1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass hoists expressions from branches to a common dominator. It uses 11 // GVN (global value numbering) to discover expressions computing the same 12 // values. The primary goal is to reduce the code size, and in some 13 // cases reduce critical path (by exposing more ILP). 14 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 15 // is disabled in the following cases. 16 // 1. Scalars across calls. 17 // 2. geps when corresponding load/store cannot be hoisted. 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Transforms/Scalar.h" 25 #include "llvm/Transforms/Scalar/GVN.h" 26 #include "llvm/Transforms/Utils/MemorySSA.h" 27 28 using namespace llvm; 29 30 #define DEBUG_TYPE "gvn-hoist" 31 32 STATISTIC(NumHoisted, "Number of instructions hoisted"); 33 STATISTIC(NumRemoved, "Number of instructions removed"); 34 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 35 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 36 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 37 STATISTIC(NumStoresRemoved, "Number of stores removed"); 38 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 39 STATISTIC(NumCallsRemoved, "Number of calls removed"); 40 41 static cl::opt<int> 42 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 43 cl::desc("Max number of instructions to hoist " 44 "(default unlimited = -1)")); 45 static cl::opt<int> MaxNumberOfBBSInPath( 46 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 47 cl::desc("Max number of basic blocks on the path between " 48 "hoisting locations (default = 4, unlimited = -1)")); 49 50 namespace { 51 52 // Provides a sorting function based on the execution order of two instructions. 53 struct SortByDFSIn { 54 private: 55 DenseMap<const BasicBlock *, unsigned> &DFSNumber; 56 57 public: 58 SortByDFSIn(DenseMap<const BasicBlock *, unsigned> &D) : DFSNumber(D) {} 59 60 // Returns true when A executes before B. 61 bool operator()(const Instruction *A, const Instruction *B) const { 62 // FIXME: libc++ has a std::sort() algorithm that will call the compare 63 // function on the same element. Once PR20837 is fixed and some more years 64 // pass by and all the buildbots have moved to a corrected std::sort(), 65 // enable the following assert: 66 // 67 // assert(A != B); 68 69 const BasicBlock *BA = A->getParent(); 70 const BasicBlock *BB = B->getParent(); 71 unsigned NA = DFSNumber[BA]; 72 unsigned NB = DFSNumber[BB]; 73 if (NA < NB) 74 return true; 75 if (NA == NB) { 76 // Sort them in the order they occur in the same basic block. 77 BasicBlock::const_iterator AI(A), BI(B); 78 return std::distance(AI, BI) < 0; 79 } 80 return false; 81 } 82 }; 83 84 // A map from a pair of VNs to all the instructions with those VNs. 85 typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>> 86 VNtoInsns; 87 // An invalid value number Used when inserting a single value number into 88 // VNtoInsns. 89 enum : unsigned { InvalidVN = ~2U }; 90 91 // Records all scalar instructions candidate for code hoisting. 92 class InsnInfo { 93 VNtoInsns VNtoScalars; 94 95 public: 96 // Inserts I and its value number in VNtoScalars. 97 void insert(Instruction *I, GVN::ValueTable &VN) { 98 // Scalar instruction. 99 unsigned V = VN.lookupOrAdd(I); 100 VNtoScalars[{V, InvalidVN}].push_back(I); 101 } 102 103 const VNtoInsns &getVNTable() const { return VNtoScalars; } 104 }; 105 106 // Records all load instructions candidate for code hoisting. 107 class LoadInfo { 108 VNtoInsns VNtoLoads; 109 110 public: 111 // Insert Load and the value number of its memory address in VNtoLoads. 112 void insert(LoadInst *Load, GVN::ValueTable &VN) { 113 if (Load->isSimple()) { 114 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 115 VNtoLoads[{V, InvalidVN}].push_back(Load); 116 } 117 } 118 119 const VNtoInsns &getVNTable() const { return VNtoLoads; } 120 }; 121 122 // Records all store instructions candidate for code hoisting. 123 class StoreInfo { 124 VNtoInsns VNtoStores; 125 126 public: 127 // Insert the Store and a hash number of the store address and the stored 128 // value in VNtoStores. 129 void insert(StoreInst *Store, GVN::ValueTable &VN) { 130 if (!Store->isSimple()) 131 return; 132 // Hash the store address and the stored value. 133 Value *Ptr = Store->getPointerOperand(); 134 Value *Val = Store->getValueOperand(); 135 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 136 } 137 138 const VNtoInsns &getVNTable() const { return VNtoStores; } 139 }; 140 141 // Records all call instructions candidate for code hoisting. 142 class CallInfo { 143 VNtoInsns VNtoCallsScalars; 144 VNtoInsns VNtoCallsLoads; 145 VNtoInsns VNtoCallsStores; 146 147 public: 148 // Insert Call and its value numbering in one of the VNtoCalls* containers. 149 void insert(CallInst *Call, GVN::ValueTable &VN) { 150 // A call that doesNotAccessMemory is handled as a Scalar, 151 // onlyReadsMemory will be handled as a Load instruction, 152 // all other calls will be handled as stores. 153 unsigned V = VN.lookupOrAdd(Call); 154 auto Entry = std::make_pair(V, InvalidVN); 155 156 if (Call->doesNotAccessMemory()) 157 VNtoCallsScalars[Entry].push_back(Call); 158 else if (Call->onlyReadsMemory()) 159 VNtoCallsLoads[Entry].push_back(Call); 160 else 161 VNtoCallsStores[Entry].push_back(Call); 162 } 163 164 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 165 166 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 167 168 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 169 }; 170 171 typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet; 172 typedef SmallVector<Instruction *, 4> SmallVecInsn; 173 typedef SmallVectorImpl<Instruction *> SmallVecImplInsn; 174 175 // This pass hoists common computations across branches sharing common 176 // dominator. The primary goal is to reduce the code size, and in some 177 // cases reduce critical path (by exposing more ILP). 178 class GVNHoist { 179 public: 180 GVN::ValueTable VN; 181 DominatorTree *DT; 182 AliasAnalysis *AA; 183 MemoryDependenceResults *MD; 184 const bool OptForMinSize; 185 DenseMap<const BasicBlock *, unsigned> DFSNumber; 186 BBSideEffectsSet BBSideEffects; 187 MemorySSA *MSSA; 188 int HoistedCtr; 189 190 enum InsKind { Unknown, Scalar, Load, Store }; 191 192 GVNHoist(DominatorTree *Dt, AliasAnalysis *Aa, MemoryDependenceResults *Md, 193 bool OptForMinSize) 194 : DT(Dt), AA(Aa), MD(Md), OptForMinSize(OptForMinSize), HoistedCtr(0) {} 195 196 // Return true when there are exception handling in BB. 197 bool hasEH(const BasicBlock *BB) { 198 auto It = BBSideEffects.find(BB); 199 if (It != BBSideEffects.end()) 200 return It->second; 201 202 if (BB->isEHPad() || BB->hasAddressTaken()) { 203 BBSideEffects[BB] = true; 204 return true; 205 } 206 207 if (BB->getTerminator()->mayThrow()) { 208 BBSideEffects[BB] = true; 209 return true; 210 } 211 212 BBSideEffects[BB] = false; 213 return false; 214 } 215 216 // Return true when all paths from A to the end of the function pass through 217 // either B or C. 218 bool hoistingFromAllPaths(const BasicBlock *A, const BasicBlock *B, 219 const BasicBlock *C) { 220 // We fully copy the WL in order to be able to remove items from it. 221 SmallPtrSet<const BasicBlock *, 2> WL; 222 WL.insert(B); 223 WL.insert(C); 224 225 for (auto It = df_begin(A), E = df_end(A); It != E;) { 226 // There exists a path from A to the exit of the function if we are still 227 // iterating in DF traversal and we removed all instructions from the work 228 // list. 229 if (WL.empty()) 230 return false; 231 232 const BasicBlock *BB = *It; 233 if (WL.erase(BB)) { 234 // Stop DFS traversal when BB is in the work list. 235 It.skipChildren(); 236 continue; 237 } 238 239 // Check for end of function, calls that do not return, etc. 240 if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator())) 241 return false; 242 243 // Increment DFS traversal when not skipping children. 244 ++It; 245 } 246 247 return true; 248 } 249 250 /* Return true when I1 appears before I2 in the instructions of BB. */ 251 bool firstInBB(BasicBlock *BB, const Instruction *I1, const Instruction *I2) { 252 for (Instruction &I : *BB) { 253 if (&I == I1) 254 return true; 255 if (&I == I2) 256 return false; 257 } 258 259 llvm_unreachable("I1 and I2 not found in BB"); 260 } 261 // Return true when there are users of Def in BB. 262 bool hasMemoryUseOnPath(MemoryAccess *Def, const BasicBlock *BB, 263 const Instruction *OldPt) { 264 const BasicBlock *DefBB = Def->getBlock(); 265 const BasicBlock *OldBB = OldPt->getParent(); 266 267 for (User *U : Def->users()) 268 if (auto *MU = dyn_cast<MemoryUse>(U)) { 269 BasicBlock *UBB = MU->getBlock(); 270 // Only analyze uses in BB. 271 if (BB != UBB) 272 continue; 273 274 // A use in the same block as the Def is on the path. 275 if (UBB == DefBB) { 276 assert(MSSA->locallyDominates(Def, MU) && "def not dominating use"); 277 return true; 278 } 279 280 if (UBB != OldBB) 281 return true; 282 283 // It is only harmful to hoist when the use is before OldPt. 284 if (firstInBB(UBB, MU->getMemoryInst(), OldPt)) 285 return true; 286 } 287 288 return false; 289 } 290 291 // Return true when there are exception handling or loads of memory Def 292 // between OldPt and NewPt. 293 294 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 295 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 296 // initialized to -1 which is unlimited. 297 bool hasEHOrLoadsOnPath(const Instruction *NewPt, const Instruction *OldPt, 298 MemoryAccess *Def, int &NBBsOnAllPaths) { 299 const BasicBlock *NewBB = NewPt->getParent(); 300 const BasicBlock *OldBB = OldPt->getParent(); 301 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 302 assert(DT->dominates(Def->getBlock(), NewBB) && 303 "def does not dominate new hoisting point"); 304 305 // Walk all basic blocks reachable in depth-first iteration on the inverse 306 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 307 // executed between the execution of NewBB and OldBB. Hoisting an expression 308 // from OldBB into NewBB has to be safe on all execution paths. 309 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 310 if (*I == NewBB) { 311 // Stop traversal when reaching HoistPt. 312 I.skipChildren(); 313 continue; 314 } 315 316 // Impossible to hoist with exceptions on the path. 317 if (hasEH(*I)) 318 return true; 319 320 // Check that we do not move a store past loads. 321 if (hasMemoryUseOnPath(Def, *I, OldPt)) 322 return true; 323 324 // Stop walk once the limit is reached. 325 if (NBBsOnAllPaths == 0) 326 return true; 327 328 // -1 is unlimited number of blocks on all paths. 329 if (NBBsOnAllPaths != -1) 330 --NBBsOnAllPaths; 331 332 ++I; 333 } 334 335 return false; 336 } 337 338 // Return true when there are exception handling between HoistPt and BB. 339 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 340 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 341 // initialized to -1 which is unlimited. 342 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB, 343 int &NBBsOnAllPaths) { 344 assert(DT->dominates(HoistPt, BB) && "Invalid path"); 345 346 // Walk all basic blocks reachable in depth-first iteration on 347 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 348 // blocks that may be executed between the execution of NewHoistPt and 349 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 350 // on all execution paths. 351 for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) { 352 if (*I == HoistPt) { 353 // Stop traversal when reaching NewHoistPt. 354 I.skipChildren(); 355 continue; 356 } 357 358 // Impossible to hoist with exceptions on the path. 359 if (hasEH(*I)) 360 return true; 361 362 // Stop walk once the limit is reached. 363 if (NBBsOnAllPaths == 0) 364 return true; 365 366 // -1 is unlimited number of blocks on all paths. 367 if (NBBsOnAllPaths != -1) 368 --NBBsOnAllPaths; 369 370 ++I; 371 } 372 373 return false; 374 } 375 376 // Return true when it is safe to hoist a memory load or store U from OldPt 377 // to NewPt. 378 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 379 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { 380 381 // In place hoisting is safe. 382 if (NewPt == OldPt) 383 return true; 384 385 const BasicBlock *NewBB = NewPt->getParent(); 386 const BasicBlock *OldBB = OldPt->getParent(); 387 const BasicBlock *UBB = U->getBlock(); 388 389 // Check for dependences on the Memory SSA. 390 MemoryAccess *D = U->getDefiningAccess(); 391 BasicBlock *DBB = D->getBlock(); 392 if (DT->properlyDominates(NewBB, DBB)) 393 // Cannot move the load or store to NewBB above its definition in DBB. 394 return false; 395 396 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 397 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 398 if (firstInBB(DBB, NewPt, UD->getMemoryInst())) 399 // Cannot move the load or store to NewPt above its definition in D. 400 return false; 401 402 // Check for unsafe hoistings due to side effects. 403 if (K == InsKind::Store) { 404 if (hasEHOrLoadsOnPath(NewPt, OldPt, D, NBBsOnAllPaths)) 405 return false; 406 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 407 return false; 408 409 if (UBB == NewBB) { 410 if (DT->properlyDominates(DBB, NewBB)) 411 return true; 412 assert(UBB == DBB); 413 assert(MSSA->locallyDominates(D, U)); 414 } 415 416 // No side effects: it is safe to hoist. 417 return true; 418 } 419 420 // Return true when it is safe to hoist scalar instructions from BB1 and BB2 421 // to HoistBB. 422 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB1, 423 const BasicBlock *BB2, int &NBBsOnAllPaths) { 424 // Check that the hoisted expression is needed on all paths. When HoistBB 425 // already contains an instruction to be hoisted, the expression is needed 426 // on all paths. Enable scalar hoisting at -Oz as it is safe to hoist 427 // scalars to a place where they are partially needed. 428 if (!OptForMinSize && BB1 != HoistBB && 429 !hoistingFromAllPaths(HoistBB, BB1, BB2)) 430 return false; 431 432 if (hasEHOnPath(HoistBB, BB1, NBBsOnAllPaths) || 433 hasEHOnPath(HoistBB, BB2, NBBsOnAllPaths)) 434 return false; 435 436 // Safe to hoist scalars from BB1 and BB2 to HoistBB. 437 return true; 438 } 439 440 // Each element of a hoisting list contains the basic block where to hoist and 441 // a list of instructions to be hoisted. 442 typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo; 443 typedef SmallVector<HoistingPointInfo, 4> HoistingPointList; 444 445 // Partition InstructionsToHoist into a set of candidates which can share a 446 // common hoisting point. The partitions are collected in HPL. IsScalar is 447 // true when the instructions in InstructionsToHoist are scalars. IsLoad is 448 // true when the InstructionsToHoist are loads, false when they are stores. 449 void partitionCandidates(SmallVecImplInsn &InstructionsToHoist, 450 HoistingPointList &HPL, InsKind K) { 451 // No need to sort for two instructions. 452 if (InstructionsToHoist.size() > 2) { 453 SortByDFSIn Pred(DFSNumber); 454 std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred); 455 } 456 457 int NBBsOnAllPaths = MaxNumberOfBBSInPath; 458 459 SmallVecImplInsn::iterator II = InstructionsToHoist.begin(); 460 SmallVecImplInsn::iterator Start = II; 461 Instruction *HoistPt = *II; 462 BasicBlock *HoistBB = HoistPt->getParent(); 463 MemoryUseOrDef *UD; 464 if (K != InsKind::Scalar) 465 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(HoistPt)); 466 467 for (++II; II != InstructionsToHoist.end(); ++II) { 468 Instruction *Insn = *II; 469 BasicBlock *BB = Insn->getParent(); 470 BasicBlock *NewHoistBB; 471 Instruction *NewHoistPt; 472 473 if (BB == HoistBB) { 474 NewHoistBB = HoistBB; 475 NewHoistPt = firstInBB(BB, Insn, HoistPt) ? Insn : HoistPt; 476 } else { 477 NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB); 478 if (NewHoistBB == BB) 479 NewHoistPt = Insn; 480 else if (NewHoistBB == HoistBB) 481 NewHoistPt = HoistPt; 482 else 483 NewHoistPt = NewHoistBB->getTerminator(); 484 } 485 486 if (K == InsKind::Scalar) { 487 if (safeToHoistScalar(NewHoistBB, HoistBB, BB, NBBsOnAllPaths)) { 488 // Extend HoistPt to NewHoistPt. 489 HoistPt = NewHoistPt; 490 HoistBB = NewHoistBB; 491 continue; 492 } 493 } else { 494 // When NewBB already contains an instruction to be hoisted, the 495 // expression is needed on all paths. 496 // Check that the hoisted expression is needed on all paths: it is 497 // unsafe to hoist loads to a place where there may be a path not 498 // loading from the same address: for instance there may be a branch on 499 // which the address of the load may not be initialized. 500 if ((HoistBB == NewHoistBB || BB == NewHoistBB || 501 hoistingFromAllPaths(NewHoistBB, HoistBB, BB)) && 502 // Also check that it is safe to move the load or store from HoistPt 503 // to NewHoistPt, and from Insn to NewHoistPt. 504 safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) && 505 safeToHoistLdSt(NewHoistPt, Insn, 506 cast<MemoryUseOrDef>(MSSA->getMemoryAccess(Insn)), 507 K, NBBsOnAllPaths)) { 508 // Extend HoistPt to NewHoistPt. 509 HoistPt = NewHoistPt; 510 HoistBB = NewHoistBB; 511 continue; 512 } 513 } 514 515 // At this point it is not safe to extend the current hoisting to 516 // NewHoistPt: save the hoisting list so far. 517 if (std::distance(Start, II) > 1) 518 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 519 520 // Start over from BB. 521 Start = II; 522 if (K != InsKind::Scalar) 523 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(*Start)); 524 HoistPt = Insn; 525 HoistBB = BB; 526 NBBsOnAllPaths = MaxNumberOfBBSInPath; 527 } 528 529 // Save the last partition. 530 if (std::distance(Start, II) > 1) 531 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 532 } 533 534 // Initialize HPL from Map. 535 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 536 InsKind K) { 537 for (const auto &Entry : Map) { 538 if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold) 539 return; 540 541 const SmallVecInsn &V = Entry.second; 542 if (V.size() < 2) 543 continue; 544 545 // Compute the insertion point and the list of expressions to be hoisted. 546 SmallVecInsn InstructionsToHoist; 547 for (auto I : V) 548 if (!hasEH(I->getParent())) 549 InstructionsToHoist.push_back(I); 550 551 if (!InstructionsToHoist.empty()) 552 partitionCandidates(InstructionsToHoist, HPL, K); 553 } 554 } 555 556 // Return true when all operands of Instr are available at insertion point 557 // HoistPt. When limiting the number of hoisted expressions, one could hoist 558 // a load without hoisting its access function. So before hoisting any 559 // expression, make sure that all its operands are available at insert point. 560 bool allOperandsAvailable(const Instruction *I, 561 const BasicBlock *HoistPt) const { 562 for (const Use &Op : I->operands()) 563 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 564 if (!DT->dominates(Inst->getParent(), HoistPt)) 565 return false; 566 567 return true; 568 } 569 570 Instruction *firstOfTwo(Instruction *I, Instruction *J) const { 571 for (Instruction &I1 : *I->getParent()) 572 if (&I1 == I || &I1 == J) 573 return &I1; 574 llvm_unreachable("Both I and J must be from same BB"); 575 } 576 577 bool makeOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt) const { 578 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 579 GetElementPtrInst *Gep = nullptr; 580 Instruction *Val = nullptr; 581 if (auto *Ld = dyn_cast<LoadInst>(Repl)) 582 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 583 if (auto *St = dyn_cast<StoreInst>(Repl)) { 584 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 585 Val = dyn_cast<Instruction>(St->getValueOperand()); 586 } 587 588 if (!Gep) 589 return false; 590 591 // PHIs may only be inserted at the start of a block. 592 if (Val && isa<PHINode>(Val)) 593 return false; 594 595 // Check whether we can compute the Gep at HoistPt. 596 if (!allOperandsAvailable(Gep, HoistPt)) 597 return false; 598 599 // Also check that the stored value is available. 600 if (Val && !allOperandsAvailable(Val, HoistPt)) 601 return false; 602 603 // Copy the gep before moving the ld/st. 604 Instruction *ClonedGep = Gep->clone(); 605 ClonedGep->insertBefore(HoistPt->getTerminator()); 606 Repl->replaceUsesOfWith(Gep, ClonedGep); 607 608 // Also copy Val. 609 if (Val) { 610 Instruction *ClonedVal = Val->clone(); 611 ClonedVal->insertBefore(HoistPt->getTerminator()); 612 Repl->replaceUsesOfWith(Val, ClonedVal); 613 } 614 615 return true; 616 } 617 618 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) { 619 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 620 for (const HoistingPointInfo &HP : HPL) { 621 // Find out whether we already have one of the instructions in HoistPt, 622 // in which case we do not have to move it. 623 BasicBlock *HoistPt = HP.first; 624 const SmallVecInsn &InstructionsToHoist = HP.second; 625 Instruction *Repl = nullptr; 626 for (Instruction *I : InstructionsToHoist) 627 if (I->getParent() == HoistPt) { 628 // If there are two instructions in HoistPt to be hoisted in place: 629 // update Repl to be the first one, such that we can rename the uses 630 // of the second based on the first. 631 Repl = !Repl ? I : firstOfTwo(Repl, I); 632 } 633 634 if (Repl) { 635 // Repl is already in HoistPt: it remains in place. 636 assert(allOperandsAvailable(Repl, HoistPt) && 637 "instruction depends on operands that are not available"); 638 } else { 639 // When we do not find Repl in HoistPt, select the first in the list 640 // and move it to HoistPt. 641 Repl = InstructionsToHoist.front(); 642 643 // We can move Repl in HoistPt only when all operands are available. 644 // The order in which hoistings are done may influence the availability 645 // of operands. 646 if (!allOperandsAvailable(Repl, HoistPt) && 647 !makeOperandsAvailable(Repl, HoistPt)) 648 continue; 649 Repl->moveBefore(HoistPt->getTerminator()); 650 } 651 652 if (isa<LoadInst>(Repl)) 653 ++NL; 654 else if (isa<StoreInst>(Repl)) 655 ++NS; 656 else if (isa<CallInst>(Repl)) 657 ++NC; 658 else // Scalar 659 ++NI; 660 661 // Remove and rename all other instructions. 662 for (Instruction *I : InstructionsToHoist) 663 if (I != Repl) { 664 ++NR; 665 if (isa<LoadInst>(Repl)) 666 ++NumLoadsRemoved; 667 else if (isa<StoreInst>(Repl)) 668 ++NumStoresRemoved; 669 else if (isa<CallInst>(Repl)) 670 ++NumCallsRemoved; 671 I->replaceAllUsesWith(Repl); 672 I->eraseFromParent(); 673 } 674 } 675 676 NumHoisted += NL + NS + NC + NI; 677 NumRemoved += NR; 678 NumLoadsHoisted += NL; 679 NumStoresHoisted += NS; 680 NumCallsHoisted += NC; 681 return {NI, NL + NC + NS}; 682 } 683 684 // Hoist all expressions. Returns Number of scalars hoisted 685 // and number of non-scalars hoisted. 686 std::pair<unsigned, unsigned> hoistExpressions(Function &F) { 687 InsnInfo II; 688 LoadInfo LI; 689 StoreInfo SI; 690 CallInfo CI; 691 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 692 for (Instruction &I1 : *BB) { 693 if (auto *Load = dyn_cast<LoadInst>(&I1)) 694 LI.insert(Load, VN); 695 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 696 SI.insert(Store, VN); 697 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 698 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 699 if (isa<DbgInfoIntrinsic>(Intr) || 700 Intr->getIntrinsicID() == Intrinsic::assume) 701 continue; 702 } 703 if (Call->mayHaveSideEffects()) { 704 if (!OptForMinSize) 705 break; 706 // We may continue hoisting across calls which write to memory. 707 if (Call->mayThrow()) 708 break; 709 } 710 CI.insert(Call, VN); 711 } else if (OptForMinSize || !isa<GetElementPtrInst>(&I1)) 712 // Do not hoist scalars past calls that may write to memory because 713 // that could result in spills later. geps are handled separately. 714 // TODO: We can relax this for targets like AArch64 as they have more 715 // registers than X86. 716 II.insert(&I1, VN); 717 } 718 } 719 720 HoistingPointList HPL; 721 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 722 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 723 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 724 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 725 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 726 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 727 return hoist(HPL); 728 } 729 730 bool run(Function &F) { 731 VN.setDomTree(DT); 732 VN.setAliasAnalysis(AA); 733 VN.setMemDep(MD); 734 bool Res = false; 735 736 unsigned I = 0; 737 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) 738 DFSNumber.insert({BB, ++I}); 739 740 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 741 while (1) { 742 // FIXME: only compute MemorySSA once. We need to update the analysis in 743 // the same time as transforming the code. 744 MemorySSA M(F, AA, DT); 745 MSSA = &M; 746 747 auto HoistStat = hoistExpressions(F); 748 if (HoistStat.first + HoistStat.second == 0) { 749 return Res; 750 } 751 if (HoistStat.second > 0) { 752 // To address a limitation of the current GVN, we need to rerun the 753 // hoisting after we hoisted loads in order to be able to hoist all 754 // scalars dependent on the hoisted loads. Same for stores. 755 VN.clear(); 756 } 757 Res = true; 758 } 759 760 return Res; 761 } 762 }; 763 764 class GVNHoistLegacyPass : public FunctionPass { 765 public: 766 static char ID; 767 768 GVNHoistLegacyPass() : FunctionPass(ID) { 769 initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); 770 } 771 772 bool runOnFunction(Function &F) override { 773 if (skipFunction(F)) 774 return false; 775 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 776 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 777 auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 778 779 GVNHoist G(&DT, &AA, &MD, F.optForMinSize()); 780 return G.run(F); 781 } 782 783 void getAnalysisUsage(AnalysisUsage &AU) const override { 784 AU.addRequired<DominatorTreeWrapperPass>(); 785 AU.addRequired<AAResultsWrapperPass>(); 786 AU.addRequired<MemoryDependenceWrapperPass>(); 787 AU.addPreserved<DominatorTreeWrapperPass>(); 788 } 789 }; 790 } // namespace 791 792 PreservedAnalyses GVNHoistPass::run(Function &F, 793 AnalysisManager<Function> &AM) { 794 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 795 AliasAnalysis &AA = AM.getResult<AAManager>(F); 796 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 797 798 GVNHoist G(&DT, &AA, &MD, F.optForMinSize()); 799 if (!G.run(F)) 800 return PreservedAnalyses::all(); 801 802 PreservedAnalyses PA; 803 PA.preserve<DominatorTreeAnalysis>(); 804 return PA; 805 } 806 807 char GVNHoistLegacyPass::ID = 0; 808 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", 809 "Early GVN Hoisting of Expressions", false, false) 810 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 811 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 812 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 813 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", 814 "Early GVN Hoisting of Expressions", false, false) 815 816 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } 817