1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass hoists expressions from branches to a common dominator. It uses 11 // GVN (global value numbering) to discover expressions computing the same 12 // values. The primary goal is to reduce the code size, and in some 13 // cases reduce critical path (by exposing more ILP). 14 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 15 // is disabled in the following cases. 16 // 1. Scalars across calls. 17 // 2. geps when corresponding load/store cannot be hoisted. 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Transforms/Scalar.h" 25 #include "llvm/Transforms/Scalar/GVN.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/Transforms/Utils/MemorySSA.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "gvn-hoist" 32 33 STATISTIC(NumHoisted, "Number of instructions hoisted"); 34 STATISTIC(NumRemoved, "Number of instructions removed"); 35 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 36 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 37 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 38 STATISTIC(NumStoresRemoved, "Number of stores removed"); 39 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 40 STATISTIC(NumCallsRemoved, "Number of calls removed"); 41 42 static cl::opt<int> 43 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 44 cl::desc("Max number of instructions to hoist " 45 "(default unlimited = -1)")); 46 static cl::opt<int> MaxNumberOfBBSInPath( 47 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 48 cl::desc("Max number of basic blocks on the path between " 49 "hoisting locations (default = 4, unlimited = -1)")); 50 51 static cl::opt<int> MaxDepthInBB( 52 "gvn-hoist-max-depth", cl::Hidden, cl::init(100), 53 cl::desc("Hoist instructions from the beginning of the BB up to the " 54 "maximum specified depth (default = 100, unlimited = -1)")); 55 56 namespace { 57 58 // Provides a sorting function based on the execution order of two instructions. 59 struct SortByDFSIn { 60 private: 61 DenseMap<const Value *, unsigned> &DFSNumber; 62 63 public: 64 SortByDFSIn(DenseMap<const Value *, unsigned> &D) : DFSNumber(D) {} 65 66 // Returns true when A executes before B. 67 bool operator()(const Instruction *A, const Instruction *B) const { 68 // FIXME: libc++ has a std::sort() algorithm that will call the compare 69 // function on the same element. Once PR20837 is fixed and some more years 70 // pass by and all the buildbots have moved to a corrected std::sort(), 71 // enable the following assert: 72 // 73 // assert(A != B); 74 75 unsigned ADFS = DFSNumber.lookup(A); 76 unsigned BDFS = DFSNumber.lookup(B); 77 assert (ADFS && ADFS); 78 return ADFS < BDFS; 79 } 80 }; 81 82 // A map from a pair of VNs to all the instructions with those VNs. 83 typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>> 84 VNtoInsns; 85 // An invalid value number Used when inserting a single value number into 86 // VNtoInsns. 87 enum : unsigned { InvalidVN = ~2U }; 88 89 // Records all scalar instructions candidate for code hoisting. 90 class InsnInfo { 91 VNtoInsns VNtoScalars; 92 93 public: 94 // Inserts I and its value number in VNtoScalars. 95 void insert(Instruction *I, GVN::ValueTable &VN) { 96 // Scalar instruction. 97 unsigned V = VN.lookupOrAdd(I); 98 VNtoScalars[{V, InvalidVN}].push_back(I); 99 } 100 101 const VNtoInsns &getVNTable() const { return VNtoScalars; } 102 }; 103 104 // Records all load instructions candidate for code hoisting. 105 class LoadInfo { 106 VNtoInsns VNtoLoads; 107 108 public: 109 // Insert Load and the value number of its memory address in VNtoLoads. 110 void insert(LoadInst *Load, GVN::ValueTable &VN) { 111 if (Load->isSimple()) { 112 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 113 VNtoLoads[{V, InvalidVN}].push_back(Load); 114 } 115 } 116 117 const VNtoInsns &getVNTable() const { return VNtoLoads; } 118 }; 119 120 // Records all store instructions candidate for code hoisting. 121 class StoreInfo { 122 VNtoInsns VNtoStores; 123 124 public: 125 // Insert the Store and a hash number of the store address and the stored 126 // value in VNtoStores. 127 void insert(StoreInst *Store, GVN::ValueTable &VN) { 128 if (!Store->isSimple()) 129 return; 130 // Hash the store address and the stored value. 131 Value *Ptr = Store->getPointerOperand(); 132 Value *Val = Store->getValueOperand(); 133 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 134 } 135 136 const VNtoInsns &getVNTable() const { return VNtoStores; } 137 }; 138 139 // Records all call instructions candidate for code hoisting. 140 class CallInfo { 141 VNtoInsns VNtoCallsScalars; 142 VNtoInsns VNtoCallsLoads; 143 VNtoInsns VNtoCallsStores; 144 145 public: 146 // Insert Call and its value numbering in one of the VNtoCalls* containers. 147 void insert(CallInst *Call, GVN::ValueTable &VN) { 148 // A call that doesNotAccessMemory is handled as a Scalar, 149 // onlyReadsMemory will be handled as a Load instruction, 150 // all other calls will be handled as stores. 151 unsigned V = VN.lookupOrAdd(Call); 152 auto Entry = std::make_pair(V, InvalidVN); 153 154 if (Call->doesNotAccessMemory()) 155 VNtoCallsScalars[Entry].push_back(Call); 156 else if (Call->onlyReadsMemory()) 157 VNtoCallsLoads[Entry].push_back(Call); 158 else 159 VNtoCallsStores[Entry].push_back(Call); 160 } 161 162 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 163 164 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 165 166 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 167 }; 168 169 typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet; 170 typedef SmallVector<Instruction *, 4> SmallVecInsn; 171 typedef SmallVectorImpl<Instruction *> SmallVecImplInsn; 172 173 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { 174 static const unsigned KnownIDs[] = { 175 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 176 LLVMContext::MD_noalias, LLVMContext::MD_range, 177 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 178 LLVMContext::MD_invariant_group}; 179 combineMetadata(ReplInst, I, KnownIDs); 180 } 181 182 // This pass hoists common computations across branches sharing common 183 // dominator. The primary goal is to reduce the code size, and in some 184 // cases reduce critical path (by exposing more ILP). 185 class GVNHoist { 186 public: 187 GVNHoist(DominatorTree *Dt, AliasAnalysis *Aa, MemoryDependenceResults *Md, 188 bool OptForMinSize) 189 : DT(Dt), AA(Aa), MD(Md), OptForMinSize(OptForMinSize), HoistedCtr(0) {} 190 bool run(Function &F) { 191 VN.setDomTree(DT); 192 VN.setAliasAnalysis(AA); 193 VN.setMemDep(MD); 194 bool Res = false; 195 196 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 197 while (1) { 198 // FIXME: only compute MemorySSA once. We need to update the analysis in 199 // the same time as transforming the code. 200 MemorySSA M(F, AA, DT); 201 MSSA = &M; 202 203 // Perform DFS Numbering of instructions. 204 unsigned I = 0; 205 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) 206 for (auto &Inst: *BB) 207 DFSNumber.insert({&Inst, ++I}); 208 209 auto HoistStat = hoistExpressions(F); 210 if (HoistStat.first + HoistStat.second == 0) { 211 return Res; 212 } 213 if (HoistStat.second > 0) { 214 // To address a limitation of the current GVN, we need to rerun the 215 // hoisting after we hoisted loads in order to be able to hoist all 216 // scalars dependent on the hoisted loads. Same for stores. 217 VN.clear(); 218 } 219 Res = true; 220 221 // DFS numbers change when instructions are hoisted: clear and recompute. 222 DFSNumber.clear(); 223 } 224 225 return Res; 226 } 227 private: 228 GVN::ValueTable VN; 229 DominatorTree *DT; 230 AliasAnalysis *AA; 231 MemoryDependenceResults *MD; 232 const bool OptForMinSize; 233 DenseMap<const Value *, unsigned> DFSNumber; 234 BBSideEffectsSet BBSideEffects; 235 MemorySSA *MSSA; 236 int HoistedCtr; 237 238 enum InsKind { Unknown, Scalar, Load, Store }; 239 240 // Return true when there are exception handling in BB. 241 bool hasEH(const BasicBlock *BB) { 242 auto It = BBSideEffects.find(BB); 243 if (It != BBSideEffects.end()) 244 return It->second; 245 246 if (BB->isEHPad() || BB->hasAddressTaken()) { 247 BBSideEffects[BB] = true; 248 return true; 249 } 250 251 if (BB->getTerminator()->mayThrow()) { 252 BBSideEffects[BB] = true; 253 return true; 254 } 255 256 BBSideEffects[BB] = false; 257 return false; 258 } 259 260 // Return true when all paths from A to the end of the function pass through 261 // either B or C. 262 bool hoistingFromAllPaths(const BasicBlock *A, const BasicBlock *B, 263 const BasicBlock *C) { 264 // We fully copy the WL in order to be able to remove items from it. 265 SmallPtrSet<const BasicBlock *, 2> WL; 266 WL.insert(B); 267 WL.insert(C); 268 269 for (auto It = df_begin(A), E = df_end(A); It != E;) { 270 // There exists a path from A to the exit of the function if we are still 271 // iterating in DF traversal and we removed all instructions from the work 272 // list. 273 if (WL.empty()) 274 return false; 275 276 const BasicBlock *BB = *It; 277 if (WL.erase(BB)) { 278 // Stop DFS traversal when BB is in the work list. 279 It.skipChildren(); 280 continue; 281 } 282 283 // Check for end of function, calls that do not return, etc. 284 if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator())) 285 return false; 286 287 // Increment DFS traversal when not skipping children. 288 ++It; 289 } 290 291 return true; 292 } 293 294 /* Return true when I1 appears before I2 in the instructions of BB. */ 295 bool firstInBB(const Instruction *I1, const Instruction *I2) { 296 assert (I1->getParent() == I2->getParent()); 297 unsigned I1DFS = DFSNumber.lookup(I1); 298 unsigned I2DFS = DFSNumber.lookup(I2); 299 assert (I1DFS && I2DFS); 300 return I1DFS < I2DFS; 301 } 302 303 // Return true when there are users of Def in BB. 304 bool hasMemoryUseOnPath(MemoryAccess *Def, const BasicBlock *BB, 305 const Instruction *OldPt) { 306 const BasicBlock *DefBB = Def->getBlock(); 307 const BasicBlock *OldBB = OldPt->getParent(); 308 309 for (User *U : Def->users()) 310 if (auto *MU = dyn_cast<MemoryUse>(U)) { 311 BasicBlock *UBB = MU->getBlock(); 312 // Only analyze uses in BB. 313 if (BB != UBB) 314 continue; 315 316 // A use in the same block as the Def is on the path. 317 if (UBB == DefBB) { 318 assert(MSSA->locallyDominates(Def, MU) && "def not dominating use"); 319 return true; 320 } 321 322 if (UBB != OldBB) 323 return true; 324 325 // It is only harmful to hoist when the use is before OldPt. 326 if (firstInBB(MU->getMemoryInst(), OldPt)) 327 return true; 328 } 329 330 return false; 331 } 332 333 // Return true when there are exception handling or loads of memory Def 334 // between OldPt and NewPt. 335 336 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 337 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 338 // initialized to -1 which is unlimited. 339 bool hasEHOrLoadsOnPath(const Instruction *NewPt, const Instruction *OldPt, 340 MemoryAccess *Def, int &NBBsOnAllPaths) { 341 const BasicBlock *NewBB = NewPt->getParent(); 342 const BasicBlock *OldBB = OldPt->getParent(); 343 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 344 assert(DT->dominates(Def->getBlock(), NewBB) && 345 "def does not dominate new hoisting point"); 346 347 // Walk all basic blocks reachable in depth-first iteration on the inverse 348 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 349 // executed between the execution of NewBB and OldBB. Hoisting an expression 350 // from OldBB into NewBB has to be safe on all execution paths. 351 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 352 if (*I == NewBB) { 353 // Stop traversal when reaching HoistPt. 354 I.skipChildren(); 355 continue; 356 } 357 358 // Impossible to hoist with exceptions on the path. 359 if (hasEH(*I)) 360 return true; 361 362 // Check that we do not move a store past loads. 363 if (hasMemoryUseOnPath(Def, *I, OldPt)) 364 return true; 365 366 // Stop walk once the limit is reached. 367 if (NBBsOnAllPaths == 0) 368 return true; 369 370 // -1 is unlimited number of blocks on all paths. 371 if (NBBsOnAllPaths != -1) 372 --NBBsOnAllPaths; 373 374 ++I; 375 } 376 377 return false; 378 } 379 380 // Return true when there are exception handling between HoistPt and BB. 381 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 382 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 383 // initialized to -1 which is unlimited. 384 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB, 385 int &NBBsOnAllPaths) { 386 assert(DT->dominates(HoistPt, BB) && "Invalid path"); 387 388 // Walk all basic blocks reachable in depth-first iteration on 389 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 390 // blocks that may be executed between the execution of NewHoistPt and 391 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 392 // on all execution paths. 393 for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) { 394 if (*I == HoistPt) { 395 // Stop traversal when reaching NewHoistPt. 396 I.skipChildren(); 397 continue; 398 } 399 400 // Impossible to hoist with exceptions on the path. 401 if (hasEH(*I)) 402 return true; 403 404 // Stop walk once the limit is reached. 405 if (NBBsOnAllPaths == 0) 406 return true; 407 408 // -1 is unlimited number of blocks on all paths. 409 if (NBBsOnAllPaths != -1) 410 --NBBsOnAllPaths; 411 412 ++I; 413 } 414 415 return false; 416 } 417 418 // Return true when it is safe to hoist a memory load or store U from OldPt 419 // to NewPt. 420 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 421 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { 422 423 // In place hoisting is safe. 424 if (NewPt == OldPt) 425 return true; 426 427 const BasicBlock *NewBB = NewPt->getParent(); 428 const BasicBlock *OldBB = OldPt->getParent(); 429 const BasicBlock *UBB = U->getBlock(); 430 431 // Check for dependences on the Memory SSA. 432 MemoryAccess *D = U->getDefiningAccess(); 433 BasicBlock *DBB = D->getBlock(); 434 if (DT->properlyDominates(NewBB, DBB)) 435 // Cannot move the load or store to NewBB above its definition in DBB. 436 return false; 437 438 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 439 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 440 if (firstInBB(NewPt, UD->getMemoryInst())) 441 // Cannot move the load or store to NewPt above its definition in D. 442 return false; 443 444 // Check for unsafe hoistings due to side effects. 445 if (K == InsKind::Store) { 446 if (hasEHOrLoadsOnPath(NewPt, OldPt, D, NBBsOnAllPaths)) 447 return false; 448 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 449 return false; 450 451 if (UBB == NewBB) { 452 if (DT->properlyDominates(DBB, NewBB)) 453 return true; 454 assert(UBB == DBB); 455 assert(MSSA->locallyDominates(D, U)); 456 } 457 458 // No side effects: it is safe to hoist. 459 return true; 460 } 461 462 // Return true when it is safe to hoist scalar instructions from BB1 and BB2 463 // to HoistBB. 464 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB1, 465 const BasicBlock *BB2, int &NBBsOnAllPaths) { 466 // Check that the hoisted expression is needed on all paths. When HoistBB 467 // already contains an instruction to be hoisted, the expression is needed 468 // on all paths. Enable scalar hoisting at -Oz as it is safe to hoist 469 // scalars to a place where they are partially needed. 470 if (!OptForMinSize && BB1 != HoistBB && 471 !hoistingFromAllPaths(HoistBB, BB1, BB2)) 472 return false; 473 474 if (hasEHOnPath(HoistBB, BB1, NBBsOnAllPaths) || 475 hasEHOnPath(HoistBB, BB2, NBBsOnAllPaths)) 476 return false; 477 478 // Safe to hoist scalars from BB1 and BB2 to HoistBB. 479 return true; 480 } 481 482 // Each element of a hoisting list contains the basic block where to hoist and 483 // a list of instructions to be hoisted. 484 typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo; 485 typedef SmallVector<HoistingPointInfo, 4> HoistingPointList; 486 487 // Partition InstructionsToHoist into a set of candidates which can share a 488 // common hoisting point. The partitions are collected in HPL. IsScalar is 489 // true when the instructions in InstructionsToHoist are scalars. IsLoad is 490 // true when the InstructionsToHoist are loads, false when they are stores. 491 void partitionCandidates(SmallVecImplInsn &InstructionsToHoist, 492 HoistingPointList &HPL, InsKind K) { 493 // No need to sort for two instructions. 494 if (InstructionsToHoist.size() > 2) { 495 SortByDFSIn Pred(DFSNumber); 496 std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred); 497 } 498 499 int NBBsOnAllPaths = MaxNumberOfBBSInPath; 500 501 SmallVecImplInsn::iterator II = InstructionsToHoist.begin(); 502 SmallVecImplInsn::iterator Start = II; 503 Instruction *HoistPt = *II; 504 BasicBlock *HoistBB = HoistPt->getParent(); 505 MemoryUseOrDef *UD; 506 if (K != InsKind::Scalar) 507 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(HoistPt)); 508 509 for (++II; II != InstructionsToHoist.end(); ++II) { 510 Instruction *Insn = *II; 511 BasicBlock *BB = Insn->getParent(); 512 BasicBlock *NewHoistBB; 513 Instruction *NewHoistPt; 514 515 if (BB == HoistBB) { 516 NewHoistBB = HoistBB; 517 NewHoistPt = firstInBB(Insn, HoistPt) ? Insn : HoistPt; 518 } else { 519 NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB); 520 if (NewHoistBB == BB) 521 NewHoistPt = Insn; 522 else if (NewHoistBB == HoistBB) 523 NewHoistPt = HoistPt; 524 else 525 NewHoistPt = NewHoistBB->getTerminator(); 526 } 527 528 if (K == InsKind::Scalar) { 529 if (safeToHoistScalar(NewHoistBB, HoistBB, BB, NBBsOnAllPaths)) { 530 // Extend HoistPt to NewHoistPt. 531 HoistPt = NewHoistPt; 532 HoistBB = NewHoistBB; 533 continue; 534 } 535 } else { 536 // When NewBB already contains an instruction to be hoisted, the 537 // expression is needed on all paths. 538 // Check that the hoisted expression is needed on all paths: it is 539 // unsafe to hoist loads to a place where there may be a path not 540 // loading from the same address: for instance there may be a branch on 541 // which the address of the load may not be initialized. 542 if ((HoistBB == NewHoistBB || BB == NewHoistBB || 543 hoistingFromAllPaths(NewHoistBB, HoistBB, BB)) && 544 // Also check that it is safe to move the load or store from HoistPt 545 // to NewHoistPt, and from Insn to NewHoistPt. 546 safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) && 547 safeToHoistLdSt(NewHoistPt, Insn, 548 cast<MemoryUseOrDef>(MSSA->getMemoryAccess(Insn)), 549 K, NBBsOnAllPaths)) { 550 // Extend HoistPt to NewHoistPt. 551 HoistPt = NewHoistPt; 552 HoistBB = NewHoistBB; 553 continue; 554 } 555 } 556 557 // At this point it is not safe to extend the current hoisting to 558 // NewHoistPt: save the hoisting list so far. 559 if (std::distance(Start, II) > 1) 560 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 561 562 // Start over from BB. 563 Start = II; 564 if (K != InsKind::Scalar) 565 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(*Start)); 566 HoistPt = Insn; 567 HoistBB = BB; 568 NBBsOnAllPaths = MaxNumberOfBBSInPath; 569 } 570 571 // Save the last partition. 572 if (std::distance(Start, II) > 1) 573 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 574 } 575 576 // Initialize HPL from Map. 577 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 578 InsKind K) { 579 for (const auto &Entry : Map) { 580 if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold) 581 return; 582 583 const SmallVecInsn &V = Entry.second; 584 if (V.size() < 2) 585 continue; 586 587 // Compute the insertion point and the list of expressions to be hoisted. 588 SmallVecInsn InstructionsToHoist; 589 for (auto I : V) 590 if (!hasEH(I->getParent())) 591 InstructionsToHoist.push_back(I); 592 593 if (!InstructionsToHoist.empty()) 594 partitionCandidates(InstructionsToHoist, HPL, K); 595 } 596 } 597 598 // Return true when all operands of Instr are available at insertion point 599 // HoistPt. When limiting the number of hoisted expressions, one could hoist 600 // a load without hoisting its access function. So before hoisting any 601 // expression, make sure that all its operands are available at insert point. 602 bool allOperandsAvailable(const Instruction *I, 603 const BasicBlock *HoistPt) const { 604 for (const Use &Op : I->operands()) 605 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 606 if (!DT->dominates(Inst->getParent(), HoistPt)) 607 return false; 608 609 return true; 610 } 611 612 bool makeOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, 613 const SmallVecInsn &InstructionsToHoist) const { 614 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 615 GetElementPtrInst *Gep = nullptr; 616 Instruction *Val = nullptr; 617 if (auto *Ld = dyn_cast<LoadInst>(Repl)) 618 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 619 if (auto *St = dyn_cast<StoreInst>(Repl)) { 620 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 621 Val = dyn_cast<Instruction>(St->getValueOperand()); 622 // Check that the stored value is available. 623 if (Val) { 624 if (isa<GetElementPtrInst>(Val)) { 625 // Check whether we can compute the GEP at HoistPt. 626 if (!allOperandsAvailable(Val, HoistPt)) 627 return false; 628 } else if (!DT->dominates(Val->getParent(), HoistPt)) 629 return false; 630 } 631 } 632 633 // Check whether we can compute the Gep at HoistPt. 634 if (!Gep || !allOperandsAvailable(Gep, HoistPt)) 635 return false; 636 637 // Copy the gep before moving the ld/st. 638 Instruction *ClonedGep = Gep->clone(); 639 ClonedGep->insertBefore(HoistPt->getTerminator()); 640 // Conservatively discard any optimization hints, they may differ on the 641 // other paths. 642 for (Instruction *OtherInst : InstructionsToHoist) { 643 GetElementPtrInst *OtherGep; 644 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) 645 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); 646 else 647 OtherGep = cast<GetElementPtrInst>( 648 cast<StoreInst>(OtherInst)->getPointerOperand()); 649 ClonedGep->intersectOptionalDataWith(OtherGep); 650 combineKnownMetadata(ClonedGep, OtherGep); 651 } 652 Repl->replaceUsesOfWith(Gep, ClonedGep); 653 654 // Also copy Val when it is a GEP. 655 if (Val && isa<GetElementPtrInst>(Val)) { 656 Instruction *ClonedVal = Val->clone(); 657 ClonedVal->insertBefore(HoistPt->getTerminator()); 658 // Conservatively discard any optimization hints, they may differ on the 659 // other paths. 660 for (Instruction *OtherInst : InstructionsToHoist) { 661 auto *OtherVal = 662 cast<Instruction>(cast<StoreInst>(OtherInst)->getValueOperand()); 663 ClonedVal->intersectOptionalDataWith(OtherVal); 664 combineKnownMetadata(ClonedVal, OtherVal); 665 } 666 Repl->replaceUsesOfWith(Val, ClonedVal); 667 } 668 669 return true; 670 } 671 672 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) { 673 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 674 for (const HoistingPointInfo &HP : HPL) { 675 // Find out whether we already have one of the instructions in HoistPt, 676 // in which case we do not have to move it. 677 BasicBlock *HoistPt = HP.first; 678 const SmallVecInsn &InstructionsToHoist = HP.second; 679 Instruction *Repl = nullptr; 680 for (Instruction *I : InstructionsToHoist) 681 if (I->getParent() == HoistPt) 682 // If there are two instructions in HoistPt to be hoisted in place: 683 // update Repl to be the first one, such that we can rename the uses 684 // of the second based on the first. 685 if (!Repl || firstInBB(I, Repl)) 686 Repl = I; 687 688 if (Repl) { 689 // Repl is already in HoistPt: it remains in place. 690 assert(allOperandsAvailable(Repl, HoistPt) && 691 "instruction depends on operands that are not available"); 692 } else { 693 // When we do not find Repl in HoistPt, select the first in the list 694 // and move it to HoistPt. 695 Repl = InstructionsToHoist.front(); 696 697 // We can move Repl in HoistPt only when all operands are available. 698 // The order in which hoistings are done may influence the availability 699 // of operands. 700 if (!allOperandsAvailable(Repl, HoistPt) && 701 !makeOperandsAvailable(Repl, HoistPt, InstructionsToHoist)) 702 continue; 703 Repl->moveBefore(HoistPt->getTerminator()); 704 // TBAA may differ on one of the other paths, we need to get rid of 705 // anything which might conflict. 706 } 707 708 if (isa<LoadInst>(Repl)) 709 ++NL; 710 else if (isa<StoreInst>(Repl)) 711 ++NS; 712 else if (isa<CallInst>(Repl)) 713 ++NC; 714 else // Scalar 715 ++NI; 716 717 // Remove and rename all other instructions. 718 for (Instruction *I : InstructionsToHoist) 719 if (I != Repl) { 720 ++NR; 721 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { 722 ReplacementLoad->setAlignment( 723 std::min(ReplacementLoad->getAlignment(), 724 cast<LoadInst>(I)->getAlignment())); 725 ++NumLoadsRemoved; 726 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { 727 ReplacementStore->setAlignment( 728 std::min(ReplacementStore->getAlignment(), 729 cast<StoreInst>(I)->getAlignment())); 730 ++NumStoresRemoved; 731 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { 732 ReplacementAlloca->setAlignment( 733 std::max(ReplacementAlloca->getAlignment(), 734 cast<AllocaInst>(I)->getAlignment())); 735 } else if (isa<CallInst>(Repl)) { 736 ++NumCallsRemoved; 737 } 738 Repl->intersectOptionalDataWith(I); 739 combineKnownMetadata(Repl, I); 740 I->replaceAllUsesWith(Repl); 741 I->eraseFromParent(); 742 } 743 } 744 745 NumHoisted += NL + NS + NC + NI; 746 NumRemoved += NR; 747 NumLoadsHoisted += NL; 748 NumStoresHoisted += NS; 749 NumCallsHoisted += NC; 750 return {NI, NL + NC + NS}; 751 } 752 753 // Hoist all expressions. Returns Number of scalars hoisted 754 // and number of non-scalars hoisted. 755 std::pair<unsigned, unsigned> hoistExpressions(Function &F) { 756 InsnInfo II; 757 LoadInfo LI; 758 StoreInfo SI; 759 CallInfo CI; 760 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 761 int InstructionNb = 0; 762 for (Instruction &I1 : *BB) { 763 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting 764 // deeper may increase the register pressure and compilation time. 765 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) 766 break; 767 768 if (auto *Load = dyn_cast<LoadInst>(&I1)) 769 LI.insert(Load, VN); 770 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 771 SI.insert(Store, VN); 772 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 773 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 774 if (isa<DbgInfoIntrinsic>(Intr) || 775 Intr->getIntrinsicID() == Intrinsic::assume) 776 continue; 777 } 778 if (Call->mayHaveSideEffects()) { 779 if (!OptForMinSize) 780 break; 781 // We may continue hoisting across calls which write to memory. 782 if (Call->mayThrow()) 783 break; 784 } 785 CI.insert(Call, VN); 786 } else if (OptForMinSize || !isa<GetElementPtrInst>(&I1)) 787 // Do not hoist scalars past calls that may write to memory because 788 // that could result in spills later. geps are handled separately. 789 // TODO: We can relax this for targets like AArch64 as they have more 790 // registers than X86. 791 II.insert(&I1, VN); 792 } 793 } 794 795 HoistingPointList HPL; 796 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 797 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 798 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 799 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 800 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 801 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 802 return hoist(HPL); 803 } 804 }; 805 806 class GVNHoistLegacyPass : public FunctionPass { 807 public: 808 static char ID; 809 810 GVNHoistLegacyPass() : FunctionPass(ID) { 811 initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); 812 } 813 814 bool runOnFunction(Function &F) override { 815 if (skipFunction(F)) 816 return false; 817 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 818 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 819 auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 820 821 GVNHoist G(&DT, &AA, &MD, F.optForMinSize()); 822 return G.run(F); 823 } 824 825 void getAnalysisUsage(AnalysisUsage &AU) const override { 826 AU.addRequired<DominatorTreeWrapperPass>(); 827 AU.addRequired<AAResultsWrapperPass>(); 828 AU.addRequired<MemoryDependenceWrapperPass>(); 829 AU.addPreserved<DominatorTreeWrapperPass>(); 830 } 831 }; 832 } // namespace 833 834 PreservedAnalyses GVNHoistPass::run(Function &F, 835 AnalysisManager<Function> &AM) { 836 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 837 AliasAnalysis &AA = AM.getResult<AAManager>(F); 838 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 839 840 GVNHoist G(&DT, &AA, &MD, F.optForMinSize()); 841 if (!G.run(F)) 842 return PreservedAnalyses::all(); 843 844 PreservedAnalyses PA; 845 PA.preserve<DominatorTreeAnalysis>(); 846 return PA; 847 } 848 849 char GVNHoistLegacyPass::ID = 0; 850 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", 851 "Early GVN Hoisting of Expressions", false, false) 852 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 853 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 854 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 855 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", 856 "Early GVN Hoisting of Expressions", false, false) 857 858 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } 859