xref: /llvm-project/llvm/lib/Transforms/Scalar/GVNHoist.cpp (revision 5d68aa7913fc5a66ecbd6388d3ed02ab1ffec7be)
1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass hoists expressions from branches to a common dominator. It uses
11 // GVN (global value numbering) to discover expressions computing the same
12 // values. The primary goals of code-hoisting are:
13 // 1. To reduce the code size.
14 // 2. In some cases reduce critical path (by exposing more ILP).
15 //
16 // Hoisting may affect the performance in some cases. To mitigate that, hoisting
17 // is disabled in the following cases.
18 // 1. Scalars across calls.
19 // 2. geps when corresponding load/store cannot be hoisted.
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/ADT/DenseMap.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Transforms/Scalar.h"
27 #include "llvm/Transforms/Scalar/GVN.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Transforms/Utils/MemorySSA.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "gvn-hoist"
34 
35 STATISTIC(NumHoisted, "Number of instructions hoisted");
36 STATISTIC(NumRemoved, "Number of instructions removed");
37 STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
38 STATISTIC(NumLoadsRemoved, "Number of loads removed");
39 STATISTIC(NumStoresHoisted, "Number of stores hoisted");
40 STATISTIC(NumStoresRemoved, "Number of stores removed");
41 STATISTIC(NumCallsHoisted, "Number of calls hoisted");
42 STATISTIC(NumCallsRemoved, "Number of calls removed");
43 
44 static cl::opt<int>
45     MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
46                         cl::desc("Max number of instructions to hoist "
47                                  "(default unlimited = -1)"));
48 static cl::opt<int> MaxNumberOfBBSInPath(
49     "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
50     cl::desc("Max number of basic blocks on the path between "
51              "hoisting locations (default = 4, unlimited = -1)"));
52 
53 static cl::opt<int> MaxDepthInBB(
54     "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
55     cl::desc("Hoist instructions from the beginning of the BB up to the "
56              "maximum specified depth (default = 100, unlimited = -1)"));
57 
58 static cl::opt<int> MaxChainLength(
59     "gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
60     cl::desc("Maximum length of dependent chains to hoist "
61              "(default = 10, unlimited = -1)"));
62 
63 namespace {
64 
65 // Provides a sorting function based on the execution order of two instructions.
66 struct SortByDFSIn {
67 private:
68   DenseMap<const Value *, unsigned> &DFSNumber;
69 
70 public:
71   SortByDFSIn(DenseMap<const Value *, unsigned> &D) : DFSNumber(D) {}
72 
73   // Returns true when A executes before B.
74   bool operator()(const Instruction *A, const Instruction *B) const {
75     // FIXME: libc++ has a std::sort() algorithm that will call the compare
76     // function on the same element.  Once PR20837 is fixed and some more years
77     // pass by and all the buildbots have moved to a corrected std::sort(),
78     // enable the following assert:
79     //
80     // assert(A != B);
81 
82     const BasicBlock *BA = A->getParent();
83     const BasicBlock *BB = B->getParent();
84     unsigned ADFS, BDFS;
85     if (BA == BB) {
86       ADFS = DFSNumber.lookup(A);
87       BDFS = DFSNumber.lookup(B);
88     } else {
89       ADFS = DFSNumber.lookup(BA);
90       BDFS = DFSNumber.lookup(BB);
91     }
92     assert (ADFS && BDFS);
93     return ADFS < BDFS;
94   }
95 };
96 
97 // A map from a pair of VNs to all the instructions with those VNs.
98 typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>>
99     VNtoInsns;
100 // An invalid value number Used when inserting a single value number into
101 // VNtoInsns.
102 enum : unsigned { InvalidVN = ~2U };
103 
104 // Records all scalar instructions candidate for code hoisting.
105 class InsnInfo {
106   VNtoInsns VNtoScalars;
107 
108 public:
109   // Inserts I and its value number in VNtoScalars.
110   void insert(Instruction *I, GVN::ValueTable &VN) {
111     // Scalar instruction.
112     unsigned V = VN.lookupOrAdd(I);
113     VNtoScalars[{V, InvalidVN}].push_back(I);
114   }
115 
116   const VNtoInsns &getVNTable() const { return VNtoScalars; }
117 };
118 
119 // Records all load instructions candidate for code hoisting.
120 class LoadInfo {
121   VNtoInsns VNtoLoads;
122 
123 public:
124   // Insert Load and the value number of its memory address in VNtoLoads.
125   void insert(LoadInst *Load, GVN::ValueTable &VN) {
126     if (Load->isSimple()) {
127       unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
128       VNtoLoads[{V, InvalidVN}].push_back(Load);
129     }
130   }
131 
132   const VNtoInsns &getVNTable() const { return VNtoLoads; }
133 };
134 
135 // Records all store instructions candidate for code hoisting.
136 class StoreInfo {
137   VNtoInsns VNtoStores;
138 
139 public:
140   // Insert the Store and a hash number of the store address and the stored
141   // value in VNtoStores.
142   void insert(StoreInst *Store, GVN::ValueTable &VN) {
143     if (!Store->isSimple())
144       return;
145     // Hash the store address and the stored value.
146     Value *Ptr = Store->getPointerOperand();
147     Value *Val = Store->getValueOperand();
148     VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
149   }
150 
151   const VNtoInsns &getVNTable() const { return VNtoStores; }
152 };
153 
154 // Records all call instructions candidate for code hoisting.
155 class CallInfo {
156   VNtoInsns VNtoCallsScalars;
157   VNtoInsns VNtoCallsLoads;
158   VNtoInsns VNtoCallsStores;
159 
160 public:
161   // Insert Call and its value numbering in one of the VNtoCalls* containers.
162   void insert(CallInst *Call, GVN::ValueTable &VN) {
163     // A call that doesNotAccessMemory is handled as a Scalar,
164     // onlyReadsMemory will be handled as a Load instruction,
165     // all other calls will be handled as stores.
166     unsigned V = VN.lookupOrAdd(Call);
167     auto Entry = std::make_pair(V, InvalidVN);
168 
169     if (Call->doesNotAccessMemory())
170       VNtoCallsScalars[Entry].push_back(Call);
171     else if (Call->onlyReadsMemory())
172       VNtoCallsLoads[Entry].push_back(Call);
173     else
174       VNtoCallsStores[Entry].push_back(Call);
175   }
176 
177   const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
178 
179   const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
180 
181   const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
182 };
183 
184 typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet;
185 typedef SmallVector<Instruction *, 4> SmallVecInsn;
186 typedef SmallVectorImpl<Instruction *> SmallVecImplInsn;
187 
188 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
189   static const unsigned KnownIDs[] = {
190       LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
191       LLVMContext::MD_noalias,        LLVMContext::MD_range,
192       LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
193       LLVMContext::MD_invariant_group};
194   combineMetadata(ReplInst, I, KnownIDs);
195 }
196 
197 // This pass hoists common computations across branches sharing common
198 // dominator. The primary goal is to reduce the code size, and in some
199 // cases reduce critical path (by exposing more ILP).
200 class GVNHoist {
201 public:
202   GVNHoist(DominatorTree *DT, AliasAnalysis *AA, MemoryDependenceResults *MD,
203            MemorySSA *MSSA, bool OptForMinSize)
204       : DT(DT), AA(AA), MD(MD), MSSA(MSSA), OptForMinSize(OptForMinSize),
205         HoistingGeps(OptForMinSize), HoistedCtr(0) {}
206   bool run(Function &F) {
207     VN.setDomTree(DT);
208     VN.setAliasAnalysis(AA);
209     VN.setMemDep(MD);
210     bool Res = false;
211     // Perform DFS Numbering of instructions.
212     unsigned BBI = 0;
213     for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
214       DFSNumber[BB] = ++BBI;
215       unsigned I = 0;
216       for (auto &Inst: *BB)
217         DFSNumber[&Inst] = ++I;
218     }
219 
220     int ChainLength = 0;
221 
222     // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
223     while (1) {
224       if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
225         return Res;
226 
227       auto HoistStat = hoistExpressions(F);
228       if (HoistStat.first + HoistStat.second == 0)
229         return Res;
230 
231       if (HoistStat.second > 0)
232         // To address a limitation of the current GVN, we need to rerun the
233         // hoisting after we hoisted loads or stores in order to be able to
234         // hoist all scalars dependent on the hoisted ld/st.
235         VN.clear();
236 
237       Res = true;
238     }
239 
240     return Res;
241   }
242 private:
243   GVN::ValueTable VN;
244   DominatorTree *DT;
245   AliasAnalysis *AA;
246   MemoryDependenceResults *MD;
247   MemorySSA *MSSA;
248   const bool OptForMinSize;
249   const bool HoistingGeps;
250   DenseMap<const Value *, unsigned> DFSNumber;
251   BBSideEffectsSet BBSideEffects;
252   int HoistedCtr;
253 
254   enum InsKind { Unknown, Scalar, Load, Store };
255 
256   // Return true when there are exception handling in BB.
257   bool hasEH(const BasicBlock *BB) {
258     auto It = BBSideEffects.find(BB);
259     if (It != BBSideEffects.end())
260       return It->second;
261 
262     if (BB->isEHPad() || BB->hasAddressTaken()) {
263       BBSideEffects[BB] = true;
264       return true;
265     }
266 
267     if (BB->getTerminator()->mayThrow()) {
268       BBSideEffects[BB] = true;
269       return true;
270     }
271 
272     BBSideEffects[BB] = false;
273     return false;
274   }
275 
276   // Return true when a successor of BB dominates A.
277   bool successorDominate(const BasicBlock *BB, const BasicBlock *A) {
278     for (const BasicBlock *Succ : BB->getTerminator()->successors())
279       if (DT->dominates(Succ, A))
280         return true;
281 
282     return false;
283   }
284 
285   // Return true when all paths from HoistBB to the end of the function pass
286   // through one of the blocks in WL.
287   bool hoistingFromAllPaths(const BasicBlock *HoistBB,
288                             SmallPtrSetImpl<const BasicBlock *> &WL) {
289 
290     // Copy WL as the loop will remove elements from it.
291     SmallPtrSet<const BasicBlock *, 2> WorkList(WL.begin(), WL.end());
292 
293     for (auto It = df_begin(HoistBB), E = df_end(HoistBB); It != E;) {
294       // There exists a path from HoistBB to the exit of the function if we are
295       // still iterating in DF traversal and we removed all instructions from
296       // the work list.
297       if (WorkList.empty())
298         return false;
299 
300       const BasicBlock *BB = *It;
301       if (WorkList.erase(BB)) {
302         // Stop DFS traversal when BB is in the work list.
303         It.skipChildren();
304         continue;
305       }
306 
307       // Check for end of function, calls that do not return, etc.
308       if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator()))
309         return false;
310 
311       // When reaching the back-edge of a loop, there may be a path through the
312       // loop that does not pass through B or C before exiting the loop.
313       if (successorDominate(BB, HoistBB))
314         return false;
315 
316       // Increment DFS traversal when not skipping children.
317       ++It;
318     }
319 
320     return true;
321   }
322 
323   /* Return true when I1 appears before I2 in the instructions of BB.  */
324   bool firstInBB(const Instruction *I1, const Instruction *I2) {
325     assert (I1->getParent() == I2->getParent());
326     unsigned I1DFS = DFSNumber.lookup(I1);
327     unsigned I2DFS = DFSNumber.lookup(I2);
328     assert (I1DFS && I2DFS);
329     return I1DFS < I2DFS;
330   }
331 
332   // Return true when there are users of Def in BB.
333   bool hasMemoryUseOnPath(MemoryAccess *Def, const BasicBlock *BB,
334                           const Instruction *OldPt) {
335     const BasicBlock *DefBB = Def->getBlock();
336     const BasicBlock *OldBB = OldPt->getParent();
337 
338     for (User *U : Def->users())
339       if (auto *MU = dyn_cast<MemoryUse>(U)) {
340         // FIXME: MU->getBlock() does not get updated when we move the instruction.
341         BasicBlock *UBB = MU->getMemoryInst()->getParent();
342         // Only analyze uses in BB.
343         if (BB != UBB)
344           continue;
345 
346         // A use in the same block as the Def is on the path.
347         if (UBB == DefBB) {
348           assert(MSSA->locallyDominates(Def, MU) && "def not dominating use");
349           return true;
350         }
351 
352         if (UBB != OldBB)
353           return true;
354 
355         // It is only harmful to hoist when the use is before OldPt.
356         if (firstInBB(MU->getMemoryInst(), OldPt))
357           return true;
358       }
359 
360     return false;
361   }
362 
363   // Return true when there are exception handling or loads of memory Def
364   // between OldPt and NewPt.
365 
366   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
367   // return true when the counter NBBsOnAllPaths reaces 0, except when it is
368   // initialized to -1 which is unlimited.
369   bool hasEHOrLoadsOnPath(const Instruction *NewPt, const Instruction *OldPt,
370                           MemoryAccess *Def, int &NBBsOnAllPaths) {
371     const BasicBlock *NewBB = NewPt->getParent();
372     const BasicBlock *OldBB = OldPt->getParent();
373     assert(DT->dominates(NewBB, OldBB) && "invalid path");
374     assert(DT->dominates(Def->getBlock(), NewBB) &&
375            "def does not dominate new hoisting point");
376 
377     // Walk all basic blocks reachable in depth-first iteration on the inverse
378     // CFG from OldBB to NewBB. These blocks are all the blocks that may be
379     // executed between the execution of NewBB and OldBB. Hoisting an expression
380     // from OldBB into NewBB has to be safe on all execution paths.
381     for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
382       if (*I == NewBB) {
383         // Stop traversal when reaching HoistPt.
384         I.skipChildren();
385         continue;
386       }
387 
388       // Impossible to hoist with exceptions on the path.
389       if (hasEH(*I))
390         return true;
391 
392       // Check that we do not move a store past loads.
393       if (hasMemoryUseOnPath(Def, *I, OldPt))
394         return true;
395 
396       // Stop walk once the limit is reached.
397       if (NBBsOnAllPaths == 0)
398         return true;
399 
400       // -1 is unlimited number of blocks on all paths.
401       if (NBBsOnAllPaths != -1)
402         --NBBsOnAllPaths;
403 
404       ++I;
405     }
406 
407     return false;
408   }
409 
410   // Return true when there are exception handling between HoistPt and BB.
411   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
412   // return true when the counter NBBsOnAllPaths reaches 0, except when it is
413   // initialized to -1 which is unlimited.
414   bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB,
415                    int &NBBsOnAllPaths) {
416     assert(DT->dominates(HoistPt, BB) && "Invalid path");
417 
418     // Walk all basic blocks reachable in depth-first iteration on
419     // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
420     // blocks that may be executed between the execution of NewHoistPt and
421     // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
422     // on all execution paths.
423     for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) {
424       if (*I == HoistPt) {
425         // Stop traversal when reaching NewHoistPt.
426         I.skipChildren();
427         continue;
428       }
429 
430       // Impossible to hoist with exceptions on the path.
431       if (hasEH(*I))
432         return true;
433 
434       // Stop walk once the limit is reached.
435       if (NBBsOnAllPaths == 0)
436         return true;
437 
438       // -1 is unlimited number of blocks on all paths.
439       if (NBBsOnAllPaths != -1)
440         --NBBsOnAllPaths;
441 
442       ++I;
443     }
444 
445     return false;
446   }
447 
448   // Return true when it is safe to hoist a memory load or store U from OldPt
449   // to NewPt.
450   bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
451                        MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {
452 
453     // In place hoisting is safe.
454     if (NewPt == OldPt)
455       return true;
456 
457     const BasicBlock *NewBB = NewPt->getParent();
458     const BasicBlock *OldBB = OldPt->getParent();
459     const BasicBlock *UBB = U->getBlock();
460 
461     // Check for dependences on the Memory SSA.
462     MemoryAccess *D = U->getDefiningAccess();
463     BasicBlock *DBB = D->getBlock();
464     if (DT->properlyDominates(NewBB, DBB))
465       // Cannot move the load or store to NewBB above its definition in DBB.
466       return false;
467 
468     if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
469       if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
470         if (firstInBB(NewPt, UD->getMemoryInst()))
471           // Cannot move the load or store to NewPt above its definition in D.
472           return false;
473 
474     // Check for unsafe hoistings due to side effects.
475     if (K == InsKind::Store) {
476       if (hasEHOrLoadsOnPath(NewPt, OldPt, D, NBBsOnAllPaths))
477         return false;
478     } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
479       return false;
480 
481     if (UBB == NewBB) {
482       if (DT->properlyDominates(DBB, NewBB))
483         return true;
484       assert(UBB == DBB);
485       assert(MSSA->locallyDominates(D, U));
486     }
487 
488     // No side effects: it is safe to hoist.
489     return true;
490   }
491 
492   // Return true when it is safe to hoist scalar instructions from all blocks in
493   // WL to HoistBB.
494   bool safeToHoistScalar(const BasicBlock *HoistBB,
495                          SmallPtrSetImpl<const BasicBlock *> &WL,
496                          int &NBBsOnAllPaths) {
497     // Check that the hoisted expression is needed on all paths.  Enable scalar
498     // hoisting at -Oz as it is safe to hoist scalars to a place where they are
499     // partially needed.
500     if (!OptForMinSize && !hoistingFromAllPaths(HoistBB, WL))
501       return false;
502 
503     for (const BasicBlock *BB : WL)
504       if (hasEHOnPath(HoistBB, BB, NBBsOnAllPaths))
505         return false;
506 
507     return true;
508   }
509 
510   // Each element of a hoisting list contains the basic block where to hoist and
511   // a list of instructions to be hoisted.
512   typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo;
513   typedef SmallVector<HoistingPointInfo, 4> HoistingPointList;
514 
515   // Partition InstructionsToHoist into a set of candidates which can share a
516   // common hoisting point. The partitions are collected in HPL. IsScalar is
517   // true when the instructions in InstructionsToHoist are scalars. IsLoad is
518   // true when the InstructionsToHoist are loads, false when they are stores.
519   void partitionCandidates(SmallVecImplInsn &InstructionsToHoist,
520                            HoistingPointList &HPL, InsKind K) {
521     // No need to sort for two instructions.
522     if (InstructionsToHoist.size() > 2) {
523       SortByDFSIn Pred(DFSNumber);
524       std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred);
525     }
526 
527     int NBBsOnAllPaths = MaxNumberOfBBSInPath;
528 
529     SmallVecImplInsn::iterator II = InstructionsToHoist.begin();
530     SmallVecImplInsn::iterator Start = II;
531     Instruction *HoistPt = *II;
532     BasicBlock *HoistBB = HoistPt->getParent();
533     MemoryUseOrDef *UD;
534     if (K != InsKind::Scalar)
535       UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(HoistPt));
536 
537     for (++II; II != InstructionsToHoist.end(); ++II) {
538       Instruction *Insn = *II;
539       BasicBlock *BB = Insn->getParent();
540       BasicBlock *NewHoistBB;
541       Instruction *NewHoistPt;
542 
543       if (BB == HoistBB) {
544         NewHoistBB = HoistBB;
545         NewHoistPt = firstInBB(Insn, HoistPt) ? Insn : HoistPt;
546       } else {
547         NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB);
548         if (NewHoistBB == BB)
549           NewHoistPt = Insn;
550         else if (NewHoistBB == HoistBB)
551           NewHoistPt = HoistPt;
552         else
553           NewHoistPt = NewHoistBB->getTerminator();
554       }
555 
556       SmallPtrSet<const BasicBlock *, 2> WL;
557       WL.insert(HoistBB);
558       WL.insert(BB);
559 
560       if (K == InsKind::Scalar) {
561         if (safeToHoistScalar(NewHoistBB, WL, NBBsOnAllPaths)) {
562           // Extend HoistPt to NewHoistPt.
563           HoistPt = NewHoistPt;
564           HoistBB = NewHoistBB;
565           continue;
566         }
567       } else {
568         // When NewBB already contains an instruction to be hoisted, the
569         // expression is needed on all paths.
570         // Check that the hoisted expression is needed on all paths: it is
571         // unsafe to hoist loads to a place where there may be a path not
572         // loading from the same address: for instance there may be a branch on
573         // which the address of the load may not be initialized.
574         if ((HoistBB == NewHoistBB || BB == NewHoistBB ||
575              hoistingFromAllPaths(NewHoistBB, WL)) &&
576             // Also check that it is safe to move the load or store from HoistPt
577             // to NewHoistPt, and from Insn to NewHoistPt.
578             safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) &&
579             safeToHoistLdSt(NewHoistPt, Insn,
580                             cast<MemoryUseOrDef>(MSSA->getMemoryAccess(Insn)),
581                             K, NBBsOnAllPaths)) {
582           // Extend HoistPt to NewHoistPt.
583           HoistPt = NewHoistPt;
584           HoistBB = NewHoistBB;
585           continue;
586         }
587       }
588 
589       // At this point it is not safe to extend the current hoisting to
590       // NewHoistPt: save the hoisting list so far.
591       if (std::distance(Start, II) > 1)
592         HPL.push_back({HoistBB, SmallVecInsn(Start, II)});
593 
594       // Start over from BB.
595       Start = II;
596       if (K != InsKind::Scalar)
597         UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(*Start));
598       HoistPt = Insn;
599       HoistBB = BB;
600       NBBsOnAllPaths = MaxNumberOfBBSInPath;
601     }
602 
603     // Save the last partition.
604     if (std::distance(Start, II) > 1)
605       HPL.push_back({HoistBB, SmallVecInsn(Start, II)});
606   }
607 
608   // Initialize HPL from Map.
609   void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
610                               InsKind K) {
611     for (const auto &Entry : Map) {
612       if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold)
613         return;
614 
615       const SmallVecInsn &V = Entry.second;
616       if (V.size() < 2)
617         continue;
618 
619       // Compute the insertion point and the list of expressions to be hoisted.
620       SmallVecInsn InstructionsToHoist;
621       for (auto I : V)
622         if (!hasEH(I->getParent()))
623           InstructionsToHoist.push_back(I);
624 
625       if (!InstructionsToHoist.empty())
626         partitionCandidates(InstructionsToHoist, HPL, K);
627     }
628   }
629 
630   // Return true when all operands of Instr are available at insertion point
631   // HoistPt. When limiting the number of hoisted expressions, one could hoist
632   // a load without hoisting its access function. So before hoisting any
633   // expression, make sure that all its operands are available at insert point.
634   bool allOperandsAvailable(const Instruction *I,
635                             const BasicBlock *HoistPt) const {
636     for (const Use &Op : I->operands())
637       if (const auto *Inst = dyn_cast<Instruction>(&Op))
638         if (!DT->dominates(Inst->getParent(), HoistPt))
639           return false;
640 
641     return true;
642   }
643 
644   // Same as allOperandsAvailable with recursive check for GEP operands.
645   bool allGepOperandsAvailable(const Instruction *I,
646                                const BasicBlock *HoistPt) const {
647     for (const Use &Op : I->operands())
648       if (const auto *Inst = dyn_cast<Instruction>(&Op))
649         if (!DT->dominates(Inst->getParent(), HoistPt)) {
650           if (const GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Inst)) {
651             if (!allGepOperandsAvailable(GepOp, HoistPt))
652               return false;
653             // Gep is available if all operands of GepOp are available.
654           } else {
655             // Gep is not available if it has operands other than GEPs that are
656             // defined in blocks not dominating HoistPt.
657             return false;
658           }
659         }
660     return true;
661   }
662 
663   // Make all operands of the GEP available.
664   void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
665                          const SmallVecInsn &InstructionsToHoist,
666                          Instruction *Gep) const {
667     assert(allGepOperandsAvailable(Gep, HoistPt) && "GEP operands not available");
668 
669     Instruction *ClonedGep = Gep->clone();
670     for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
671       if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
672 
673         // Check whether the operand is already available.
674         if (DT->dominates(Op->getParent(), HoistPt))
675           continue;
676 
677         // As a GEP can refer to other GEPs, recursively make all the operands
678         // of this GEP available at HoistPt.
679         if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
680           makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
681       }
682 
683     // Copy Gep and replace its uses in Repl with ClonedGep.
684     ClonedGep->insertBefore(HoistPt->getTerminator());
685 
686     // Conservatively discard any optimization hints, they may differ on the
687     // other paths.
688     ClonedGep->dropUnknownNonDebugMetadata();
689 
690     // If we have optimization hints which agree with each other along different
691     // paths, preserve them.
692     for (const Instruction *OtherInst : InstructionsToHoist) {
693       const GetElementPtrInst *OtherGep;
694       if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
695         OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
696       else
697         OtherGep = cast<GetElementPtrInst>(
698             cast<StoreInst>(OtherInst)->getPointerOperand());
699       ClonedGep->andIRFlags(OtherGep);
700     }
701 
702     // Replace uses of Gep with ClonedGep in Repl.
703     Repl->replaceUsesOfWith(Gep, ClonedGep);
704   }
705 
706   // In the case Repl is a load or a store, we make all their GEPs
707   // available: GEPs are not hoisted by default to avoid the address
708   // computations to be hoisted without the associated load or store.
709   bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
710                                 const SmallVecInsn &InstructionsToHoist) const {
711     // Check whether the GEP of a ld/st can be synthesized at HoistPt.
712     GetElementPtrInst *Gep = nullptr;
713     Instruction *Val = nullptr;
714     if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
715       Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
716     } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
717       Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
718       Val = dyn_cast<Instruction>(St->getValueOperand());
719       // Check that the stored value is available.
720       if (Val) {
721         if (isa<GetElementPtrInst>(Val)) {
722           // Check whether we can compute the GEP at HoistPt.
723           if (!allGepOperandsAvailable(Val, HoistPt))
724             return false;
725         } else if (!DT->dominates(Val->getParent(), HoistPt))
726           return false;
727       }
728     }
729 
730     // Check whether we can compute the Gep at HoistPt.
731     if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
732       return false;
733 
734     makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
735 
736     if (Val && isa<GetElementPtrInst>(Val))
737       makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
738 
739     return true;
740   }
741 
742   std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
743     unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
744     for (const HoistingPointInfo &HP : HPL) {
745       // Find out whether we already have one of the instructions in HoistPt,
746       // in which case we do not have to move it.
747       BasicBlock *HoistPt = HP.first;
748       const SmallVecInsn &InstructionsToHoist = HP.second;
749       Instruction *Repl = nullptr;
750       for (Instruction *I : InstructionsToHoist)
751         if (I->getParent() == HoistPt)
752           // If there are two instructions in HoistPt to be hoisted in place:
753           // update Repl to be the first one, such that we can rename the uses
754           // of the second based on the first.
755           if (!Repl || firstInBB(I, Repl))
756             Repl = I;
757 
758       // Keep track of whether we moved the instruction so we know whether we
759       // should move the MemoryAccess.
760       bool MoveAccess = true;
761       if (Repl) {
762         // Repl is already in HoistPt: it remains in place.
763         assert(allOperandsAvailable(Repl, HoistPt) &&
764                "instruction depends on operands that are not available");
765         MoveAccess = false;
766       } else {
767         // When we do not find Repl in HoistPt, select the first in the list
768         // and move it to HoistPt.
769         Repl = InstructionsToHoist.front();
770 
771         // We can move Repl in HoistPt only when all operands are available.
772         // The order in which hoistings are done may influence the availability
773         // of operands.
774         if (!allOperandsAvailable(Repl, HoistPt)) {
775 
776           // When HoistingGeps there is nothing more we can do to make the
777           // operands available: just continue.
778           if (HoistingGeps)
779             continue;
780 
781           // When not HoistingGeps we need to copy the GEPs.
782           if (!makeGepOperandsAvailable(Repl, HoistPt, InstructionsToHoist))
783             continue;
784         }
785 
786         // Move the instruction at the end of HoistPt.
787         Instruction *Last = HoistPt->getTerminator();
788         Repl->moveBefore(Last);
789 
790         DFSNumber[Repl] = DFSNumber[Last]++;
791       }
792 
793       MemoryAccess *NewMemAcc = MSSA->getMemoryAccess(Repl);
794 
795       if (MoveAccess) {
796         if (MemoryUseOrDef *OldMemAcc =
797                 dyn_cast_or_null<MemoryUseOrDef>(NewMemAcc)) {
798           // The definition of this ld/st will not change: ld/st hoisting is
799           // legal when the ld/st is not moved past its current definition.
800           MemoryAccess *Def = OldMemAcc->getDefiningAccess();
801           NewMemAcc =
802               MSSA->createMemoryAccessInBB(Repl, Def, HoistPt, MemorySSA::End);
803           OldMemAcc->replaceAllUsesWith(NewMemAcc);
804           MSSA->removeMemoryAccess(OldMemAcc);
805         }
806       }
807 
808       if (isa<LoadInst>(Repl))
809         ++NL;
810       else if (isa<StoreInst>(Repl))
811         ++NS;
812       else if (isa<CallInst>(Repl))
813         ++NC;
814       else // Scalar
815         ++NI;
816 
817       // Remove and rename all other instructions.
818       for (Instruction *I : InstructionsToHoist)
819         if (I != Repl) {
820           ++NR;
821           if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
822             ReplacementLoad->setAlignment(
823                 std::min(ReplacementLoad->getAlignment(),
824                          cast<LoadInst>(I)->getAlignment()));
825             ++NumLoadsRemoved;
826           } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
827             ReplacementStore->setAlignment(
828                 std::min(ReplacementStore->getAlignment(),
829                          cast<StoreInst>(I)->getAlignment()));
830             ++NumStoresRemoved;
831           } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
832             ReplacementAlloca->setAlignment(
833                 std::max(ReplacementAlloca->getAlignment(),
834                          cast<AllocaInst>(I)->getAlignment()));
835           } else if (isa<CallInst>(Repl)) {
836             ++NumCallsRemoved;
837           }
838 
839           if (NewMemAcc) {
840             // Update the uses of the old MSSA access with NewMemAcc.
841             MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
842             OldMA->replaceAllUsesWith(NewMemAcc);
843             MSSA->removeMemoryAccess(OldMA);
844           }
845 
846           Repl->andIRFlags(I);
847           combineKnownMetadata(Repl, I);
848           I->replaceAllUsesWith(Repl);
849           // Also invalidate the Alias Analysis cache.
850           MD->removeInstruction(I);
851           I->eraseFromParent();
852         }
853 
854       // Remove MemorySSA phi nodes with the same arguments.
855       if (NewMemAcc) {
856         SmallPtrSet<MemoryPhi *, 4> UsePhis;
857         for (User *U : NewMemAcc->users())
858           if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
859             UsePhis.insert(Phi);
860 
861         for (auto *Phi : UsePhis) {
862           auto In = Phi->incoming_values();
863           if (all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
864             Phi->replaceAllUsesWith(NewMemAcc);
865             MSSA->removeMemoryAccess(Phi);
866           }
867         }
868       }
869     }
870 
871     NumHoisted += NL + NS + NC + NI;
872     NumRemoved += NR;
873     NumLoadsHoisted += NL;
874     NumStoresHoisted += NS;
875     NumCallsHoisted += NC;
876     return {NI, NL + NC + NS};
877   }
878 
879   // Hoist all expressions. Returns Number of scalars hoisted
880   // and number of non-scalars hoisted.
881   std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
882     InsnInfo II;
883     LoadInfo LI;
884     StoreInfo SI;
885     CallInfo CI;
886     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
887       int InstructionNb = 0;
888       for (Instruction &I1 : *BB) {
889         // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
890         // deeper may increase the register pressure and compilation time.
891         if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
892           break;
893 
894         // Do not value number terminator instructions.
895         if (isa<TerminatorInst>(&I1))
896           break;
897 
898         if (auto *Load = dyn_cast<LoadInst>(&I1))
899           LI.insert(Load, VN);
900         else if (auto *Store = dyn_cast<StoreInst>(&I1))
901           SI.insert(Store, VN);
902         else if (auto *Call = dyn_cast<CallInst>(&I1)) {
903           if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
904             if (isa<DbgInfoIntrinsic>(Intr) ||
905                 Intr->getIntrinsicID() == Intrinsic::assume)
906               continue;
907           }
908           if (Call->mayHaveSideEffects()) {
909             if (!OptForMinSize)
910               break;
911             // We may continue hoisting across calls which write to memory.
912             if (Call->mayThrow())
913               break;
914           }
915 
916           if (Call->isConvergent())
917             break;
918 
919           CI.insert(Call, VN);
920         } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
921           // Do not hoist scalars past calls that may write to memory because
922           // that could result in spills later. geps are handled separately.
923           // TODO: We can relax this for targets like AArch64 as they have more
924           // registers than X86.
925           II.insert(&I1, VN);
926       }
927     }
928 
929     HoistingPointList HPL;
930     computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
931     computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
932     computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
933     computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
934     computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
935     computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
936     return hoist(HPL);
937   }
938 };
939 
940 class GVNHoistLegacyPass : public FunctionPass {
941 public:
942   static char ID;
943 
944   GVNHoistLegacyPass() : FunctionPass(ID) {
945     initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
946   }
947 
948   bool runOnFunction(Function &F) override {
949     if (skipFunction(F))
950       return false;
951     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
952     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
953     auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
954     auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
955 
956     GVNHoist G(&DT, &AA, &MD, &MSSA, F.optForMinSize());
957     return G.run(F);
958   }
959 
960   void getAnalysisUsage(AnalysisUsage &AU) const override {
961     AU.addRequired<DominatorTreeWrapperPass>();
962     AU.addRequired<AAResultsWrapperPass>();
963     AU.addRequired<MemoryDependenceWrapperPass>();
964     AU.addRequired<MemorySSAWrapperPass>();
965     AU.addPreserved<DominatorTreeWrapperPass>();
966     AU.addPreserved<MemorySSAWrapperPass>();
967   }
968 };
969 } // namespace
970 
971 PreservedAnalyses GVNHoistPass::run(Function &F,
972                                     FunctionAnalysisManager &AM) {
973   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
974   AliasAnalysis &AA = AM.getResult<AAManager>(F);
975   MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
976   MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
977   GVNHoist G(&DT, &AA, &MD, &MSSA, F.optForMinSize());
978   if (!G.run(F))
979     return PreservedAnalyses::all();
980 
981   PreservedAnalyses PA;
982   PA.preserve<DominatorTreeAnalysis>();
983   PA.preserve<MemorySSAAnalysis>();
984   return PA;
985 }
986 
987 char GVNHoistLegacyPass::ID = 0;
988 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
989                       "Early GVN Hoisting of Expressions", false, false)
990 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
991 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
992 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
993 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
994 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
995                     "Early GVN Hoisting of Expressions", false, false)
996 
997 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }
998