xref: /llvm-project/llvm/lib/Transforms/Scalar/GVNHoist.cpp (revision 07cb3048262b8219ee59f876f1470014bc8aa41f)
1 //===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass hoists expressions from branches to a common dominator. It uses
11 // GVN (global value numbering) to discover expressions computing the same
12 // values. The primary goals of code-hoisting are:
13 // 1. To reduce the code size.
14 // 2. In some cases reduce critical path (by exposing more ILP).
15 //
16 // Hoisting may affect the performance in some cases. To mitigate that, hoisting
17 // is disabled in the following cases.
18 // 1. Scalars across calls.
19 // 2. geps when corresponding load/store cannot be hoisted.
20 //===----------------------------------------------------------------------===//
21 
22 #include "llvm/Transforms/Scalar/GVN.h"
23 #include "llvm/ADT/DenseMap.h"
24 #include "llvm/ADT/SmallPtrSet.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/Transforms/Scalar.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 #include "llvm/Transforms/Utils/MemorySSA.h"
30 
31 using namespace llvm;
32 
33 #define DEBUG_TYPE "gvn-hoist"
34 
35 STATISTIC(NumHoisted, "Number of instructions hoisted");
36 STATISTIC(NumRemoved, "Number of instructions removed");
37 STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
38 STATISTIC(NumLoadsRemoved, "Number of loads removed");
39 STATISTIC(NumStoresHoisted, "Number of stores hoisted");
40 STATISTIC(NumStoresRemoved, "Number of stores removed");
41 STATISTIC(NumCallsHoisted, "Number of calls hoisted");
42 STATISTIC(NumCallsRemoved, "Number of calls removed");
43 
44 static cl::opt<int>
45     MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
46                         cl::desc("Max number of instructions to hoist "
47                                  "(default unlimited = -1)"));
48 static cl::opt<int> MaxNumberOfBBSInPath(
49     "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
50     cl::desc("Max number of basic blocks on the path between "
51              "hoisting locations (default = 4, unlimited = -1)"));
52 
53 static cl::opt<int> MaxDepthInBB(
54     "gvn-hoist-max-depth", cl::Hidden, cl::init(100),
55     cl::desc("Hoist instructions from the beginning of the BB up to the "
56              "maximum specified depth (default = 100, unlimited = -1)"));
57 
58 static cl::opt<int>
59     MaxChainLength("gvn-hoist-max-chain-length", cl::Hidden, cl::init(10),
60                    cl::desc("Maximum length of dependent chains to hoist "
61                             "(default = 10, unlimited = -1)"));
62 
63 namespace {
64 
65 // Provides a sorting function based on the execution order of two instructions.
66 struct SortByDFSIn {
67 private:
68   DenseMap<const Value *, unsigned> &DFSNumber;
69 
70 public:
71   SortByDFSIn(DenseMap<const Value *, unsigned> &D) : DFSNumber(D) {}
72 
73   // Returns true when A executes before B.
74   bool operator()(const Instruction *A, const Instruction *B) const {
75     // FIXME: libc++ has a std::sort() algorithm that will call the compare
76     // function on the same element.  Once PR20837 is fixed and some more years
77     // pass by and all the buildbots have moved to a corrected std::sort(),
78     // enable the following assert:
79     //
80     // assert(A != B);
81 
82     const BasicBlock *BA = A->getParent();
83     const BasicBlock *BB = B->getParent();
84     unsigned ADFS, BDFS;
85     if (BA == BB) {
86       ADFS = DFSNumber.lookup(A);
87       BDFS = DFSNumber.lookup(B);
88     } else {
89       ADFS = DFSNumber.lookup(BA);
90       BDFS = DFSNumber.lookup(BB);
91     }
92     assert(ADFS && BDFS);
93     return ADFS < BDFS;
94   }
95 };
96 
97 // A map from a pair of VNs to all the instructions with those VNs.
98 typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>>
99     VNtoInsns;
100 // An invalid value number Used when inserting a single value number into
101 // VNtoInsns.
102 enum : unsigned { InvalidVN = ~2U };
103 
104 // Records all scalar instructions candidate for code hoisting.
105 class InsnInfo {
106   VNtoInsns VNtoScalars;
107 
108 public:
109   // Inserts I and its value number in VNtoScalars.
110   void insert(Instruction *I, GVN::ValueTable &VN) {
111     // Scalar instruction.
112     unsigned V = VN.lookupOrAdd(I);
113     VNtoScalars[{V, InvalidVN}].push_back(I);
114   }
115 
116   const VNtoInsns &getVNTable() const { return VNtoScalars; }
117 };
118 
119 // Records all load instructions candidate for code hoisting.
120 class LoadInfo {
121   VNtoInsns VNtoLoads;
122 
123 public:
124   // Insert Load and the value number of its memory address in VNtoLoads.
125   void insert(LoadInst *Load, GVN::ValueTable &VN) {
126     if (Load->isSimple()) {
127       unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
128       VNtoLoads[{V, InvalidVN}].push_back(Load);
129     }
130   }
131 
132   const VNtoInsns &getVNTable() const { return VNtoLoads; }
133 };
134 
135 // Records all store instructions candidate for code hoisting.
136 class StoreInfo {
137   VNtoInsns VNtoStores;
138 
139 public:
140   // Insert the Store and a hash number of the store address and the stored
141   // value in VNtoStores.
142   void insert(StoreInst *Store, GVN::ValueTable &VN) {
143     if (!Store->isSimple())
144       return;
145     // Hash the store address and the stored value.
146     Value *Ptr = Store->getPointerOperand();
147     Value *Val = Store->getValueOperand();
148     VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
149   }
150 
151   const VNtoInsns &getVNTable() const { return VNtoStores; }
152 };
153 
154 // Records all call instructions candidate for code hoisting.
155 class CallInfo {
156   VNtoInsns VNtoCallsScalars;
157   VNtoInsns VNtoCallsLoads;
158   VNtoInsns VNtoCallsStores;
159 
160 public:
161   // Insert Call and its value numbering in one of the VNtoCalls* containers.
162   void insert(CallInst *Call, GVN::ValueTable &VN) {
163     // A call that doesNotAccessMemory is handled as a Scalar,
164     // onlyReadsMemory will be handled as a Load instruction,
165     // all other calls will be handled as stores.
166     unsigned V = VN.lookupOrAdd(Call);
167     auto Entry = std::make_pair(V, InvalidVN);
168 
169     if (Call->doesNotAccessMemory())
170       VNtoCallsScalars[Entry].push_back(Call);
171     else if (Call->onlyReadsMemory())
172       VNtoCallsLoads[Entry].push_back(Call);
173     else
174       VNtoCallsStores[Entry].push_back(Call);
175   }
176 
177   const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }
178 
179   const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }
180 
181   const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
182 };
183 
184 typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet;
185 typedef SmallVector<Instruction *, 4> SmallVecInsn;
186 typedef SmallVectorImpl<Instruction *> SmallVecImplInsn;
187 
188 static void combineKnownMetadata(Instruction *ReplInst, Instruction *I) {
189   static const unsigned KnownIDs[] = {
190       LLVMContext::MD_tbaa,           LLVMContext::MD_alias_scope,
191       LLVMContext::MD_noalias,        LLVMContext::MD_range,
192       LLVMContext::MD_fpmath,         LLVMContext::MD_invariant_load,
193       LLVMContext::MD_invariant_group};
194   combineMetadata(ReplInst, I, KnownIDs);
195 }
196 
197 // This pass hoists common computations across branches sharing common
198 // dominator. The primary goal is to reduce the code size, and in some
199 // cases reduce critical path (by exposing more ILP).
200 class GVNHoist {
201 public:
202   GVNHoist(DominatorTree *DT, AliasAnalysis *AA, MemoryDependenceResults *MD,
203            MemorySSA *MSSA, bool OptForMinSize)
204       : DT(DT), AA(AA), MD(MD), MSSA(MSSA), OptForMinSize(OptForMinSize),
205         HoistingGeps(OptForMinSize), HoistedCtr(0) {
206       // Hoist as far as possible when optimizing for code-size.
207       if (OptForMinSize)
208         MaxNumberOfBBSInPath = -1;
209   }
210 
211   bool run(Function &F) {
212     VN.setDomTree(DT);
213     VN.setAliasAnalysis(AA);
214     VN.setMemDep(MD);
215     bool Res = false;
216     // Perform DFS Numbering of instructions.
217     unsigned BBI = 0;
218     for (const BasicBlock *BB : depth_first(&F.getEntryBlock())) {
219       DFSNumber[BB] = ++BBI;
220       unsigned I = 0;
221       for (auto &Inst : *BB)
222         DFSNumber[&Inst] = ++I;
223     }
224 
225     int ChainLength = 0;
226 
227     // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
228     while (1) {
229       if (MaxChainLength != -1 && ++ChainLength >= MaxChainLength)
230         return Res;
231 
232       auto HoistStat = hoistExpressions(F);
233       if (HoistStat.first + HoistStat.second == 0)
234         return Res;
235 
236       if (HoistStat.second > 0)
237         // To address a limitation of the current GVN, we need to rerun the
238         // hoisting after we hoisted loads or stores in order to be able to
239         // hoist all scalars dependent on the hoisted ld/st.
240         VN.clear();
241 
242       Res = true;
243     }
244 
245     return Res;
246   }
247 
248 private:
249   GVN::ValueTable VN;
250   DominatorTree *DT;
251   AliasAnalysis *AA;
252   MemoryDependenceResults *MD;
253   MemorySSA *MSSA;
254   const bool OptForMinSize;
255   const bool HoistingGeps;
256   DenseMap<const Value *, unsigned> DFSNumber;
257   BBSideEffectsSet BBSideEffects;
258   int HoistedCtr;
259 
260   enum InsKind { Unknown, Scalar, Load, Store };
261 
262   // Return true when there are exception handling in BB.
263   bool hasEH(const BasicBlock *BB) {
264     auto It = BBSideEffects.find(BB);
265     if (It != BBSideEffects.end())
266       return It->second;
267 
268     if (BB->isEHPad() || BB->hasAddressTaken()) {
269       BBSideEffects[BB] = true;
270       return true;
271     }
272 
273     if (BB->getTerminator()->mayThrow()) {
274       BBSideEffects[BB] = true;
275       return true;
276     }
277 
278     BBSideEffects[BB] = false;
279     return false;
280   }
281 
282   // Return true when a successor of BB dominates A.
283   bool successorDominate(const BasicBlock *BB, const BasicBlock *A) {
284     for (const BasicBlock *Succ : BB->getTerminator()->successors())
285       if (DT->dominates(Succ, A))
286         return true;
287 
288     return false;
289   }
290 
291   // Return true when all paths from HoistBB to the end of the function pass
292   // through one of the blocks in WL.
293   bool hoistingFromAllPaths(const BasicBlock *HoistBB,
294                             SmallPtrSetImpl<const BasicBlock *> &WL) {
295 
296     // Copy WL as the loop will remove elements from it.
297     SmallPtrSet<const BasicBlock *, 2> WorkList(WL.begin(), WL.end());
298 
299     for (auto It = df_begin(HoistBB), E = df_end(HoistBB); It != E;) {
300       // There exists a path from HoistBB to the exit of the function if we are
301       // still iterating in DF traversal and we removed all instructions from
302       // the work list.
303       if (WorkList.empty())
304         return false;
305 
306       const BasicBlock *BB = *It;
307       if (WorkList.erase(BB)) {
308         // Stop DFS traversal when BB is in the work list.
309         It.skipChildren();
310         continue;
311       }
312 
313       // Check for end of function, calls that do not return, etc.
314       if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator()))
315         return false;
316 
317       // When reaching the back-edge of a loop, there may be a path through the
318       // loop that does not pass through B or C before exiting the loop.
319       if (successorDominate(BB, HoistBB))
320         return false;
321 
322       // Increment DFS traversal when not skipping children.
323       ++It;
324     }
325 
326     return true;
327   }
328 
329   /* Return true when I1 appears before I2 in the instructions of BB.  */
330   bool firstInBB(const Instruction *I1, const Instruction *I2) {
331     assert(I1->getParent() == I2->getParent());
332     unsigned I1DFS = DFSNumber.lookup(I1);
333     unsigned I2DFS = DFSNumber.lookup(I2);
334     assert(I1DFS && I2DFS);
335     return I1DFS < I2DFS;
336   }
337 
338   // Return true when there are memory uses of Def in BB.
339   bool hasMemoryUse(const Instruction *NewPt, MemoryDef *Def,
340                     const BasicBlock *BB) {
341     const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
342     if (!Acc)
343       return false;
344 
345     Instruction *OldPt = Def->getMemoryInst();
346     const BasicBlock *OldBB = OldPt->getParent();
347     const BasicBlock *NewBB = NewPt->getParent();
348     bool ReachedNewPt = false;
349 
350     for (const MemoryAccess &MA : *Acc)
351       if (const MemoryUse *MU = dyn_cast<MemoryUse>(&MA)) {
352         Instruction *Insn = MU->getMemoryInst();
353 
354         // Do not check whether MU aliases Def when MU occurs after OldPt.
355         if (BB == OldBB && firstInBB(OldPt, Insn))
356           break;
357 
358         // Do not check whether MU aliases Def when MU occurs before NewPt.
359         if (BB == NewBB) {
360           if (!ReachedNewPt) {
361             if (firstInBB(Insn, NewPt))
362               continue;
363             ReachedNewPt = true;
364           }
365         }
366         if (defClobbersUseOrDef(Def, MU, *AA))
367           return true;
368       }
369 
370     return false;
371   }
372 
373   // Return true when there are exception handling or loads of memory Def
374   // between Def and NewPt.  This function is only called for stores: Def is
375   // the MemoryDef of the store to be hoisted.
376 
377   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
378   // return true when the counter NBBsOnAllPaths reaces 0, except when it is
379   // initialized to -1 which is unlimited.
380   bool hasEHOrLoadsOnPath(const Instruction *NewPt, MemoryDef *Def,
381                           int &NBBsOnAllPaths) {
382     const BasicBlock *NewBB = NewPt->getParent();
383     const BasicBlock *OldBB = Def->getBlock();
384     assert(DT->dominates(NewBB, OldBB) && "invalid path");
385     assert(DT->dominates(Def->getDefiningAccess()->getBlock(), NewBB) &&
386            "def does not dominate new hoisting point");
387 
388     // Walk all basic blocks reachable in depth-first iteration on the inverse
389     // CFG from OldBB to NewBB. These blocks are all the blocks that may be
390     // executed between the execution of NewBB and OldBB. Hoisting an expression
391     // from OldBB into NewBB has to be safe on all execution paths.
392     for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
393       if (*I == NewBB) {
394         // Stop traversal when reaching HoistPt.
395         I.skipChildren();
396         continue;
397       }
398 
399       // Impossible to hoist with exceptions on the path.
400       if (hasEH(*I))
401         return true;
402 
403       // Check that we do not move a store past loads.
404       if (hasMemoryUse(NewPt, Def, *I))
405         return true;
406 
407       // Stop walk once the limit is reached.
408       if (NBBsOnAllPaths == 0)
409         return true;
410 
411       // -1 is unlimited number of blocks on all paths.
412       if (NBBsOnAllPaths != -1)
413         --NBBsOnAllPaths;
414 
415       ++I;
416     }
417 
418     return false;
419   }
420 
421   // Return true when there are exception handling between HoistPt and BB.
422   // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
423   // return true when the counter NBBsOnAllPaths reaches 0, except when it is
424   // initialized to -1 which is unlimited.
425   bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB,
426                    int &NBBsOnAllPaths) {
427     assert(DT->dominates(HoistPt, BB) && "Invalid path");
428 
429     // Walk all basic blocks reachable in depth-first iteration on
430     // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
431     // blocks that may be executed between the execution of NewHoistPt and
432     // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
433     // on all execution paths.
434     for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) {
435       if (*I == HoistPt) {
436         // Stop traversal when reaching NewHoistPt.
437         I.skipChildren();
438         continue;
439       }
440 
441       // Impossible to hoist with exceptions on the path.
442       if (hasEH(*I))
443         return true;
444 
445       // Stop walk once the limit is reached.
446       if (NBBsOnAllPaths == 0)
447         return true;
448 
449       // -1 is unlimited number of blocks on all paths.
450       if (NBBsOnAllPaths != -1)
451         --NBBsOnAllPaths;
452 
453       ++I;
454     }
455 
456     return false;
457   }
458 
459   // Return true when it is safe to hoist a memory load or store U from OldPt
460   // to NewPt.
461   bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
462                        MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {
463 
464     // In place hoisting is safe.
465     if (NewPt == OldPt)
466       return true;
467 
468     const BasicBlock *NewBB = NewPt->getParent();
469     const BasicBlock *OldBB = OldPt->getParent();
470     const BasicBlock *UBB = U->getBlock();
471 
472     // Check for dependences on the Memory SSA.
473     MemoryAccess *D = U->getDefiningAccess();
474     BasicBlock *DBB = D->getBlock();
475     if (DT->properlyDominates(NewBB, DBB))
476       // Cannot move the load or store to NewBB above its definition in DBB.
477       return false;
478 
479     if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
480       if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
481         if (firstInBB(NewPt, UD->getMemoryInst()))
482           // Cannot move the load or store to NewPt above its definition in D.
483           return false;
484 
485     // Check for unsafe hoistings due to side effects.
486     if (K == InsKind::Store) {
487       if (hasEHOrLoadsOnPath(NewPt, dyn_cast<MemoryDef>(U), NBBsOnAllPaths))
488         return false;
489     } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
490       return false;
491 
492     if (UBB == NewBB) {
493       if (DT->properlyDominates(DBB, NewBB))
494         return true;
495       assert(UBB == DBB);
496       assert(MSSA->locallyDominates(D, U));
497     }
498 
499     // No side effects: it is safe to hoist.
500     return true;
501   }
502 
503   // Return true when it is safe to hoist scalar instructions from all blocks in
504   // WL to HoistBB.
505   bool safeToHoistScalar(const BasicBlock *HoistBB,
506                          SmallPtrSetImpl<const BasicBlock *> &WL,
507                          int &NBBsOnAllPaths) {
508     // Enable scalar hoisting at -Oz as it is safe to hoist scalars to a place
509     // where they are partially needed.
510     if (OptForMinSize)
511       return true;
512 
513     // Check that the hoisted expression is needed on all paths.
514     if (!hoistingFromAllPaths(HoistBB, WL))
515       return false;
516 
517     for (const BasicBlock *BB : WL)
518       if (hasEHOnPath(HoistBB, BB, NBBsOnAllPaths))
519         return false;
520 
521     return true;
522   }
523 
524   // Each element of a hoisting list contains the basic block where to hoist and
525   // a list of instructions to be hoisted.
526   typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo;
527   typedef SmallVector<HoistingPointInfo, 4> HoistingPointList;
528 
529   // Partition InstructionsToHoist into a set of candidates which can share a
530   // common hoisting point. The partitions are collected in HPL. IsScalar is
531   // true when the instructions in InstructionsToHoist are scalars. IsLoad is
532   // true when the InstructionsToHoist are loads, false when they are stores.
533   void partitionCandidates(SmallVecImplInsn &InstructionsToHoist,
534                            HoistingPointList &HPL, InsKind K) {
535     // No need to sort for two instructions.
536     if (InstructionsToHoist.size() > 2) {
537       SortByDFSIn Pred(DFSNumber);
538       std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred);
539     }
540 
541     int NBBsOnAllPaths = MaxNumberOfBBSInPath;
542 
543     SmallVecImplInsn::iterator II = InstructionsToHoist.begin();
544     SmallVecImplInsn::iterator Start = II;
545     Instruction *HoistPt = *II;
546     BasicBlock *HoistBB = HoistPt->getParent();
547     MemoryUseOrDef *UD;
548     if (K != InsKind::Scalar)
549       UD = MSSA->getMemoryAccess(HoistPt);
550 
551     for (++II; II != InstructionsToHoist.end(); ++II) {
552       Instruction *Insn = *II;
553       BasicBlock *BB = Insn->getParent();
554       BasicBlock *NewHoistBB;
555       Instruction *NewHoistPt;
556 
557       if (BB == HoistBB) {
558         NewHoistBB = HoistBB;
559         NewHoistPt = firstInBB(Insn, HoistPt) ? Insn : HoistPt;
560       } else {
561         NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB);
562         if (NewHoistBB == BB)
563           NewHoistPt = Insn;
564         else if (NewHoistBB == HoistBB)
565           NewHoistPt = HoistPt;
566         else
567           NewHoistPt = NewHoistBB->getTerminator();
568       }
569 
570       SmallPtrSet<const BasicBlock *, 2> WL;
571       WL.insert(HoistBB);
572       WL.insert(BB);
573 
574       if (K == InsKind::Scalar) {
575         if (safeToHoistScalar(NewHoistBB, WL, NBBsOnAllPaths)) {
576           // Extend HoistPt to NewHoistPt.
577           HoistPt = NewHoistPt;
578           HoistBB = NewHoistBB;
579           continue;
580         }
581       } else {
582         // When NewBB already contains an instruction to be hoisted, the
583         // expression is needed on all paths.
584         // Check that the hoisted expression is needed on all paths: it is
585         // unsafe to hoist loads to a place where there may be a path not
586         // loading from the same address: for instance there may be a branch on
587         // which the address of the load may not be initialized.
588         if ((HoistBB == NewHoistBB || BB == NewHoistBB ||
589              hoistingFromAllPaths(NewHoistBB, WL)) &&
590             // Also check that it is safe to move the load or store from HoistPt
591             // to NewHoistPt, and from Insn to NewHoistPt.
592             safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) &&
593             safeToHoistLdSt(NewHoistPt, Insn, MSSA->getMemoryAccess(Insn),
594                             K, NBBsOnAllPaths)) {
595           // Extend HoistPt to NewHoistPt.
596           HoistPt = NewHoistPt;
597           HoistBB = NewHoistBB;
598           continue;
599         }
600       }
601 
602       // At this point it is not safe to extend the current hoisting to
603       // NewHoistPt: save the hoisting list so far.
604       if (std::distance(Start, II) > 1)
605         HPL.push_back({HoistBB, SmallVecInsn(Start, II)});
606 
607       // Start over from BB.
608       Start = II;
609       if (K != InsKind::Scalar)
610         UD = MSSA->getMemoryAccess(*Start);
611       HoistPt = Insn;
612       HoistBB = BB;
613       NBBsOnAllPaths = MaxNumberOfBBSInPath;
614     }
615 
616     // Save the last partition.
617     if (std::distance(Start, II) > 1)
618       HPL.push_back({HoistBB, SmallVecInsn(Start, II)});
619   }
620 
621   // Initialize HPL from Map.
622   void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
623                               InsKind K) {
624     for (const auto &Entry : Map) {
625       if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold)
626         return;
627 
628       const SmallVecInsn &V = Entry.second;
629       if (V.size() < 2)
630         continue;
631 
632       // Compute the insertion point and the list of expressions to be hoisted.
633       SmallVecInsn InstructionsToHoist;
634       for (auto I : V)
635         if (!hasEH(I->getParent()))
636           InstructionsToHoist.push_back(I);
637 
638       if (!InstructionsToHoist.empty())
639         partitionCandidates(InstructionsToHoist, HPL, K);
640     }
641   }
642 
643   // Return true when all operands of Instr are available at insertion point
644   // HoistPt. When limiting the number of hoisted expressions, one could hoist
645   // a load without hoisting its access function. So before hoisting any
646   // expression, make sure that all its operands are available at insert point.
647   bool allOperandsAvailable(const Instruction *I,
648                             const BasicBlock *HoistPt) const {
649     for (const Use &Op : I->operands())
650       if (const auto *Inst = dyn_cast<Instruction>(&Op))
651         if (!DT->dominates(Inst->getParent(), HoistPt))
652           return false;
653 
654     return true;
655   }
656 
657   // Same as allOperandsAvailable with recursive check for GEP operands.
658   bool allGepOperandsAvailable(const Instruction *I,
659                                const BasicBlock *HoistPt) const {
660     for (const Use &Op : I->operands())
661       if (const auto *Inst = dyn_cast<Instruction>(&Op))
662         if (!DT->dominates(Inst->getParent(), HoistPt)) {
663           if (const GetElementPtrInst *GepOp =
664                   dyn_cast<GetElementPtrInst>(Inst)) {
665             if (!allGepOperandsAvailable(GepOp, HoistPt))
666               return false;
667             // Gep is available if all operands of GepOp are available.
668           } else {
669             // Gep is not available if it has operands other than GEPs that are
670             // defined in blocks not dominating HoistPt.
671             return false;
672           }
673         }
674     return true;
675   }
676 
677   // Make all operands of the GEP available.
678   void makeGepsAvailable(Instruction *Repl, BasicBlock *HoistPt,
679                          const SmallVecInsn &InstructionsToHoist,
680                          Instruction *Gep) const {
681     assert(allGepOperandsAvailable(Gep, HoistPt) &&
682            "GEP operands not available");
683 
684     Instruction *ClonedGep = Gep->clone();
685     for (unsigned i = 0, e = Gep->getNumOperands(); i != e; ++i)
686       if (Instruction *Op = dyn_cast<Instruction>(Gep->getOperand(i))) {
687 
688         // Check whether the operand is already available.
689         if (DT->dominates(Op->getParent(), HoistPt))
690           continue;
691 
692         // As a GEP can refer to other GEPs, recursively make all the operands
693         // of this GEP available at HoistPt.
694         if (GetElementPtrInst *GepOp = dyn_cast<GetElementPtrInst>(Op))
695           makeGepsAvailable(ClonedGep, HoistPt, InstructionsToHoist, GepOp);
696       }
697 
698     // Copy Gep and replace its uses in Repl with ClonedGep.
699     ClonedGep->insertBefore(HoistPt->getTerminator());
700 
701     // Conservatively discard any optimization hints, they may differ on the
702     // other paths.
703     ClonedGep->dropUnknownNonDebugMetadata();
704 
705     // If we have optimization hints which agree with each other along different
706     // paths, preserve them.
707     for (const Instruction *OtherInst : InstructionsToHoist) {
708       const GetElementPtrInst *OtherGep;
709       if (auto *OtherLd = dyn_cast<LoadInst>(OtherInst))
710         OtherGep = cast<GetElementPtrInst>(OtherLd->getPointerOperand());
711       else
712         OtherGep = cast<GetElementPtrInst>(
713             cast<StoreInst>(OtherInst)->getPointerOperand());
714       ClonedGep->andIRFlags(OtherGep);
715     }
716 
717     // Replace uses of Gep with ClonedGep in Repl.
718     Repl->replaceUsesOfWith(Gep, ClonedGep);
719   }
720 
721   // In the case Repl is a load or a store, we make all their GEPs
722   // available: GEPs are not hoisted by default to avoid the address
723   // computations to be hoisted without the associated load or store.
724   bool makeGepOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt,
725                                 const SmallVecInsn &InstructionsToHoist) const {
726     // Check whether the GEP of a ld/st can be synthesized at HoistPt.
727     GetElementPtrInst *Gep = nullptr;
728     Instruction *Val = nullptr;
729     if (auto *Ld = dyn_cast<LoadInst>(Repl)) {
730       Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
731     } else if (auto *St = dyn_cast<StoreInst>(Repl)) {
732       Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
733       Val = dyn_cast<Instruction>(St->getValueOperand());
734       // Check that the stored value is available.
735       if (Val) {
736         if (isa<GetElementPtrInst>(Val)) {
737           // Check whether we can compute the GEP at HoistPt.
738           if (!allGepOperandsAvailable(Val, HoistPt))
739             return false;
740         } else if (!DT->dominates(Val->getParent(), HoistPt))
741           return false;
742       }
743     }
744 
745     // Check whether we can compute the Gep at HoistPt.
746     if (!Gep || !allGepOperandsAvailable(Gep, HoistPt))
747       return false;
748 
749     makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Gep);
750 
751     if (Val && isa<GetElementPtrInst>(Val))
752       makeGepsAvailable(Repl, HoistPt, InstructionsToHoist, Val);
753 
754     return true;
755   }
756 
757   std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
758     unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
759     for (const HoistingPointInfo &HP : HPL) {
760       // Find out whether we already have one of the instructions in HoistPt,
761       // in which case we do not have to move it.
762       BasicBlock *HoistPt = HP.first;
763       const SmallVecInsn &InstructionsToHoist = HP.second;
764       Instruction *Repl = nullptr;
765       for (Instruction *I : InstructionsToHoist)
766         if (I->getParent() == HoistPt)
767           // If there are two instructions in HoistPt to be hoisted in place:
768           // update Repl to be the first one, such that we can rename the uses
769           // of the second based on the first.
770           if (!Repl || firstInBB(I, Repl))
771             Repl = I;
772 
773       // Keep track of whether we moved the instruction so we know whether we
774       // should move the MemoryAccess.
775       bool MoveAccess = true;
776       if (Repl) {
777         // Repl is already in HoistPt: it remains in place.
778         assert(allOperandsAvailable(Repl, HoistPt) &&
779                "instruction depends on operands that are not available");
780         MoveAccess = false;
781       } else {
782         // When we do not find Repl in HoistPt, select the first in the list
783         // and move it to HoistPt.
784         Repl = InstructionsToHoist.front();
785 
786         // We can move Repl in HoistPt only when all operands are available.
787         // The order in which hoistings are done may influence the availability
788         // of operands.
789         if (!allOperandsAvailable(Repl, HoistPt)) {
790 
791           // When HoistingGeps there is nothing more we can do to make the
792           // operands available: just continue.
793           if (HoistingGeps)
794             continue;
795 
796           // When not HoistingGeps we need to copy the GEPs.
797           if (!makeGepOperandsAvailable(Repl, HoistPt, InstructionsToHoist))
798             continue;
799         }
800 
801         // Move the instruction at the end of HoistPt.
802         Instruction *Last = HoistPt->getTerminator();
803         Repl->moveBefore(Last);
804 
805         DFSNumber[Repl] = DFSNumber[Last]++;
806       }
807 
808       MemoryAccess *NewMemAcc = MSSA->getMemoryAccess(Repl);
809 
810       if (MoveAccess) {
811         if (MemoryUseOrDef *OldMemAcc =
812                 dyn_cast_or_null<MemoryUseOrDef>(NewMemAcc)) {
813           // The definition of this ld/st will not change: ld/st hoisting is
814           // legal when the ld/st is not moved past its current definition.
815           MemoryAccess *Def = OldMemAcc->getDefiningAccess();
816           NewMemAcc =
817               MSSA->createMemoryAccessInBB(Repl, Def, HoistPt, MemorySSA::End);
818           OldMemAcc->replaceAllUsesWith(NewMemAcc);
819           MSSA->removeMemoryAccess(OldMemAcc);
820         }
821       }
822 
823       if (isa<LoadInst>(Repl))
824         ++NL;
825       else if (isa<StoreInst>(Repl))
826         ++NS;
827       else if (isa<CallInst>(Repl))
828         ++NC;
829       else // Scalar
830         ++NI;
831 
832       // Remove and rename all other instructions.
833       for (Instruction *I : InstructionsToHoist)
834         if (I != Repl) {
835           ++NR;
836           if (auto *ReplacementLoad = dyn_cast<LoadInst>(Repl)) {
837             ReplacementLoad->setAlignment(
838                 std::min(ReplacementLoad->getAlignment(),
839                          cast<LoadInst>(I)->getAlignment()));
840             ++NumLoadsRemoved;
841           } else if (auto *ReplacementStore = dyn_cast<StoreInst>(Repl)) {
842             ReplacementStore->setAlignment(
843                 std::min(ReplacementStore->getAlignment(),
844                          cast<StoreInst>(I)->getAlignment()));
845             ++NumStoresRemoved;
846           } else if (auto *ReplacementAlloca = dyn_cast<AllocaInst>(Repl)) {
847             ReplacementAlloca->setAlignment(
848                 std::max(ReplacementAlloca->getAlignment(),
849                          cast<AllocaInst>(I)->getAlignment()));
850           } else if (isa<CallInst>(Repl)) {
851             ++NumCallsRemoved;
852           }
853 
854           if (NewMemAcc) {
855             // Update the uses of the old MSSA access with NewMemAcc.
856             MemoryAccess *OldMA = MSSA->getMemoryAccess(I);
857             OldMA->replaceAllUsesWith(NewMemAcc);
858             MSSA->removeMemoryAccess(OldMA);
859           }
860 
861           Repl->andIRFlags(I);
862           combineKnownMetadata(Repl, I);
863           I->replaceAllUsesWith(Repl);
864           // Also invalidate the Alias Analysis cache.
865           MD->removeInstruction(I);
866           I->eraseFromParent();
867         }
868 
869       // Remove MemorySSA phi nodes with the same arguments.
870       if (NewMemAcc) {
871         SmallPtrSet<MemoryPhi *, 4> UsePhis;
872         for (User *U : NewMemAcc->users())
873           if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(U))
874             UsePhis.insert(Phi);
875 
876         for (auto *Phi : UsePhis) {
877           auto In = Phi->incoming_values();
878           if (all_of(In, [&](Use &U) { return U == NewMemAcc; })) {
879             Phi->replaceAllUsesWith(NewMemAcc);
880             MSSA->removeMemoryAccess(Phi);
881           }
882         }
883       }
884     }
885 
886     NumHoisted += NL + NS + NC + NI;
887     NumRemoved += NR;
888     NumLoadsHoisted += NL;
889     NumStoresHoisted += NS;
890     NumCallsHoisted += NC;
891     return {NI, NL + NC + NS};
892   }
893 
894   // Hoist all expressions. Returns Number of scalars hoisted
895   // and number of non-scalars hoisted.
896   std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
897     InsnInfo II;
898     LoadInfo LI;
899     StoreInfo SI;
900     CallInfo CI;
901     for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
902       int InstructionNb = 0;
903       for (Instruction &I1 : *BB) {
904         // Only hoist the first instructions in BB up to MaxDepthInBB. Hoisting
905         // deeper may increase the register pressure and compilation time.
906         if (MaxDepthInBB != -1 && InstructionNb++ >= MaxDepthInBB)
907           break;
908 
909         // Do not value number terminator instructions.
910         if (isa<TerminatorInst>(&I1))
911           break;
912 
913         if (auto *Load = dyn_cast<LoadInst>(&I1))
914           LI.insert(Load, VN);
915         else if (auto *Store = dyn_cast<StoreInst>(&I1))
916           SI.insert(Store, VN);
917         else if (auto *Call = dyn_cast<CallInst>(&I1)) {
918           if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
919             if (isa<DbgInfoIntrinsic>(Intr) ||
920                 Intr->getIntrinsicID() == Intrinsic::assume)
921               continue;
922           }
923           if (Call->mayHaveSideEffects()) {
924             if (!OptForMinSize)
925               break;
926             // We may continue hoisting across calls which write to memory.
927             if (Call->mayThrow())
928               break;
929           }
930 
931           if (Call->isConvergent())
932             break;
933 
934           CI.insert(Call, VN);
935         } else if (HoistingGeps || !isa<GetElementPtrInst>(&I1))
936           // Do not hoist scalars past calls that may write to memory because
937           // that could result in spills later. geps are handled separately.
938           // TODO: We can relax this for targets like AArch64 as they have more
939           // registers than X86.
940           II.insert(&I1, VN);
941       }
942     }
943 
944     HoistingPointList HPL;
945     computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
946     computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
947     computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
948     computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
949     computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
950     computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
951     return hoist(HPL);
952   }
953 };
954 
955 class GVNHoistLegacyPass : public FunctionPass {
956 public:
957   static char ID;
958 
959   GVNHoistLegacyPass() : FunctionPass(ID) {
960     initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
961   }
962 
963   bool runOnFunction(Function &F) override {
964     if (skipFunction(F))
965       return false;
966     auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
967     auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
968     auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();
969     auto &MSSA = getAnalysis<MemorySSAWrapperPass>().getMSSA();
970 
971     GVNHoist G(&DT, &AA, &MD, &MSSA, F.optForMinSize());
972     return G.run(F);
973   }
974 
975   void getAnalysisUsage(AnalysisUsage &AU) const override {
976     AU.addRequired<DominatorTreeWrapperPass>();
977     AU.addRequired<AAResultsWrapperPass>();
978     AU.addRequired<MemoryDependenceWrapperPass>();
979     AU.addRequired<MemorySSAWrapperPass>();
980     AU.addPreserved<DominatorTreeWrapperPass>();
981     AU.addPreserved<MemorySSAWrapperPass>();
982   }
983 };
984 } // namespace
985 
986 PreservedAnalyses GVNHoistPass::run(Function &F, FunctionAnalysisManager &AM) {
987   DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
988   AliasAnalysis &AA = AM.getResult<AAManager>(F);
989   MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);
990   MemorySSA &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
991   GVNHoist G(&DT, &AA, &MD, &MSSA, F.optForMinSize());
992   if (!G.run(F))
993     return PreservedAnalyses::all();
994 
995   PreservedAnalyses PA;
996   PA.preserve<DominatorTreeAnalysis>();
997   PA.preserve<MemorySSAAnalysis>();
998   return PA;
999 }
1000 
1001 char GVNHoistLegacyPass::ID = 0;
1002 INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
1003                       "Early GVN Hoisting of Expressions", false, false)
1004 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
1005 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
1006 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1007 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1008 INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
1009                     "Early GVN Hoisting of Expressions", false, false)
1010 
1011 FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }
1012