1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass hoists expressions from branches to a common dominator. It uses 11 // GVN (global value numbering) to discover expressions computing the same 12 // values. The primary goals of code-hoisting are: 13 // 1. To reduce the code size. 14 // 2. In some cases reduce critical path (by exposing more ILP). 15 // 16 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 17 // is disabled in the following cases. 18 // 1. Scalars across calls. 19 // 2. geps when corresponding load/store cannot be hoisted. 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Transforms/Scalar.h" 27 #include "llvm/Transforms/Scalar/GVN.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/Transforms/Utils/MemorySSA.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "gvn-hoist" 34 35 STATISTIC(NumHoisted, "Number of instructions hoisted"); 36 STATISTIC(NumRemoved, "Number of instructions removed"); 37 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 38 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 39 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 40 STATISTIC(NumStoresRemoved, "Number of stores removed"); 41 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 42 STATISTIC(NumCallsRemoved, "Number of calls removed"); 43 44 static cl::opt<int> 45 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 46 cl::desc("Max number of instructions to hoist " 47 "(default unlimited = -1)")); 48 static cl::opt<int> MaxNumberOfBBSInPath( 49 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 50 cl::desc("Max number of basic blocks on the path between " 51 "hoisting locations (default = 4, unlimited = -1)")); 52 53 static cl::opt<int> MaxDepthInBB( 54 "gvn-hoist-max-depth", cl::Hidden, cl::init(100), 55 cl::desc("Hoist instructions from the beginning of the BB up to the " 56 "maximum specified depth (default = 100, unlimited = -1)")); 57 58 static cl::opt<int> MaxChainLength( 59 "gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), 60 cl::desc("Maximum length of dependent chains to hoist " 61 "(default = 10, unlimited = -1)")); 62 63 namespace { 64 65 // Provides a sorting function based on the execution order of two instructions. 66 struct SortByDFSIn { 67 private: 68 DenseMap<const Value *, unsigned> &DFSNumber; 69 70 public: 71 SortByDFSIn(DenseMap<const Value *, unsigned> &D) : DFSNumber(D) {} 72 73 // Returns true when A executes before B. 74 bool operator()(const Instruction *A, const Instruction *B) const { 75 // FIXME: libc++ has a std::sort() algorithm that will call the compare 76 // function on the same element. Once PR20837 is fixed and some more years 77 // pass by and all the buildbots have moved to a corrected std::sort(), 78 // enable the following assert: 79 // 80 // assert(A != B); 81 82 const BasicBlock *BA = A->getParent(); 83 const BasicBlock *BB = B->getParent(); 84 unsigned ADFS, BDFS; 85 if (BA == BB) { 86 ADFS = DFSNumber.lookup(A); 87 BDFS = DFSNumber.lookup(B); 88 } else { 89 ADFS = DFSNumber.lookup(BA); 90 BDFS = DFSNumber.lookup(BB); 91 } 92 assert (ADFS && BDFS); 93 return ADFS < BDFS; 94 } 95 }; 96 97 // A map from a pair of VNs to all the instructions with those VNs. 98 typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>> 99 VNtoInsns; 100 // An invalid value number Used when inserting a single value number into 101 // VNtoInsns. 102 enum : unsigned { InvalidVN = ~2U }; 103 104 // Records all scalar instructions candidate for code hoisting. 105 class InsnInfo { 106 VNtoInsns VNtoScalars; 107 108 public: 109 // Inserts I and its value number in VNtoScalars. 110 void insert(Instruction *I, GVN::ValueTable &VN) { 111 // Scalar instruction. 112 unsigned V = VN.lookupOrAdd(I); 113 VNtoScalars[{V, InvalidVN}].push_back(I); 114 } 115 116 const VNtoInsns &getVNTable() const { return VNtoScalars; } 117 }; 118 119 // Records all load instructions candidate for code hoisting. 120 class LoadInfo { 121 VNtoInsns VNtoLoads; 122 123 public: 124 // Insert Load and the value number of its memory address in VNtoLoads. 125 void insert(LoadInst *Load, GVN::ValueTable &VN) { 126 if (Load->isSimple()) { 127 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 128 VNtoLoads[{V, InvalidVN}].push_back(Load); 129 } 130 } 131 132 const VNtoInsns &getVNTable() const { return VNtoLoads; } 133 }; 134 135 // Records all store instructions candidate for code hoisting. 136 class StoreInfo { 137 VNtoInsns VNtoStores; 138 139 public: 140 // Insert the Store and a hash number of the store address and the stored 141 // value in VNtoStores. 142 void insert(StoreInst *Store, GVN::ValueTable &VN) { 143 if (!Store->isSimple()) 144 return; 145 // Hash the store address and the stored value. 146 Value *Ptr = Store->getPointerOperand(); 147 Value *Val = Store->getValueOperand(); 148 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 149 } 150 151 const VNtoInsns &getVNTable() const { return VNtoStores; } 152 }; 153 154 // Records all call instructions candidate for code hoisting. 155 class CallInfo { 156 VNtoInsns VNtoCallsScalars; 157 VNtoInsns VNtoCallsLoads; 158 VNtoInsns VNtoCallsStores; 159 160 public: 161 // Insert Call and its value numbering in one of the VNtoCalls* containers. 162 void insert(CallInst *Call, GVN::ValueTable &VN) { 163 // A call that doesNotAccessMemory is handled as a Scalar, 164 // onlyReadsMemory will be handled as a Load instruction, 165 // all other calls will be handled as stores. 166 unsigned V = VN.lookupOrAdd(Call); 167 auto Entry = std::make_pair(V, InvalidVN); 168 169 if (Call->doesNotAccessMemory()) 170 VNtoCallsScalars[Entry].push_back(Call); 171 else if (Call->onlyReadsMemory()) 172 VNtoCallsLoads[Entry].push_back(Call); 173 else 174 VNtoCallsStores[Entry].push_back(Call); 175 } 176 177 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 178 179 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 180 181 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 182 }; 183 184 typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet; 185 typedef SmallVector<Instruction *, 4> SmallVecInsn; 186 typedef SmallVectorImpl<Instruction *> SmallVecImplInsn; 187 188 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { 189 static const unsigned KnownIDs[] = { 190 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 191 LLVMContext::MD_noalias, LLVMContext::MD_range, 192 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 193 LLVMContext::MD_invariant_group}; 194 combineMetadata(ReplInst, I, KnownIDs); 195 } 196 197 // This pass hoists common computations across branches sharing common 198 // dominator. The primary goal is to reduce the code size, and in some 199 // cases reduce critical path (by exposing more ILP). 200 class GVNHoist { 201 public: 202 GVNHoist(DominatorTree *DT, AliasAnalysis *AA, MemoryDependenceResults *MD, 203 MemorySSA *MSSA, bool OptForMinSize) 204 : DT(DT), AA(AA), MD(MD), MSSA(MSSA), OptForMinSize(OptForMinSize), 205 HoistingGeps(OptForMinSize), HoistedCtr(0) {} 206 bool run(Function &F) { 207 VN.setDomTree(DT); 208 VN.setAliasAnalysis(AA); 209 VN.setMemDep(MD); 210 bool Res = false; 211 // Perform DFS Numbering of instructions. 212 unsigned BBI = 0; 213 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { 214 DFSNumber[BB] = ++BBI; 215 unsigned I = 0; 216 for (auto &Inst: *BB) 217 DFSNumber[&Inst] = ++I; 218 } 219 220 int ChainLength = 0; 221 222 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 223 while (1) { 224 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) 225 return Res; 226 227 auto HoistStat = hoistExpressions(F); 228 if (HoistStat.first + HoistStat.second == 0) 229 return Res; 230 231 if (HoistStat.second > 0) 232 // To address a limitation of the current GVN, we need to rerun the 233 // hoisting after we hoisted loads or stores in order to be able to 234 // hoist all scalars dependent on the hoisted ld/st. 235 VN.clear(); 236 237 Res = true; 238 } 239 240 return Res; 241 } 242 private: 243 GVN::ValueTable VN; 244 DominatorTree *DT; 245 AliasAnalysis *AA; 246 MemoryDependenceResults *MD; 247 MemorySSA *MSSA; 248 const bool OptForMinSize; 249 const bool HoistingGeps; 250 DenseMap<const Value *, unsigned> DFSNumber; 251 BBSideEffectsSet BBSideEffects; 252 int HoistedCtr; 253 254 enum InsKind { Unknown, Scalar, Load, Store }; 255 256 // Return true when there are exception handling in BB. 257 bool hasEH(const BasicBlock *BB) { 258 auto It = BBSideEffects.find(BB); 259 if (It != BBSideEffects.end()) 260 return It->second; 261 262 if (BB->isEHPad() || BB->hasAddressTaken()) { 263 BBSideEffects[BB] = true; 264 return true; 265 } 266 267 if (BB->getTerminator()->mayThrow()) { 268 BBSideEffects[BB] = true; 269 return true; 270 } 271 272 BBSideEffects[BB] = false; 273 return false; 274 } 275 276 // Return true when a successor of BB dominates A. 277 bool successorDominate(const BasicBlock *BB, const BasicBlock *A) { 278 for (const BasicBlock *Succ : BB->getTerminator()->successors()) 279 if (DT->dominates(Succ, A)) 280 return true; 281 282 return false; 283 } 284 285 // Return true when all paths from HoistBB to the end of the function pass 286 // through one of the blocks in WL. 287 bool hoistingFromAllPaths(const BasicBlock *HoistBB, 288 SmallPtrSetImpl<const BasicBlock *> &WL) { 289 290 // Copy WL as the loop will remove elements from it. 291 SmallPtrSet<const BasicBlock *, 2> WorkList(WL.begin(), WL.end()); 292 293 for (auto It = df_begin(HoistBB), E = df_end(HoistBB); It != E;) { 294 // There exists a path from HoistBB to the exit of the function if we are 295 // still iterating in DF traversal and we removed all instructions from 296 // the work list. 297 if (WorkList.empty()) 298 return false; 299 300 const BasicBlock *BB = *It; 301 if (WorkList.erase(BB)) { 302 // Stop DFS traversal when BB is in the work list. 303 It.skipChildren(); 304 continue; 305 } 306 307 // Check for end of function, calls that do not return, etc. 308 if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator())) 309 return false; 310 311 // When reaching the back-edge of a loop, there may be a path through the 312 // loop that does not pass through B or C before exiting the loop. 313 if (successorDominate(BB, HoistBB)) 314 return false; 315 316 // Increment DFS traversal when not skipping children. 317 ++It; 318 } 319 320 return true; 321 } 322 323 /* Return true when I1 appears before I2 in the instructions of BB. */ 324 bool firstInBB(const Instruction *I1, const Instruction *I2) { 325 assert (I1->getParent() == I2->getParent()); 326 unsigned I1DFS = DFSNumber.lookup(I1); 327 unsigned I2DFS = DFSNumber.lookup(I2); 328 assert (I1DFS && I2DFS); 329 return I1DFS < I2DFS; 330 } 331 332 // Return true when there are memory uses of Def in BB. 333 bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def, 334 const BasicBlock *BB) { 335 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 336 if (!Acc) 337 return false; 338 339 Instruction *OldPt = Def->getMemoryInst(); 340 const BasicBlock *OldBB = OldPt->getParent(); 341 const BasicBlock *NewBB = NewPt->getParent(); 342 bool ReachedNewPt = false; 343 344 for (const MemoryAccess &MA : *Acc) 345 if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) { 346 Instruction *Insn = MU->getMemoryInst(); 347 348 // Do not check whether MU aliases Def when MU occurs after OldPt. 349 if (BB == OldBB && firstInBB(OldPt, Insn)) 350 break; 351 352 // Do not check whether MU aliases Def when MU occurs before NewPt. 353 if (BB == NewBB) { 354 if (!ReachedNewPt) { 355 if (firstInBB(Insn, NewPt)) 356 continue; 357 ReachedNewPt = true; 358 } 359 } 360 if (instructionClobbersQuery(Def, MemoryLocation::get(Insn), Insn, 361 *AA)) 362 return true; 363 } 364 365 return false; 366 } 367 368 // Return true when there are exception handling or loads of memory Def 369 // between Def and NewPt. This function is only called for stores: Def is 370 // the MemoryDef of the store to be hoisted. 371 372 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 373 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 374 // initialized to -1 which is unlimited. 375 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 376 int &NBBsOnAllPaths) { 377 const BasicBlock *NewBB = NewPt->getParent(); 378 const BasicBlock *OldBB = Def->getBlock(); 379 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 380 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && 381 "def does not dominate new hoisting point"); 382 383 // Walk all basic blocks reachable in depth-first iteration on the inverse 384 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 385 // executed between the execution of NewBB and OldBB. Hoisting an expression 386 // from OldBB into NewBB has to be safe on all execution paths. 387 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 388 if (*I == NewBB) { 389 // Stop traversal when reaching HoistPt. 390 I.skipChildren(); 391 continue; 392 } 393 394 // Impossible to hoist with exceptions on the path. 395 if (hasEH(*I)) 396 return true; 397 398 // Check that we do not move a store past loads. 399 if (hasMemoryUse(NewPt, Def, *I)) 400 return true; 401 402 // Stop walk once the limit is reached. 403 if (NBBsOnAllPaths == 0) 404 return true; 405 406 // -1 is unlimited number of blocks on all paths. 407 if (NBBsOnAllPaths != -1) 408 --NBBsOnAllPaths; 409 410 ++I; 411 } 412 413 return false; 414 } 415 416 // Return true when there are exception handling between HoistPt and BB. 417 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 418 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 419 // initialized to -1 which is unlimited. 420 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB, 421 int &NBBsOnAllPaths) { 422 assert(DT->dominates(HoistPt, BB) && "Invalid path"); 423 424 // Walk all basic blocks reachable in depth-first iteration on 425 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 426 // blocks that may be executed between the execution of NewHoistPt and 427 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 428 // on all execution paths. 429 for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) { 430 if (*I == HoistPt) { 431 // Stop traversal when reaching NewHoistPt. 432 I.skipChildren(); 433 continue; 434 } 435 436 // Impossible to hoist with exceptions on the path. 437 if (hasEH(*I)) 438 return true; 439 440 // Stop walk once the limit is reached. 441 if (NBBsOnAllPaths == 0) 442 return true; 443 444 // -1 is unlimited number of blocks on all paths. 445 if (NBBsOnAllPaths != -1) 446 --NBBsOnAllPaths; 447 448 ++I; 449 } 450 451 return false; 452 } 453 454 // Return true when it is safe to hoist a memory load or store U from OldPt 455 // to NewPt. 456 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 457 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { 458 459 // In place hoisting is safe. 460 if (NewPt == OldPt) 461 return true; 462 463 const BasicBlock *NewBB = NewPt->getParent(); 464 const BasicBlock *OldBB = OldPt->getParent(); 465 const BasicBlock *UBB = U->getBlock(); 466 467 // Check for dependences on the Memory SSA. 468 MemoryAccess *D = U->getDefiningAccess(); 469 BasicBlock *DBB = D->getBlock(); 470 if (DT->properlyDominates(NewBB, DBB)) 471 // Cannot move the load or store to NewBB above its definition in DBB. 472 return false; 473 474 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 475 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 476 if (firstInBB(NewPt, UD->getMemoryInst())) 477 // Cannot move the load or store to NewPt above its definition in D. 478 return false; 479 480 // Check for unsafe hoistings due to side effects. 481 if (K == InsKind::Store) { 482 if (hasEHOrLoadsOnPath(NewPt, dyn_cast<MemoryDef>(U), NBBsOnAllPaths)) 483 return false; 484 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 485 return false; 486 487 if (UBB == NewBB) { 488 if (DT->properlyDominates(DBB, NewBB)) 489 return true; 490 assert(UBB == DBB); 491 assert(MSSA->locallyDominates(D, U)); 492 } 493 494 // No side effects: it is safe to hoist. 495 return true; 496 } 497 498 // Return true when it is safe to hoist scalar instructions from all blocks in 499 // WL to HoistBB. 500 bool safeToHoistScalar(const BasicBlock *HoistBB, 501 SmallPtrSetImpl<const BasicBlock *> &WL, 502 int &NBBsOnAllPaths) { 503 // Check that the hoisted expression is needed on all paths. Enable scalar 504 // hoisting at -Oz as it is safe to hoist scalars to a place where they are 505 // partially needed. 506 if (!OptForMinSize && !hoistingFromAllPaths(HoistBB, WL)) 507 return false; 508 509 for (const BasicBlock *BB : WL) 510 if (hasEHOnPath(HoistBB, BB, NBBsOnAllPaths)) 511 return false; 512 513 return true; 514 } 515 516 // Each element of a hoisting list contains the basic block where to hoist and 517 // a list of instructions to be hoisted. 518 typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo; 519 typedef SmallVector<HoistingPointInfo, 4> HoistingPointList; 520 521 // Partition InstructionsToHoist into a set of candidates which can share a 522 // common hoisting point. The partitions are collected in HPL. IsScalar is 523 // true when the instructions in InstructionsToHoist are scalars. IsLoad is 524 // true when the InstructionsToHoist are loads, false when they are stores. 525 void partitionCandidates(SmallVecImplInsn &InstructionsToHoist, 526 HoistingPointList &HPL, InsKind K) { 527 // No need to sort for two instructions. 528 if (InstructionsToHoist.size() > 2) { 529 SortByDFSIn Pred(DFSNumber); 530 std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred); 531 } 532 533 int NBBsOnAllPaths = MaxNumberOfBBSInPath; 534 535 SmallVecImplInsn::iterator II = InstructionsToHoist.begin(); 536 SmallVecImplInsn::iterator Start = II; 537 Instruction *HoistPt = *II; 538 BasicBlock *HoistBB = HoistPt->getParent(); 539 MemoryUseOrDef *UD; 540 if (K != InsKind::Scalar) 541 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(HoistPt)); 542 543 for (++II; II != InstructionsToHoist.end(); ++II) { 544 Instruction *Insn = *II; 545 BasicBlock *BB = Insn->getParent(); 546 BasicBlock *NewHoistBB; 547 Instruction *NewHoistPt; 548 549 if (BB == HoistBB) { 550 NewHoistBB = HoistBB; 551 NewHoistPt = firstInBB(Insn, HoistPt) ? Insn : HoistPt; 552 } else { 553 NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB); 554 if (NewHoistBB == BB) 555 NewHoistPt = Insn; 556 else if (NewHoistBB == HoistBB) 557 NewHoistPt = HoistPt; 558 else 559 NewHoistPt = NewHoistBB->getTerminator(); 560 } 561 562 SmallPtrSet<const BasicBlock *, 2> WL; 563 WL.insert(HoistBB); 564 WL.insert(BB); 565 566 if (K == InsKind::Scalar) { 567 if (safeToHoistScalar(NewHoistBB, WL, NBBsOnAllPaths)) { 568 // Extend HoistPt to NewHoistPt. 569 HoistPt = NewHoistPt; 570 HoistBB = NewHoistBB; 571 continue; 572 } 573 } else { 574 // When NewBB already contains an instruction to be hoisted, the 575 // expression is needed on all paths. 576 // Check that the hoisted expression is needed on all paths: it is 577 // unsafe to hoist loads to a place where there may be a path not 578 // loading from the same address: for instance there may be a branch on 579 // which the address of the load may not be initialized. 580 if ((HoistBB == NewHoistBB || BB == NewHoistBB || 581 hoistingFromAllPaths(NewHoistBB, WL)) && 582 // Also check that it is safe to move the load or store from HoistPt 583 // to NewHoistPt, and from Insn to NewHoistPt. 584 safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) && 585 safeToHoistLdSt(NewHoistPt, Insn, 586 cast<MemoryUseOrDef>(MSSA->getMemoryAccess(Insn)), 587 K, NBBsOnAllPaths)) { 588 // Extend HoistPt to NewHoistPt. 589 HoistPt = NewHoistPt; 590 HoistBB = NewHoistBB; 591 continue; 592 } 593 } 594 595 // At this point it is not safe to extend the current hoisting to 596 // NewHoistPt: save the hoisting list so far. 597 if (std::distance(Start, II) > 1) 598 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 599 600 // Start over from BB. 601 Start = II; 602 if (K != InsKind::Scalar) 603 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(*Start)); 604 HoistPt = Insn; 605 HoistBB = BB; 606 NBBsOnAllPaths = MaxNumberOfBBSInPath; 607 } 608 609 // Save the last partition. 610 if (std::distance(Start, II) > 1) 611 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 612 } 613 614 // Initialize HPL from Map. 615 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 616 InsKind K) { 617 for (const auto &Entry : Map) { 618 if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold) 619 return; 620 621 const SmallVecInsn &V = Entry.second; 622 if (V.size() < 2) 623 continue; 624 625 // Compute the insertion point and the list of expressions to be hoisted. 626 SmallVecInsn InstructionsToHoist; 627 for (auto I : V) 628 if (!hasEH(I->getParent())) 629 InstructionsToHoist.push_back(I); 630 631 if (!InstructionsToHoist.empty()) 632 partitionCandidates(InstructionsToHoist, HPL, K); 633 } 634 } 635 636 // Return true when all operands of Instr are available at insertion point 637 // HoistPt. When limiting the number of hoisted expressions, one could hoist 638 // a load without hoisting its access function. So before hoisting any 639 // expression, make sure that all its operands are available at insert point. 640 bool allOperandsAvailable(const Instruction *I, 641 const BasicBlock *HoistPt) const { 642 for (const Use &Op : I->operands()) 643 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 644 if (!DT->dominates(Inst->getParent(), HoistPt)) 645 return false; 646 647 return true; 648 } 649 650 // Same as allOperandsAvailable with recursive check for GEP operands. 651 bool allGepOperandsAvailable(const Instruction *I, 652 const BasicBlock *HoistPt) const { 653 for (const Use &Op : I->operands()) 654 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 655 if (!DT->dominates(Inst->getParent(), HoistPt)) { 656 if (const GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Inst)) { 657 if (!allGepOperandsAvailable(GepOp, HoistPt)) 658 return false; 659 // Gep is available if all operands of GepOp are available. 660 } else { 661 // Gep is not available if it has operands other than GEPs that are 662 // defined in blocks not dominating HoistPt. 663 return false; 664 } 665 } 666 return true; 667 } 668 669 // Make all operands of the GEP available. 670 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 671 const SmallVecInsn &InstructionsToHoist, 672 Instruction *Gep) const { 673 assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available"); 674 675 Instruction *ClonedGep = Gep->clone(); 676 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) 677 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) { 678 679 // Check whether the operand is already available. 680 if (DT->dominates(Op->getParent(), HoistPt)) 681 continue; 682 683 // As a GEP can refer to other GEPs, recursively make all the operands 684 // of this GEP available at HoistPt. 685 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op)) 686 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); 687 } 688 689 // Copy Gep and replace its uses in Repl with ClonedGep. 690 ClonedGep->insertBefore(HoistPt->getTerminator()); 691 692 // Conservatively discard any optimization hints, they may differ on the 693 // other paths. 694 ClonedGep->dropUnknownNonDebugMetadata(); 695 696 // If we have optimization hints which agree with each other along different 697 // paths, preserve them. 698 for (const Instruction *OtherInst : InstructionsToHoist) { 699 const GetElementPtrInst *OtherGep; 700 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) 701 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); 702 else 703 OtherGep = cast<GetElementPtrInst>( 704 cast<StoreInst>(OtherInst)->getPointerOperand()); 705 ClonedGep->andIRFlags(OtherGep); 706 } 707 708 // Replace uses of Gep with ClonedGep in Repl. 709 Repl->replaceUsesOfWith(Gep, ClonedGep); 710 } 711 712 // In the case Repl is a load or a store, we make all their GEPs 713 // available: GEPs are not hoisted by default to avoid the address 714 // computations to be hoisted without the associated load or store. 715 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, 716 const SmallVecInsn &InstructionsToHoist) const { 717 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 718 GetElementPtrInst *Gep = nullptr; 719 Instruction *Val = nullptr; 720 if (auto *Ld = dyn_cast<LoadInst>(Repl)) { 721 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 722 } else if (auto *St = dyn_cast<StoreInst>(Repl)) { 723 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 724 Val = dyn_cast<Instruction>(St->getValueOperand()); 725 // Check that the stored value is available. 726 if (Val) { 727 if (isa<GetElementPtrInst>(Val)) { 728 // Check whether we can compute the GEP at HoistPt. 729 if (!allGepOperandsAvailable(Val, HoistPt)) 730 return false; 731 } else if (!DT->dominates(Val->getParent(), HoistPt)) 732 return false; 733 } 734 } 735 736 // Check whether we can compute the Gep at HoistPt. 737 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) 738 return false; 739 740 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); 741 742 if (Val && isa<GetElementPtrInst>(Val)) 743 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); 744 745 return true; 746 } 747 748 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) { 749 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 750 for (const HoistingPointInfo &HP : HPL) { 751 // Find out whether we already have one of the instructions in HoistPt, 752 // in which case we do not have to move it. 753 BasicBlock *HoistPt = HP.first; 754 const SmallVecInsn &InstructionsToHoist = HP.second; 755 Instruction *Repl = nullptr; 756 for (Instruction *I : InstructionsToHoist) 757 if (I->getParent() == HoistPt) 758 // If there are two instructions in HoistPt to be hoisted in place: 759 // update Repl to be the first one, such that we can rename the uses 760 // of the second based on the first. 761 if (!Repl || firstInBB(I, Repl)) 762 Repl = I; 763 764 // Keep track of whether we moved the instruction so we know whether we 765 // should move the MemoryAccess. 766 bool MoveAccess = true; 767 if (Repl) { 768 // Repl is already in HoistPt: it remains in place. 769 assert(allOperandsAvailable(Repl, HoistPt) && 770 "instruction depends on operands that are not available"); 771 MoveAccess = false; 772 } else { 773 // When we do not find Repl in HoistPt, select the first in the list 774 // and move it to HoistPt. 775 Repl = InstructionsToHoist.front(); 776 777 // We can move Repl in HoistPt only when all operands are available. 778 // The order in which hoistings are done may influence the availability 779 // of operands. 780 if (!allOperandsAvailable(Repl, HoistPt)) { 781 782 // When HoistingGeps there is nothing more we can do to make the 783 // operands available: just continue. 784 if (HoistingGeps) 785 continue; 786 787 // When not HoistingGeps we need to copy the GEPs. 788 if (!makeGepOperandsAvailable(Repl, HoistPt, InstructionsToHoist)) 789 continue; 790 } 791 792 // Move the instruction at the end of HoistPt. 793 Instruction *Last = HoistPt->getTerminator(); 794 Repl->moveBefore(Last); 795 796 DFSNumber[Repl] = DFSNumber[Last]++; 797 } 798 799 MemoryAccess *NewMemAcc = MSSA->getMemoryAccess(Repl); 800 801 if (MoveAccess) { 802 if (MemoryUseOrDef *OldMemAcc = 803 dyn_cast_or_null<MemoryUseOrDef>(NewMemAcc)) { 804 // The definition of this ld/st will not change: ld/st hoisting is 805 // legal when the ld/st is not moved past its current definition. 806 MemoryAccess *Def = OldMemAcc->getDefiningAccess(); 807 NewMemAcc = 808 MSSA->createMemoryAccessInBB(Repl, Def, HoistPt, MemorySSA::End); 809 OldMemAcc->replaceAllUsesWith(NewMemAcc); 810 MSSA->removeMemoryAccess(OldMemAcc); 811 } 812 } 813 814 if (isa<LoadInst>(Repl)) 815 ++NL; 816 else if (isa<StoreInst>(Repl)) 817 ++NS; 818 else if (isa<CallInst>(Repl)) 819 ++NC; 820 else // Scalar 821 ++NI; 822 823 // Remove and rename all other instructions. 824 for (Instruction *I : InstructionsToHoist) 825 if (I != Repl) { 826 ++NR; 827 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { 828 ReplacementLoad->setAlignment( 829 std::min(ReplacementLoad->getAlignment(), 830 cast<LoadInst>(I)->getAlignment())); 831 ++NumLoadsRemoved; 832 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { 833 ReplacementStore->setAlignment( 834 std::min(ReplacementStore->getAlignment(), 835 cast<StoreInst>(I)->getAlignment())); 836 ++NumStoresRemoved; 837 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { 838 ReplacementAlloca->setAlignment( 839 std::max(ReplacementAlloca->getAlignment(), 840 cast<AllocaInst>(I)->getAlignment())); 841 } else if (isa<CallInst>(Repl)) { 842 ++NumCallsRemoved; 843 } 844 845 if (NewMemAcc) { 846 // Update the uses of the old MSSA access with NewMemAcc. 847 MemoryAccess *OldMA = MSSA->getMemoryAccess(I); 848 OldMA->replaceAllUsesWith(NewMemAcc); 849 MSSA->removeMemoryAccess(OldMA); 850 } 851 852 Repl->andIRFlags(I); 853 combineKnownMetadata(Repl, I); 854 I->replaceAllUsesWith(Repl); 855 // Also invalidate the Alias Analysis cache. 856 MD->removeInstruction(I); 857 I->eraseFromParent(); 858 } 859 860 // Remove MemorySSA phi nodes with the same arguments. 861 if (NewMemAcc) { 862 SmallPtrSet<MemoryPhi *, 4> UsePhis; 863 for (User *U : NewMemAcc->users()) 864 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U)) 865 UsePhis.insert(Phi); 866 867 for (auto *Phi : UsePhis) { 868 auto In = Phi->incoming_values(); 869 if (all_of(In, [&](Use &U) { return U == NewMemAcc; })) { 870 Phi->replaceAllUsesWith(NewMemAcc); 871 MSSA->removeMemoryAccess(Phi); 872 } 873 } 874 } 875 } 876 877 NumHoisted += NL + NS + NC + NI; 878 NumRemoved += NR; 879 NumLoadsHoisted += NL; 880 NumStoresHoisted += NS; 881 NumCallsHoisted += NC; 882 return {NI, NL + NC + NS}; 883 } 884 885 // Hoist all expressions. Returns Number of scalars hoisted 886 // and number of non-scalars hoisted. 887 std::pair<unsigned, unsigned> hoistExpressions(Function &F) { 888 InsnInfo II; 889 LoadInfo LI; 890 StoreInfo SI; 891 CallInfo CI; 892 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 893 int InstructionNb = 0; 894 for (Instruction &I1 : *BB) { 895 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting 896 // deeper may increase the register pressure and compilation time. 897 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) 898 break; 899 900 // Do not value number terminator instructions. 901 if (isa<TerminatorInst>(&I1)) 902 break; 903 904 if (auto *Load = dyn_cast<LoadInst>(&I1)) 905 LI.insert(Load, VN); 906 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 907 SI.insert(Store, VN); 908 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 909 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 910 if (isa<DbgInfoIntrinsic>(Intr) || 911 Intr->getIntrinsicID() == Intrinsic::assume) 912 continue; 913 } 914 if (Call->mayHaveSideEffects()) { 915 if (!OptForMinSize) 916 break; 917 // We may continue hoisting across calls which write to memory. 918 if (Call->mayThrow()) 919 break; 920 } 921 922 if (Call->isConvergent()) 923 break; 924 925 CI.insert(Call, VN); 926 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1)) 927 // Do not hoist scalars past calls that may write to memory because 928 // that could result in spills later. geps are handled separately. 929 // TODO: We can relax this for targets like AArch64 as they have more 930 // registers than X86. 931 II.insert(&I1, VN); 932 } 933 } 934 935 HoistingPointList HPL; 936 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 937 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 938 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 939 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 940 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 941 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 942 return hoist(HPL); 943 } 944 }; 945 946 class GVNHoistLegacyPass : public FunctionPass { 947 public: 948 static char ID; 949 950 GVNHoistLegacyPass() : FunctionPass(ID) { 951 initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); 952 } 953 954 bool runOnFunction(Function &F) override { 955 if (skipFunction(F)) 956 return false; 957 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 958 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 959 auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 960 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 961 962 GVNHoist G(&DT, &AA, &MD, &MSSA, F.optForMinSize()); 963 return G.run(F); 964 } 965 966 void getAnalysisUsage(AnalysisUsage &AU) const override { 967 AU.addRequired<DominatorTreeWrapperPass>(); 968 AU.addRequired<AAResultsWrapperPass>(); 969 AU.addRequired<MemoryDependenceWrapperPass>(); 970 AU.addRequired<MemorySSAWrapperPass>(); 971 AU.addPreserved<DominatorTreeWrapperPass>(); 972 AU.addPreserved<MemorySSAWrapperPass>(); 973 } 974 }; 975 } // namespace 976 977 PreservedAnalyses GVNHoistPass::run(Function &F, 978 FunctionAnalysisManager &AM) { 979 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 980 AliasAnalysis &AA = AM.getResult<AAManager>(F); 981 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 982 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 983 GVNHoist G(&DT, &AA, &MD, &MSSA, F.optForMinSize()); 984 if (!G.run(F)) 985 return PreservedAnalyses::all(); 986 987 PreservedAnalyses PA; 988 PA.preserve<DominatorTreeAnalysis>(); 989 PA.preserve<MemorySSAAnalysis>(); 990 return PA; 991 } 992 993 char GVNHoistLegacyPass::ID = 0; 994 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", 995 "Early GVN Hoisting of Expressions", false, false) 996 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 997 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 998 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 999 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 1000 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", 1001 "Early GVN Hoisting of Expressions", false, false) 1002 1003 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } 1004