instruction *, 4> SmallVecInsn; 186 typedef SmallVectorImpl<Instruction *> SmallVecImplInsn; 187 188 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { 189 static const unsigned KnownIDs[] = { 190 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 191 LLVMContext::MD_noalias, LLVMContext::MD_range, 192 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 193 LLVMContext::MD_invariant_group}; 194 combineMetadata(ReplInst, I, KnownIDs); 195 } 196 197 // This pass hoists common computations across branches sharing common 198 // dominator. The primary goal is to reduce the code size, and in some 199 // cases reduce critical path (by exposing more ILP). 200 class GVNHoist { 201 public: 202 GVNHoist(DominatorTree *DT, AliasAnalysis *AA, MemoryDependenceResults *MD, 203 MemorySSA *MSSA, bool OptForMinSize) 204 : DT(DT), AA(AA), MD(MD), MSSA(MSSA), OptForMinSize(OptForMinSize), 205 HoistingGeps(OptForMinSize), HoistedCtr(0) {} 206 bool run(Function &F) { 207 VN.setDomTree(DT); 208 VN.setAliasAnalysis(AA); 209 VN.setMemDep(MD); 210 bool Res = false; 211 // Perform DFS Numbering of instructions. 212 unsigned BBI = 0; 213 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { 214 DFSNumber[BB] = ++BBI; 215 unsigned I = 0; 216 for (auto &Inst : *BB) 217 DFSNumber[&Inst] = ++I; 218 } 219 220 int ChainLength = 0; 221 222 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 223 while (1) { 224 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) 225 return Res; 226 227 auto HoistStat = hoistExpressions(F); 228 if (HoistStat.first + HoistStat.second == 0) 229 return Res; 230 231 if (HoistStat.second > 0) 232 // To address a limitation of the current GVN, we need to rerun the 233 // hoisting after we hoisted loads or stores in order to be able to 234 // hoist all scalars dependent on the hoisted ld/st. 235 VN.clear(); 236 237 Res = true; 238 } 239 240 return Res; 241 } 242 243 private: 244 GVN::ValueTable VN; 245 DominatorTree *DT; 246 AliasAnalysis *AA; 247 MemoryDependenceResults *MD; 248 MemorySSA *MSSA; 249 const bool OptForMinSize; 250 const bool HoistingGeps; 251 DenseMap<const Value *, unsigned> DFSNumber; 252 BBSideEffectsSet BBSideEffects; 253 int HoistedCtr; 254 255 enum InsKind { Unknown, Scalar, Load, Store }; 256 257 // Return true when there are exception handling in BB. 258 bool hasEH(const BasicBlock *BB) { 259 auto It = BBSideEffects.find(BB); 260 if (It != BBSideEffects.end()) 261 return It->second; 262 263 if (BB->isEHPad() || BB->hasAddressTaken()) { 264 BBSideEffects[BB] = true; 265 return true; 266 } 267 268 if (BB->getTerminator()->mayThrow()) { 269 BBSideEffects[BB] = true; 270 return true; 271 } 272 273 BBSideEffects[BB] = false; 274 return false; 275 } 276 277 // Return true when a successor of BB dominates A. 278 bool successorDominate(const BasicBlock *BB, const BasicBlock *A) { 279 for (const BasicBlock *Succ : BB->getTerminator()->successors()) 280 if (DT->dominates(Succ, A)) 281 return true; 282 283 return false; 284 } 285 286 // Return true when all paths from HoistBB to the end of the function pass 287 // through one of the blocks in WL. 288 bool hoistingFromAllPaths(const BasicBlock *HoistBB, 289 SmallPtrSetImpl<const BasicBlock *> &WL) { 290 291 // Copy WL as the loop will remove elements from it. 292 SmallPtrSet<const BasicBlock *, 2> WorkList(WL.begin(), WL.end()); 293 294 for (auto It = df_begin(HoistBB), E = df_end(HoistBB); It != E;) { 295 // There exists a path from HoistBB to the exit of the function if we are 296 // still iterating in DF traversal and we removed all instructions from 297 // the work list. 298 if (WorkList.empty()) 299 return false; 300 301 const BasicBlock *BB = *It; 302 if (WorkList.erase(BB)) { 303 // Stop DFS traversal when BB is in the work list. 304 It.skipChildren(); 305 continue; 306 } 307 308 // Check for end of function, calls that do not return, etc. 309 if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator())) 310 return false; 311 312 // When reaching the back-edge of a loop, there may be a path through the 313 // loop that does not pass through B or C before exiting the loop. 314 if (successorDominate(BB, HoistBB)) 315 return false; 316 317 // Increment DFS traversal when not skipping children. 318 ++It; 319 } 320 321 return true; 322 } 323 324 /* Return true when I1 appears before I2 in the instructions of BB. */ 325 bool firstInBB(const Instruction *I1, const Instruction *I2) { 326 assert(I1->getParent() == I2->getParent()); 327 unsigned I1DFS = DFSNumber.lookup(I1); 328 unsigned I2DFS = DFSNumber.lookup(I2); 329 assert(I1DFS && I2DFS); 330 return I1DFS < I2DFS; 331 } 332 333 // Return true when there are memory uses of Def in BB. 334 bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 335 const BasicBlock *BB) { 336 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 337 if (!Acc) 338 return false; 339 340 Instruction *OldPt = Def->getMemoryInst(); 341 const BasicBlock *OldBB = OldPt->getParent(); 342 const BasicBlock *NewBB = NewPt->getParent(); 343 bool ReachedNewPt = false; 344 345 for (const MemoryAccess &MA : *Acc) 346 if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) { 347 Instruction *Insn = MU->getMemoryInst(); 348 349 // Do not check whether MU aliases Def when MU occurs after OldPt. 350 if (BB == OldBB && firstInBB(OldPt, Insn)) 351 break; 352 353 // Do not check whether MU aliases Def when MU occurs before NewPt. 354 if (BB == NewBB) { 355 if (!ReachedNewPt) { 356 if (firstInBB(Insn, NewPt)) 357 continue; 358 ReachedNewPt = true; 359 } 360 } 361 if (defClobbersUseOrDef(Def, MU, *AA)) 362 return true; 363 } 364 365 return false; 366 } 367 368 // Return true when there are exception handling or loads of memory Def 369 // between Def and NewPt. This function is only called for stores: Def is 370 // the MemoryDef of the store to be hoisted. 371 372 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 373 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 374 // initialized to -1 which is unlimited. 375 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 376 int &NBBsOnAllPaths) { 377 const BasicBlock *NewBB = NewPt->getParent(); 378 const BasicBlock *OldBB = Def->getBlock(); 379 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 380 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && 381 "def does not dominate new hoisting point"); 382 383 // Walk all basic blocks reachable in depth-first iteration on the inverse 384 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 385 // executed between the execution of NewBB and OldBB. Hoisting an expression 386 // from OldBB into NewBB has to be safe on all execution paths. 387 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 388 if (*I == NewBB) { 389 // Stop traversal when reaching HoistPt. 390 I.skipChildren(); 391 continue; 392 } 393 394 // Impossible to hoist with exceptions on the path. 395 if (hasEH(*I)) 396 return true; 397 398 // Check that we do not move a store past loads. 399 if (hasMemoryUse(NewPt, Def, *I)) 400 return true; 401 402 // Stop walk once the limit is reached. 403 if (NBBsOnAllPaths == 0) 404 return true; 405 406 // -1 is unlimited number of blocks on all paths. 407 if (NBBsOnAllPaths != -1) 408 --NBBsOnAllPaths; 409 410 ++I; 411 } 412 413 return false; 414 } 415 416 // Return true when there are exception handling between HoistPt and BB. 417 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 418 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 419 // initialized to -1 which is unlimited. 420 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB, 421 int &NBBsOnAllPaths) { 422 assert(DT->dominates(HoistPt, BB) && "Invalid path"); 423 424 // Walk all basic blocks reachable in depth-first iteration on 425 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 426 // blocks that may be executed between the execution of NewHoistPt and 427 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 428 // on all execution paths. 429 for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) { 430 if (*I == HoistPt) { 431 // Stop traversal when reaching NewHoistPt. 432 I.skipChildren(); 433 continue; 434 } 435 436 // Impossible to hoist with exceptions on the path. 437 if (hasEH(*I)) 438 return true; 439 440 // Stop walk once the limit is reached. 441 if (NBBsOnAllPaths == 0) 442 return true; 443 444 // -1 is unlimited number of blocks on all paths. 445 if (NBBsOnAllPaths != -1) 446 --NBBsOnAllPaths; 447 448 ++I; 449 } 450 451 return false; 452 } 453 454 // Return true when it is safe to hoist a memory load or store U from OldPt 455 // to NewPt. 456 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 457 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { 458 459 // In place hoisting is safe. 460 if (NewPt == OldPt) 461 return true; 462 463 const BasicBlock *NewBB = NewPt->getParent(); 464 const BasicBlock *OldBB = OldPt->getParent(); 465 const BasicBlock *UBB = U->getBlock(); 466 467 // Check for dependences on the Memory SSA. 468 MemoryAccess *D = U->getDefiningAccess(); 469 BasicBlock *DBB = D->getBlock(); 470 if (DT->properlyDominates(NewBB, DBB)) 471 // Cannot move the load or store to NewBB above its definition in DBB. 472 return false; 473 474 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 475 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 476 if (firstInBB(NewPt, UD->getMemoryInst())) 477 // Cannot move the load or store to NewPt above its definition in D. 478 return false; 479 480 // Check for unsafe hoistings due to side effects. 481 if (K == InsKind::Store) { 482 if (hasEHOrLoadsOnPath(NewPt, dyn_cast<MemoryDef>(U), NBBsOnAllPaths)) 483 return false; 484 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 485 return false; 486 487 if (UBB == NewBB) { 488 if (DT->properlyDominates(DBB, NewBB)) 489 return true; 490 assert(UBB == DBB); 491 assert(MSSA->locallyDominates(D, U)); 492 } 493 494 // No side effects: it is safe to hoist. 495 return true; 496 } 497 498 // Return true when it is safe to hoist scalar instructions from all blocks in 499 // WL to HoistBB. 500 bool safeToHoistScalar(const BasicBlock *HoistBB, 501 SmallPtrSetImpl<const BasicBlock *> &WL, 502 int &NBBsOnAllPaths) { 503 // Check that the hoisted expression is needed on all paths. Enable scalar 504 // hoisting at -Oz as it is safe to hoist scalars to a place where they are 505 // partially needed. 506 if (!OptForMinSize && !hoistingFromAllPaths(HoistBB, WL)) 507 return false; 508 509 for (const BasicBlock *BB : WL) 510 if (hasEHOnPath(HoistBB, BB, NBBsOnAllPaths)) 511 return false; 512 513 return true; 514 } 515 516 // Each element of a hoisting list contains the basic block where to hoist and 517 // a list of instructions to be hoisted. 518 typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo; 519 typedef SmallVector<HoistingPointInfo, 4> HoistingPointList; 520 521 // Partition InstructionsToHoist into a set of candidates which can share a 522 // common hoisting point. The partitions are collected in HPL. IsScalar is 523 // true when the instructions in InstructionsToHoist are scalars. IsLoad is 524 // true when the InstructionsToHoist are loads, false when they are stores. 525 void partitionCandidates(SmallVecImplInsn &InstructionsToHoist, 526 HoistingPointList &HPL, InsKind K) { 527 // No need to sort for two instructions. 528 if (InstructionsToHoist.size() > 2) { 529 SortByDFSIn Pred(DFSNumber); 530 std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred); 531 } 532 533 int NBBsOnAllPaths = MaxNumberOfBBSInPath; 534 535 SmallVecImplInsn::iterator II = InstructionsToHoist.begin(); 536 SmallVecImplInsn::iterator Start = II; 537 Instruction *HoistPt = *II; 538 BasicBlock *HoistBB = HoistPt->getParent(); 539 MemoryUseOrDef *UD; 540 if (K != InsKind::Scalar) 541 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(HoistPt)); 542 543 for (++II; II != InstructionsToHoist.end(); ++II) { 544 Instruction *Insn = *II; 545 BasicBlock *BB = Insn->getParent(); 546 BasicBlock *NewHoistBB; 547 Instruction *NewHoistPt; 548 549 if (BB == HoistBB) { 550 NewHoistBB = HoistBB; 551 NewHoistPt = firstInBB(Insn, HoistPt) ? Insn : HoistPt; 552 } else { 553 NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB); 554 if (NewHoistBB == BB) 555 NewHoistPt = Insn; 556 else if (NewHoistBB == HoistBB) 557 NewHoistPt = HoistPt; 558 else 559 NewHoistPt = NewHoistBB->getTerminator(); 560 } 561 562 SmallPtrSet<const BasicBlock *, 2> WL; 563 WL.insert(HoistBB); 564 WL.insert(BB); 565 566 if (K == InsKind::Scalar) { 567 if (safeToHoistScalar(NewHoistBB, WL, NBBsOnAllPaths)) { 568 // Extend HoistPt to NewHoistPt. 569 HoistPt = NewHoistPt; 570 HoistBB = NewHoistBB; 571 continue; 572 } 573 } else { 574 // When NewBB already contains an instruction to be hoisted, the 575 // expression is needed on all paths. 576 // Check that the hoisted expression is needed on all paths: it is 577 // unsafe to hoist loads to a place where there may be a path not 578 // loading from the same address: for instance there may be a branch on 579 // which the address of the load may not be initialized. 580 if ((HoistBB == NewHoistBB || BB == NewHoistBB || 581 hoistingFromAllPaths(NewHoistBB, WL)) && 582 // Also check that it is safe to move the load or store from HoistPt 583 // to NewHoistPt, and from Insn to NewHoistPt. 584 safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) && 585 safeToHoistLdSt(NewHoistPt, Insn, 586 cast<MemoryUseOrDef>(MSSA->getMemoryAccess(Insn)), 587 K, NBBsOnAllPaths)) { 588 // Extend HoistPt to NewHoistPt. 589 HoistPt = NewHoistPt; 590 HoistBB = NewHoistBB; 591 continue; 592 } 593 } 594 595 // At this point it is not safe to extend the current hoisting to 596 // NewHoistPt: save the hoisting list so far. 597 if (std::distance(Start, II) > 1) 598 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 599 600 // Start over from BB. 601 Start = II; 602 if (K != InsKind::Scalar) 603 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(*Start)); 604 HoistPt = Insn; 605 HoistBB = BB; 606 NBBsOnAllPaths = MaxNumberOfBBSInPath; 607 } 608 609 // Save the last partition. 610 if (std::distance(Start, II) > 1) 611 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 612 } 613 614 // Initialize HPL from Map. 615 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 616 InsKind K) { 617 for (const auto &Entry : Map) { 618 if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold) 619 return; 620 621 const SmallVecInsn &V = Entry.second; 622 if (V.size() < 2) 623 continue; 624 625 // Compute the insertion point and the list of expressions to be hoisted. 626 SmallVecInsn InstructionsToHoist; 627 for (auto I : V) 628 if (!hasEH(I->getParent())) 629 InstructionsToHoist.push_back(I); 630 631 if (!InstructionsToHoist.empty()) 632 partitionCandidates(InstructionsToHoist, HPL, K); 633 } 634 } 635 636 // Return true when all operands of Instr are available at insertion point 637 // HoistPt. When limiting the number of hoisted expressions, one could hoist 638 // a load without hoisting its access function. So before hoisting any 639 // expression, make sure that all its operands are available at insert point. 640 bool allOperandsAvailable(const Instruction *I, 641 const BasicBlock *HoistPt) const { 642 for (const Use &Op : I->operands()) 643 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 644 if (!DT->dominates(Inst->getParent(), HoistPt)) 645 return false; 646 647 return true; 648 } 649 650 // Same as allOperandsAvailable with recursive check for GEP operands. 651 bool allGepOperandsAvailable(const Instruction *I, 652 const BasicBlock *HoistPt) const { 653 for (const Use &Op : I->operands()) 654 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 655 if (!DT->dominates(Inst->getParent(), HoistPt)) { 656 if (const GetElementPtrInst *GepOp = 657 dyn_cast<GetElementPtrInst>(Inst)) { 658 if (!allGepOperandsAvailable(GepOp, HoistPt)) 659 return false; 660 // Gep is available if all operands of GepOp are available. 661 } else { 662 // Gep is not available if it has operands other than GEPs that are 663 // defined in blocks not dominating HoistPt. 664 return false; 665 } 666 } 667 return true; 668 } 669 670 // Make all operands of the GEP available. 671 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 672 const SmallVecInsn &InstructionsToHoist, 673 Instruction *Gep) const { 674 assert(allGepOperandsAvailable(Gep, HoistPt) && 675 "GEP operands not available"); 676 677 Instruction *ClonedGep = Gep->clone(); 678 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) 679 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) { 680 681 // Check whether the operand is already available. 682 if (DT->dominates(Op->getParent(), HoistPt)) 683 continue; 684 685 // As a GEP can refer to other GEPs, recursively make all the operands 686 // of this GEP available at HoistPt. 687 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op)) 688 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); 689 } 690 691 // Copy Gep and replace its uses in Repl with ClonedGep. 692 ClonedGep->insertBefore(HoistPt->getTerminator()); 693 694 // Conservatively discard any optimization hints, they may differ on the 695 // other paths. 696 ClonedGep->dropUnknownNonDebugMetadata(); 697 698 // If we have optimization hints which agree with each other along different 699 // paths, preserve them. 700 for (const Instruction *OtherInst : InstructionsToHoist) { 701 const GetElementPtrInst *OtherGep; 702 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) 703 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); 704 else 705 OtherGep = cast<GetElementPtrInst>( 706 cast<StoreInst>(OtherInst)->getPointerOperand()); 707 ClonedGep->andIRFlags(OtherGep); 708 } 709 710 // Replace uses of Gep with ClonedGep in Repl. 711 Repl->replaceUsesOfWith(Gep, ClonedGep); 712 } 713 714 // In the case Repl is a load or a store, we make all their GEPs 715 // available: GEPs are not hoisted by default to avoid the address 716 // computations to be hoisted without the associated load or store. 717 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, 718 const SmallVecInsn &InstructionsToHoist) const { 719 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 720 GetElementPtrInst *Gep = nullptr; 721 Instruction *Val = nullptr; 722 if (auto *Ld = dyn_cast<LoadInst>(Repl)) { 723 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 724 } else if (auto *St = dyn_cast<StoreInst>(Repl)) { 725 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 726 Val = dyn_cast<Instruction>(St->getValueOperand()); 727 // Check that the stored value is available. 728 if (Val) { 729 if (isa<GetElementPtrInst>(Val)) { 730 // Check whether we can compute the GEP at HoistPt. 731 if (!allGepOperandsAvailable(Val, HoistPt)) 732 return false; 733 } else if (!DT->dominates(Val->getParent(), HoistPt)) 734 return false; 735 } 736 } 737 738 // Check whether we can compute the Gep at HoistPt. 739 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) 740 return false; 741 742 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); 743 744 if (Val && isa<GetElementPtrInst>(Val)) 745 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); 746 747 return true; 748 } 749 750 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) { 751 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 752 for (const HoistingPointInfo &HP : HPL) { 753 // Find out whether we already have one of the instructions in HoistPt, 754 // in which case we do not have to move it. 755 BasicBlock *HoistPt = HP.first; 756 const SmallVecInsn &InstructionsToHoist = HP.second; 757 Instruction *Repl = nullptr; 758 for (Instruction *I : InstructionsToHoist) 759 if (I->getParent() == HoistPt) 760 // If there are two instructions in HoistPt to be hoisted in place: 761 // update Repl to be the first one, such that we can rename the uses 762 // of the second based on the first. 763 if (!Repl || firstInBB(I, Repl)) 764 Repl = I; 765 766 // Keep track of whether we moved the instruction so we know whether we 767 // should move the MemoryAccess. 768 bool MoveAccess = true; 769 if (Repl) { 770 // Repl is already in HoistPt: it remains in place. 771 assert(allOperandsAvailable(Repl, HoistPt) && 772 "instruction depends on operands that are not available"); 773 MoveAccess = false; 774 } else { 775 // When we do not find Repl in HoistPt, select the first in the list 776 // and move it to HoistPt. 777 Repl = InstructionsToHoist.front(); 778 779 // We can move Repl in HoistPt only when all operands are available. 780 // The order in which hoistings are done may influence the availability 781 // of operands. 782 if (!allOperandsAvailable(Repl, HoistPt)) { 783 784 // When HoistingGeps there is nothing more we can do to make the 785 // operands available: just continue. 786 if (HoistingGeps) 787 continue; 788 789 // When not HoistingGeps we need to copy the GEPs. 790 if (!makeGepOperandsAvailable(Repl, HoistPt, InstructionsToHoist)) 791 continue; 792 } 793 794 // Move the instruction at the end of HoistPt. 795 Instruction *Last = HoistPt->getTerminator(); 796 Repl->moveBefore(Last); 797 798 DFSNumber[Repl] = DFSNumber[Last]++; 799 } 800 801 MemoryAccess *NewMemAcc = MSSA->getMemoryAccess(Repl); 802 803 if (MoveAccess) { 804 if (MemoryUseOrDef *OldMemAcc = 805 dyn_cast_or_null<MemoryUseOrDef>(NewMemAcc)) { 806 // The definition of this ld/st will not change: ld/st hoisting is 807 // legal when the ld/st is not moved past its current definition. 808 MemoryAccess *Def = OldMemAcc->getDefiningAccess(); 809 NewMemAcc = 810 MSSA->createMemoryAccessInBB(Repl, Def, HoistPt, MemorySSA::End); 811 OldMemAcc->replaceAllUsesWith(NewMemAcc); 812 MSSA->removeMemoryAccess(OldMemAcc); 813 } 814 } 815 816 if (isa<LoadInst>(Repl)) 817 ++NL; 818 else if (isa<StoreInst>(Repl)) 819 ++NS; 820 else if (isa<CallInst>(Repl)) 821 ++NC; 822 else // Scalar 823 ++NI; 824 825 // Remove and rename all other instructions. 826 for (Instruction *I : InstructionsToHoist) 827 if (I != Repl) { 828 ++NR; 829 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { 830 ReplacementLoad->setAlignment( 831 std::min(ReplacementLoad->getAlignment(), 832 cast<LoadInst>(I)->getAlignment())); 833 ++NumLoadsRemoved; 834 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { 835 ReplacementStore->setAlignment( 836 std::min(ReplacementStore->getAlignment(), 837 cast<StoreInst>(I)->getAlignment())); 838 ++NumStoresRemoved; 839 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { 840 ReplacementAlloca->setAlignment( 841 std::max(ReplacementAlloca->getAlignment(), 842 cast<AllocaInst>(I)->getAlignment())); 843 } else if (isa<CallInst>(Repl)) { 844 ++NumCallsRemoved; 845 } 846 847 if (NewMemAcc) { 848 // Update the uses of the old MSSA access with NewMemAcc. 849 MemoryAccess *OldMA = MSSA->getMemoryAccess(I); 850 OldMA->replaceAllUsesWith(NewMemAcc); 851 MSSA->removeMemoryAccess(OldMA); 852 } 853 854 Repl->andIRFlags(I); 855 combineKnownMetadata(Repl, I); 856 I->replaceAllUsesWith(Repl); 857 // Also invalidate the Alias Analysis cache. 858 MD->removeInstruction(I); 859 I->eraseFromParent(); 860 } 861 862 // Remove MemorySSA phi nodes with the same arguments. 863 if (NewMemAcc) { 864 SmallPtrSet<MemoryPhi *, 4> UsePhis; 865 for (User *U : NewMemAcc->users()) 866 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U)) 867 UsePhis.insert(Phi); 868 869 for (auto *Phi : UsePhis) { 870 auto In = Phi->incoming_values(); 871 if (all_of(In, [&](Use &U) { return U == NewMemAcc; })) { 872 Phi->replaceAllUsesWith(NewMemAcc); 873 MSSA->removeMemoryAccess(Phi); 874 } 875 } 876 } 877 } 878 879 NumHoisted += NL + NS + NC + NI; 880 NumRemoved += NR; 881 NumLoadsHoisted += NL; 882 NumStoresHoisted += NS; 883 NumCallsHoisted += NC; 884 return {NI, NL + NC + NS}; 885 } 886 887 // Hoist all expressions. Returns Number of scalars hoisted 888 // and number of non-scalars hoisted. 889 std::pair<unsigned, unsigned> hoistExpressions(Function &F) { 890 InsnInfo II; 891 LoadInfo LI; 892 StoreInfo SI; 893 CallInfo CI; 894 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 895 int InstructionNb = 0; 896 for (Instruction &I1 : *BB) { 897 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting 898 // deeper may increase the register pressure and compilation time. 899 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) 900 break; 901 902 // Do not value number terminator instructions. 903 if (isa<TerminatorInst>(&I1)) 904 break; 905 906 if (auto *Load = dyn_cast<LoadInst>(&I1)) 907 LI.insert(Load, VN); 908 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 909 SI.insert(Store, VN); 910 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 911 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 912 if (isa<DbgInfoIntrinsic>(Intr) || 913 Intr->getIntrinsicID() == Intrinsic::assume) 914 continue; 915 } 916 if (Call->mayHaveSideEffects()) { 917 if (!OptForMinSize) 918 break; 919 // We may continue hoisting across calls which write to memory. 920 if (Call->mayThrow()) 921 break; 922 } 923 924 if (Call->isConvergent()) 925 break; 926 927 CI.insert(Call, VN); 928 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1)) 929 // Do not hoist scalars past calls that may write to memory because 930 // that could result in spills later. geps are handled separately. 931 // TODO: We can relax this for targets like AArch64 as they have more 932 // registers than X86. 933 II.insert(&I1, VN); 934 } 935 } 936 937 HoistingPointList HPL; 938 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 939 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 940 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 941 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 942 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 943 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 944 return hoist(HPL); 945 } 946 }; 947 948 class GVNHoistLegacyPass : public FunctionPass { 949 public: 950 static char ID; 951 952 GVNHoistLegacyPass() : FunctionPass(ID) { 953 initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); 954 } 955 956 bool runOnFunction(Function &F) override { 957 if (skipFunction(F)) 958 return false; 959 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 960 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 961 auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 962 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 963 964 GVNHoist G(&DT, &AA, &MD, &MSSA, F.optForMinSize()); 965 return G.run(F); 966 } 967 968 void getAnalysisUsage(AnalysisUsage &AU) const override { 969 AU.addRequired<DominatorTreeWrapperPass>(); 970 AU.addRequired<AAResultsWrapperPass>(); 971 AU.addRequired<MemoryDependenceWrapperPass>(); 972 AU.addRequired<MemorySSAWrapperPass>(); 973 AU.addPreserved<DominatorTreeWrapperPass>(); 974 AU.addPreserved<MemorySSAWrapperPass>(); 975 } 976 }; 977 } // namespace 978 979 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) { 980 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 981 AliasAnalysis &AA = AM.getResult<AAManager>(F); 982 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 983 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 984 GVNHoist G(&DT, &AA, &MD, &MSSA, F.optForMinSize()); 985 if (!G.run(F)) 986 return PreservedAnalyses::all(); 987 988 PreservedAnalyses PA; 989 PA.preserve<DominatorTreeAnalysis>(); 990 PA.preserve<MemorySSAAnalysis>(); 991 return PA; 992 } 993 994 char GVNHoistLegacyPass::ID = 0; 995 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", 996 "Early GVN Hoisting of Expressions", false, false) 997 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 998 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 999 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 1000 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1001 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", 1002 "Early GVN Hoisting of Expressions", false, false) 1003 1004 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } 1005