1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass hoists expressions from branches to a common dominator. It uses 11 // GVN (global value numbering) to discover expressions computing the same 12 // values. The primary goal is to reduce the code size, and in some 13 // cases reduce critical path (by exposing more ILP). 14 // Hoisting may affect the performance in some cases. To mitigate that, hoisting 15 // is disabled in the following cases. 16 // 1. Scalars across calls. 17 // 2. geps when corresponding load/store cannot be hoisted. 18 //===----------------------------------------------------------------------===// 19 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/ValueTracking.h" 24 #include "llvm/Transforms/Scalar.h" 25 #include "llvm/Transforms/Scalar/GVN.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 #include "llvm/Transforms/Utils/MemorySSA.h" 28 29 using namespace llvm; 30 31 #define DEBUG_TYPE "gvn-hoist" 32 33 STATISTIC(NumHoisted, "Number of instructions hoisted"); 34 STATISTIC(NumRemoved, "Number of instructions removed"); 35 STATISTIC(NumLoadsHoisted, "Number of loads hoisted"); 36 STATISTIC(NumLoadsRemoved, "Number of loads removed"); 37 STATISTIC(NumStoresHoisted, "Number of stores hoisted"); 38 STATISTIC(NumStoresRemoved, "Number of stores removed"); 39 STATISTIC(NumCallsHoisted, "Number of calls hoisted"); 40 STATISTIC(NumCallsRemoved, "Number of calls removed"); 41 42 static cl::opt<int> 43 MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1), 44 cl::desc("Max number of instructions to hoist " 45 "(default unlimited = -1)")); 46 static cl::opt<int> MaxNumberOfBBSInPath( 47 "gvn-hoist-max-bbs", cl::Hidden, cl::init(4), 48 cl::desc("Max number of basic blocks on the path between " 49 "hoisting locations (default = 4, unlimited = -1)")); 50 51 static cl::opt<int> MaxDepthInBB( 52 "gvn-hoist-max-depth", cl::Hidden, cl::init(100), 53 cl::desc("Hoist instructions from the beginning of the BB up to the " 54 "maximum specified depth (default = 100, unlimited = -1)")); 55 56 namespace { 57 58 // Provides a sorting function based on the execution order of two instructions. 59 struct SortByDFSIn { 60 private: 61 DenseMap<const BasicBlock *, unsigned> &DFSNumber; 62 63 public: 64 SortByDFSIn(DenseMap<const BasicBlock *, unsigned> &D) : DFSNumber(D) {} 65 66 // Returns true when A executes before B. 67 bool operator()(const Instruction *A, const Instruction *B) const { 68 // FIXME: libc++ has a std::sort() algorithm that will call the compare 69 // function on the same element. Once PR20837 is fixed and some more years 70 // pass by and all the buildbots have moved to a corrected std::sort(), 71 // enable the following assert: 72 // 73 // assert(A != B); 74 75 const BasicBlock *BA = A->getParent(); 76 const BasicBlock *BB = B->getParent(); 77 unsigned NA = DFSNumber[BA]; 78 unsigned NB = DFSNumber[BB]; 79 if (NA < NB) 80 return true; 81 if (NA == NB) { 82 // Sort them in the order they occur in the same basic block. 83 BasicBlock::const_iterator AI(A), BI(B); 84 return std::distance(AI, BI) < 0; 85 } 86 return false; 87 } 88 }; 89 90 // A map from a pair of VNs to all the instructions with those VNs. 91 typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>> 92 VNtoInsns; 93 // An invalid value number Used when inserting a single value number into 94 // VNtoInsns. 95 enum : unsigned { InvalidVN = ~2U }; 96 97 // Records all scalar instructions candidate for code hoisting. 98 class InsnInfo { 99 VNtoInsns VNtoScalars; 100 101 public: 102 // Inserts I and its value number in VNtoScalars. 103 void insert(Instruction *I, GVN::ValueTable &VN) { 104 // Scalar instruction. 105 unsigned V = VN.lookupOrAdd(I); 106 VNtoScalars[{V, InvalidVN}].push_back(I); 107 } 108 109 const VNtoInsns &getVNTable() const { return VNtoScalars; } 110 }; 111 112 // Records all load instructions candidate for code hoisting. 113 class LoadInfo { 114 VNtoInsns VNtoLoads; 115 116 public: 117 // Insert Load and the value number of its memory address in VNtoLoads. 118 void insert(LoadInst *Load, GVN::ValueTable &VN) { 119 if (Load->isSimple()) { 120 unsigned V = VN.lookupOrAdd(Load->getPointerOperand()); 121 VNtoLoads[{V, InvalidVN}].push_back(Load); 122 } 123 } 124 125 const VNtoInsns &getVNTable() const { return VNtoLoads; } 126 }; 127 128 // Records all store instructions candidate for code hoisting. 129 class StoreInfo { 130 VNtoInsns VNtoStores; 131 132 public: 133 // Insert the Store and a hash number of the store address and the stored 134 // value in VNtoStores. 135 void insert(StoreInst *Store, GVN::ValueTable &VN) { 136 if (!Store->isSimple()) 137 return; 138 // Hash the store address and the stored value. 139 Value *Ptr = Store->getPointerOperand(); 140 Value *Val = Store->getValueOperand(); 141 VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store); 142 } 143 144 const VNtoInsns &getVNTable() const { return VNtoStores; } 145 }; 146 147 // Records all call instructions candidate for code hoisting. 148 class CallInfo { 149 VNtoInsns VNtoCallsScalars; 150 VNtoInsns VNtoCallsLoads; 151 VNtoInsns VNtoCallsStores; 152 153 public: 154 // Insert Call and its value numbering in one of the VNtoCalls* containers. 155 void insert(CallInst *Call, GVN::ValueTable &VN) { 156 // A call that doesNotAccessMemory is handled as a Scalar, 157 // onlyReadsMemory will be handled as a Load instruction, 158 // all other calls will be handled as stores. 159 unsigned V = VN.lookupOrAdd(Call); 160 auto Entry = std::make_pair(V, InvalidVN); 161 162 if (Call->doesNotAccessMemory()) 163 VNtoCallsScalars[Entry].push_back(Call); 164 else if (Call->onlyReadsMemory()) 165 VNtoCallsLoads[Entry].push_back(Call); 166 else 167 VNtoCallsStores[Entry].push_back(Call); 168 } 169 170 const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; } 171 172 const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; } 173 174 const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; } 175 }; 176 177 typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet; 178 typedef SmallVector<Instruction *, 4> SmallVecInsn; 179 typedef SmallVectorImpl<Instruction *> SmallVecImplInsn; 180 181 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) { 182 static const unsigned KnownIDs[] = { 183 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 184 LLVMContext::MD_noalias, LLVMContext::MD_range, 185 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, 186 LLVMContext::MD_invariant_group}; 187 combineMetadata(ReplInst, I, KnownIDs); 188 } 189 190 // This pass hoists common computations across branches sharing common 191 // dominator. The primary goal is to reduce the code size, and in some 192 // cases reduce critical path (by exposing more ILP). 193 class GVNHoist { 194 public: 195 GVNHoist(DominatorTree *Dt, AliasAnalysis *Aa, MemoryDependenceResults *Md, 196 bool OptForMinSize) 197 : DT(Dt), AA(Aa), MD(Md), OptForMinSize(OptForMinSize), HoistedCtr(0) {} 198 bool run(Function &F) { 199 VN.setDomTree(DT); 200 VN.setAliasAnalysis(AA); 201 VN.setMemDep(MD); 202 bool Res = false; 203 204 unsigned I = 0; 205 for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) 206 DFSNumber.insert({BB, ++I}); 207 208 // FIXME: use lazy evaluation of VN to avoid the fix-point computation. 209 while (1) { 210 // FIXME: only compute MemorySSA once. We need to update the analysis in 211 // the same time as transforming the code. 212 MemorySSA M(F, AA, DT); 213 MSSA = &M; 214 215 auto HoistStat = hoistExpressions(F); 216 if (HoistStat.first + HoistStat.second == 0) { 217 return Res; 218 } 219 if (HoistStat.second > 0) { 220 // To address a limitation of the current GVN, we need to rerun the 221 // hoisting after we hoisted loads in order to be able to hoist all 222 // scalars dependent on the hoisted loads. Same for stores. 223 VN.clear(); 224 } 225 Res = true; 226 } 227 228 return Res; 229 } 230 private: 231 GVN::ValueTable VN; 232 DominatorTree *DT; 233 AliasAnalysis *AA; 234 MemoryDependenceResults *MD; 235 const bool OptForMinSize; 236 DenseMap<const BasicBlock *, unsigned> DFSNumber; 237 BBSideEffectsSet BBSideEffects; 238 MemorySSA *MSSA; 239 int HoistedCtr; 240 241 enum InsKind { Unknown, Scalar, Load, Store }; 242 243 // Return true when there are exception handling in BB. 244 bool hasEH(const BasicBlock *BB) { 245 auto It = BBSideEffects.find(BB); 246 if (It != BBSideEffects.end()) 247 return It->second; 248 249 if (BB->isEHPad() || BB->hasAddressTaken()) { 250 BBSideEffects[BB] = true; 251 return true; 252 } 253 254 if (BB->getTerminator()->mayThrow()) { 255 BBSideEffects[BB] = true; 256 return true; 257 } 258 259 BBSideEffects[BB] = false; 260 return false; 261 } 262 263 // Return true when all paths from A to the end of the function pass through 264 // either B or C. 265 bool hoistingFromAllPaths(const BasicBlock *A, const BasicBlock *B, 266 const BasicBlock *C) { 267 // We fully copy the WL in order to be able to remove items from it. 268 SmallPtrSet<const BasicBlock *, 2> WL; 269 WL.insert(B); 270 WL.insert(C); 271 272 for (auto It = df_begin(A), E = df_end(A); It != E;) { 273 // There exists a path from A to the exit of the function if we are still 274 // iterating in DF traversal and we removed all instructions from the work 275 // list. 276 if (WL.empty()) 277 return false; 278 279 const BasicBlock *BB = *It; 280 if (WL.erase(BB)) { 281 // Stop DFS traversal when BB is in the work list. 282 It.skipChildren(); 283 continue; 284 } 285 286 // Check for end of function, calls that do not return, etc. 287 if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator())) 288 return false; 289 290 // Increment DFS traversal when not skipping children. 291 ++It; 292 } 293 294 return true; 295 } 296 297 /* Return true when I1 appears before I2 in the instructions of BB. */ 298 bool firstInBB(BasicBlock *BB, const Instruction *I1, const Instruction *I2) { 299 for (Instruction &I : *BB) { 300 if (&I == I1) 301 return true; 302 if (&I == I2) 303 return false; 304 } 305 306 llvm_unreachable("I1 and I2 not found in BB"); 307 } 308 // Return true when there are users of Def in BB. 309 bool hasMemoryUseOnPath(MemoryAccess *Def, const BasicBlock *BB, 310 const Instruction *OldPt) { 311 const BasicBlock *DefBB = Def->getBlock(); 312 const BasicBlock *OldBB = OldPt->getParent(); 313 314 for (User *U : Def->users()) 315 if (auto *MU = dyn_cast<MemoryUse>(U)) { 316 BasicBlock *UBB = MU->getBlock(); 317 // Only analyze uses in BB. 318 if (BB != UBB) 319 continue; 320 321 // A use in the same block as the Def is on the path. 322 if (UBB == DefBB) { 323 assert(MSSA->locallyDominates(Def, MU) && "def not dominating use"); 324 return true; 325 } 326 327 if (UBB != OldBB) 328 return true; 329 330 // It is only harmful to hoist when the use is before OldPt. 331 if (firstInBB(UBB, MU->getMemoryInst(), OldPt)) 332 return true; 333 } 334 335 return false; 336 } 337 338 // Return true when there are exception handling or loads of memory Def 339 // between OldPt and NewPt. 340 341 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 342 // return true when the counter NBBsOnAllPaths reaces 0, except when it is 343 // initialized to -1 which is unlimited. 344 bool hasEHOrLoadsOnPath(const Instruction *NewPt, const Instruction *OldPt, 345 MemoryAccess *Def, int &NBBsOnAllPaths) { 346 const BasicBlock *NewBB = NewPt->getParent(); 347 const BasicBlock *OldBB = OldPt->getParent(); 348 assert(DT->dominates(NewBB, OldBB) && "invalid path"); 349 assert(DT->dominates(Def->getBlock(), NewBB) && 350 "def does not dominate new hoisting point"); 351 352 // Walk all basic blocks reachable in depth-first iteration on the inverse 353 // CFG from OldBB to NewBB. These blocks are all the blocks that may be 354 // executed between the execution of NewBB and OldBB. Hoisting an expression 355 // from OldBB into NewBB has to be safe on all execution paths. 356 for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) { 357 if (*I == NewBB) { 358 // Stop traversal when reaching HoistPt. 359 I.skipChildren(); 360 continue; 361 } 362 363 // Impossible to hoist with exceptions on the path. 364 if (hasEH(*I)) 365 return true; 366 367 // Check that we do not move a store past loads. 368 if (hasMemoryUseOnPath(Def, *I, OldPt)) 369 return true; 370 371 // Stop walk once the limit is reached. 372 if (NBBsOnAllPaths == 0) 373 return true; 374 375 // -1 is unlimited number of blocks on all paths. 376 if (NBBsOnAllPaths != -1) 377 --NBBsOnAllPaths; 378 379 ++I; 380 } 381 382 return false; 383 } 384 385 // Return true when there are exception handling between HoistPt and BB. 386 // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and 387 // return true when the counter NBBsOnAllPaths reaches 0, except when it is 388 // initialized to -1 which is unlimited. 389 bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB, 390 int &NBBsOnAllPaths) { 391 assert(DT->dominates(HoistPt, BB) && "Invalid path"); 392 393 // Walk all basic blocks reachable in depth-first iteration on 394 // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the 395 // blocks that may be executed between the execution of NewHoistPt and 396 // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe 397 // on all execution paths. 398 for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) { 399 if (*I == HoistPt) { 400 // Stop traversal when reaching NewHoistPt. 401 I.skipChildren(); 402 continue; 403 } 404 405 // Impossible to hoist with exceptions on the path. 406 if (hasEH(*I)) 407 return true; 408 409 // Stop walk once the limit is reached. 410 if (NBBsOnAllPaths == 0) 411 return true; 412 413 // -1 is unlimited number of blocks on all paths. 414 if (NBBsOnAllPaths != -1) 415 --NBBsOnAllPaths; 416 417 ++I; 418 } 419 420 return false; 421 } 422 423 // Return true when it is safe to hoist a memory load or store U from OldPt 424 // to NewPt. 425 bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt, 426 MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) { 427 428 // In place hoisting is safe. 429 if (NewPt == OldPt) 430 return true; 431 432 const BasicBlock *NewBB = NewPt->getParent(); 433 const BasicBlock *OldBB = OldPt->getParent(); 434 const BasicBlock *UBB = U->getBlock(); 435 436 // Check for dependences on the Memory SSA. 437 MemoryAccess *D = U->getDefiningAccess(); 438 BasicBlock *DBB = D->getBlock(); 439 if (DT->properlyDominates(NewBB, DBB)) 440 // Cannot move the load or store to NewBB above its definition in DBB. 441 return false; 442 443 if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D)) 444 if (auto *UD = dyn_cast<MemoryUseOrDef>(D)) 445 if (firstInBB(DBB, NewPt, UD->getMemoryInst())) 446 // Cannot move the load or store to NewPt above its definition in D. 447 return false; 448 449 // Check for unsafe hoistings due to side effects. 450 if (K == InsKind::Store) { 451 if (hasEHOrLoadsOnPath(NewPt, OldPt, D, NBBsOnAllPaths)) 452 return false; 453 } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths)) 454 return false; 455 456 if (UBB == NewBB) { 457 if (DT->properlyDominates(DBB, NewBB)) 458 return true; 459 assert(UBB == DBB); 460 assert(MSSA->locallyDominates(D, U)); 461 } 462 463 // No side effects: it is safe to hoist. 464 return true; 465 } 466 467 // Return true when it is safe to hoist scalar instructions from BB1 and BB2 468 // to HoistBB. 469 bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB1, 470 const BasicBlock *BB2, int &NBBsOnAllPaths) { 471 // Check that the hoisted expression is needed on all paths. When HoistBB 472 // already contains an instruction to be hoisted, the expression is needed 473 // on all paths. Enable scalar hoisting at -Oz as it is safe to hoist 474 // scalars to a place where they are partially needed. 475 if (!OptForMinSize && BB1 != HoistBB && 476 !hoistingFromAllPaths(HoistBB, BB1, BB2)) 477 return false; 478 479 if (hasEHOnPath(HoistBB, BB1, NBBsOnAllPaths) || 480 hasEHOnPath(HoistBB, BB2, NBBsOnAllPaths)) 481 return false; 482 483 // Safe to hoist scalars from BB1 and BB2 to HoistBB. 484 return true; 485 } 486 487 // Each element of a hoisting list contains the basic block where to hoist and 488 // a list of instructions to be hoisted. 489 typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo; 490 typedef SmallVector<HoistingPointInfo, 4> HoistingPointList; 491 492 // Partition InstructionsToHoist into a set of candidates which can share a 493 // common hoisting point. The partitions are collected in HPL. IsScalar is 494 // true when the instructions in InstructionsToHoist are scalars. IsLoad is 495 // true when the InstructionsToHoist are loads, false when they are stores. 496 void partitionCandidates(SmallVecImplInsn &InstructionsToHoist, 497 HoistingPointList &HPL, InsKind K) { 498 // No need to sort for two instructions. 499 if (InstructionsToHoist.size() > 2) { 500 SortByDFSIn Pred(DFSNumber); 501 std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred); 502 } 503 504 int NBBsOnAllPaths = MaxNumberOfBBSInPath; 505 506 SmallVecImplInsn::iterator II = InstructionsToHoist.begin(); 507 SmallVecImplInsn::iterator Start = II; 508 Instruction *HoistPt = *II; 509 BasicBlock *HoistBB = HoistPt->getParent(); 510 MemoryUseOrDef *UD; 511 if (K != InsKind::Scalar) 512 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(HoistPt)); 513 514 for (++II; II != InstructionsToHoist.end(); ++II) { 515 Instruction *Insn = *II; 516 BasicBlock *BB = Insn->getParent(); 517 BasicBlock *NewHoistBB; 518 Instruction *NewHoistPt; 519 520 if (BB == HoistBB) { 521 NewHoistBB = HoistBB; 522 NewHoistPt = firstInBB(BB, Insn, HoistPt) ? Insn : HoistPt; 523 } else { 524 NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB); 525 if (NewHoistBB == BB) 526 NewHoistPt = Insn; 527 else if (NewHoistBB == HoistBB) 528 NewHoistPt = HoistPt; 529 else 530 NewHoistPt = NewHoistBB->getTerminator(); 531 } 532 533 if (K == InsKind::Scalar) { 534 if (safeToHoistScalar(NewHoistBB, HoistBB, BB, NBBsOnAllPaths)) { 535 // Extend HoistPt to NewHoistPt. 536 HoistPt = NewHoistPt; 537 HoistBB = NewHoistBB; 538 continue; 539 } 540 } else { 541 // When NewBB already contains an instruction to be hoisted, the 542 // expression is needed on all paths. 543 // Check that the hoisted expression is needed on all paths: it is 544 // unsafe to hoist loads to a place where there may be a path not 545 // loading from the same address: for instance there may be a branch on 546 // which the address of the load may not be initialized. 547 if ((HoistBB == NewHoistBB || BB == NewHoistBB || 548 hoistingFromAllPaths(NewHoistBB, HoistBB, BB)) && 549 // Also check that it is safe to move the load or store from HoistPt 550 // to NewHoistPt, and from Insn to NewHoistPt. 551 safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) && 552 safeToHoistLdSt(NewHoistPt, Insn, 553 cast<MemoryUseOrDef>(MSSA->getMemoryAccess(Insn)), 554 K, NBBsOnAllPaths)) { 555 // Extend HoistPt to NewHoistPt. 556 HoistPt = NewHoistPt; 557 HoistBB = NewHoistBB; 558 continue; 559 } 560 } 561 562 // At this point it is not safe to extend the current hoisting to 563 // NewHoistPt: save the hoisting list so far. 564 if (std::distance(Start, II) > 1) 565 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 566 567 // Start over from BB. 568 Start = II; 569 if (K != InsKind::Scalar) 570 UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(*Start)); 571 HoistPt = Insn; 572 HoistBB = BB; 573 NBBsOnAllPaths = MaxNumberOfBBSInPath; 574 } 575 576 // Save the last partition. 577 if (std::distance(Start, II) > 1) 578 HPL.push_back({HoistBB, SmallVecInsn(Start, II)}); 579 } 580 581 // Initialize HPL from Map. 582 void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL, 583 InsKind K) { 584 for (const auto &Entry : Map) { 585 if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold) 586 return; 587 588 const SmallVecInsn &V = Entry.second; 589 if (V.size() < 2) 590 continue; 591 592 // Compute the insertion point and the list of expressions to be hoisted. 593 SmallVecInsn InstructionsToHoist; 594 for (auto I : V) 595 if (!hasEH(I->getParent())) 596 InstructionsToHoist.push_back(I); 597 598 if (!InstructionsToHoist.empty()) 599 partitionCandidates(InstructionsToHoist, HPL, K); 600 } 601 } 602 603 // Return true when all operands of Instr are available at insertion point 604 // HoistPt. When limiting the number of hoisted expressions, one could hoist 605 // a load without hoisting its access function. So before hoisting any 606 // expression, make sure that all its operands are available at insert point. 607 bool allOperandsAvailable(const Instruction *I, 608 const BasicBlock *HoistPt) const { 609 for (const Use &Op : I->operands()) 610 if (const auto *Inst = dyn_cast<Instruction>(&Op)) 611 if (!DT->dominates(Inst->getParent(), HoistPt)) 612 return false; 613 614 return true; 615 } 616 617 Instruction *firstOfTwo(Instruction *I, Instruction *J) const { 618 for (Instruction &I1 : *I->getParent()) 619 if (&I1 == I || &I1 == J) 620 return &I1; 621 llvm_unreachable("Both I and J must be from same BB"); 622 } 623 624 bool makeOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt, 625 const SmallVecInsn &InstructionsToHoist) const { 626 // Check whether the GEP of a ld/st can be synthesized at HoistPt. 627 GetElementPtrInst *Gep = nullptr; 628 Instruction *Val = nullptr; 629 if (auto *Ld = dyn_cast<LoadInst>(Repl)) 630 Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand()); 631 if (auto *St = dyn_cast<StoreInst>(Repl)) { 632 Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand()); 633 Val = dyn_cast<Instruction>(St->getValueOperand()); 634 // Check that the stored value is available. 635 if (Val) { 636 if (isa<GetElementPtrInst>(Val)) { 637 // Check whether we can compute the GEP at HoistPt. 638 if (!allOperandsAvailable(Val, HoistPt)) 639 return false; 640 } else if (!DT->dominates(Val->getParent(), HoistPt)) 641 return false; 642 } 643 } 644 645 // Check whether we can compute the Gep at HoistPt. 646 if (!Gep || !allOperandsAvailable(Gep, HoistPt)) 647 return false; 648 649 // Copy the gep before moving the ld/st. 650 Instruction *ClonedGep = Gep->clone(); 651 ClonedGep->insertBefore(HoistPt->getTerminator()); 652 // Conservatively discard any optimization hints, they may differ on the 653 // other paths. 654 for (Instruction *OtherInst : InstructionsToHoist) { 655 GetElementPtrInst *OtherGep; 656 if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst)) 657 OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand()); 658 else 659 OtherGep = cast<GetElementPtrInst>( 660 cast<StoreInst>(OtherInst)->getPointerOperand()); 661 ClonedGep->intersectOptionalDataWith(OtherGep); 662 combineKnownMetadata(ClonedGep, OtherGep); 663 } 664 Repl->replaceUsesOfWith(Gep, ClonedGep); 665 666 // Also copy Val when it is a GEP. 667 if (Val && isa<GetElementPtrInst>(Val)) { 668 Instruction *ClonedVal = Val->clone(); 669 ClonedVal->insertBefore(HoistPt->getTerminator()); 670 // Conservatively discard any optimization hints, they may differ on the 671 // other paths. 672 for (Instruction *OtherInst : InstructionsToHoist) { 673 auto *OtherVal = 674 cast<Instruction>(cast<StoreInst>(OtherInst)->getValueOperand()); 675 ClonedVal->intersectOptionalDataWith(OtherVal); 676 combineKnownMetadata(ClonedVal, OtherVal); 677 } 678 Repl->replaceUsesOfWith(Val, ClonedVal); 679 } 680 681 return true; 682 } 683 684 std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) { 685 unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0; 686 for (const HoistingPointInfo &HP : HPL) { 687 // Find out whether we already have one of the instructions in HoistPt, 688 // in which case we do not have to move it. 689 BasicBlock *HoistPt = HP.first; 690 const SmallVecInsn &InstructionsToHoist = HP.second; 691 Instruction *Repl = nullptr; 692 for (Instruction *I : InstructionsToHoist) 693 if (I->getParent() == HoistPt) { 694 // If there are two instructions in HoistPt to be hoisted in place: 695 // update Repl to be the first one, such that we can rename the uses 696 // of the second based on the first. 697 Repl = !Repl ? I : firstOfTwo(Repl, I); 698 } 699 700 if (Repl) { 701 // Repl is already in HoistPt: it remains in place. 702 assert(allOperandsAvailable(Repl, HoistPt) && 703 "instruction depends on operands that are not available"); 704 } else { 705 // When we do not find Repl in HoistPt, select the first in the list 706 // and move it to HoistPt. 707 Repl = InstructionsToHoist.front(); 708 709 // We can move Repl in HoistPt only when all operands are available. 710 // The order in which hoistings are done may influence the availability 711 // of operands. 712 if (!allOperandsAvailable(Repl, HoistPt) && 713 !makeOperandsAvailable(Repl, HoistPt, InstructionsToHoist)) 714 continue; 715 Repl->moveBefore(HoistPt->getTerminator()); 716 // TBAA may differ on one of the other paths, we need to get rid of 717 // anything which might conflict. 718 } 719 720 if (isa<LoadInst>(Repl)) 721 ++NL; 722 else if (isa<StoreInst>(Repl)) 723 ++NS; 724 else if (isa<CallInst>(Repl)) 725 ++NC; 726 else // Scalar 727 ++NI; 728 729 // Remove and rename all other instructions. 730 for (Instruction *I : InstructionsToHoist) 731 if (I != Repl) { 732 ++NR; 733 if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) { 734 ReplacementLoad->setAlignment( 735 std::min(ReplacementLoad->getAlignment(), 736 cast<LoadInst>(I)->getAlignment())); 737 ++NumLoadsRemoved; 738 } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) { 739 ReplacementStore->setAlignment( 740 std::min(ReplacementStore->getAlignment(), 741 cast<StoreInst>(I)->getAlignment())); 742 ++NumStoresRemoved; 743 } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) { 744 ReplacementAlloca->setAlignment( 745 std::max(ReplacementAlloca->getAlignment(), 746 cast<AllocaInst>(I)->getAlignment())); 747 } else if (isa<CallInst>(Repl)) { 748 ++NumCallsRemoved; 749 } 750 Repl->intersectOptionalDataWith(I); 751 combineKnownMetadata(Repl, I); 752 I->replaceAllUsesWith(Repl); 753 I->eraseFromParent(); 754 } 755 } 756 757 NumHoisted += NL + NS + NC + NI; 758 NumRemoved += NR; 759 NumLoadsHoisted += NL; 760 NumStoresHoisted += NS; 761 NumCallsHoisted += NC; 762 return {NI, NL + NC + NS}; 763 } 764 765 // Hoist all expressions. Returns Number of scalars hoisted 766 // and number of non-scalars hoisted. 767 std::pair<unsigned, unsigned> hoistExpressions(Function &F) { 768 InsnInfo II; 769 LoadInfo LI; 770 StoreInfo SI; 771 CallInfo CI; 772 for (BasicBlock *BB : depth_first(&F.getEntryBlock())) { 773 int InstructionNb = 0; 774 for (Instruction &I1 : *BB) { 775 // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting 776 // deeper may increase the register pressure and compilation time. 777 if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB) 778 break; 779 780 if (auto *Load = dyn_cast<LoadInst>(&I1)) 781 LI.insert(Load, VN); 782 else if (auto *Store = dyn_cast<StoreInst>(&I1)) 783 SI.insert(Store, VN); 784 else if (auto *Call = dyn_cast<CallInst>(&I1)) { 785 if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) { 786 if (isa<DbgInfoIntrinsic>(Intr) || 787 Intr->getIntrinsicID() == Intrinsic::assume) 788 continue; 789 } 790 if (Call->mayHaveSideEffects()) { 791 if (!OptForMinSize) 792 break; 793 // We may continue hoisting across calls which write to memory. 794 if (Call->mayThrow()) 795 break; 796 } 797 CI.insert(Call, VN); 798 } else if (OptForMinSize || !isa<GetElementPtrInst>(&I1)) 799 // Do not hoist scalars past calls that may write to memory because 800 // that could result in spills later. geps are handled separately. 801 // TODO: We can relax this for targets like AArch64 as they have more 802 // registers than X86. 803 II.insert(&I1, VN); 804 } 805 } 806 807 HoistingPointList HPL; 808 computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar); 809 computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load); 810 computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store); 811 computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar); 812 computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load); 813 computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store); 814 return hoist(HPL); 815 } 816 }; 817 818 class GVNHoistLegacyPass : public FunctionPass { 819 public: 820 static char ID; 821 822 GVNHoistLegacyPass() : FunctionPass(ID) { 823 initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry()); 824 } 825 826 bool runOnFunction(Function &F) override { 827 if (skipFunction(F)) 828 return false; 829 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 830 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); 831 auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); 832 833 GVNHoist G(&DT, &AA, &MD, F.optForMinSize()); 834 return G.run(F); 835 } 836 837 void getAnalysisUsage(AnalysisUsage &AU) const override { 838 AU.addRequired<DominatorTreeWrapperPass>(); 839 AU.addRequired<AAResultsWrapperPass>(); 840 AU.addRequired<MemoryDependenceWrapperPass>(); 841 AU.addPreserved<DominatorTreeWrapperPass>(); 842 } 843 }; 844 } // namespace 845 846 PreservedAnalyses GVNHoistPass::run(Function &F, 847 AnalysisManager<Function> &AM) { 848 DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F); 849 AliasAnalysis &AA = AM.getResult<AAManager>(F); 850 MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F); 851 852 GVNHoist G(&DT, &AA, &MD, F.optForMinSize()); 853 if (!G.run(F)) 854 return PreservedAnalyses::all(); 855 856 PreservedAnalyses PA; 857 PA.preserve<DominatorTreeAnalysis>(); 858 return PA; 859 } 860 861 char GVNHoistLegacyPass::ID = 0; 862 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist", 863 "Early GVN Hoisting of Expressions", false, false) 864 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) 865 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 866 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 867 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist", 868 "Early GVN Hoisting of Expressions", false, false) 869 870 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); } 871