1 //===- EarlyCSE.cpp - Simple and fast CSE pass ----------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass performs a simple dominator tree walk that eliminates trivially 11 // redundant instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/Transforms/Scalar/EarlyCSE.h" 16 #include "llvm/ADT/Hashing.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/AssumptionCache.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/TargetTransformInfo.h" 22 #include "llvm/IR/DataLayout.h" 23 #include "llvm/IR/Dominators.h" 24 #include "llvm/IR/Instructions.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Pass.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/RecyclingAllocator.h" 30 #include "llvm/Analysis/TargetLibraryInfo.h" 31 #include "llvm/Transforms/Scalar.h" 32 #include "llvm/Transforms/Utils/Local.h" 33 #include <deque> 34 using namespace llvm; 35 using namespace llvm::PatternMatch; 36 37 #define DEBUG_TYPE "early-cse" 38 39 STATISTIC(NumSimplify, "Number of instructions simplified or DCE'd"); 40 STATISTIC(NumCSE, "Number of instructions CSE'd"); 41 STATISTIC(NumCSELoad, "Number of load instructions CSE'd"); 42 STATISTIC(NumCSECall, "Number of call instructions CSE'd"); 43 STATISTIC(NumDSE, "Number of trivial dead stores removed"); 44 45 //===----------------------------------------------------------------------===// 46 // SimpleValue 47 //===----------------------------------------------------------------------===// 48 49 namespace { 50 /// \brief Struct representing the available values in the scoped hash table. 51 struct SimpleValue { 52 Instruction *Inst; 53 54 SimpleValue(Instruction *I) : Inst(I) { 55 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 56 } 57 58 bool isSentinel() const { 59 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 60 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 61 } 62 63 static bool canHandle(Instruction *Inst) { 64 // This can only handle non-void readnone functions. 65 if (CallInst *CI = dyn_cast<CallInst>(Inst)) 66 return CI->doesNotAccessMemory() && !CI->getType()->isVoidTy(); 67 return isa<CastInst>(Inst) || isa<BinaryOperator>(Inst) || 68 isa<GetElementPtrInst>(Inst) || isa<CmpInst>(Inst) || 69 isa<SelectInst>(Inst) || isa<ExtractElementInst>(Inst) || 70 isa<InsertElementInst>(Inst) || isa<ShuffleVectorInst>(Inst) || 71 isa<ExtractValueInst>(Inst) || isa<InsertValueInst>(Inst); 72 } 73 }; 74 } 75 76 namespace llvm { 77 template <> struct DenseMapInfo<SimpleValue> { 78 static inline SimpleValue getEmptyKey() { 79 return DenseMapInfo<Instruction *>::getEmptyKey(); 80 } 81 static inline SimpleValue getTombstoneKey() { 82 return DenseMapInfo<Instruction *>::getTombstoneKey(); 83 } 84 static unsigned getHashValue(SimpleValue Val); 85 static bool isEqual(SimpleValue LHS, SimpleValue RHS); 86 }; 87 } 88 89 unsigned DenseMapInfo<SimpleValue>::getHashValue(SimpleValue Val) { 90 Instruction *Inst = Val.Inst; 91 // Hash in all of the operands as pointers. 92 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst)) { 93 Value *LHS = BinOp->getOperand(0); 94 Value *RHS = BinOp->getOperand(1); 95 if (BinOp->isCommutative() && BinOp->getOperand(0) > BinOp->getOperand(1)) 96 std::swap(LHS, RHS); 97 98 if (isa<OverflowingBinaryOperator>(BinOp)) { 99 // Hash the overflow behavior 100 unsigned Overflow = 101 BinOp->hasNoSignedWrap() * OverflowingBinaryOperator::NoSignedWrap | 102 BinOp->hasNoUnsignedWrap() * 103 OverflowingBinaryOperator::NoUnsignedWrap; 104 return hash_combine(BinOp->getOpcode(), Overflow, LHS, RHS); 105 } 106 107 return hash_combine(BinOp->getOpcode(), LHS, RHS); 108 } 109 110 if (CmpInst *CI = dyn_cast<CmpInst>(Inst)) { 111 Value *LHS = CI->getOperand(0); 112 Value *RHS = CI->getOperand(1); 113 CmpInst::Predicate Pred = CI->getPredicate(); 114 if (Inst->getOperand(0) > Inst->getOperand(1)) { 115 std::swap(LHS, RHS); 116 Pred = CI->getSwappedPredicate(); 117 } 118 return hash_combine(Inst->getOpcode(), Pred, LHS, RHS); 119 } 120 121 if (CastInst *CI = dyn_cast<CastInst>(Inst)) 122 return hash_combine(CI->getOpcode(), CI->getType(), CI->getOperand(0)); 123 124 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(Inst)) 125 return hash_combine(EVI->getOpcode(), EVI->getOperand(0), 126 hash_combine_range(EVI->idx_begin(), EVI->idx_end())); 127 128 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(Inst)) 129 return hash_combine(IVI->getOpcode(), IVI->getOperand(0), 130 IVI->getOperand(1), 131 hash_combine_range(IVI->idx_begin(), IVI->idx_end())); 132 133 assert((isa<CallInst>(Inst) || isa<BinaryOperator>(Inst) || 134 isa<GetElementPtrInst>(Inst) || isa<SelectInst>(Inst) || 135 isa<ExtractElementInst>(Inst) || isa<InsertElementInst>(Inst) || 136 isa<ShuffleVectorInst>(Inst)) && 137 "Invalid/unknown instruction"); 138 139 // Mix in the opcode. 140 return hash_combine( 141 Inst->getOpcode(), 142 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 143 } 144 145 bool DenseMapInfo<SimpleValue>::isEqual(SimpleValue LHS, SimpleValue RHS) { 146 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 147 148 if (LHS.isSentinel() || RHS.isSentinel()) 149 return LHSI == RHSI; 150 151 if (LHSI->getOpcode() != RHSI->getOpcode()) 152 return false; 153 if (LHSI->isIdenticalTo(RHSI)) 154 return true; 155 156 // If we're not strictly identical, we still might be a commutable instruction 157 if (BinaryOperator *LHSBinOp = dyn_cast<BinaryOperator>(LHSI)) { 158 if (!LHSBinOp->isCommutative()) 159 return false; 160 161 assert(isa<BinaryOperator>(RHSI) && 162 "same opcode, but different instruction type?"); 163 BinaryOperator *RHSBinOp = cast<BinaryOperator>(RHSI); 164 165 // Check overflow attributes 166 if (isa<OverflowingBinaryOperator>(LHSBinOp)) { 167 assert(isa<OverflowingBinaryOperator>(RHSBinOp) && 168 "same opcode, but different operator type?"); 169 if (LHSBinOp->hasNoUnsignedWrap() != RHSBinOp->hasNoUnsignedWrap() || 170 LHSBinOp->hasNoSignedWrap() != RHSBinOp->hasNoSignedWrap()) 171 return false; 172 } 173 174 // Commuted equality 175 return LHSBinOp->getOperand(0) == RHSBinOp->getOperand(1) && 176 LHSBinOp->getOperand(1) == RHSBinOp->getOperand(0); 177 } 178 if (CmpInst *LHSCmp = dyn_cast<CmpInst>(LHSI)) { 179 assert(isa<CmpInst>(RHSI) && 180 "same opcode, but different instruction type?"); 181 CmpInst *RHSCmp = cast<CmpInst>(RHSI); 182 // Commuted equality 183 return LHSCmp->getOperand(0) == RHSCmp->getOperand(1) && 184 LHSCmp->getOperand(1) == RHSCmp->getOperand(0) && 185 LHSCmp->getSwappedPredicate() == RHSCmp->getPredicate(); 186 } 187 188 return false; 189 } 190 191 //===----------------------------------------------------------------------===// 192 // CallValue 193 //===----------------------------------------------------------------------===// 194 195 namespace { 196 /// \brief Struct representing the available call values in the scoped hash 197 /// table. 198 struct CallValue { 199 Instruction *Inst; 200 201 CallValue(Instruction *I) : Inst(I) { 202 assert((isSentinel() || canHandle(I)) && "Inst can't be handled!"); 203 } 204 205 bool isSentinel() const { 206 return Inst == DenseMapInfo<Instruction *>::getEmptyKey() || 207 Inst == DenseMapInfo<Instruction *>::getTombstoneKey(); 208 } 209 210 static bool canHandle(Instruction *Inst) { 211 // Don't value number anything that returns void. 212 if (Inst->getType()->isVoidTy()) 213 return false; 214 215 CallInst *CI = dyn_cast<CallInst>(Inst); 216 if (!CI || !CI->onlyReadsMemory()) 217 return false; 218 return true; 219 } 220 }; 221 } 222 223 namespace llvm { 224 template <> struct DenseMapInfo<CallValue> { 225 static inline CallValue getEmptyKey() { 226 return DenseMapInfo<Instruction *>::getEmptyKey(); 227 } 228 static inline CallValue getTombstoneKey() { 229 return DenseMapInfo<Instruction *>::getTombstoneKey(); 230 } 231 static unsigned getHashValue(CallValue Val); 232 static bool isEqual(CallValue LHS, CallValue RHS); 233 }; 234 } 235 236 unsigned DenseMapInfo<CallValue>::getHashValue(CallValue Val) { 237 Instruction *Inst = Val.Inst; 238 // Hash all of the operands as pointers and mix in the opcode. 239 return hash_combine( 240 Inst->getOpcode(), 241 hash_combine_range(Inst->value_op_begin(), Inst->value_op_end())); 242 } 243 244 bool DenseMapInfo<CallValue>::isEqual(CallValue LHS, CallValue RHS) { 245 Instruction *LHSI = LHS.Inst, *RHSI = RHS.Inst; 246 if (LHS.isSentinel() || RHS.isSentinel()) 247 return LHSI == RHSI; 248 return LHSI->isIdenticalTo(RHSI); 249 } 250 251 //===----------------------------------------------------------------------===// 252 // EarlyCSE implementation 253 //===----------------------------------------------------------------------===// 254 255 namespace { 256 /// \brief A simple and fast domtree-based CSE pass. 257 /// 258 /// This pass does a simple depth-first walk over the dominator tree, 259 /// eliminating trivially redundant instructions and using instsimplify to 260 /// canonicalize things as it goes. It is intended to be fast and catch obvious 261 /// cases so that instcombine and other passes are more effective. It is 262 /// expected that a later pass of GVN will catch the interesting/hard cases. 263 class EarlyCSE { 264 public: 265 Function &F; 266 const DataLayout *DL; 267 const TargetLibraryInfo &TLI; 268 const TargetTransformInfo &TTI; 269 DominatorTree &DT; 270 AssumptionCache &AC; 271 typedef RecyclingAllocator< 272 BumpPtrAllocator, ScopedHashTableVal<SimpleValue, Value *>> AllocatorTy; 273 typedef ScopedHashTable<SimpleValue, Value *, DenseMapInfo<SimpleValue>, 274 AllocatorTy> ScopedHTType; 275 276 /// \brief A scoped hash table of the current values of all of our simple 277 /// scalar expressions. 278 /// 279 /// As we walk down the domtree, we look to see if instructions are in this: 280 /// if so, we replace them with what we find, otherwise we insert them so 281 /// that dominated values can succeed in their lookup. 282 ScopedHTType AvailableValues; 283 284 /// \brief A scoped hash table of the current values of loads. 285 /// 286 /// This allows us to get efficient access to dominating loads when we have 287 /// a fully redundant load. In addition to the most recent load, we keep 288 /// track of a generation count of the read, which is compared against the 289 /// current generation count. The current generation count is incremented 290 /// after every possibly writing memory operation, which ensures that we only 291 /// CSE loads with other loads that have no intervening store. 292 typedef RecyclingAllocator< 293 BumpPtrAllocator, 294 ScopedHashTableVal<Value *, std::pair<Value *, unsigned>>> 295 LoadMapAllocator; 296 typedef ScopedHashTable<Value *, std::pair<Value *, unsigned>, 297 DenseMapInfo<Value *>, LoadMapAllocator> LoadHTType; 298 LoadHTType AvailableLoads; 299 300 /// \brief A scoped hash table of the current values of read-only call 301 /// values. 302 /// 303 /// It uses the same generation count as loads. 304 typedef ScopedHashTable<CallValue, std::pair<Value *, unsigned>> CallHTType; 305 CallHTType AvailableCalls; 306 307 /// \brief This is the current generation of the memory value. 308 unsigned CurrentGeneration; 309 310 /// \brief Set up the EarlyCSE runner for a particular function. 311 EarlyCSE(Function &F, const DataLayout *DL, const TargetLibraryInfo &TLI, 312 const TargetTransformInfo &TTI, DominatorTree &DT, 313 AssumptionCache &AC) 314 : F(F), DL(DL), TLI(TLI), TTI(TTI), DT(DT), AC(AC), CurrentGeneration(0) { 315 } 316 317 bool run(); 318 319 private: 320 // Almost a POD, but needs to call the constructors for the scoped hash 321 // tables so that a new scope gets pushed on. These are RAII so that the 322 // scope gets popped when the NodeScope is destroyed. 323 class NodeScope { 324 public: 325 NodeScope(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 326 CallHTType &AvailableCalls) 327 : Scope(AvailableValues), LoadScope(AvailableLoads), 328 CallScope(AvailableCalls) {} 329 330 private: 331 NodeScope(const NodeScope &) = delete; 332 void operator=(const NodeScope &) = delete; 333 334 ScopedHTType::ScopeTy Scope; 335 LoadHTType::ScopeTy LoadScope; 336 CallHTType::ScopeTy CallScope; 337 }; 338 339 // Contains all the needed information to create a stack for doing a depth 340 // first tranversal of the tree. This includes scopes for values, loads, and 341 // calls as well as the generation. There is a child iterator so that the 342 // children do not need to be store spearately. 343 class StackNode { 344 public: 345 StackNode(ScopedHTType &AvailableValues, LoadHTType &AvailableLoads, 346 CallHTType &AvailableCalls, unsigned cg, DomTreeNode *n, 347 DomTreeNode::iterator child, DomTreeNode::iterator end) 348 : CurrentGeneration(cg), ChildGeneration(cg), Node(n), ChildIter(child), 349 EndIter(end), Scopes(AvailableValues, AvailableLoads, AvailableCalls), 350 Processed(false) {} 351 352 // Accessors. 353 unsigned currentGeneration() { return CurrentGeneration; } 354 unsigned childGeneration() { return ChildGeneration; } 355 void childGeneration(unsigned generation) { ChildGeneration = generation; } 356 DomTreeNode *node() { return Node; } 357 DomTreeNode::iterator childIter() { return ChildIter; } 358 DomTreeNode *nextChild() { 359 DomTreeNode *child = *ChildIter; 360 ++ChildIter; 361 return child; 362 } 363 DomTreeNode::iterator end() { return EndIter; } 364 bool isProcessed() { return Processed; } 365 void process() { Processed = true; } 366 367 private: 368 StackNode(const StackNode &) = delete; 369 void operator=(const StackNode &) = delete; 370 371 // Members. 372 unsigned CurrentGeneration; 373 unsigned ChildGeneration; 374 DomTreeNode *Node; 375 DomTreeNode::iterator ChildIter; 376 DomTreeNode::iterator EndIter; 377 NodeScope Scopes; 378 bool Processed; 379 }; 380 381 /// \brief Wrapper class to handle memory instructions, including loads, 382 /// stores and intrinsic loads and stores defined by the target. 383 class ParseMemoryInst { 384 public: 385 ParseMemoryInst(Instruction *Inst, const TargetTransformInfo &TTI) 386 : Load(false), Store(false), Vol(false), MayReadFromMemory(false), 387 MayWriteToMemory(false), MatchingId(-1), Ptr(nullptr) { 388 MayReadFromMemory = Inst->mayReadFromMemory(); 389 MayWriteToMemory = Inst->mayWriteToMemory(); 390 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) { 391 MemIntrinsicInfo Info; 392 if (!TTI.getTgtMemIntrinsic(II, Info)) 393 return; 394 if (Info.NumMemRefs == 1) { 395 Store = Info.WriteMem; 396 Load = Info.ReadMem; 397 MatchingId = Info.MatchingId; 398 MayReadFromMemory = Info.ReadMem; 399 MayWriteToMemory = Info.WriteMem; 400 Vol = Info.Vol; 401 Ptr = Info.PtrVal; 402 } 403 } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { 404 Load = true; 405 Vol = !LI->isSimple(); 406 Ptr = LI->getPointerOperand(); 407 } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { 408 Store = true; 409 Vol = !SI->isSimple(); 410 Ptr = SI->getPointerOperand(); 411 } 412 } 413 bool isLoad() { return Load; } 414 bool isStore() { return Store; } 415 bool isVolatile() { return Vol; } 416 bool isMatchingMemLoc(const ParseMemoryInst &Inst) { 417 return Ptr == Inst.Ptr && MatchingId == Inst.MatchingId; 418 } 419 bool isValid() { return Ptr != nullptr; } 420 int getMatchingId() { return MatchingId; } 421 Value *getPtr() { return Ptr; } 422 bool mayReadFromMemory() { return MayReadFromMemory; } 423 bool mayWriteToMemory() { return MayWriteToMemory; } 424 425 private: 426 bool Load; 427 bool Store; 428 bool Vol; 429 bool MayReadFromMemory; 430 bool MayWriteToMemory; 431 // For regular (non-intrinsic) loads/stores, this is set to -1. For 432 // intrinsic loads/stores, the id is retrieved from the corresponding 433 // field in the MemIntrinsicInfo structure. That field contains 434 // non-negative values only. 435 int MatchingId; 436 Value *Ptr; 437 }; 438 439 bool processNode(DomTreeNode *Node); 440 441 Value *getOrCreateResult(Value *Inst, Type *ExpectedType) const { 442 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) 443 return LI; 444 else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) 445 return SI->getValueOperand(); 446 assert(isa<IntrinsicInst>(Inst) && "Instruction not supported"); 447 return TTI.getOrCreateResultFromMemIntrinsic(cast<IntrinsicInst>(Inst), 448 ExpectedType); 449 } 450 }; 451 } 452 453 bool EarlyCSE::processNode(DomTreeNode *Node) { 454 BasicBlock *BB = Node->getBlock(); 455 456 // If this block has a single predecessor, then the predecessor is the parent 457 // of the domtree node and all of the live out memory values are still current 458 // in this block. If this block has multiple predecessors, then they could 459 // have invalidated the live-out memory values of our parent value. For now, 460 // just be conservative and invalidate memory if this block has multiple 461 // predecessors. 462 if (!BB->getSinglePredecessor()) 463 ++CurrentGeneration; 464 465 /// LastStore - Keep track of the last non-volatile store that we saw... for 466 /// as long as there in no instruction that reads memory. If we see a store 467 /// to the same location, we delete the dead store. This zaps trivial dead 468 /// stores which can occur in bitfield code among other things. 469 Instruction *LastStore = nullptr; 470 471 bool Changed = false; 472 473 // See if any instructions in the block can be eliminated. If so, do it. If 474 // not, add them to AvailableValues. 475 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) { 476 Instruction *Inst = I++; 477 478 // Dead instructions should just be removed. 479 if (isInstructionTriviallyDead(Inst, &TLI)) { 480 DEBUG(dbgs() << "EarlyCSE DCE: " << *Inst << '\n'); 481 Inst->eraseFromParent(); 482 Changed = true; 483 ++NumSimplify; 484 continue; 485 } 486 487 // Skip assume intrinsics, they don't really have side effects (although 488 // they're marked as such to ensure preservation of control dependencies), 489 // and this pass will not disturb any of the assumption's control 490 // dependencies. 491 if (match(Inst, m_Intrinsic<Intrinsic::assume>())) { 492 DEBUG(dbgs() << "EarlyCSE skipping assumption: " << *Inst << '\n'); 493 continue; 494 } 495 496 // If the instruction can be simplified (e.g. X+0 = X) then replace it with 497 // its simpler value. 498 if (Value *V = SimplifyInstruction(Inst, DL, &TLI, &DT, &AC)) { 499 DEBUG(dbgs() << "EarlyCSE Simplify: " << *Inst << " to: " << *V << '\n'); 500 Inst->replaceAllUsesWith(V); 501 Inst->eraseFromParent(); 502 Changed = true; 503 ++NumSimplify; 504 continue; 505 } 506 507 // If this is a simple instruction that we can value number, process it. 508 if (SimpleValue::canHandle(Inst)) { 509 // See if the instruction has an available value. If so, use it. 510 if (Value *V = AvailableValues.lookup(Inst)) { 511 DEBUG(dbgs() << "EarlyCSE CSE: " << *Inst << " to: " << *V << '\n'); 512 Inst->replaceAllUsesWith(V); 513 Inst->eraseFromParent(); 514 Changed = true; 515 ++NumCSE; 516 continue; 517 } 518 519 // Otherwise, just remember that this value is available. 520 AvailableValues.insert(Inst, Inst); 521 continue; 522 } 523 524 ParseMemoryInst MemInst(Inst, TTI); 525 // If this is a non-volatile load, process it. 526 if (MemInst.isValid() && MemInst.isLoad()) { 527 // Ignore volatile loads. 528 if (MemInst.isVolatile()) { 529 LastStore = nullptr; 530 // Don't CSE across synchronization boundaries. 531 if (Inst->mayWriteToMemory()) 532 ++CurrentGeneration; 533 continue; 534 } 535 536 // If we have an available version of this load, and if it is the right 537 // generation, replace this instruction. 538 std::pair<Value *, unsigned> InVal = 539 AvailableLoads.lookup(MemInst.getPtr()); 540 if (InVal.first != nullptr && InVal.second == CurrentGeneration) { 541 Value *Op = getOrCreateResult(InVal.first, Inst->getType()); 542 if (Op != nullptr) { 543 DEBUG(dbgs() << "EarlyCSE CSE LOAD: " << *Inst 544 << " to: " << *InVal.first << '\n'); 545 if (!Inst->use_empty()) 546 Inst->replaceAllUsesWith(Op); 547 Inst->eraseFromParent(); 548 Changed = true; 549 ++NumCSELoad; 550 continue; 551 } 552 } 553 554 // Otherwise, remember that we have this instruction. 555 AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>( 556 Inst, CurrentGeneration)); 557 LastStore = nullptr; 558 continue; 559 } 560 561 // If this instruction may read from memory, forget LastStore. 562 // Load/store intrinsics will indicate both a read and a write to 563 // memory. The target may override this (e.g. so that a store intrinsic 564 // does not read from memory, and thus will be treated the same as a 565 // regular store for commoning purposes). 566 if (Inst->mayReadFromMemory() && 567 !(MemInst.isValid() && !MemInst.mayReadFromMemory())) 568 LastStore = nullptr; 569 570 // If this is a read-only call, process it. 571 if (CallValue::canHandle(Inst)) { 572 // If we have an available version of this call, and if it is the right 573 // generation, replace this instruction. 574 std::pair<Value *, unsigned> InVal = AvailableCalls.lookup(Inst); 575 if (InVal.first != nullptr && InVal.second == CurrentGeneration) { 576 DEBUG(dbgs() << "EarlyCSE CSE CALL: " << *Inst 577 << " to: " << *InVal.first << '\n'); 578 if (!Inst->use_empty()) 579 Inst->replaceAllUsesWith(InVal.first); 580 Inst->eraseFromParent(); 581 Changed = true; 582 ++NumCSECall; 583 continue; 584 } 585 586 // Otherwise, remember that we have this instruction. 587 AvailableCalls.insert( 588 Inst, std::pair<Value *, unsigned>(Inst, CurrentGeneration)); 589 continue; 590 } 591 592 // Okay, this isn't something we can CSE at all. Check to see if it is 593 // something that could modify memory. If so, our available memory values 594 // cannot be used so bump the generation count. 595 if (Inst->mayWriteToMemory()) { 596 ++CurrentGeneration; 597 598 if (MemInst.isValid() && MemInst.isStore()) { 599 // We do a trivial form of DSE if there are two stores to the same 600 // location with no intervening loads. Delete the earlier store. 601 if (LastStore) { 602 ParseMemoryInst LastStoreMemInst(LastStore, TTI); 603 if (LastStoreMemInst.isMatchingMemLoc(MemInst)) { 604 DEBUG(dbgs() << "EarlyCSE DEAD STORE: " << *LastStore 605 << " due to: " << *Inst << '\n'); 606 LastStore->eraseFromParent(); 607 Changed = true; 608 ++NumDSE; 609 LastStore = nullptr; 610 } 611 // fallthrough - we can exploit information about this store 612 } 613 614 // Okay, we just invalidated anything we knew about loaded values. Try 615 // to salvage *something* by remembering that the stored value is a live 616 // version of the pointer. It is safe to forward from volatile stores 617 // to non-volatile loads, so we don't have to check for volatility of 618 // the store. 619 AvailableLoads.insert(MemInst.getPtr(), std::pair<Value *, unsigned>( 620 Inst, CurrentGeneration)); 621 622 // Remember that this was the last store we saw for DSE. 623 if (!MemInst.isVolatile()) 624 LastStore = Inst; 625 } 626 } 627 } 628 629 return Changed; 630 } 631 632 bool EarlyCSE::run() { 633 // Note, deque is being used here because there is significant performance 634 // gains over vector when the container becomes very large due to the 635 // specific access patterns. For more information see the mailing list 636 // discussion on this: 637 // http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20120116/135228.html 638 std::deque<StackNode *> nodesToProcess; 639 640 bool Changed = false; 641 642 // Process the root node. 643 nodesToProcess.push_back(new StackNode( 644 AvailableValues, AvailableLoads, AvailableCalls, CurrentGeneration, 645 DT.getRootNode(), DT.getRootNode()->begin(), DT.getRootNode()->end())); 646 647 // Save the current generation. 648 unsigned LiveOutGeneration = CurrentGeneration; 649 650 // Process the stack. 651 while (!nodesToProcess.empty()) { 652 // Grab the first item off the stack. Set the current generation, remove 653 // the node from the stack, and process it. 654 StackNode *NodeToProcess = nodesToProcess.back(); 655 656 // Initialize class members. 657 CurrentGeneration = NodeToProcess->currentGeneration(); 658 659 // Check if the node needs to be processed. 660 if (!NodeToProcess->isProcessed()) { 661 // Process the node. 662 Changed |= processNode(NodeToProcess->node()); 663 NodeToProcess->childGeneration(CurrentGeneration); 664 NodeToProcess->process(); 665 } else if (NodeToProcess->childIter() != NodeToProcess->end()) { 666 // Push the next child onto the stack. 667 DomTreeNode *child = NodeToProcess->nextChild(); 668 nodesToProcess.push_back( 669 new StackNode(AvailableValues, AvailableLoads, AvailableCalls, 670 NodeToProcess->childGeneration(), child, child->begin(), 671 child->end())); 672 } else { 673 // It has been processed, and there are no more children to process, 674 // so delete it and pop it off the stack. 675 delete NodeToProcess; 676 nodesToProcess.pop_back(); 677 } 678 } // while (!nodes...) 679 680 // Reset the current generation. 681 CurrentGeneration = LiveOutGeneration; 682 683 return Changed; 684 } 685 686 PreservedAnalyses EarlyCSEPass::run(Function &F, 687 AnalysisManager<Function> *AM) { 688 const DataLayout *DL = F.getParent()->getDataLayout(); 689 690 auto &TLI = AM->getResult<TargetLibraryAnalysis>(F); 691 auto &TTI = AM->getResult<TargetIRAnalysis>(F); 692 auto &DT = AM->getResult<DominatorTreeAnalysis>(F); 693 auto &AC = AM->getResult<AssumptionAnalysis>(F); 694 695 EarlyCSE CSE(F, DL, TLI, TTI, DT, AC); 696 697 if (!CSE.run()) 698 return PreservedAnalyses::all(); 699 700 // CSE preserves the dominator tree because it doesn't mutate the CFG. 701 // FIXME: Bundle this with other CFG-preservation. 702 PreservedAnalyses PA; 703 PA.preserve<DominatorTreeAnalysis>(); 704 return PA; 705 } 706 707 namespace { 708 /// \brief A simple and fast domtree-based CSE pass. 709 /// 710 /// This pass does a simple depth-first walk over the dominator tree, 711 /// eliminating trivially redundant instructions and using instsimplify to 712 /// canonicalize things as it goes. It is intended to be fast and catch obvious 713 /// cases so that instcombine and other passes are more effective. It is 714 /// expected that a later pass of GVN will catch the interesting/hard cases. 715 class EarlyCSELegacyPass : public FunctionPass { 716 public: 717 static char ID; 718 719 EarlyCSELegacyPass() : FunctionPass(ID) { 720 initializeEarlyCSELegacyPassPass(*PassRegistry::getPassRegistry()); 721 } 722 723 bool runOnFunction(Function &F) override { 724 if (skipOptnoneFunction(F)) 725 return false; 726 727 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>(); 728 auto *DL = DLP ? &DLP->getDataLayout() : nullptr; 729 auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 730 auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); 731 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); 732 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); 733 734 EarlyCSE CSE(F, DL, TLI, TTI, DT, AC); 735 736 return CSE.run(); 737 } 738 739 void getAnalysisUsage(AnalysisUsage &AU) const override { 740 AU.addRequired<AssumptionCacheTracker>(); 741 AU.addRequired<DominatorTreeWrapperPass>(); 742 AU.addRequired<TargetLibraryInfoWrapperPass>(); 743 AU.addRequired<TargetTransformInfoWrapperPass>(); 744 AU.setPreservesCFG(); 745 } 746 }; 747 } 748 749 char EarlyCSELegacyPass::ID = 0; 750 751 FunctionPass *llvm::createEarlyCSEPass() { return new EarlyCSELegacyPass(); } 752 753 INITIALIZE_PASS_BEGIN(EarlyCSELegacyPass, "early-cse", "Early CSE", false, 754 false) 755 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) 756 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 757 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 758 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 759 INITIALIZE_PASS_END(EarlyCSELegacyPass, "early-cse", "Early CSE", false, false) 760