xref: /llvm-project/llvm/lib/Transforms/Scalar/GVNHoist.cpp (revision 8e6e3318c29bed6282bb64f194b97b91371138e9)
1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass hoists expressions from branches to a common dominator. It uses
11 // GVN (global value numbering) to discover expressions computing the same
12 // values. The primary goals of code-hoisting are:
13 // 1. To reduce the code size.
14 // 2. In some cases reduce critical path (by exposing more ILP).
15 //
16 // Hoisting may affect the performance in some cases. To mitigate that, hoisting
17 // is disabled in the following cases.
18 // 1. Scalars across calls.
19 // 2. geps when corresponding load/store cannot be hoisted.
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Transforms/Scalar.h"
27 #include "llvm/Transforms/Scalar/GVN.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Transforms/Utils/MemorySSA.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "gvn-hoist"
34 
35 STATISTIC(NumHoisted, "Number of instructions hoisted");
36 STATISTIC(NumRemoved, "Number of instructions removed");
37 STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
38 STATISTIC(NumLoadsRemoved, "Number of loads removed");
39 STATISTIC(NumStoresHoisted, "Number of stores hoisted");
40 STATISTIC(NumStoresRemoved, "Number of stores removed");
41 STATISTIC(NumCallsHoisted, "Number of calls hoisted");
42 STATISTIC(NumCallsRemoved, "Number of calls removed");
43 
44 static cl::opt<int>
45     MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
46                         cl::desc("Max number of instructions to hoist "
47                                  "(default unlimited = -1)"));
48 static cl::opt<int> MaxNumberOfBBSInPath(
49     "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
50     cl::desc("Max number of basic blocks on the path between "
51              "hoisting locations (default = 4, unlimited = -1)"));
52 
53 static cl::opt<int> MaxDepthInBB(
54     "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
55     cl::desc("Hoist instructions from the beginning of the BB up to the "
56              "maximum specified depth (default = 100, unlimited = -1)"));
57 
58 static cl::opt<int> MaxChainLength(
59     "gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
60     cl::desc("Maximum length of dependent chains to hoist "
61              "(default = 10, unlimited = -1)"));
62 
63 namespace {
64 
65 // Provides a sorting function based on the execution order of two instructions.
66 struct SortByDFSIn {
67 private:
68   DenseMap<const Value *, unsigned> &DFSNumber;
69 
70 public:
71   SortByDFSIn(DenseMap<const Value *, unsigned> &D) : DFSNumber(D) {}
72 
73   // Returns true when A executes before B.
74   bool operator()(const Instruction *A, const Instruction *B) const {
75     // FIXME: libc++ has a std::sort() algorithm that will call the compare
76     // function on the same element.  Once PR20837 is fixed and some more years
77     // pass by and all the buildbots have moved to a corrected std::sort(),
78     // enable the following assert:
79     //
80     // assert(A != B);
81 
82     const BasicBlock *BA = A->getParent();
83     const BasicBlock *BB = B->getParent();
84     unsigned ADFS, BDFS;
85     if (BA == BB) {
86       ADFS = DFSNumber.lookup(A);
87       BDFS = DFSNumber.lookup(B);
88     } else {
89       ADFS = DFSNumber.lookup(BA);
90       BDFS = DFSNumber.lookup(BB);
91     }
92     assert (ADFS && BDFS);
93     return ADFS < BDFS;
94   }
95 };
96 
97 // A map from a pair of VNs to all the instructions with those VNs.
98 typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>>
99     VNtoInsns;
100 // An invalid value number Used when inserting a single value number into
101 // VNtoInsns.
102 enum : unsigned { InvalidVN = ~2U };
103 
104 // Records all scalar instructions candidate for code hoisting.
105 class InsnInfo {
106   VNtoInsns VNtoScalars;
107 
108 public:
109   // Inserts I and its value number in VNtoScalars.
110   void insert(Instruction *I, GVN::ValueTable &VN) {
111     // Scalar instruction.
112     unsigned V = VN.lookupOrAdd(I);
113     VNtoScalars[{V, InvalidVN}].push_back(I);
114   }
115 
116   const VNtoInsns &getVNTable() const { return VNtoScalars; }
117 };
118 
119 // Records all load instructions candidate for code hoisting.
120 class LoadInfo {
121   VNtoInsns VNtoLoads;
122 
123 public:
124   // Insert Load and the value number of its memory address in VNtoLoads.
125   void insert(LoadInst *Load, GVN::ValueTable &VN) {
126     if (Load->isSimple()) {
127       unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
128       VNtoLoads[{V, InvalidVN}].push_back(Load);
129     }
130   }
131 
132   const VNtoInsns &getVNTable() const { return VNtoLoads; }
133 };
134 
135 // Records all store instructions candidate for code hoisting.
136 class StoreInfo {
137   VNtoInsns VNtoStores;
138 
139 public:
140   // Insert the Store and a hash number of the store address and the stored
141   // value in VNtoStores.
142   void insert(StoreInst *Store, GVN::ValueTable &VN) {
143     if (!Store->isSimple())
144       return;
145     // Hash the store address and the stored value.
146     Value *Ptr = Store->getPointerOperand();
147     Value *Val = Store->getValueOperand();
148     VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
149   }
150 
151   const VNtoInsns &getVNTable() const { return VNtoStores; }
152 };
153 
154 // Records all call instructions candidate for code hoisting.
155 class CallInfo {
156   VNtoInsns VNtoCallsScalars;
157   VNtoInsns VNtoCallsLoads;
158   VNtoInsns VNtoCallsStores;
159 
160 public:
161   // Insert Call and its value numbering in one of the VNtoCalls* containers.
162   void insert(CallInst *Call, GVN::ValueTable &VN) {
163     // A call that doesNotAccessMemory is handled as a Scalar,
164     // onlyReadsMemory will be handled as a Load instruction,
165     // all other calls will be handled as stores.
166     unsigned V = VN.lookupOrAdd(Call);
167     auto Entry = std::make_pair(V, InvalidVN);
168 
169     if (Call->doesNotAccessMemory())
170       VNtoCallsScalars[Entry].push_back(Call);
171     else if (Call->onlyReadsMemory())
172       VNtoCallsLoads[Entry].push_back(Call);
173     else
174       VNtoCallsStores[Entry].push_back(Call);
175   }
176 
177   const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
178 
179   const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
180 
181   const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
182 };
183 
184 typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet;
185 typedef SmallVector<Instruction *, 4> SmallVecInsn;
186 typedef SmallVectorImpl<Instruction *> SmallVecImplInsn;
187 
188 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
189   static const unsigned KnownIDs[] = {
190       LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
191       LLVMContext::MD_noalias,        LLVMContext::MD_range,
192       LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
193       LLVMContext::MD_invariant_group};
194   combineMetadata(ReplInst, I, KnownIDs);
195 }
196 
197 // This pass hoists common computations across branches sharing common
198 // dominator. The primary goal is to reduce the code size, and in some
199 // cases reduce critical path (by exposing more ILP).
200 class GVNHoist {
201 public:
202   GVNHoist(DominatorTree *DT, AliasAnalysis *AA, MemoryDependenceResults *MD,
203            MemorySSA *MSSA, bool OptForMinSize)
204       : DT(DT), AA(AA), MD(MD), MSSA(MSSA), OptForMinSize(OptForMinSize),
205         HoistingGeps(OptForMinSize), HoistedCtr(0) {}
206   bool run(Function &F) {
207     VN.setDomTree(DT);
208     VN.setAliasAnalysis(AA);
209     VN.setMemDep(MD);
210     bool Res = false;
211     // Perform DFS Numbering of instructions.
212     unsigned BBI = 0;
213     for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
214       DFSNumber[BB] = ++BBI;
215       unsigned I = 0;
216       for (auto &Inst: *BB)
217         DFSNumber[&Inst] = ++I;
218     }
219 
220     int ChainLength = 0;
221 
222     // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
223     while (1) {
224       if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
225         return Res;
226 
227       auto HoistStat = hoistExpressions(F);
228       if (HoistStat.first + HoistStat.second == 0)
229         return Res;
230 
231       if (HoistStat.second > 0)
232         // To address a limitation of the current GVN, we need to rerun the
233         // hoisting after we hoisted loads or stores in order to be able to
234         // hoist all scalars dependent on the hoisted ld/st.
235         VN.clear();
236 
237       Res = true;
238     }
239 
240     return Res;
241   }
242 private:
243   GVN::ValueTable VN;
244   DominatorTree *DT;
245   AliasAnalysis *AA;
246   MemoryDependenceResults *MD;
247   MemorySSA *MSSA;
248   const bool OptForMinSize;
249   const bool HoistingGeps;
250   DenseMap<const Value *, unsigned> DFSNumber;
251   BBSideEffectsSet BBSideEffects;
252   int HoistedCtr;
253 
254   enum InsKind { Unknown, Scalar, Load, Store };
255 
256   // Return true when there are exception handling in BB.
257   bool hasEH(const BasicBlock *BB) {
258     auto It = BBSideEffects.find(BB);
259     if (It != BBSideEffects.end())
260       return It->second;
261 
262     if (BB->isEHPad() || BB->hasAddressTaken()) {
263       BBSideEffects[BB] = true;
264       return true;
265     }
266 
267     if (BB->getTerminator()->mayThrow()) {
268       BBSideEffects[BB] = true;
269       return true;
270     }
271 
272     BBSideEffects[BB] = false;
273     return false;
274   }
275 
276   // Return true when a successor of BB dominates A.
277   bool successorDominate(const BasicBlock *BB, const BasicBlock *A) {
278     for (const BasicBlock *Succ : BB->getTerminator()->successors())
279       if (DT->dominates(Succ, A))
280         return true;
281 
282     return false;
283   }
284 
285   // Return true when all paths from HoistBB to the end of the function pass
286   // through one of the blocks in WL.
287   bool hoistingFromAllPaths(const BasicBlock *HoistBB,
288                             SmallPtrSetImpl<const BasicBlock *> &WL) {
289 
290     // Copy WL as the loop will remove elements from it.
291     SmallPtrSet<const BasicBlock *, 2> WorkList(WL.begin(), WL.end());
292 
293     for (auto It = df_begin(HoistBB), E = df_end(HoistBB); It != E;) {
294       // There exists a path from HoistBB to the exit of the function if we are
295       // still iterating in DF traversal and we removed all instructions from
296       // the work list.
297       if (WorkList.empty())
298         return false;
299 
300       const BasicBlock *BB = *It;
301       if (WorkList.erase(BB)) {
302         // Stop DFS traversal when BB is in the work list.
303         It.skipChildren();
304         continue;
305       }
306 
307       // Check for end of function, calls that do not return, etc.
308       if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator()))
309         return false;
310 
311       // When reaching the back-edge of a loop, there may be a path through the
312       // loop that does not pass through B or C before exiting the loop.
313       if (successorDominate(BB, HoistBB))
314         return false;
315 
316       // Increment DFS traversal when not skipping children.
317       ++It;
318     }
319 
320     return true;
321   }
322 
323   /* Return true when I1 appears before I2 in the instructions of BB.  */
324   bool firstInBB(const Instruction *I1, const Instruction *I2) {
325     assert (I1->getParent() == I2->getParent());
326     unsigned I1DFS = DFSNumber.lookup(I1);
327     unsigned I2DFS = DFSNumber.lookup(I2);
328     assert (I1DFS && I2DFS);
329     return I1DFS < I2DFS;
330   }
331 
332   // Return true when there are memory uses of Def in BB.
333   bool hasMemoryUseOnPath(const Instruction *NewPt, MemoryDef *Def, const BasicBlock *BB) {
334     const Instruction *OldPt = Def->getMemoryInst();
335     const BasicBlock *OldBB = OldPt->getParent();
336     const BasicBlock *NewBB = NewPt->getParent();
337 
338     bool ReachedNewPt = false;
339     MemoryLocation DefLoc = MemoryLocation::get(OldPt);
340     const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
341     for (const MemoryAccess &MA : *Acc) {
342       auto *MU = dyn_cast<MemoryUse>(&MA);
343       if (!MU)
344         continue;
345 
346       // Do not check whether MU aliases Def when MU occurs after OldPt.
347       if (BB == OldBB && firstInBB(OldPt, MU->getMemoryInst()))
348         break;
349 
350       // Do not check whether MU aliases Def when MU occurs before NewPt.
351       if (BB == NewBB) {
352         if (!ReachedNewPt) {
353           if (firstInBB(MU->getMemoryInst(), NewPt))
354             continue;
355           ReachedNewPt = true;
356         }
357       }
358 
359       if (!AA->isNoAlias(DefLoc, MemoryLocation::get(MU->getMemoryInst())))
360         return true;
361     }
362 
363     return false;
364   }
365 
366   // Return true when there are exception handling or loads of memory Def
367   // between Def and NewPt.  This function is only called for stores: Def is
368   // the MemoryDef of the store to be hoisted.
369 
370   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
371   // return true when the counter NBBsOnAllPaths reaces 0, except when it is
372   // initialized to -1 which is unlimited.
373   bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
374                           int &NBBsOnAllPaths) {
375     const BasicBlock *NewBB = NewPt->getParent();
376     const BasicBlock *OldBB = Def->getBlock();
377     assert(DT->dominates(NewBB, OldBB) && "invalid path");
378     assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
379            "def does not dominate new hoisting point");
380 
381     // Walk all basic blocks reachable in depth-first iteration on the inverse
382     // CFG from OldBB to NewBB. These blocks are all the blocks that may be
383     // executed between the execution of NewBB and OldBB. Hoisting an expression
384     // from OldBB into NewBB has to be safe on all execution paths.
385     for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
386       if (*I == NewBB) {
387         // Stop traversal when reaching HoistPt.
388         I.skipChildren();
389         continue;
390       }
391 
392       // Impossible to hoist with exceptions on the path.
393       if (hasEH(*I))
394         return true;
395 
396       // Check that we do not move a store past loads.
397       if (hasMemoryUseOnPath(NewPt, Def, *I))
398         return true;
399 
400       // Stop walk once the limit is reached.
401       if (NBBsOnAllPaths == 0)
402         return true;
403 
404       // -1 is unlimited number of blocks on all paths.
405       if (NBBsOnAllPaths != -1)
406         --NBBsOnAllPaths;
407 
408       ++I;
409     }
410 
411     return false;
412   }
413 
414   // Return true when there are exception handling between HoistPt and BB.
415   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
416   // return true when the counter NBBsOnAllPaths reaches 0, except when it is
417   // initialized to -1 which is unlimited.
418   bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB,
419                    int &NBBsOnAllPaths) {
420     assert(DT->dominates(HoistPt, BB) && "Invalid path");
421 
422     // Walk all basic blocks reachable in depth-first iteration on
423     // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
424     // blocks that may be executed between the execution of NewHoistPt and
425     // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
426     // on all execution paths.
427     for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) {
428       if (*I == HoistPt) {
429         // Stop traversal when reaching NewHoistPt.
430         I.skipChildren();
431         continue;
432       }
433 
434       // Impossible to hoist with exceptions on the path.
435       if (hasEH(*I))
436         return true;
437 
438       // Stop walk once the limit is reached.
439       if (NBBsOnAllPaths == 0)
440         return true;
441 
442       // -1 is unlimited number of blocks on all paths.
443       if (NBBsOnAllPaths != -1)
444         --NBBsOnAllPaths;
445 
446       ++I;
447     }
448 
449     return false;
450   }
451 
452   // Return true when it is safe to hoist a memory load or store U from OldPt
453   // to NewPt.
454   bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
455                        MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {
456 
457     // In place hoisting is safe.
458     if (NewPt == OldPt)
459       return true;
460 
461     const BasicBlock *NewBB = NewPt->getParent();
462     const BasicBlock *OldBB = OldPt->getParent();
463     const BasicBlock *UBB = U->getBlock();
464 
465     // Check for dependences on the Memory SSA.
466     MemoryAccess *D = U->getDefiningAccess();
467     BasicBlock *DBB = D->getBlock();
468     if (DT->properlyDominates(NewBB, DBB))
469       // Cannot move the load or store to NewBB above its definition in DBB.
470       return false;
471 
472     if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
473       if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
474         if (firstInBB(NewPt, UD->getMemoryInst()))
475           // Cannot move the load or store to NewPt above its definition in D.
476           return false;
477 
478     // Check for unsafe hoistings due to side effects.
479     if (K == InsKind::Store) {
480       if (hasEHOrLoadsOnPath(NewPt, dyn_cast<MemoryDef>(U), NBBsOnAllPaths))
481         return false;
482     } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
483       return false;
484 
485     if (UBB == NewBB) {
486       if (DT->properlyDominates(DBB, NewBB))
487         return true;
488       assert(UBB == DBB);
489       assert(MSSA->locallyDominates(D, U));
490     }
491 
492     // No side effects: it is safe to hoist.
493     return true;
494   }
495 
496   // Return true when it is safe to hoist scalar instructions from all blocks in
497   // WL to HoistBB.
498   bool safeToHoistScalar(const BasicBlock *HoistBB,
499                          SmallPtrSetImpl<const BasicBlock *> &WL,
500                          int &NBBsOnAllPaths) {
501     // Check that the hoisted expression is needed on all paths.  Enable scalar
502     // hoisting at -Oz as it is safe to hoist scalars to a place where they are
503     // partially needed.
504     if (!OptForMinSize && !hoistingFromAllPaths(HoistBB, WL))
505       return false;
506 
507     for (const BasicBlock *BB : WL)
508       if (hasEHOnPath(HoistBB, BB, NBBsOnAllPaths))
509         return false;
510 
511     return true;
512   }
513 
514   // Each element of a hoisting list contains the basic block where to hoist and
515   // a list of instructions to be hoisted.
516   typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo;
517   typedef SmallVector<HoistingPointInfo, 4> HoistingPointList;
518 
519   // Partition InstructionsToHoist into a set of candidates which can share a
520   // common hoisting point. The partitions are collected in HPL. IsScalar is
521   // true when the instructions in InstructionsToHoist are scalars. IsLoad is
522   // true when the InstructionsToHoist are loads, false when they are stores.
523   void partitionCandidates(SmallVecImplInsn &InstructionsToHoist,
524                            HoistingPointList &HPL, InsKind K) {
525     // No need to sort for two instructions.
526     if (InstructionsToHoist.size() > 2) {
527       SortByDFSIn Pred(DFSNumber);
528       std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred);
529     }
530 
531     int NBBsOnAllPaths = MaxNumberOfBBSInPath;
532 
533     SmallVecImplInsn::iterator II = InstructionsToHoist.begin();
534     SmallVecImplInsn::iterator Start = II;
535     Instruction *HoistPt = *II;
536     BasicBlock *HoistBB = HoistPt->getParent();
537     MemoryUseOrDef *UD;
538     if (K != InsKind::Scalar)
539       UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(HoistPt));
540 
541     for (++II; II != InstructionsToHoist.end(); ++II) {
542       Instruction *Insn = *II;
543       BasicBlock *BB = Insn->getParent();
544       BasicBlock *NewHoistBB;
545       Instruction *NewHoistPt;
546 
547       if (BB == HoistBB) {
548         NewHoistBB = HoistBB;
549         NewHoistPt = firstInBB(Insn, HoistPt) ? Insn : HoistPt;
550       } else {
551         NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB);
552         if (NewHoistBB == BB)
553           NewHoistPt = Insn;
554         else if (NewHoistBB == HoistBB)
555           NewHoistPt = HoistPt;
556         else
557           NewHoistPt = NewHoistBB->getTerminator();
558       }
559 
560       SmallPtrSet<const BasicBlock *, 2> WL;
561       WL.insert(HoistBB);
562       WL.insert(BB);
563 
564       if (K == InsKind::Scalar) {
565         if (safeToHoistScalar(NewHoistBB, WL, NBBsOnAllPaths)) {
566           // Extend HoistPt to NewHoistPt.
567           HoistPt = NewHoistPt;
568           HoistBB = NewHoistBB;
569           continue;
570         }
571       } else {
572         // When NewBB already contains an instruction to be hoisted, the
573         // expression is needed on all paths.
574         // Check that the hoisted expression is needed on all paths: it is
575         // unsafe to hoist loads to a place where there may be a path not
576         // loading from the same address: for instance there may be a branch on
577         // which the address of the load may not be initialized.
578         if ((HoistBB == NewHoistBB || BB == NewHoistBB ||
579              hoistingFromAllPaths(NewHoistBB, WL)) &&
580             // Also check that it is safe to move the load or store from HoistPt
581             // to NewHoistPt, and from Insn to NewHoistPt.
582             safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) &&
583             safeToHoistLdSt(NewHoistPt, Insn,
584                             cast<MemoryUseOrDef>(MSSA->getMemoryAccess(Insn)),
585                             K, NBBsOnAllPaths)) {
586           // Extend HoistPt to NewHoistPt.
587           HoistPt = NewHoistPt;
588           HoistBB = NewHoistBB;
589           continue;
590         }
591       }
592 
593       // At this point it is not safe to extend the current hoisting to
594       // NewHoistPt: save the hoisting list so far.
595       if (std::distance(Start, II) > 1)
596         HPL.push_back({HoistBB, SmallVecInsn(Start, II)});
597 
598       // Start over from BB.
599       Start = II;
600       if (K != InsKind::Scalar)
601         UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(*Start));
602       HoistPt = Insn;
603       HoistBB = BB;
604       NBBsOnAllPaths = MaxNumberOfBBSInPath;
605     }
606 
607     // Save the last partition.
608     if (std::distance(Start, II) > 1)
609       HPL.push_back({HoistBB, SmallVecInsn(Start, II)});
610   }
611 
612   // Initialize HPL from Map.
613   void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
614                               InsKind K) {
615     for (const auto &Entry : Map) {
616       if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold)
617         return;
618 
619       const SmallVecInsn &V = Entry.second;
620       if (V.size() < 2)
621         continue;
622 
623       // Compute the insertion point and the list of expressions to be hoisted.
624       SmallVecInsn InstructionsToHoist;
625       for (auto I : V)
626         if (!hasEH(I->getParent()))
627           InstructionsToHoist.push_back(I);
628 
629       if (!InstructionsToHoist.empty())
630         partitionCandidates(InstructionsToHoist, HPL, K);
631     }
632   }
633 
634   // Return true when all operands of Instr are available at insertion point
635   // HoistPt. When limiting the number of hoisted expressions, one could hoist
636   // a load without hoisting its access function. So before hoisting any
637   // expression, make sure that all its operands are available at insert point.
638   bool allOperandsAvailable(const Instruction *I,
639                             const BasicBlock *HoistPt) const {
640     for (const Use &Op : I->operands())
641       if (const auto *Inst = dyn_cast<Instruction>(&Op))
642         if (!DT->dominates(Inst->getParent(), HoistPt))
643           return false;
644 
645     return true;
646   }
647 
648   // Same as allOperandsAvailable with recursive check for GEP operands.
649   bool allGepOperandsAvailable(const Instruction *I,
650                                const BasicBlock *HoistPt) const {
651     for (const Use &Op : I->operands())
652       if (const auto *Inst = dyn_cast<Instruction>(&Op))
653         if (!DT->dominates(Inst->getParent(), HoistPt)) {
654           if (const GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Inst)) {
655             if (!allGepOperandsAvailable(GepOp, HoistPt))
656               return false;
657             // Gep is available if all operands of GepOp are available.
658           } else {
659             // Gep is not available if it has operands other than GEPs that are
660             // defined in blocks not dominating HoistPt.
661             return false;
662           }
663         }
664     return true;
665   }
666 
667   // Make all operands of the GEP available.
668   void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
669                          const SmallVecInsn &InstructionsToHoist,
670                          Instruction *Gep) const {
671     assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available");
672 
673     Instruction *ClonedGep = Gep->clone();
674     for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
675       if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
676 
677         // Check whether the operand is already available.
678         if (DT->dominates(Op->getParent(), HoistPt))
679           continue;
680 
681         // As a GEP can refer to other GEPs, recursively make all the operands
682         // of this GEP available at HoistPt.
683         if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
684           makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
685       }
686 
687     // Copy Gep and replace its uses in Repl with ClonedGep.
688     ClonedGep->insertBefore(HoistPt->getTerminator());
689 
690     // Conservatively discard any optimization hints, they may differ on the
691     // other paths.
692     ClonedGep->dropUnknownNonDebugMetadata();
693 
694     // If we have optimization hints which agree with each other along different
695     // paths, preserve them.
696     for (const Instruction *OtherInst : InstructionsToHoist) {
697       const GetElementPtrInst *OtherGep;
698       if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
699         OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
700       else
701         OtherGep = cast<GetElementPtrInst>(
702             cast<StoreInst>(OtherInst)->getPointerOperand());
703       ClonedGep->andIRFlags(OtherGep);
704     }
705 
706     // Replace uses of Gep with ClonedGep in Repl.
707     Repl->replaceUsesOfWith(Gep, ClonedGep);
708   }
709 
710   // In the case Repl is a load or a store, we make all their GEPs
711   // available: GEPs are not hoisted by default to avoid the address
712   // computations to be hoisted without the associated load or store.
713   bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
714                                 const SmallVecInsn &InstructionsToHoist) const {
715     // Check whether the GEP of a ld/st can be synthesized at HoistPt.
716     GetElementPtrInst *Gep = nullptr;
717     Instruction *Val = nullptr;
718     if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
719       Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
720     } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
721       Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
722       Val = dyn_cast<Instruction>(St->getValueOperand());
723       // Check that the stored value is available.
724       if (Val) {
725         if (isa<GetElementPtrInst>(Val)) {
726           // Check whether we can compute the GEP at HoistPt.
727           if (!allGepOperandsAvailable(Val, HoistPt))
728             return false;
729         } else if (!DT->dominates(Val->getParent(), HoistPt))
730           return false;
731       }
732     }
733 
734     // Check whether we can compute the Gep at HoistPt.
735     if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
736       return false;
737 
738     makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
739 
740     if (Val && isa<GetElementPtrInst>(Val))
741       makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
742 
743     return true;
744   }
745 
746   std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
747     unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
748     for (const HoistingPointInfo &HP : HPL) {
749       // Find out whether we already have one of the instructions in HoistPt,
750       // in which case we do not have to move it.
751       BasicBlock *HoistPt = HP.first;
752       const SmallVecInsn &InstructionsToHoist = HP.second;
753       Instruction *Repl = nullptr;
754       for (Instruction *I : InstructionsToHoist)
755         if (I->getParent() == HoistPt)
756           // If there are two instructions in HoistPt to be hoisted in place:
757           // update Repl to be the first one, such that we can rename the uses
758           // of the second based on the first.
759           if (!Repl || firstInBB(I, Repl))
760             Repl = I;
761 
762       // Keep track of whether we moved the instruction so we know whether we
763       // should move the MemoryAccess.
764       bool MoveAccess = true;
765       if (Repl) {
766         // Repl is already in HoistPt: it remains in place.
767         assert(allOperandsAvailable(Repl, HoistPt) &&
768                "instruction depends on operands that are not available");
769         MoveAccess = false;
770       } else {
771         // When we do not find Repl in HoistPt, select the first in the list
772         // and move it to HoistPt.
773         Repl = InstructionsToHoist.front();
774 
775         // We can move Repl in HoistPt only when all operands are available.
776         // The order in which hoistings are done may influence the availability
777         // of operands.
778         if (!allOperandsAvailable(Repl, HoistPt)) {
779 
780           // When HoistingGeps there is nothing more we can do to make the
781           // operands available: just continue.
782           if (HoistingGeps)
783             continue;
784 
785           // When not HoistingGeps we need to copy the GEPs.
786           if (!makeGepOperandsAvailable(Repl, HoistPt, InstructionsToHoist))
787             continue;
788         }
789 
790         // Move the instruction at the end of HoistPt.
791         Instruction *Last = HoistPt->getTerminator();
792         Repl->moveBefore(Last);
793 
794         DFSNumber[Repl] = DFSNumber[Last]++;
795       }
796 
797       MemoryAccess *NewMemAcc = MSSA->getMemoryAccess(Repl);
798 
799       if (MoveAccess) {
800         if (MemoryUseOrDef *OldMemAcc =
801                 dyn_cast_or_null<MemoryUseOrDef>(NewMemAcc)) {
802           // The definition of this ld/st will not change: ld/st hoisting is
803           // legal when the ld/st is not moved past its current definition.
804           MemoryAccess *Def = OldMemAcc->getDefiningAccess();
805           NewMemAcc =
806               MSSA->createMemoryAccessInBB(Repl, Def, HoistPt, MemorySSA::End);
807           OldMemAcc->replaceAllUsesWith(NewMemAcc);
808           MSSA->removeMemoryAccess(OldMemAcc);
809         }
810       }
811 
812       if (isa<LoadInst>(Repl))
813         ++NL;
814       else if (isa<StoreInst>(Repl))
815         ++NS;
816       else if (isa<CallInst>(Repl))
817         ++NC;
818       else // Scalar
819         ++NI;
820 
821       // Remove and rename all other instructions.
822       for (Instruction *I : InstructionsToHoist)
823         if (I != Repl) {
824           ++NR;
825           if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
826             ReplacementLoad->setAlignment(
827                 std::min(ReplacementLoad->getAlignment(),
828                          cast<LoadInst>(I)->getAlignment()));
829             ++NumLoadsRemoved;
830           } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
831             ReplacementStore->setAlignment(
832                 std::min(ReplacementStore->getAlignment(),
833                          cast<StoreInst>(I)->getAlignment()));
834             ++NumStoresRemoved;
835           } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
836             ReplacementAlloca->setAlignment(
837                 std::max(ReplacementAlloca->getAlignment(),
838                          cast<AllocaInst>(I)->getAlignment()));
839           } else if (isa<CallInst>(Repl)) {
840             ++NumCallsRemoved;
841           }
842 
843           if (NewMemAcc) {
844             // Update the uses of the old MSSA access with NewMemAcc.
845             MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
846             OldMA->replaceAllUsesWith(NewMemAcc);
847             MSSA->removeMemoryAccess(OldMA);
848           }
849 
850           Repl->andIRFlags(I);
851           combineKnownMetadata(Repl, I);
852           I->replaceAllUsesWith(Repl);
853           // Also invalidate the Alias Analysis cache.
854           MD->removeInstruction(I);
855           I->eraseFromParent();
856         }
857 
858       // Remove MemorySSA phi nodes with the same arguments.
859       if (NewMemAcc) {
860         SmallPtrSet<MemoryPhi *, 4> UsePhis;
861         for (User *U : NewMemAcc->users())
862           if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
863             UsePhis.insert(Phi);
864 
865         for (auto *Phi : UsePhis) {
866           auto In = Phi->incoming_values();
867           if (all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
868             Phi->replaceAllUsesWith(NewMemAcc);
869             MSSA->removeMemoryAccess(Phi);
870           }
871         }
872       }
873     }
874 
875     NumHoisted += NL + NS + NC + NI;
876     NumRemoved += NR;
877     NumLoadsHoisted += NL;
878     NumStoresHoisted += NS;
879     NumCallsHoisted += NC;
880     return {NI, NL + NC + NS};
881   }
882 
883   // Hoist all expressions. Returns Number of scalars hoisted
884   // and number of non-scalars hoisted.
885   std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
886     InsnInfo II;
887     LoadInfo LI;
888     StoreInfo SI;
889     CallInfo CI;
890     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
891       int InstructionNb = 0;
892       for (Instruction &I1 : *BB) {
893         // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
894         // deeper may increase the register pressure and compilation time.
895         if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
896           break;
897 
898         // Do not value number terminator instructions.
899         if (isa<TerminatorInst>(&I1))
900           break;
901 
902         if (auto *Load = dyn_cast<LoadInst>(&I1))
903           LI.insert(Load, VN);
904         else if (auto *Store = dyn_cast<StoreInst>(&I1))
905           SI.insert(Store, VN);
906         else if (auto *Call = dyn_cast<CallInst>(&I1)) {
907           if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
908             if (isa<DbgInfoIntrinsic>(Intr) ||
909                 Intr->getIntrinsicID() == Intrinsic::assume)
910               continue;
911           }
912           if (Call->mayHaveSideEffects()) {
913             if (!OptForMinSize)
914               break;
915             // We may continue hoisting across calls which write to memory.
916             if (Call->mayThrow())
917               break;
918           }
919 
920           if (Call->isConvergent())
921             break;
922 
923           CI.insert(Call, VN);
924         } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
925           // Do not hoist scalars past calls that may write to memory because
926           // that could result in spills later. geps are handled separately.
927           // TODO: We can relax this for targets like AArch64 as they have more
928           // registers than X86.
929           II.insert(&I1, VN);
930       }
931     }
932 
933     HoistingPointList HPL;
934     computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
935     computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
936     computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
937     computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
938     computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
939     computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
940     return hoist(HPL);
941   }
942 };
943 
944 class GVNHoistLegacyPass : public FunctionPass {
945 public:
946   static char ID;
947 
948   GVNHoistLegacyPass() : FunctionPass(ID) {
949     initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
950   }
951 
952   bool runOnFunction(Function &F) override {
953     if (skipFunction(F))
954       return false;
955     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
956     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
957     auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
958     auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
959 
960     GVNHoist G(&DT, &AA, &MD, &MSSA, F.optForMinSize());
961     return G.run(F);
962   }
963 
964   void getAnalysisUsage(AnalysisUsage &AU) const override {
965     AU.addRequired<DominatorTreeWrapperPass>();
966     AU.addRequired<AAResultsWrapperPass>();
967     AU.addRequired<MemoryDependenceWrapperPass>();
968     AU.addRequired<MemorySSAWrapperPass>();
969     AU.addPreserved<DominatorTreeWrapperPass>();
970     AU.addPreserved<MemorySSAWrapperPass>();
971   }
972 };
973 } // namespace
974 
975 PreservedAnalyses GVNHoistPass::run(Function &F,
976                                     FunctionAnalysisManager &AM) {
977   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
978   AliasAnalysis &AA = AM.getResult<AAManager>(F);
979   MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
980   MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
981   GVNHoist G(&DT, &AA, &MD, &MSSA, F.optForMinSize());
982   if (!G.run(F))
983     return PreservedAnalyses::all();
984 
985   PreservedAnalyses PA;
986   PA.preserve<DominatorTreeAnalysis>();
987   PA.preserve<MemorySSAAnalysis>();
988   return PA;
989 }
990 
991 char GVNHoistLegacyPass::ID = 0;
992 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
993                       "Early GVN Hoisting of Expressions", false, false)
994 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
995 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
996 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
997 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
998 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
999                     "Early GVN Hoisting of Expressions", false, false)
1000 
1001 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }
1002