1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass hoists expressions from branches to a common dominator. It uses 11 // GVN (global value numbering) to discover expressions computing the same 12 // values. The primary goals of code-hoisting are: 13 // 1. To reduce the code size. 14 // 2. In some cases reduce critical path (by exposing more ILP). 15 // 16 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 17 // is disabled in the following cases. 18 // 1. Scalars across calls. 19 // 2. geps when corresponding load/store cannot be hoisted. 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/ADT/DenseMap.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Transforms/Scalar.h" 27 #include "llvm/Transforms/Scalar/GVN.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 #include "llvm/Transforms/Utils/MemorySSA.h" 30 31 using namespace llvm; 32 33 #define DEBUG_TYPE "gvn-hoist" 34 35 STATISTIC(NumHoisted, "Number of instructions hoisted"); 36 STATISTIC(NumRemoved, "Number of instructions removed"); 37 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 38 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 39 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 40 STATISTIC(NumStoresRemoved, "Number of stores removed"); 41 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 42 STATISTIC(NumCallsRemoved, "Number of calls removed"); 43 44 static cl::opt<int> 45 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 46 cl::desc("Max number of instructions to hoist " 47 "(default unlimited = -1)")); 48 static cl::opt<int> MaxNumberOfBBSInPath( 49 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 50 cl::desc("Max number of basic blocks on the path between " 51 "hoisting locations (default = 4, unlimited = -1)")); 52 53 static cl::opt<int> MaxDepthInBB( 54 "gvn-hoist-max-depth", cl::Hidden, cl::init(100), 55 cl::desc("Hoist instructions from the beginning of the BB up to the " 56 "maximum specified depth (default = 100, unlimited = -1)")); 57 58 static cl::opt<int> MaxChainLength( 59 "gvn-hoist-max-chain-length", cl::Hidden, cl::init(10), 60 cl::desc("Maximum length of dependent chains to hoist " 61 "(default = 10, unlimited = -1)")); 62 63 namespace { 64 65 // Provides a sorting function based on the execution order of two instructions. 66 struct SortByDFSIn { 67 private: 68 DenseMap<const Value *, unsigned> &DFSNumber; 69 70 public: 71 SortByDFSIn(DenseMap<const Value *, unsigned> &D) : DFSNumber(D) {} 72 73 // Returns true when A executes before B. 74 bool operator()(const Instruction *A, const Instruction *B) const { 75 // FIXME: libc++ has a std::sort() algorithm that will call the compare 76 // function on the same element. Once PR20837 is fixed and some more years 77 // pass by and all the buildbots have moved to a corrected std::sort(), 78 // enable the following assert: 79 // 80 // assert(A != B); 81 82 const BasicBlock *BA = A->getParent(); 83 const BasicBlock *BB = B->getParent(); 84 unsigned ADFS, BDFS; 85 if (BA == BB) { 86 ADFS = DFSNumber.lookup(A); 87 BDFS = DFSNumber.lookup(B); 88 } else { 89 ADFS = DFSNumber.lookup(BA); 90 BDFS = DFSNumber.lookup(BB); 91 } 92 assert (ADFS && BDFS); 93 return ADFS < BDFS; 94 } 95 }; 96 97 // A map from a pair of VNs to all the instructions with those VNs. 98 typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>> 99 VNtoInsns; 100 // An invalid value number Used when inserting a single value number into 101 // VNtoInsns. 102 enum : unsigned { InvalidVN = ~2U }; 103 104 // Records all scalar instructions candidate for code hoisting. 105 class InsnInfo { 106 VNtoInsns VNtoScalars; 107 108 public: 109 // Inserts I and its value number in VNtoScalars. 110 void insert(Instruction *I, GVN::ValueTable &VN) { 111 // Scalar instruction. 112 unsigned V = VN.lookupOrAdd(I); 113 VNtoScalars[{V, InvalidVN}].push_back(I); 114 } 115 116 const VNtoInsns &getVNTable() const { return VNtoScalars; } 117 }; 118 119 // Records all load instructions candidate for code hoisting. 120 class LoadInfo { 121 VNtoInsns VNtoLoads; 122 123 public: 124 // Insert Load and the value number of its memory address in VNtoLoads. 125 void insert(LoadInst *Load, GVN::ValueTable &VN) { 126 if (Load->isSimple()) { 127 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 128 VNtoLoads[{V, InvalidVN}].push_back(Load); 129 } 130 } 131 132 const VNtoInsns &getVNTable() const { return VNtoLoads; } 133 }; 134 135 // Records all store instructions candidate for code hoisting. 136 class StoreInfo { 137 VNtoInsns VNtoStores; 138 139 public: 140 // Insert the Store and a hash number of the store address and the stored 141 // value in VNtoStores. 142 void insert(StoreInst *Store, GVN::ValueTable &VN) { 143 if (!Store->isSimple()) 144 return; 145 // Hash the store address and the stored value. 146 Value *Ptr = Store->getPointerOperand(); 147 Value *Val = Store->getValueOperand(); 148 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 149 } 150 151 const VNtoInsns &getVNTable() const { return VNtoStores; } 152 }; 153 154 // Records all call instructions candidate for code hoisting. 155 class CallInfo { 156 VNtoInsns VNtoCallsScalars; 157 VNtoInsns VNtoCallsLoads; 158 VNtoInsns VNtoCallsStores; 159 160 public: 161 // Insert Call and its value numbering in one of the VNtoCalls* containers. 162 void insert(CallInst *Call, GVN::ValueTable &VN) { 163 // A call that doesNotAccessMemory is handled as a Scalar, 164 // onlyReadsMemory will be handled as a Load instruction, 165 // all other calls will be handled as stores. 166 unsigned V = VN.lookupOrAdd(Call); 167 auto Entry = std::make_pair(V, InvalidVN); 168 169 if (Call->doesNotAccessMemory()) 170 VNtoCallsScalars[Entry].push_back(Call); 171 else if (Call->onlyReadsMemory()) 172 VNtoCallsLoads[Entry].push_back(Call); 173 else 174 VNtoCallsStores[Entry].push_back(Call); 175 } 176 177 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 178 179 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 180 181 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 182 }; 183 184 typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet; 185 typedef SmallVector<Instruction *, 4> SmallVecInsn; 186 typedef SmallVectorImpl<Instruction *> SmallVecImplInsn; 187 188 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { 189 static const unsigned KnownIDs[] = { 190 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 191 LLVMContext::MD_noalias, LLVMContext::MD_range, 192 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 193 LLVMContext::MD_invariant_group}; 194 combineMetadata(ReplInst, I, KnownIDs); 195 } 196 197 // This pass hoists common computations across branches sharing common 198 // dominator. The primary goal is to reduce the code size, and in some 199 // cases reduce critical path (by exposing more ILP). 200 class GVNHoist { 201 public: 202 GVNHoist(DominatorTree *DT, AliasAnalysis *AA, MemoryDependenceResults *MD, 203 MemorySSA *MSSA, bool OptForMinSize) 204 : DT(DT), AA(AA), MD(MD), MSSA(MSSA), OptForMinSize(OptForMinSize), 205 HoistingGeps(OptForMinSize), HoistedCtr(0) {} 206 bool run(Function &F) { 207 VN.setDomTree(DT); 208 VN.setAliasAnalysis(AA); 209 VN.setMemDep(MD); 210 bool Res = false; 211 // Perform DFS Numbering of instructions. 212 unsigned BBI = 0; 213 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) { 214 DFSNumber[BB] = ++BBI; 215 unsigned I = 0; 216 for (auto &Inst: *BB) 217 DFSNumber[&Inst] = ++I; 218 } 219 220 int ChainLength = 0; 221 222 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 223 while (1) { 224 if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength) 225 return Res; 226 227 auto HoistStat = hoistExpressions(F); 228 if (HoistStat.first + HoistStat.second == 0) 229 return Res; 230 231 if (HoistStat.second > 0) 232 // To address a limitation of the current GVN, we need to rerun the 233 // hoisting after we hoisted loads or stores in order to be able to 234 // hoist all scalars dependent on the hoisted ld/st. 235 VN.clear(); 236 237 Res = true; 238 } 239 240 return Res; 241 } 242 private: 243 GVN::ValueTable VN; 244 DominatorTree *DT; 245 AliasAnalysis *AA; 246 MemoryDependenceResults *MD; 247 MemorySSA *MSSA; 248 const bool OptForMinSize; 249 const bool HoistingGeps; 250 DenseMap<const Value *, unsigned> DFSNumber; 251 BBSideEffectsSet BBSideEffects; 252 int HoistedCtr; 253 254 enum InsKind { Unknown, Scalar, Load, Store }; 255 256 // Return true when there are exception handling in BB. 257 bool hasEH(const BasicBlock *BB) { 258 auto It = BBSideEffects.find(BB); 259 if (It != BBSideEffects.end()) 260 return It->second; 261 262 if (BB->isEHPad() || BB->hasAddressTaken()) { 263 BBSideEffects[BB] = true; 264 return true; 265 } 266 267 if (BB->getTerminator()->mayThrow()) { 268 BBSideEffects[BB] = true; 269 return true; 270 } 271 272 BBSideEffects[BB] = false; 273 return false; 274 } 275 276 // Return true when a successor of BB dominates A. 277 bool successorDominate(const BasicBlock *BB, const BasicBlock *A) { 278 for (const BasicBlock *Succ : BB->getTerminator()->successors()) 279 if (DT->dominates(Succ, A)) 280 return true; 281 282 return false; 283 } 284 285 // Return true when all paths from HoistBB to the end of the function pass 286 // through one of the blocks in WL. 287 bool hoistingFromAllPaths(const BasicBlock *HoistBB, 288 SmallPtrSetImpl<const BasicBlock *> &WL) { 289 290 // Copy WL as the loop will remove elements from it. 291 SmallPtrSet<const BasicBlock *, 2> WorkList(WL.begin(), WL.end()); 292 293 for (auto It = df_begin(HoistBB), E = df_end(HoistBB); It != E;) { 294 // There exists a path from HoistBB to the exit of the function if we are 295 // still iterating in DF traversal and we removed all instructions from 296 // the work list. 297 if (WorkList.empty()) 298 return false; 299 300 const BasicBlock *BB = *It; 301 if (WorkList.erase(BB)) { 302 // Stop DFS traversal when BB is in the work list. 303 It.skipChildren(); 304 continue; 305 } 306 307 // Check for end of function, calls that do not return, etc. 308 if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator())) 309 return false; 310 311 // When reaching the back-edge of a loop, there may be a path through the 312 // loop that does not pass through B or C before exiting the loop. 313 if (successorDominate(BB, HoistBB)) 314 return false; 315 316 // Increment DFS traversal when not skipping children. 317 ++It; 318 } 319 320 return true; 321 } 322 323 /* Return true when I1 appears before I2 in the instructions of BB. */ 324 bool firstInBB(const Instruction *I1, const Instruction *I2) { 325 assert (I1->getParent() == I2->getParent()); 326 unsigned I1DFS = DFSNumber.lookup(I1); 327 unsigned I2DFS = DFSNumber.lookup(I2); 328 assert (I1DFS && I2DFS); 329 return I1DFS < I2DFS; 330 } 331 332 // Return true when there are memory uses of Def in BB. 333 bool hasMemoryUseOnPath(const Instruction *NewPt, MemoryDef *Def, const BasicBlock *BB) { 334 const Instruction *OldPt = Def->getMemoryInst(); 335 const BasicBlock *OldBB = OldPt->getParent(); 336 const BasicBlock *NewBB = NewPt->getParent(); 337 338 bool ReachedNewPt = false; 339 MemoryLocation DefLoc = MemoryLocation::get(OldPt); 340 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB); 341 for (const MemoryAccess &MA : *Acc) { 342 auto *MU = dyn_cast<MemoryUse>(&MA); 343 if (!MU) 344 continue; 345 346 // Do not check whether MU aliases Def when MU occurs after OldPt. 347 if (BB == OldBB && firstInBB(OldPt, MU->getMemoryInst())) 348 break; 349 350 // Do not check whether MU aliases Def when MU occurs before NewPt. 351 if (BB == NewBB) { 352 if (!ReachedNewPt) { 353 if (firstInBB(MU->getMemoryInst(), NewPt)) 354 continue; 355 ReachedNewPt = true; 356 } 357 } 358 359 if (!AA->isNoAlias(DefLoc, MemoryLocation::get(MU->getMemoryInst()))) 360 return true; 361 } 362 363 return false; 364 } 365 366 // Return true when there are exception handling or loads of memory Def 367 // between Def and NewPt. This function is only called for stores: Def is 368 // the MemoryDef of the store to be hoisted. 369 370 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 371 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 372 // initialized to -1 which is unlimited. 373 bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def, 374 int &NBBsOnAllPaths) { 375 const BasicBlock *NewBB = NewPt->getParent(); 376 const BasicBlock *OldBB = Def->getBlock(); 377 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 378 assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) && 379 "def does not dominate new hoisting point"); 380 381 // Walk all basic blocks reachable in depth-first iteration on the inverse 382 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 383 // executed between the execution of NewBB and OldBB. Hoisting an expression 384 // from OldBB into NewBB has to be safe on all execution paths. 385 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 386 if (*I == NewBB) { 387 // Stop traversal when reaching HoistPt. 388 I.skipChildren(); 389 continue; 390 } 391 392 // Impossible to hoist with exceptions on the path. 393 if (hasEH(*I)) 394 return true; 395 396 // Check that we do not move a store past loads. 397 if (hasMemoryUseOnPath(NewPt, Def, *I)) 398 return true; 399 400 // Stop walk once the limit is reached. 401 if (NBBsOnAllPaths == 0) 402 return true; 403 404 // -1 is unlimited number of blocks on all paths. 405 if (NBBsOnAllPaths != -1) 406 --NBBsOnAllPaths; 407 408 ++I; 409 } 410 411 return false; 412 } 413 414 // Return true when there are exception handling between HoistPt and BB. 415 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 416 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 417 // initialized to -1 which is unlimited. 418 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB, 419 int &NBBsOnAllPaths) { 420 assert(DT->dominates(HoistPt, BB) && "Invalid path"); 421 422 // Walk all basic blocks reachable in depth-first iteration on 423 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 424 // blocks that may be executed between the execution of NewHoistPt and 425 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 426 // on all execution paths. 427 for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) { 428 if (*I == HoistPt) { 429 // Stop traversal when reaching NewHoistPt. 430 I.skipChildren(); 431 continue; 432 } 433 434 // Impossible to hoist with exceptions on the path. 435 if (hasEH(*I)) 436 return true; 437 438 // Stop walk once the limit is reached. 439 if (NBBsOnAllPaths == 0) 440 return true; 441 442 // -1 is unlimited number of blocks on all paths. 443 if (NBBsOnAllPaths != -1) 444 --NBBsOnAllPaths; 445 446 ++I; 447 } 448 449 return false; 450 } 451 452 // Return true when it is safe to hoist a memory load or store U from OldPt 453 // to NewPt. 454 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 455 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { 456 457 // In place hoisting is safe. 458 if (NewPt == OldPt) 459 return true; 460 461 const BasicBlock *NewBB = NewPt->getParent(); 462 const BasicBlock *OldBB = OldPt->getParent(); 463 const BasicBlock *UBB = U->getBlock(); 464 465 // Check for dependences on the Memory SSA. 466 MemoryAccess *D = U->getDefiningAccess(); 467 BasicBlock *DBB = D->getBlock(); 468 if (DT->properlyDominates(NewBB, DBB)) 469 // Cannot move the load or store to NewBB above its definition in DBB. 470 return false; 471 472 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 473 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 474 if (firstInBB(NewPt, UD->getMemoryInst())) 475 // Cannot move the load or store to NewPt above its definition in D. 476 return false; 477 478 // Check for unsafe hoistings due to side effects. 479 if (K == InsKind::Store) { 480 if (hasEHOrLoadsOnPath(NewPt, dyn_cast<MemoryDef>(U), NBBsOnAllPaths)) 481 return false; 482 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 483 return false; 484 485 if (UBB == NewBB) { 486 if (DT->properlyDominates(DBB, NewBB)) 487 return true; 488 assert(UBB == DBB); 489 assert(MSSA->locallyDominates(D, U)); 490 } 491 492 // No side effects: it is safe to hoist. 493 return true; 494 } 495 496 // Return true when it is safe to hoist scalar instructions from all blocks in 497 // WL to HoistBB. 498 bool safeToHoistScalar(const BasicBlock *HoistBB, 499 SmallPtrSetImpl<const BasicBlock *> &WL, 500 int &NBBsOnAllPaths) { 501 // Check that the hoisted expression is needed on all paths. Enable scalar 502 // hoisting at -Oz as it is safe to hoist scalars to a place where they are 503 // partially needed. 504 if (!OptForMinSize && !hoistingFromAllPaths(HoistBB, WL)) 505 return false; 506 507 for (const BasicBlock *BB : WL) 508 if (hasEHOnPath(HoistBB, BB, NBBsOnAllPaths)) 509 return false; 510 511 return true; 512 } 513 514 // Each element of a hoisting list contains the basic block where to hoist and 515 // a list of instructions to be hoisted. 516 typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo; 517 typedef SmallVector<HoistingPointInfo, 4> HoistingPointList; 518 519 // Partition InstructionsToHoist into a set of candidates which can share a 520 // common hoisting point. The partitions are collected in HPL. IsScalar is 521 // true when the instructions in InstructionsToHoist are scalars. IsLoad is 522 // true when the InstructionsToHoist are loads, false when they are stores. 523 void partitionCandidates(SmallVecImplInsn &InstructionsToHoist, 524 HoistingPointList &HPL, InsKind K) { 525 // No need to sort for two instructions. 526 if (InstructionsToHoist.size() > 2) { 527 SortByDFSIn Pred(DFSNumber); 528 std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred); 529 } 530 531 int NBBsOnAllPaths = MaxNumberOfBBSInPath; 532 533 SmallVecImplInsn::iterator II = InstructionsToHoist.begin(); 534 SmallVecImplInsn::iterator Start = II; 535 Instruction *HoistPt = *II; 536 BasicBlock *HoistBB = HoistPt->getParent(); 537 MemoryUseOrDef *UD; 538 if (K != InsKind::Scalar) 539 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(HoistPt)); 540 541 for (++II; II != InstructionsToHoist.end(); ++II) { 542 Instruction *Insn = *II; 543 BasicBlock *BB = Insn->getParent(); 544 BasicBlock *NewHoistBB; 545 Instruction *NewHoistPt; 546 547 if (BB == HoistBB) { 548 NewHoistBB = HoistBB; 549 NewHoistPt = firstInBB(Insn, HoistPt) ? Insn : HoistPt; 550 } else { 551 NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB); 552 if (NewHoistBB == BB) 553 NewHoistPt = Insn; 554 else if (NewHoistBB == HoistBB) 555 NewHoistPt = HoistPt; 556 else 557 NewHoistPt = NewHoistBB->getTerminator(); 558 } 559 560 SmallPtrSet<const BasicBlock *, 2> WL; 561 WL.insert(HoistBB); 562 WL.insert(BB); 563 564 if (K == InsKind::Scalar) { 565 if (safeToHoistScalar(NewHoistBB, WL, NBBsOnAllPaths)) { 566 // Extend HoistPt to NewHoistPt. 567 HoistPt = NewHoistPt; 568 HoistBB = NewHoistBB; 569 continue; 570 } 571 } else { 572 // When NewBB already contains an instruction to be hoisted, the 573 // expression is needed on all paths. 574 // Check that the hoisted expression is needed on all paths: it is 575 // unsafe to hoist loads to a place where there may be a path not 576 // loading from the same address: for instance there may be a branch on 577 // which the address of the load may not be initialized. 578 if ((HoistBB == NewHoistBB || BB == NewHoistBB || 579 hoistingFromAllPaths(NewHoistBB, WL)) && 580 // Also check that it is safe to move the load or store from HoistPt 581 // to NewHoistPt, and from Insn to NewHoistPt. 582 safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) && 583 safeToHoistLdSt(NewHoistPt, Insn, 584 cast<MemoryUseOrDef>(MSSA->getMemoryAccess(Insn)), 585 K, NBBsOnAllPaths)) { 586 // Extend HoistPt to NewHoistPt. 587 HoistPt = NewHoistPt; 588 HoistBB = NewHoistBB; 589 continue; 590 } 591 } 592 593 // At this point it is not safe to extend the current hoisting to 594 // NewHoistPt: save the hoisting list so far. 595 if (std::distance(Start, II) > 1) 596 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 597 598 // Start over from BB. 599 Start = II; 600 if (K != InsKind::Scalar) 601 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(*Start)); 602 HoistPt = Insn; 603 HoistBB = BB; 604 NBBsOnAllPaths = MaxNumberOfBBSInPath; 605 } 606 607 // Save the last partition. 608 if (std::distance(Start, II) > 1) 609 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 610 } 611 612 // Initialize HPL from Map. 613 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 614 InsKind K) { 615 for (const auto &Entry : Map) { 616 if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold) 617 return; 618 619 const SmallVecInsn &V = Entry.second; 620 if (V.size() < 2) 621 continue; 622 623 // Compute the insertion point and the list of expressions to be hoisted. 624 SmallVecInsn InstructionsToHoist; 625 for (auto I : V) 626 if (!hasEH(I->getParent())) 627 InstructionsToHoist.push_back(I); 628 629 if (!InstructionsToHoist.empty()) 630 partitionCandidates(InstructionsToHoist, HPL, K); 631 } 632 } 633 634 // Return true when all operands of Instr are available at insertion point 635 // HoistPt. When limiting the number of hoisted expressions, one could hoist 636 // a load without hoisting its access function. So before hoisting any 637 // expression, make sure that all its operands are available at insert point. 638 bool allOperandsAvailable(const Instruction *I, 639 const BasicBlock *HoistPt) const { 640 for (const Use &Op : I->operands()) 641 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 642 if (!DT->dominates(Inst->getParent(), HoistPt)) 643 return false; 644 645 return true; 646 } 647 648 // Same as allOperandsAvailable with recursive check for GEP operands. 649 bool allGepOperandsAvailable(const Instruction *I, 650 const BasicBlock *HoistPt) const { 651 for (const Use &Op : I->operands()) 652 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 653 if (!DT->dominates(Inst->getParent(), HoistPt)) { 654 if (const GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Inst)) { 655 if (!allGepOperandsAvailable(GepOp, HoistPt)) 656 return false; 657 // Gep is available if all operands of GepOp are available. 658 } else { 659 // Gep is not available if it has operands other than GEPs that are 660 // defined in blocks not dominating HoistPt. 661 return false; 662 } 663 } 664 return true; 665 } 666 667 // Make all operands of the GEP available. 668 void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt, 669 const SmallVecInsn &InstructionsToHoist, 670 Instruction *Gep) const { 671 assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available"); 672 673 Instruction *ClonedGep = Gep->clone(); 674 for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i) 675 if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) { 676 677 // Check whether the operand is already available. 678 if (DT->dominates(Op->getParent(), HoistPt)) 679 continue; 680 681 // As a GEP can refer to other GEPs, recursively make all the operands 682 // of this GEP available at HoistPt. 683 if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op)) 684 makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp); 685 } 686 687 // Copy Gep and replace its uses in Repl with ClonedGep. 688 ClonedGep->insertBefore(HoistPt->getTerminator()); 689 690 // Conservatively discard any optimization hints, they may differ on the 691 // other paths. 692 ClonedGep->dropUnknownNonDebugMetadata(); 693 694 // If we have optimization hints which agree with each other along different 695 // paths, preserve them. 696 for (const Instruction *OtherInst : InstructionsToHoist) { 697 const GetElementPtrInst *OtherGep; 698 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) 699 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); 700 else 701 OtherGep = cast<GetElementPtrInst>( 702 cast<StoreInst>(OtherInst)->getPointerOperand()); 703 ClonedGep->andIRFlags(OtherGep); 704 } 705 706 // Replace uses of Gep with ClonedGep in Repl. 707 Repl->replaceUsesOfWith(Gep, ClonedGep); 708 } 709 710 // In the case Repl is a load or a store, we make all their GEPs 711 // available: GEPs are not hoisted by default to avoid the address 712 // computations to be hoisted without the associated load or store. 713 bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, 714 const SmallVecInsn &InstructionsToHoist) const { 715 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 716 GetElementPtrInst *Gep = nullptr; 717 Instruction *Val = nullptr; 718 if (auto *Ld = dyn_cast<LoadInst>(Repl)) { 719 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 720 } else if (auto *St = dyn_cast<StoreInst>(Repl)) { 721 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 722 Val = dyn_cast<Instruction>(St->getValueOperand()); 723 // Check that the stored value is available. 724 if (Val) { 725 if (isa<GetElementPtrInst>(Val)) { 726 // Check whether we can compute the GEP at HoistPt. 727 if (!allGepOperandsAvailable(Val, HoistPt)) 728 return false; 729 } else if (!DT->dominates(Val->getParent(), HoistPt)) 730 return false; 731 } 732 } 733 734 // Check whether we can compute the Gep at HoistPt. 735 if (!Gep || !allGepOperandsAvailable(Gep, HoistPt)) 736 return false; 737 738 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep); 739 740 if (Val && isa<GetElementPtrInst>(Val)) 741 makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val); 742 743 return true; 744 } 745 746 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) { 747 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 748 for (const HoistingPointInfo &HP : HPL) { 749 // Find out whether we already have one of the instructions in HoistPt, 750 // in which case we do not have to move it. 751 BasicBlock *HoistPt = HP.first; 752 const SmallVecInsn &InstructionsToHoist = HP.second; 753 Instruction *Repl = nullptr; 754 for (Instruction *I : InstructionsToHoist) 755 if (I->getParent() == HoistPt) 756 // If there are two instructions in HoistPt to be hoisted in place: 757 // update Repl to be the first one, such that we can rename the uses 758 // of the second based on the first. 759 if (!Repl || firstInBB(I, Repl)) 760 Repl = I; 761 762 // Keep track of whether we moved the instruction so we know whether we 763 // should move the MemoryAccess. 764 bool MoveAccess = true; 765 if (Repl) { 766 // Repl is already in HoistPt: it remains in place. 767 assert(allOperandsAvailable(Repl, HoistPt) && 768 "instruction depends on operands that are not available"); 769 MoveAccess = false; 770 } else { 771 // When we do not find Repl in HoistPt, select the first in the list 772 // and move it to HoistPt. 773 Repl = InstructionsToHoist.front(); 774 775 // We can move Repl in HoistPt only when all operands are available. 776 // The order in which hoistings are done may influence the availability 777 // of operands. 778 if (!allOperandsAvailable(Repl, HoistPt)) { 779 780 // When HoistingGeps there is nothing more we can do to make the 781 // operands available: just continue. 782 if (HoistingGeps) 783 continue; 784 785 // When not HoistingGeps we need to copy the GEPs. 786 if (!makeGepOperandsAvailable(Repl, HoistPt, InstructionsToHoist)) 787 continue; 788 } 789 790 // Move the instruction at the end of HoistPt. 791 Instruction *Last = HoistPt->getTerminator(); 792 Repl->moveBefore(Last); 793 794 DFSNumber[Repl] = DFSNumber[Last]++; 795 } 796 797 MemoryAccess *NewMemAcc = MSSA->getMemoryAccess(Repl); 798 799 if (MoveAccess) { 800 if (MemoryUseOrDef *OldMemAcc = 801 dyn_cast_or_null<MemoryUseOrDef>(NewMemAcc)) { 802 // The definition of this ld/st will not change: ld/st hoisting is 803 // legal when the ld/st is not moved past its current definition. 804 MemoryAccess *Def = OldMemAcc->getDefiningAccess(); 805 NewMemAcc = 806 MSSA->createMemoryAccessInBB(Repl, Def, HoistPt, MemorySSA::End); 807 OldMemAcc->replaceAllUsesWith(NewMemAcc); 808 MSSA->removeMemoryAccess(OldMemAcc); 809 } 810 } 811 812 if (isa<LoadInst>(Repl)) 813 ++NL; 814 else if (isa<StoreInst>(Repl)) 815 ++NS; 816 else if (isa<CallInst>(Repl)) 817 ++NC; 818 else // Scalar 819 ++NI; 820 821 // Remove and rename all other instructions. 822 for (Instruction *I : InstructionsToHoist) 823 if (I != Repl) { 824 ++NR; 825 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { 826 ReplacementLoad->setAlignment( 827 std::min(ReplacementLoad->getAlignment(), 828 cast<LoadInst>(I)->getAlignment())); 829 ++NumLoadsRemoved; 830 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { 831 ReplacementStore->setAlignment( 832 std::min(ReplacementStore->getAlignment(), 833 cast<StoreInst>(I)->getAlignment())); 834 ++NumStoresRemoved; 835 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { 836 ReplacementAlloca->setAlignment( 837 std::max(ReplacementAlloca->getAlignment(), 838 cast<AllocaInst>(I)->getAlignment())); 839 } else if (isa<CallInst>(Repl)) { 840 ++NumCallsRemoved; 841 } 842 843 if (NewMemAcc) { 844 // Update the uses of the old MSSA access with NewMemAcc. 845 MemoryAccess *OldMA = MSSA->getMemoryAccess(I); 846 OldMA->replaceAllUsesWith(NewMemAcc); 847 MSSA->removeMemoryAccess(OldMA); 848 } 849 850 Repl->andIRFlags(I); 851 combineKnownMetadata(Repl, I); 852 I->replaceAllUsesWith(Repl); 853 // Also invalidate the Alias Analysis cache. 854 MD->removeInstruction(I); 855 I->eraseFromParent(); 856 } 857 858 // Remove MemorySSA phi nodes with the same arguments. 859 if (NewMemAcc) { 860 SmallPtrSet<MemoryPhi *, 4> UsePhis; 861 for (User *U : NewMemAcc->users()) 862 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U)) 863 UsePhis.insert(Phi); 864 865 for (auto *Phi : UsePhis) { 866 auto In = Phi->incoming_values(); 867 if (all_of(In, [&](Use &U) { return U == NewMemAcc; })) { 868 Phi->replaceAllUsesWith(NewMemAcc); 869 MSSA->removeMemoryAccess(Phi); 870 } 871 } 872 } 873 } 874 875 NumHoisted += NL + NS + NC + NI; 876 NumRemoved += NR; 877 NumLoadsHoisted += NL; 878 NumStoresHoisted += NS; 879 NumCallsHoisted += NC; 880 return {NI, NL + NC + NS}; 881 } 882 883 // Hoist all expressions. Returns Number of scalars hoisted 884 // and number of non-scalars hoisted. 885 std::pair<unsigned, unsigned> hoistExpressions(Function &F) { 886 InsnInfo II; 887 LoadInfo LI; 888 StoreInfo SI; 889 CallInfo CI; 890 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 891 int InstructionNb = 0; 892 for (Instruction &I1 : *BB) { 893 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting 894 // deeper may increase the register pressure and compilation time. 895 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) 896 break; 897 898 // Do not value number terminator instructions. 899 if (isa<TerminatorInst>(&I1)) 900 break; 901 902 if (auto *Load = dyn_cast<LoadInst>(&I1)) 903 LI.insert(Load, VN); 904 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 905 SI.insert(Store, VN); 906 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 907 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 908 if (isa<DbgInfoIntrinsic>(Intr) || 909 Intr->getIntrinsicID() == Intrinsic::assume) 910 continue; 911 } 912 if (Call->mayHaveSideEffects()) { 913 if (!OptForMinSize) 914 break; 915 // We may continue hoisting across calls which write to memory. 916 if (Call->mayThrow()) 917 break; 918 } 919 920 if (Call->isConvergent()) 921 break; 922 923 CI.insert(Call, VN); 924 } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1)) 925 // Do not hoist scalars past calls that may write to memory because 926 // that could result in spills later. geps are handled separately. 927 // TODO: We can relax this for targets like AArch64 as they have more 928 // registers than X86. 929 II.insert(&I1, VN); 930 } 931 } 932 933 HoistingPointList HPL; 934 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 935 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 936 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 937 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 938 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 939 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 940 return hoist(HPL); 941 } 942 }; 943 944 class GVNHoistLegacyPass : public FunctionPass { 945 public: 946 static char ID; 947 948 GVNHoistLegacyPass() : FunctionPass(ID) { 949 initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); 950 } 951 952 bool runOnFunction(Function &F) override { 953 if (skipFunction(F)) 954 return false; 955 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 956 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 957 auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 958 auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA(); 959 960 GVNHoist G(&DT, &AA, &MD, &MSSA, F.optForMinSize()); 961 return G.run(F); 962 } 963 964 void getAnalysisUsage(AnalysisUsage &AU) const override { 965 AU.addRequired<DominatorTreeWrapperPass>(); 966 AU.addRequired<AAResultsWrapperPass>(); 967 AU.addRequired<MemoryDependenceWrapperPass>(); 968 AU.addRequired<MemorySSAWrapperPass>(); 969 AU.addPreserved<DominatorTreeWrapperPass>(); 970 AU.addPreserved<MemorySSAWrapperPass>(); 971 } 972 }; 973 } // namespace 974 975 PreservedAnalyses GVNHoistPass::run(Function &F, 976 FunctionAnalysisManager &AM) { 977 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 978 AliasAnalysis &AA = AM.getResult<AAManager>(F); 979 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 980 MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); 981 GVNHoist G(&DT, &AA, &MD, &MSSA, F.optForMinSize()); 982 if (!G.run(F)) 983 return PreservedAnalyses::all(); 984 985 PreservedAnalyses PA; 986 PA.preserve<DominatorTreeAnalysis>(); 987 PA.preserve<MemorySSAAnalysis>(); 988 return PA; 989 } 990 991 char GVNHoistLegacyPass::ID = 0; 992 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", 993 "Early GVN Hoisting of Expressions", false, false) 994 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 995 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) 996 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 997 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 998 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", 999 "Early GVN Hoisting of Expressions", false, false) 1000 1001 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } 1002