1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass hoists expressions from branches to a common dominator. It uses 11 // GVN (global value numbering) to discover expressions computing the same 12 // values. The primary goal is to reduce the code size, and in some 13 // cases reduce critical path (by exposing more ILP). 14 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 15 // is disabled in the following cases. 16 // 1. Scalars across calls. 17 // 2. geps when corresponding load/store cannot be hoisted. 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Transforms/Scalar.h" 25 #include "llvm/Transforms/Scalar/GVN.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/Transforms/Utils/MemorySSA.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "gvn-hoist" 32 33 STATISTIC(NumHoisted, "Number of instructions hoisted"); 34 STATISTIC(NumRemoved, "Number of instructions removed"); 35 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 36 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 37 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 38 STATISTIC(NumStoresRemoved, "Number of stores removed"); 39 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 40 STATISTIC(NumCallsRemoved, "Number of calls removed"); 41 42 static cl::opt<int> 43 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 44 cl::desc("Max number of instructions to hoist " 45 "(default unlimited = -1)")); 46 static cl::opt<int> MaxNumberOfBBSInPath( 47 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 48 cl::desc("Max number of basic blocks on the path between " 49 "hoisting locations (default = 4, unlimited = -1)")); 50 51 namespace { 52 53 // Provides a sorting function based on the execution order of two instructions. 54 struct SortByDFSIn { 55 private: 56 DenseMap<const BasicBlock *, unsigned> &DFSNumber; 57 58 public: 59 SortByDFSIn(DenseMap<const BasicBlock *, unsigned> &D) : DFSNumber(D) {} 60 61 // Returns true when A executes before B. 62 bool operator()(const Instruction *A, const Instruction *B) const { 63 // FIXME: libc++ has a std::sort() algorithm that will call the compare 64 // function on the same element. Once PR20837 is fixed and some more years 65 // pass by and all the buildbots have moved to a corrected std::sort(), 66 // enable the following assert: 67 // 68 // assert(A != B); 69 70 const BasicBlock *BA = A->getParent(); 71 const BasicBlock *BB = B->getParent(); 72 unsigned NA = DFSNumber[BA]; 73 unsigned NB = DFSNumber[BB]; 74 if (NA < NB) 75 return true; 76 if (NA == NB) { 77 // Sort them in the order they occur in the same basic block. 78 BasicBlock::const_iterator AI(A), BI(B); 79 return std::distance(AI, BI) < 0; 80 } 81 return false; 82 } 83 }; 84 85 // A map from a pair of VNs to all the instructions with those VNs. 86 typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>> 87 VNtoInsns; 88 // An invalid value number Used when inserting a single value number into 89 // VNtoInsns. 90 enum : unsigned { InvalidVN = ~2U }; 91 92 // Records all scalar instructions candidate for code hoisting. 93 class InsnInfo { 94 VNtoInsns VNtoScalars; 95 96 public: 97 // Inserts I and its value number in VNtoScalars. 98 void insert(Instruction *I, GVN::ValueTable &VN) { 99 // Scalar instruction. 100 unsigned V = VN.lookupOrAdd(I); 101 VNtoScalars[{V, InvalidVN}].push_back(I); 102 } 103 104 const VNtoInsns &getVNTable() const { return VNtoScalars; } 105 }; 106 107 // Records all load instructions candidate for code hoisting. 108 class LoadInfo { 109 VNtoInsns VNtoLoads; 110 111 public: 112 // Insert Load and the value number of its memory address in VNtoLoads. 113 void insert(LoadInst *Load, GVN::ValueTable &VN) { 114 if (Load->isSimple()) { 115 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 116 VNtoLoads[{V, InvalidVN}].push_back(Load); 117 } 118 } 119 120 const VNtoInsns &getVNTable() const { return VNtoLoads; } 121 }; 122 123 // Records all store instructions candidate for code hoisting. 124 class StoreInfo { 125 VNtoInsns VNtoStores; 126 127 public: 128 // Insert the Store and a hash number of the store address and the stored 129 // value in VNtoStores. 130 void insert(StoreInst *Store, GVN::ValueTable &VN) { 131 if (!Store->isSimple()) 132 return; 133 // Hash the store address and the stored value. 134 Value *Ptr = Store->getPointerOperand(); 135 Value *Val = Store->getValueOperand(); 136 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 137 } 138 139 const VNtoInsns &getVNTable() const { return VNtoStores; } 140 }; 141 142 // Records all call instructions candidate for code hoisting. 143 class CallInfo { 144 VNtoInsns VNtoCallsScalars; 145 VNtoInsns VNtoCallsLoads; 146 VNtoInsns VNtoCallsStores; 147 148 public: 149 // Insert Call and its value numbering in one of the VNtoCalls* containers. 150 void insert(CallInst *Call, GVN::ValueTable &VN) { 151 // A call that doesNotAccessMemory is handled as a Scalar, 152 // onlyReadsMemory will be handled as a Load instruction, 153 // all other calls will be handled as stores. 154 unsigned V = VN.lookupOrAdd(Call); 155 auto Entry = std::make_pair(V, InvalidVN); 156 157 if (Call->doesNotAccessMemory()) 158 VNtoCallsScalars[Entry].push_back(Call); 159 else if (Call->onlyReadsMemory()) 160 VNtoCallsLoads[Entry].push_back(Call); 161 else 162 VNtoCallsStores[Entry].push_back(Call); 163 } 164 165 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 166 167 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 168 169 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 170 }; 171 172 typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet; 173 typedef SmallVector<Instruction *, 4> SmallVecInsn; 174 typedef SmallVectorImpl<Instruction *> SmallVecImplInsn; 175 176 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { 177 static const unsigned KnownIDs[] = { 178 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 179 LLVMContext::MD_noalias, LLVMContext::MD_range, 180 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 181 LLVMContext::MD_invariant_group}; 182 combineMetadata(ReplInst, I, KnownIDs); 183 } 184 185 // This pass hoists common computations across branches sharing common 186 // dominator. The primary goal is to reduce the code size, and in some 187 // cases reduce critical path (by exposing more ILP). 188 class GVNHoist { 189 public: 190 GVNHoist(DominatorTree *Dt, AliasAnalysis *Aa, MemoryDependenceResults *Md, 191 bool OptForMinSize) 192 : DT(Dt), AA(Aa), MD(Md), OptForMinSize(OptForMinSize), HoistedCtr(0) {} 193 bool run(Function &F) { 194 VN.setDomTree(DT); 195 VN.setAliasAnalysis(AA); 196 VN.setMemDep(MD); 197 bool Res = false; 198 199 unsigned I = 0; 200 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) 201 DFSNumber.insert({BB, ++I}); 202 203 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 204 while (1) { 205 // FIXME: only compute MemorySSA once. We need to update the analysis in 206 // the same time as transforming the code. 207 MemorySSA M(F, AA, DT); 208 MSSA = &M; 209 210 auto HoistStat = hoistExpressions(F); 211 if (HoistStat.first + HoistStat.second == 0) { 212 return Res; 213 } 214 if (HoistStat.second > 0) { 215 // To address a limitation of the current GVN, we need to rerun the 216 // hoisting after we hoisted loads in order to be able to hoist all 217 // scalars dependent on the hoisted loads. Same for stores. 218 VN.clear(); 219 } 220 Res = true; 221 } 222 223 return Res; 224 } 225 private: 226 GVN::ValueTable VN; 227 DominatorTree *DT; 228 AliasAnalysis *AA; 229 MemoryDependenceResults *MD; 230 const bool OptForMinSize; 231 DenseMap<const BasicBlock *, unsigned> DFSNumber; 232 BBSideEffectsSet BBSideEffects; 233 MemorySSA *MSSA; 234 int HoistedCtr; 235 236 enum InsKind { Unknown, Scalar, Load, Store }; 237 238 // Return true when there are exception handling in BB. 239 bool hasEH(const BasicBlock *BB) { 240 auto It = BBSideEffects.find(BB); 241 if (It != BBSideEffects.end()) 242 return It->second; 243 244 if (BB->isEHPad() || BB->hasAddressTaken()) { 245 BBSideEffects[BB] = true; 246 return true; 247 } 248 249 if (BB->getTerminator()->mayThrow()) { 250 BBSideEffects[BB] = true; 251 return true; 252 } 253 254 BBSideEffects[BB] = false; 255 return false; 256 } 257 258 // Return true when all paths from A to the end of the function pass through 259 // either B or C. 260 bool hoistingFromAllPaths(const BasicBlock *A, const BasicBlock *B, 261 const BasicBlock *C) { 262 // We fully copy the WL in order to be able to remove items from it. 263 SmallPtrSet<const BasicBlock *, 2> WL; 264 WL.insert(B); 265 WL.insert(C); 266 267 for (auto It = df_begin(A), E = df_end(A); It != E;) { 268 // There exists a path from A to the exit of the function if we are still 269 // iterating in DF traversal and we removed all instructions from the work 270 // list. 271 if (WL.empty()) 272 return false; 273 274 const BasicBlock *BB = *It; 275 if (WL.erase(BB)) { 276 // Stop DFS traversal when BB is in the work list. 277 It.skipChildren(); 278 continue; 279 } 280 281 // Check for end of function, calls that do not return, etc. 282 if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator())) 283 return false; 284 285 // Increment DFS traversal when not skipping children. 286 ++It; 287 } 288 289 return true; 290 } 291 292 /* Return true when I1 appears before I2 in the instructions of BB. */ 293 bool firstInBB(BasicBlock *BB, const Instruction *I1, const Instruction *I2) { 294 for (Instruction &I : *BB) { 295 if (&I == I1) 296 return true; 297 if (&I == I2) 298 return false; 299 } 300 301 llvm_unreachable("I1 and I2 not found in BB"); 302 } 303 // Return true when there are users of Def in BB. 304 bool hasMemoryUseOnPath(MemoryAccess *Def, const BasicBlock *BB, 305 const Instruction *OldPt) { 306 const BasicBlock *DefBB = Def->getBlock(); 307 const BasicBlock *OldBB = OldPt->getParent(); 308 309 for (User *U : Def->users()) 310 if (auto *MU = dyn_cast<MemoryUse>(U)) { 311 BasicBlock *UBB = MU->getBlock(); 312 // Only analyze uses in BB. 313 if (BB != UBB) 314 continue; 315 316 // A use in the same block as the Def is on the path. 317 if (UBB == DefBB) { 318 assert(MSSA->locallyDominates(Def, MU) && "def not dominating use"); 319 return true; 320 } 321 322 if (UBB != OldBB) 323 return true; 324 325 // It is only harmful to hoist when the use is before OldPt. 326 if (firstInBB(UBB, MU->getMemoryInst(), OldPt)) 327 return true; 328 } 329 330 return false; 331 } 332 333 // Return true when there are exception handling or loads of memory Def 334 // between OldPt and NewPt. 335 336 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 337 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 338 // initialized to -1 which is unlimited. 339 bool hasEHOrLoadsOnPath(const Instruction *NewPt, const Instruction *OldPt, 340 MemoryAccess *Def, int &NBBsOnAllPaths) { 341 const BasicBlock *NewBB = NewPt->getParent(); 342 const BasicBlock *OldBB = OldPt->getParent(); 343 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 344 assert(DT->dominates(Def->getBlock(), NewBB) && 345 "def does not dominate new hoisting point"); 346 347 // Walk all basic blocks reachable in depth-first iteration on the inverse 348 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 349 // executed between the execution of NewBB and OldBB. Hoisting an expression 350 // from OldBB into NewBB has to be safe on all execution paths. 351 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 352 if (*I == NewBB) { 353 // Stop traversal when reaching HoistPt. 354 I.skipChildren(); 355 continue; 356 } 357 358 // Impossible to hoist with exceptions on the path. 359 if (hasEH(*I)) 360 return true; 361 362 // Check that we do not move a store past loads. 363 if (hasMemoryUseOnPath(Def, *I, OldPt)) 364 return true; 365 366 // Stop walk once the limit is reached. 367 if (NBBsOnAllPaths == 0) 368 return true; 369 370 // -1 is unlimited number of blocks on all paths. 371 if (NBBsOnAllPaths != -1) 372 --NBBsOnAllPaths; 373 374 ++I; 375 } 376 377 return false; 378 } 379 380 // Return true when there are exception handling between HoistPt and BB. 381 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 382 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 383 // initialized to -1 which is unlimited. 384 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB, 385 int &NBBsOnAllPaths) { 386 assert(DT->dominates(HoistPt, BB) && "Invalid path"); 387 388 // Walk all basic blocks reachable in depth-first iteration on 389 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 390 // blocks that may be executed between the execution of NewHoistPt and 391 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 392 // on all execution paths. 393 for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) { 394 if (*I == HoistPt) { 395 // Stop traversal when reaching NewHoistPt. 396 I.skipChildren(); 397 continue; 398 } 399 400 // Impossible to hoist with exceptions on the path. 401 if (hasEH(*I)) 402 return true; 403 404 // Stop walk once the limit is reached. 405 if (NBBsOnAllPaths == 0) 406 return true; 407 408 // -1 is unlimited number of blocks on all paths. 409 if (NBBsOnAllPaths != -1) 410 --NBBsOnAllPaths; 411 412 ++I; 413 } 414 415 return false; 416 } 417 418 // Return true when it is safe to hoist a memory load or store U from OldPt 419 // to NewPt. 420 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 421 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { 422 423 // In place hoisting is safe. 424 if (NewPt == OldPt) 425 return true; 426 427 const BasicBlock *NewBB = NewPt->getParent(); 428 const BasicBlock *OldBB = OldPt->getParent(); 429 const BasicBlock *UBB = U->getBlock(); 430 431 // Check for dependences on the Memory SSA. 432 MemoryAccess *D = U->getDefiningAccess(); 433 BasicBlock *DBB = D->getBlock(); 434 if (DT->properlyDominates(NewBB, DBB)) 435 // Cannot move the load or store to NewBB above its definition in DBB. 436 return false; 437 438 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 439 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 440 if (firstInBB(DBB, NewPt, UD->getMemoryInst())) 441 // Cannot move the load or store to NewPt above its definition in D. 442 return false; 443 444 // Check for unsafe hoistings due to side effects. 445 if (K == InsKind::Store) { 446 if (hasEHOrLoadsOnPath(NewPt, OldPt, D, NBBsOnAllPaths)) 447 return false; 448 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 449 return false; 450 451 if (UBB == NewBB) { 452 if (DT->properlyDominates(DBB, NewBB)) 453 return true; 454 assert(UBB == DBB); 455 assert(MSSA->locallyDominates(D, U)); 456 } 457 458 // No side effects: it is safe to hoist. 459 return true; 460 } 461 462 // Return true when it is safe to hoist scalar instructions from BB1 and BB2 463 // to HoistBB. 464 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB1, 465 const BasicBlock *BB2, int &NBBsOnAllPaths) { 466 // Check that the hoisted expression is needed on all paths. When HoistBB 467 // already contains an instruction to be hoisted, the expression is needed 468 // on all paths. Enable scalar hoisting at -Oz as it is safe to hoist 469 // scalars to a place where they are partially needed. 470 if (!OptForMinSize && BB1 != HoistBB && 471 !hoistingFromAllPaths(HoistBB, BB1, BB2)) 472 return false; 473 474 if (hasEHOnPath(HoistBB, BB1, NBBsOnAllPaths) || 475 hasEHOnPath(HoistBB, BB2, NBBsOnAllPaths)) 476 return false; 477 478 // Safe to hoist scalars from BB1 and BB2 to HoistBB. 479 return true; 480 } 481 482 // Each element of a hoisting list contains the basic block where to hoist and 483 // a list of instructions to be hoisted. 484 typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo; 485 typedef SmallVector<HoistingPointInfo, 4> HoistingPointList; 486 487 // Partition InstructionsToHoist into a set of candidates which can share a 488 // common hoisting point. The partitions are collected in HPL. IsScalar is 489 // true when the instructions in InstructionsToHoist are scalars. IsLoad is 490 // true when the InstructionsToHoist are loads, false when they are stores. 491 void partitionCandidates(SmallVecImplInsn &InstructionsToHoist, 492 HoistingPointList &HPL, InsKind K) { 493 // No need to sort for two instructions. 494 if (InstructionsToHoist.size() > 2) { 495 SortByDFSIn Pred(DFSNumber); 496 std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred); 497 } 498 499 int NBBsOnAllPaths = MaxNumberOfBBSInPath; 500 501 SmallVecImplInsn::iterator II = InstructionsToHoist.begin(); 502 SmallVecImplInsn::iterator Start = II; 503 Instruction *HoistPt = *II; 504 BasicBlock *HoistBB = HoistPt->getParent(); 505 MemoryUseOrDef *UD; 506 if (K != InsKind::Scalar) 507 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(HoistPt)); 508 509 for (++II; II != InstructionsToHoist.end(); ++II) { 510 Instruction *Insn = *II; 511 BasicBlock *BB = Insn->getParent(); 512 BasicBlock *NewHoistBB; 513 Instruction *NewHoistPt; 514 515 if (BB == HoistBB) { 516 NewHoistBB = HoistBB; 517 NewHoistPt = firstInBB(BB, Insn, HoistPt) ? Insn : HoistPt; 518 } else { 519 NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB); 520 if (NewHoistBB == BB) 521 NewHoistPt = Insn; 522 else if (NewHoistBB == HoistBB) 523 NewHoistPt = HoistPt; 524 else 525 NewHoistPt = NewHoistBB->getTerminator(); 526 } 527 528 if (K == InsKind::Scalar) { 529 if (safeToHoistScalar(NewHoistBB, HoistBB, BB, NBBsOnAllPaths)) { 530 // Extend HoistPt to NewHoistPt. 531 HoistPt = NewHoistPt; 532 HoistBB = NewHoistBB; 533 continue; 534 } 535 } else { 536 // When NewBB already contains an instruction to be hoisted, the 537 // expression is needed on all paths. 538 // Check that the hoisted expression is needed on all paths: it is 539 // unsafe to hoist loads to a place where there may be a path not 540 // loading from the same address: for instance there may be a branch on 541 // which the address of the load may not be initialized. 542 if ((HoistBB == NewHoistBB || BB == NewHoistBB || 543 hoistingFromAllPaths(NewHoistBB, HoistBB, BB)) && 544 // Also check that it is safe to move the load or store from HoistPt 545 // to NewHoistPt, and from Insn to NewHoistPt. 546 safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) && 547 safeToHoistLdSt(NewHoistPt, Insn, 548 cast<MemoryUseOrDef>(MSSA->getMemoryAccess(Insn)), 549 K, NBBsOnAllPaths)) { 550 // Extend HoistPt to NewHoistPt. 551 HoistPt = NewHoistPt; 552 HoistBB = NewHoistBB; 553 continue; 554 } 555 } 556 557 // At this point it is not safe to extend the current hoisting to 558 // NewHoistPt: save the hoisting list so far. 559 if (std::distance(Start, II) > 1) 560 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 561 562 // Start over from BB. 563 Start = II; 564 if (K != InsKind::Scalar) 565 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(*Start)); 566 HoistPt = Insn; 567 HoistBB = BB; 568 NBBsOnAllPaths = MaxNumberOfBBSInPath; 569 } 570 571 // Save the last partition. 572 if (std::distance(Start, II) > 1) 573 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 574 } 575 576 // Initialize HPL from Map. 577 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 578 InsKind K) { 579 for (const auto &Entry : Map) { 580 if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold) 581 return; 582 583 const SmallVecInsn &V = Entry.second; 584 if (V.size() < 2) 585 continue; 586 587 // Compute the insertion point and the list of expressions to be hoisted. 588 SmallVecInsn InstructionsToHoist; 589 for (auto I : V) 590 if (!hasEH(I->getParent())) 591 InstructionsToHoist.push_back(I); 592 593 if (!InstructionsToHoist.empty()) 594 partitionCandidates(InstructionsToHoist, HPL, K); 595 } 596 } 597 598 // Return true when all operands of Instr are available at insertion point 599 // HoistPt. When limiting the number of hoisted expressions, one could hoist 600 // a load without hoisting its access function. So before hoisting any 601 // expression, make sure that all its operands are available at insert point. 602 bool allOperandsAvailable(const Instruction *I, 603 const BasicBlock *HoistPt) const { 604 for (const Use &Op : I->operands()) 605 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 606 if (!DT->dominates(Inst->getParent(), HoistPt)) 607 return false; 608 609 return true; 610 } 611 612 Instruction *firstOfTwo(Instruction *I, Instruction *J) const { 613 for (Instruction &I1 : *I->getParent()) 614 if (&I1 == I || &I1 == J) 615 return &I1; 616 llvm_unreachable("Both I and J must be from same BB"); 617 } 618 619 bool makeOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, 620 const SmallVecInsn &InstructionsToHoist) const { 621 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 622 GetElementPtrInst *Gep = nullptr; 623 Instruction *Val = nullptr; 624 if (auto *Ld = dyn_cast<LoadInst>(Repl)) 625 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 626 if (auto *St = dyn_cast<StoreInst>(Repl)) { 627 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 628 Val = dyn_cast<Instruction>(St->getValueOperand()); 629 // Check that the stored value is available. 630 if (Val) { 631 if (isa<GetElementPtrInst>(Val)) { 632 // Check whether we can compute the GEP at HoistPt. 633 if (!allOperandsAvailable(Val, HoistPt)) 634 return false; 635 } else if (!DT->dominates(Val->getParent(), HoistPt)) 636 return false; 637 } 638 } 639 640 // Check whether we can compute the Gep at HoistPt. 641 if (!Gep || !allOperandsAvailable(Gep, HoistPt)) 642 return false; 643 644 // Copy the gep before moving the ld/st. 645 Instruction *ClonedGep = Gep->clone(); 646 ClonedGep->insertBefore(HoistPt->getTerminator()); 647 // Conservatively discard any optimization hints, they may differ on the 648 // other paths. 649 for (Instruction *OtherInst : InstructionsToHoist) { 650 GetElementPtrInst *OtherGep; 651 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) 652 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); 653 else 654 OtherGep = cast<GetElementPtrInst>( 655 cast<StoreInst>(OtherInst)->getPointerOperand()); 656 ClonedGep->intersectOptionalDataWith(OtherGep); 657 combineKnownMetadata(ClonedGep, OtherGep); 658 } 659 Repl->replaceUsesOfWith(Gep, ClonedGep); 660 661 // Also copy Val when it is a GEP. 662 if (Val && isa<GetElementPtrInst>(Val)) { 663 Instruction *ClonedVal = Val->clone(); 664 ClonedVal->insertBefore(HoistPt->getTerminator()); 665 // Conservatively discard any optimization hints, they may differ on the 666 // other paths. 667 for (Instruction *OtherInst : InstructionsToHoist) { 668 auto *OtherVal = 669 cast<Instruction>(cast<StoreInst>(OtherInst)->getValueOperand()); 670 ClonedVal->intersectOptionalDataWith(OtherVal); 671 combineKnownMetadata(ClonedVal, OtherVal); 672 } 673 Repl->replaceUsesOfWith(Val, ClonedVal); 674 } 675 676 return true; 677 } 678 679 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) { 680 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 681 for (const HoistingPointInfo &HP : HPL) { 682 // Find out whether we already have one of the instructions in HoistPt, 683 // in which case we do not have to move it. 684 BasicBlock *HoistPt = HP.first; 685 const SmallVecInsn &InstructionsToHoist = HP.second; 686 Instruction *Repl = nullptr; 687 for (Instruction *I : InstructionsToHoist) 688 if (I->getParent() == HoistPt) { 689 // If there are two instructions in HoistPt to be hoisted in place: 690 // update Repl to be the first one, such that we can rename the uses 691 // of the second based on the first. 692 Repl = !Repl ? I : firstOfTwo(Repl, I); 693 } 694 695 if (Repl) { 696 // Repl is already in HoistPt: it remains in place. 697 assert(allOperandsAvailable(Repl, HoistPt) && 698 "instruction depends on operands that are not available"); 699 } else { 700 // When we do not find Repl in HoistPt, select the first in the list 701 // and move it to HoistPt. 702 Repl = InstructionsToHoist.front(); 703 704 // We can move Repl in HoistPt only when all operands are available. 705 // The order in which hoistings are done may influence the availability 706 // of operands. 707 if (!allOperandsAvailable(Repl, HoistPt) && 708 !makeOperandsAvailable(Repl, HoistPt, InstructionsToHoist)) 709 continue; 710 Repl->moveBefore(HoistPt->getTerminator()); 711 // TBAA may differ on one of the other paths, we need to get rid of 712 // anything which might conflict. 713 } 714 715 if (isa<LoadInst>(Repl)) 716 ++NL; 717 else if (isa<StoreInst>(Repl)) 718 ++NS; 719 else if (isa<CallInst>(Repl)) 720 ++NC; 721 else // Scalar 722 ++NI; 723 724 // Remove and rename all other instructions. 725 for (Instruction *I : InstructionsToHoist) 726 if (I != Repl) { 727 ++NR; 728 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { 729 ReplacementLoad->setAlignment( 730 std::min(ReplacementLoad->getAlignment(), 731 cast<LoadInst>(I)->getAlignment())); 732 ++NumLoadsRemoved; 733 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { 734 ReplacementStore->setAlignment( 735 std::min(ReplacementStore->getAlignment(), 736 cast<StoreInst>(I)->getAlignment())); 737 ++NumStoresRemoved; 738 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { 739 ReplacementAlloca->setAlignment( 740 std::max(ReplacementAlloca->getAlignment(), 741 cast<AllocaInst>(I)->getAlignment())); 742 } else if (isa<CallInst>(Repl)) { 743 ++NumCallsRemoved; 744 } 745 Repl->intersectOptionalDataWith(I); 746 combineKnownMetadata(Repl, I); 747 I->replaceAllUsesWith(Repl); 748 I->eraseFromParent(); 749 } 750 } 751 752 NumHoisted += NL + NS + NC + NI; 753 NumRemoved += NR; 754 NumLoadsHoisted += NL; 755 NumStoresHoisted += NS; 756 NumCallsHoisted += NC; 757 return {NI, NL + NC + NS}; 758 } 759 760 // Hoist all expressions. Returns Number of scalars hoisted 761 // and number of non-scalars hoisted. 762 std::pair<unsigned, unsigned> hoistExpressions(Function &F) { 763 InsnInfo II; 764 LoadInfo LI; 765 StoreInfo SI; 766 CallInfo CI; 767 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 768 for (Instruction &I1 : *BB) { 769 if (auto *Load = dyn_cast<LoadInst>(&I1)) 770 LI.insert(Load, VN); 771 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 772 SI.insert(Store, VN); 773 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 774 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 775 if (isa<DbgInfoIntrinsic>(Intr) || 776 Intr->getIntrinsicID() == Intrinsic::assume) 777 continue; 778 } 779 if (Call->mayHaveSideEffects()) { 780 if (!OptForMinSize) 781 break; 782 // We may continue hoisting across calls which write to memory. 783 if (Call->mayThrow()) 784 break; 785 } 786 CI.insert(Call, VN); 787 } else if (OptForMinSize || !isa<GetElementPtrInst>(&I1)) 788 // Do not hoist scalars past calls that may write to memory because 789 // that could result in spills later. geps are handled separately. 790 // TODO: We can relax this for targets like AArch64 as they have more 791 // registers than X86. 792 II.insert(&I1, VN); 793 } 794 } 795 796 HoistingPointList HPL; 797 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 798 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 799 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 800 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 801 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 802 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 803 return hoist(HPL); 804 } 805 }; 806 807 class GVNHoistLegacyPass : public FunctionPass { 808 public: 809 static char ID; 810 811 GVNHoistLegacyPass() : FunctionPass(ID) { 812 initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); 813 } 814 815 bool runOnFunction(Function &F) override { 816 if (skipFunction(F)) 817 return false; 818 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 819 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 820 auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 821 822 GVNHoist G(&DT, &AA, &MD, F.optForMinSize()); 823 return G.run(F); 824 } 825 826 void getAnalysisUsage(AnalysisUsage &AU) const override { 827 AU.addRequired<DominatorTreeWrapperPass>(); 828 AU.addRequired<AAResultsWrapperPass>(); 829 AU.addRequired<MemoryDependenceWrapperPass>(); 830 AU.addPreserved<DominatorTreeWrapperPass>(); 831 } 832 }; 833 } // namespace 834 835 PreservedAnalyses GVNHoistPass::run(Function &F, 836 AnalysisManager<Function> &AM) { 837 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 838 AliasAnalysis &AA = AM.getResult<AAManager>(F); 839 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 840 841 GVNHoist G(&DT, &AA, &MD, F.optForMinSize()); 842 if (!G.run(F)) 843 return PreservedAnalyses::all(); 844 845 PreservedAnalyses PA; 846 PA.preserve<DominatorTreeAnalysis>(); 847 return PA; 848 } 849 850 char GVNHoistLegacyPass::ID = 0; 851 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", 852 "Early GVN Hoisting of Expressions", false, false) 853 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 854 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 855 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 856 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", 857 "Early GVN Hoisting of Expressions", false, false) 858 859 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } 860